
Received 18 March 2024, accepted 1 April 2024, date of publication 10 April 2024, date of current version 17 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3386855

Stability-Enhanced Model Predictive Control for
Urban Rail Transit Train
XI WANG 1, KEJIA XING 2, AND JIAN WANG1,2
1Postgraduate Department, China Academy of Railway Sciences, Beijing 100081, China
2Signal and Communication Research Institute, China Academy of Railway Sciences Corporation Ltd., Beijing 100081, China

Corresponding author: Kejia Xing (xingkejia@rails.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 52172323, and in part by China
Academy of Railway Sciences Fund under Grant 2021YJ305.

ABSTRACT Automatic train operation (ATO) control is a pivotal part of urban rail transit development,
where designing the dynamics models and controllers for the ATO control scenarios presents a formidable
challenge. To begin with, considering the fundamental resistances encountered by trains during the operation
process, including elemental running resistance and time-varying slope resistance, we treat relative distance
and relative speed between train carriages as state variables in the control modeling. Considering changes
in traction/braking outputs as control variables, we formulate a meticulous dynamics model for urban rail
transit trains (URTT). Furthermore, a stability-enhanced model predictive control (SEMPC) approach is
proposed for ATO control in URTT, with a terminal term being added to the control objective design for
stability requirements. This approach anticipates the future dynamic behaviors of the control system, yielding
a stable and convergent predictive controller for the ATO system. Lastly, utilizing operational data from a
specific urban rail line as an illustrative example, we conduct comparative analyses of the operational control
performance among various controllers in scenarios of the single section, multi-section, and disturbance.
Experimental results demonstrate that the proposed SEMPC controller exhibits superior performance to the
compared controllers in terms of input cost, speed error, displacement error, and station-stopping error for
ATO control in URTT.

INDEX TERMS Automatic train operation (ATO), urban rail transit train (URTT), stability-enhanced model
predictive control (SEMPC), speed control.

I. INTRODUCTION
With the development of urban clusters and metropolitan
areas, the demand for constructing an efficient and reliable
urban rail transit train (URTT) system is rapidly increasing,
where an indispensable component is the automatic train
operation (ATO) control responsible for train speed control
and station stopping [1]. Specifically speaking, ATO control
technology is achieved by adjusting the traction and braking
control commands for the train, tracking the target speed
profile within speed limits, and coming to a precise stop
within the stopping window (station stopping point ±

0.3 m), thereby guaranteeing safe, efficient, and smooth train
operation [2]. However, URTT exhibits more complicated
operation states during travel in increasingly complex

The associate editor coordinating the review of this manuscript and
approving it for publication was Shaohua Wan.

track conditions and operational scenarios, such as higher
speed requirements, complex slope variations, and tight
stopping windows. This complexity affects the safety,
stability, and stopping precision of the train, imposing
high requirements on train operation control technol-
ogy [3]. Thus, it is imperative to establish an accurate
train dynamics model and design a train operation con-
trol algorithm that adheres to train operation constraints
to the demands of speed control and precise station
stopping.

In general, the train dynamics model can be categorized
into single-point train model and multi-point train model.
Compared with the former, the latter treats each train carriage
as an individual point, considering coupling relationships
between carriages and analyzing the forces acting on each
carriage [4]. Hence, the multi-point train model can be more
effective in characterizing the dynamic behavior of trains and
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is widely used in ATO control under complex conditions [5],
[6], [7]. For example, a multi-point train model connected
by flexible couplers is constructed in [5], which can be
cruise control for trains. In [6], it is presented a nonlinear
multi-point train model based on integer variables that can
represent carriage types and operation states. He et al. [7]
devise a robust control criterion applicable to the multi-point
train model. This criterion explicitly incorporates the train
operation process’s uncertainties.

After building the train dynamics model, it is necessary
to design the ATO control algorithm. In recent years,
a lot of ATO control algorithms have been designed.
Among them, proportional-integral-derivative (PID) control
has been widely used due to its simplicity [8], [9]. Other
intelligent control algorithms, such as expert systems and
reinforcement learning [10], [11], [12], [13], event-triggered
consensus control [14], sliding mode control (SMC) [15],
[16], [17], adaptive fuzzy sliding mode control (AFSMC)
[18], and iterative learning control [19], [20], [21], have
also been explored. All the above algorithms improve
the performance of the train control from the perspec-
tive of ATO control. On the other hand, some frontier
technologies including blockchain and edge intelligence
have been introduced to enhance the performance of the
train [22], [23], [24].

However, some of the above control algorithms are limited
to optimizing single objectives, lacking the capability to
address multi-objective optimization and multiple constraint
problems [25], [26], [27]. Considering the nonlinear charac-
teristics of the train operation, the impact of traction motor
saturation, riding comfort, various train speed limitations in
different sections, and constraints on train speed and stopping
positions in different segments, the design of control algo-
rithms needs to consider multiple objectives and constraints.
Therefore, in recent years, model predictive control (MPC)
algorithms that can effectively handle optimization control
problems with complex constraints have received widespread
attention [28], [29], [30]. For example, a distributed optimal
control for multiple train operations is designed, which
overcomes communication constraints and realizes efficient
speed control [31].

Simultaneously, considering train operation control’s relia-
bility and real-time performance, efficient control algorithms
are crucial [32]. Regarding predictive control optimization
algorithms, an MPC algorithm considering multiple perfor-
mance indicators and constraints is introduced to reduce
energy waste and alleviate train periodic vibrations in [33].
In [34], a constraint-tightening-based MPC algorithm is
presented, achieving speed tracking within the automatic
train protection (ATP) limits. A switching cost function MPC
algorithm is investigated [35], which switches cost functions
in the train control problem based on operation demands.
Besides, an MPC algorithm based on a data-driven Koopman
model is developed, which completes higher tracking accu-
racy and control requirements [36]. Furthermore, in terms of

station parking, Zhao et al. devise a precise stopping control
model based on a distributed MPC algorithm, achieving an
accurate and stable station stopping [37].

It is noted that the above MPC algorithms choose train
traction/braking output as the control variable for achieving
ATO control without taking into account the variation of
traction/braking output related to riding comfort. As a
consequence, this paper proposes a stability-enhanced model
predictive control (SEMPC) approach for ATO control
in URTT considering various train operation constraints.
Further, the proposed SEMPC approach is validated via
experiments, which demonstrate that the proposed SEMPC
approach ensures precise train speed control and station
stopping control while preserving carriage-to-carriage safety
distance and speed under the premise of meeting the
requirements for the train’s stopping position, speed limit, the
input constraints of the vehicle’s traction/braking actuators,
and riding comfort. The framework of the SEMPC for ATO
control in URTT is shown in Fig. 1.

The rest of this paper is organized as follows: Section II
presents a multi-point train dynamics model; Section III
introduces the proposed SEMPC controller design for ATO;
Section IV provides simulation test results and corresponding
analysis; Section V summarizes the entire paper.The contri-
butions of this paper are as follows:

• Under the elemental running resistance and the vari-
able slope resistance of trains, this paper considers
relative distance and relative speed between train
carriages as variable states, by introducing changes
in traction/braking output as optimization variables,
a dynamics model for URTT is established.

• In this paper, the proposed SEMPC approach sets
the tracking performance of expected speed and dis-
placement profiles, maintaining distance safety and
speed synchronization between train carriages, and
ensuring smooth variations in control variables as con-
trol objectives. Furthermore, by introducing a terminal
cost function and combining it with complex opera-
tional constraints, an SEMPC approach for URTT is
derived.

• Using operational data from a specific urban rail
line, the performance of different control algorithms
is compared in both single-section and multi-section
operational scenarios. Experimental results demonstrate
that, in comparison with other advanced control algo-
rithms, the proposed SEMPC approach exhibits superior
performance.

II. TRAIN DYNAMICS MODEL
Considering the combined influence of traction, braking,
and resistance during the train’s operation, each carriage is
viewed as an individual point. Furthermore, assuming that
each carriage of the train can be independently controlled
and that different carriages follow corresponding trajectories,
the dynamical equations for a train with n carriages can be
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FIGURE 1. Framework of the stability-enhanced model predictive control for urban rail transit trains.

described as follows [31]:

xi = vi, i = 1, . . . , n,
m1v̇1 = u1 − ks (x1 − x2 − l) − F1,
miv̇i = ui + ks (xi−1 − xi − l)

−ks (xi − xi+1 − l) − Fi, i = 2, . . . , n− 1,
mnv̇n = un + ks (xn−1 − xn − l) − Fn,

(1)

where ui signifie the traction force experienced by the i-th
carriage, mi stands for the mass of the i-th carriage, and xi
and vi represent the position and speed of the i-th carriage,
respectively. In addition, l denotes the original length of the
spring and ks represents the linear spring stiffness coefficient.
In the technical development of the ATO system for URTT,

the ATO control algorithm considers the influence of the
elemental running resistance and the slope resistance on
the train. Hence, Fi represents the resistance experienced
by the i-th carriage, specifically given by Fi = F ir + F iw. The
elemental running resistance and the slope resistance of the
i-th carriage as follow [3]:

F ir = mi
(
c0 + c1vi + c2v2i

)
, (2)

F iw = miwi = mi · g · θ · 10−3, (3)

where c0, c1, and c2 are the Davis’ coefficients, which are
decided by the type of train. In (3), wi represents the unit
slope resistance, g is the acceleration due to gravity, and θ

represents the slope in permillage (positive for uphill) [38].

In order to ensure the safe distance and speed synchroniza-
tion between carriages, we assume xi,i−1 = xi − xi−1 and
vi,i−1 = vi − vi−1, and take it as the variable of states, then
substitute it into (1). Thus, we get the error dynamics equation
as follows:

ẋ1 = v1,
ẋi,i−1 = vi,i−1, i = 2, . . . , n,

v̇1 =
u1
m1

−
k
m1

(
−x2,1 − l

)
− F1, i = 1,

v̇2,1 =
u2
m2

+
k
m2

(
−x2,1 − l

)
−

k
m2

(
−x3,2 − l

)
− F2

−
u1
m1

+
k
m1

(
−x2,1 − l

)
+ F1, i = 2,

v̇i,i−1 =
ui
mi

+
k
mi

(
−xi,i−1 − l

)
−

k
mi

(
−xi+1,i − l

)
− Fi

−
ui−1

mi−1
−

k
mi−1

(
−xi−1,i−2 − l

)
+

k
mi−1

(
−xi,i−1−l

)
+Fi−1, i=3, . . . , n− 1,

v̇n,n−1 =
un
mn

+
k
mn

(
−xn,n−1 − l

)
− Fn

−
un−1

mn−1
−

k
mn−1

(
−xn−1,n−2 − l

)
+

k
mn−1

(
−xn,n−1 − l

)
+ Fn−1, i = n,

(4)
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FIGURE 2. The diagram of (a) station stopping and (b) force condition for
URTT.

where vi,i−1 represents the relative speed of the i-th carriage
concerning the (i − 1)-th carriage, and xi,i−1 denotes the
relative distance of each carriage behind it. The diagram of
station stopping is shown in Fig. 2(a) and the multi-point train
model is illustrated in Fig. 2(b).

Due to the presence of high-order terms concerning
speed vi, a linearization method [39] is employed to
approximate the high-order terms of vi with a first-order
Taylor approximation at t . Here, vr represents the refer-
ence speed of the train at time t . In other words, the
high-order terms of vi are approximated linearly around the
point t .

v2i ≈ v2r + 2vr (vi − vr ) = 2vrvi − v2r .

Furthermore, assuming equal masses for each carriage,
the continuous system state-space equations describ-
ing the motion of the train can be formulated as
follows: {

ẋ = Ax+ Bu+ d,

y = Cx,
(5)

where y is the output of the control system,

x =



x1
...

xn,n−1
v1
...

vn,n−1


, u =

 u1
...

un

 , y =



yx1
...

yxn,n−1

yv1
...

yvn,n−1


.

The expressions for matrices A, B, C , and d are as follows:

A =

[
A11 A12
A21 A22

]
2n×2n

,

B =



1
m

0 0 · · · 0

−
1
m

1
m

0 · · · 0

0 −
1
m

1
m

...
. . .

. . .
. . .

0 · · · 0 −
1
m

1
m


2n×n

,

C =

1 · · · 0
...

. . .
...

0 · · · 1


2n×2n

,

d =



0
...

0

−c0 + c2v2r +
ksl
m

− w1

w1 − w2 −
ksl
m

...

wi−1 − wi
...

wn−1 − wn −
ksl
m


2n×1

,

where

A11 =

0 · · · 0
...

. . .
...

0 · · · 0


n×n

,

A12 =

1 · · · 0
...

. . .
...

0 · · · 1


n×n

,

A21 =



0
ks
m

0 · · · 0

0 −
2ks
m

. . .
. . .

...

0
ks
m

. . .
. . . 0

...
. . .

. . .
. . .

ks
m

0 · · · 0
ks
m

−
2ks
m


n×n

,

A22 =


−c1 − 2c2vr 0 · · · 0

0 −c1 − 2c2vr · · · 0
...

...
. . .

...

0 0 · · · −c1 − 2c2vr


n×n

.

III. CONTROLLER DESIGN FOR ATO
This section contains two subsections. Section III-A intro-
duces the design of predictive control. In Section III-B, the
SEMPC approach for URTT is derived.
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A. DESIGN OF PREDICTIVE CONTROL
In this subsection, it is divided into three parts. Firstly, the
design of the prediction model is introduced. Secondly,
the design of the objective function is developed. Finally,
the design of constraints is clarified.

1) DESIGN OF PREDICTION MODEL
Generally, optimization can be performed within the pre-
diction horizon in the predictive control algorithm to
determine future control actions based on several perfor-
mance criteria [40]. The continuous state-space equations are
transformed into a discrete form by discretizing (5) using the
forward Euler method.{

x(k + 1) = Adx(k) + Bdu(k) + d,

y(k) = Cdx(k),
(6)

where Ad = I + AT , Bd = TB, Cd = C , I represents the
identity matrix, and T denotes the sampling period.
Furthermore, considering riding comfort, (6) can be

rewritten as a state equationwith control increments as inputs:{
ξ (k + 1) = Ãξ (k) + B̃1u(k) + D̃,

η(k) = C̃ξ (k),
(7)

where

ξ (k) =

[
x(k)

u(k − 1)

]
, 1u(k) =

1u1(k)
...

1un(k)

 ,

η(k) =

[
y(k)
u(k)

]
, Ã =

[
Ad Bd

On×2n In×n

]
, B̃ =

[
Bd
In×n

]
,

C̃ =

[
Cd On×n
On×n On×n

]
, D̃ =

[
d

On×1

]
.

In these equations, O represents the zero matrix. Conducting
state prediction based on (7), where Nc is the control domain
and Np is the prediction domain, it can be described in vector
form as

4(k) = Fξ ξ (k) + Gξ1U (k) + Dξ , (8)

where

4(k) =

 ξ (k + 1)
...

ξ
(
k + Np

)
 , 1U (k) =

 1u(k)
...

1u
(
k + Np − 1

)
 ,

Fξ =

 Ã
...

ÃNp

 ,

Gξ =

 B̃ 0
...

. . .

ÃNp−1B̃ · · · B̃

 ,

Dξ =

 D̃
...

ÃNp−1D̃+ ÃNp−2D̃+ · · · + D̃

 .

Similar deductions can be made based on the output
equation in (7) and (8), leading to:

9(k) = Fηξ (k) + Gη1U (k) + Dη, (9)

where

9(k) =

 η(k + 1)
...

η
(
k + Np

)
 ,

Fη =

 C̃Ã
...

C̃ÃNp

 ,

Gη =

 C̃B̃ 0
...

. . .

C̃ÃNp−1B̃ · · · C̃ÃNp−Nc B̃

 ,

Dη =

 C̃D̃
...

C̃(ÃNp−1D̃+ ÃNp−2D̃+ · · · + D̃)

 .

2) DESIGN OF OBJECTIVE FUNCTION
To avoid collisions between carriages during URTT oper-
ation, this paper sets the control objective as maintaining
a safe distance between train carriages and keeping their
relative speed close to zero. This ensures distance safety and
synchronized speeds between individual carriages. Thus, the
desired safe distance between carriages and the target relative
speed are defined as

wr =
[
wx1 , · · · ,wxn,n−1 ,wv1 , · · · ,wvn,n−1

]⊤
,

where wx2,1 to wxn,n−1 represent the relative distance between
the individual carriages and wv2,1 to wvn,n−1 represent the
relative speed between carriages.

Therefore, the primary control objectives of this paper
are to ensure the displacement and speed tracking accu-
racy of the train’s first carriage, along with the abil-
ity to track the desired relative distances and relative
speed between carriages. This involves optimizing the
deviations in system state variables and control inputs.
Additionally, to avoid excessive traction and braking vari-
ations, the design objective function is formulated as
follows:

J =

Np∑
k=1

∥W (k) − 9(k)∥2Q +

Nc∑
k=1

∥1U (k)∥2R, (10)

where W (k) =
[
wr(k + 1) . . .wr(k + Np)

]
represents the

vector representation of the desired output, and Q and
R are output and control weighting matrices of appro-
priate dimensions. The first term on the right-hand side
of (10) reflects the system’s ability to track the desired
relative distances and relative speed between carriages
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and the reference trajectory. The second term repre-
sents the requirement for smooth variations in control
inputs.

3) DESIGN OF CONSTRAINTS
Further, after the objective function of predictive control is
designed, the following constraints should be considered to
ensure the smooth, safe, and precise speed control and station
stopping control of the train:

0 ≤ x1 ≤ xmax, (11)

−ld − lsafe ≤ x(2,...,n),k ≤ ld + lsafe , (12)

0 ≤ v1 ≤ vmax, (13)

umin ≤ u1,...,n ≤ umax, (14)

1umin ≤ 1u1,...,n ≤ 1umax. (15)

In (11), xmax represents the station stopping point, ensuring
the train can come to a stop at the appropriate position
aligning with the platform screen doors. In (12), x(2,...,n),k
denotes the relative distance between adjacent carriages,
ld is the desired distance between each carriages, and lsafe
represents the maximum possible relative distance. In (13),
vmax = min

{
vl, vp, vt

}
, where vl is the maximum allowable

speed determined by track conditions, vp is the speed limit
from the ATP profile, and vt is design speed limit of
trains. In (14), umin and umax represent the output minimum
and maximum traction forces achievable due to physical
limitations of the traction motors. In (15), 1umax represents
the maximum allowable change in traction force, and
1umin represents the maximum allowable change in braking
force.

In summary, settingNp = Nc = N , the optimization model
for the train speed predictive control is given

min J =

Np∑
k=1

∥W (k) − 9(k)∥2Q + ∥1U (k)∥2R

s.t. ξ (k + 1) = Ãξ (k) + B̃1u(k) + D̃

0 ≤ x1 ≤ xmax

0 ≤ v1 ≤ vmax

umin ≤ u1,...,n ≤ umax

1umin ≤ 1u1,...,n ≤ 1umax

− ld − lsafe ≤ x(2,...,n),k ≤ ld + lsafe . (16)

B. DESIGN OF STABILITY-ENHANCED MODEL PREDICTIVE
CONTROL
The prediction horizon N is the number of future control
intervals that the MPC controller must evaluate through
prediction while optimizing its cost function at control
interval k . A larger N increases computational costs,
while a smaller N can lead to instability. We introduce a
terminal cost to address this issue and propose an SEMPC
approach. The cost function needs to be modified to account
for computations up to infinity to build a stable MPC.

Assuming the error vector at each time sample is Y (k) =

W (k) − 9(k), this modification can be expressed as

∞∑
k=1

(
∥Y (k)∥2Q + ∥1U (k)∥2R

)
.

By dividing the cost function into two terms, we obtain:

J =

N∑
k=1

(
Y (k)⊤QY (k) + 1U (k)⊤R1U (k)

)
+

∞∑
k=N+1

(
Y (k)⊤QY (k) + 1U (k)⊤R1U (k)

)
.

It can also be expressed as

J =

N∑
k=1

(
Y (k)⊤QY (k) + 1U (k)⊤R1U (k)

)
+ J∗,

where

J∗
=

∞∑
j=0

[
Y (N + 1 + j)⊤QY (N + 1 + j)

+ 1U (N + 1 + j)⊤R1U (N + 1 + j)
]
.

Due to the presence of the feedback control law 1U (N +1+

j) = KY (N + 1 + j), it can be derived that

J∗
=

∞∑
j=0

[
(Y (N + 1 + j)⊤QY (N + 1 + j)

+ Y (N + 1 + j)⊤K⊤RKY (N + 1 + j)
]
.

After simplification, it can be obtained that

J∗
=

∞∑
j=0

(
Y (N + 1 + j)⊤

(
Q+ K⊤RK

)
Y (N + 1 + j)

)
.

(17)

Also, one has

Y (N + 1 + j) = (Ã+ B̃K )jY (N + 1). (18)

Substituting (18) into (17), we get

J∗
=

∞∑
j=0

[
Y (N + 1)⊤

(
(Ã+ B̃K )j

)⊤

×

(
Q+ K⊤RK

)
(Ã+ B̃K )jY (N + 1)

]
. (19)

Let

P =

∞∑
j=0

((
(Ã+ B̃K )j

)⊤ (
Q+ K⊤RK

)
(Ã+ B̃K )j

)
.

Substituting this into (19) and rearranging, we obtain:

J∗
= Y (N + 1)⊤PY (N + 1).
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Finally, the objective function of the SEMPC controller can
be expressed as

J =

N∑
k=1

(
Y (k)⊤QY (k) + 1U (k)⊤R1U (k)

)
+ Y (N + 1)⊤PY (N + 1). (20)

For the solution of P, we utilize the following equation to
solve the Linear Matrix Inequality (LMI) optimization prob-
lem, where there are readily available efficient computational
tools for LMI problems [11], [41]:

P =

(
Q+ K⊤RK

)
+

(
(Ã+ B̃K )j

)⊤ (
Q+ K⊤RK

)
(Ã+ B̃K )j.

Quadratic programming is widely used for solving
constrained optimization problems in predictive control.
Therefore, this paper transforms the constrained optimization
problem in (16) into quadratic programming. Substituting (8)
into the optimization objective in (20) and disregarding the
constant terms, we obtain:

J = 1U (k)⊤
(
G⊤

η Q̄Gη + R̃
)

1U (k)

+ 2
[
E⊤Q̄Gη −W (k)⊤Q̄Gη + D⊤

η Q̄Gη

]
1U (k), (21)

where

Q̄ =

[
Q̃

P

]
,

Q̃ = INp ⊗ Q, R̃ = INc ⊗ R, and ⊗ represents the Kronecker
product. Furthermore, let H = Gη

⊤Q̄Gη + R̃, and g =

Gη
⊤Q̄

[
Fηξ (k) −W (k) + Dη

]
, then (21) can be rearranged as

J =
1
2
1U (k)⊤H1U (k) + g⊤U (k).

After obtaining the quadratic form of the objective
function, constraints need to be transformed into the form
of control increments, as the control increments within
the control domain are considered variables to be solved.
Therefore, the constraint part of (16) can be organized as
follows:

ξmin ≤ Zξ (k + 1 + i) ≤ ξmax, (22)

umin ≤ u(k + i) ≤ umax, (23)

1umin ≤ 1u(k + i) ≤ 1umax, (24)

where i = 0, 1, · · · ,N − 1.
In (22), Z =

[
I(n+1)×(n+1) O(n+1)×(2n−1)

]
ensures that

constraints on train displacement, inter-carriage distances,
and train speed. ξmin represents the minimum values for train
displacement, the minimum expected inter-carriage distance,
and the minimum train speed, defined as

ξmin =

[
0 l⊤min 0

]⊤

1×(n+1)
,

where lmin = [ ld + lsafe · · · ld + lsafe ]⊤1×(n−1).

Similarly, ξmax represents the maximum values for train
displacement, the maximum inter-carriage distance, and the
maximum train speed, defined as

ξmax =

[
xmax l⊤max vmax

]⊤

1×(n+1)
,

where lmax = [ld + lsafe · · · ld + lsafe]⊤1×(n−1).
Then within the prediction horizon, as indicated by (12),

the constraint can be expressed as

4min ≤ Ãp4(k) + B̃p1U (k) + D̃p ≤ 4max, (25)

where Ãp = INp ⊗ ZÃ, B̃p = INc ⊗ ZB̃, and D̃p = 1Np ⊗ ZD̃,
where 1Np is a column vector with Np rows. 4min and 4max
represent the sets of minimum and maximum values for train
displacement, inter-carriage distances, and train speed within
the prediction horizon.

In (23), umin and umax denote the sets of minimum and
maximum traction forces applied to each carriage of the train
at the current moment, respectively.

umin =
[
umin1 · · · uminn

]⊤
1×n ,

umax =
[
umax1 · · · umaxn

]⊤
1×n .

There is the following relationship between control inputs and
control increments:

u(k + i) = u(k + i− 1) + 1u(k + i),

i = 0, 1, · · · ,N − 1

Therefore, (23) can be represented in vector form:

Umin ≤ Ut + L1U (k) ≤ Umax, (26)

where Ut = 1Nc ⊗ u(k − 1),

L =

In×n...
. . .

In×n · · · In×n

.

1Nc is a column vector with N rows; u(k − 1) represents
the actual control inputs at the previous time step. Umin and
Umax are the sets of minimum and maximum values
for control inputs within the control domain, respectively.
1umin and 1umax represent the sets of minimum and
maximum changes in traction force applied to each carriage
of the train at the current moment. They are represented
as 1umin =

[
1umin1 · · · 1uminn

]⊤
1×n and 1umax =[

1umax1 · · · 1umaxn
]⊤
1×n, respectively. In vector form, they

can be represented as

1Umin ≤ 1U (k) ≤ 1Umax, (27)

where 1Umin and 1Umax represent the sets of minimum
and maximum values for control increments within the
control domain, respectively. Organizing the constraints
from (25), (26), and (27), we can obtain:

Fp4(k) + Gp1U (k) ≤ M , (28)
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where

Fp =


Ãp

−Ãp
O
O
O
O

 , Gp=


B̃p

−B̃p
L
L
In·Nc

In·Nc

 , M=



4max − D̃p

−

(
4min − D̃p

)
Umax
−Umin
1Umax
1Umin


.

The zero matrix O has dimensions (n · Np) × (3n · Np),
In·Nc is the identity matrix with dimensions n · Nc. Further,
substituting (8) into (28) and organizing the constraints,
we get:

FpFξ ξ (k) +
(
FpGξ + Gp

)
1U (k) + FpDξ −M ≤ 0.

Finally, the design of the SEMPC for URTT can be
formulated as follows:

min J =
1
2
1U (k)⊤H1U (k) + g⊤U (k)

s.t. FpFξ ξ (k) +
(
FpGξ + Gp

)
1U (k) + FpDξ −M ≤ 0.

(29)

After solving the optimization problemwithin each control
cycle, a series of control input increments within the control
domain is obtained:

1U∗(k) =


1u∗(k)

1u∗(k + 1)
· · ·

1u∗ (k + Nc − 1)

 .

The first element of this control sequence is applied as the
actual control input increment to the system, i.e.,

u(k) = u(k − 1) + 1u∗(k).

In the next control cycle, the above process is repeated, thus
cyclically achieving the SEMPC of the train.

IV. EXPERIMENT VERIFICATION
The data used in this paper is sourced from operational data
from a specific urban rail line. Further, a six-carriage train
composition is chosen, employing a D-type train model, with
specific parameters provided by the vehicle manufacturer,
as shown in Table 1 [25] is assumed that the speed and
displacement information of the train is obtained through
sensors, and the actuators are considered to be healthy and
free of faults.

This paper compares and analyzes the control performance
of three different algorithms in three scenarios: the MPC
algorithm, the AFSMC algorithm, and the SEMPC approach.
The three scenarios include the single-section, multi-section,
and disturbance train operation scenarios. The first scenario
is a typical train operation control scenario with a relatively
short overall operation time and distance. The second
scenario is the multi-section train operation scenario, which
includes three operation sections, three station stopping, and a
longer overall operation time and distance, posing a challenge
to the overall stability of the train’s operation control.

FIGURE 3. Slope changes in (a) single-section train operation scenarios
and (b) multi-section train operation scenarios.

TABLE 1. Parameters of train.

The last one is a train operation scenario with disturbance,
which simulates the train scenario switching from indoor to
outdoor and verifies the performance of different algorithms
with disturbances.

The control performance metrics are analyzed based on
four aspects: input cost, speed error, displacement error,
and station-stopping error. The calculation methods for
performance metrics are given

Eu =

n∑
i=1

∫
u2i dt,

Ev =

∑T
k=0 |vr(k) − v1(k)|

T
,

Ex =

∑T
k=0 |xr(k) − x1(k)|

T
,

Ep =

∣∣∣xdesire1 − xend1

∣∣∣ .
A. SINGLE-SECTION TRAIN OPERATION SCENARIO
The first scenario is the single-section train operation
scenario, aiming to validate the performance of the proposed
algorithm in a short-distance operation scenario with only one
operating section. This scenario includes performance met-
rics related to train speed control, train displacement control,
inter-carriage distance, speed control, and station stopping
error. Additionally, to assess the control performance of the
algorithm in terms of the instantaneous traction and braking
force variation rate of train motors, which is crucial for
riding comfort, this paper sets the acceleration phase in the
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FIGURE 4. Performance comparison of different algorithms in the single-section train operation scenario, including (a) speed profile tracking,
(b) displacement profile tracking, (c) inter-carriage relative distance, and (d) inter-carriage relative speed.

FIGURE 5. Performance comparison of different algorithms in the single-section train operation scenario, including (a) input curve, (b) input
increment curve, (c) speed error curve, and (d) displacement error curve.

expected speed profile as the phase with the maximum target
speed. The expected profile does not explicitly consider the
instantaneous traction and braking force variation rate of train
motors. Furthermore, the simulation includes time-varying
slope resistance to evaluate the control effectiveness in the
presence of time-varying slope resistance within the section.
In this simulation,N = Np = Nc = 3. The control and output
weighting matrices are set as follows:

Q = diag([0.5, 1012, 1012, 1012, 1012, 1012, 109, 1012,

1012, 1012, 1012, 1012, 0, 0, 0, 0, 0, 0]),

R = 10−5
× diag([1, 1, 1, 1, 1, 1]),

where diag(· · · ) denotes the diagonalization operation.
Figure 4 presents the performance comparison results of the
MPC, AFSMC, and algorithm proposed in this paper. The
performance metrics comparison for the three algorithms are
summarized in Table 2.
Figure 4(a) displays the speed control performance of the

train’s first carriage, where the train adheres to the maximum
safe operating speed. The thick black dashed line represents
the train overspeed protection curve, and the maximum
safe operating speed limit during this period is 45.8 m/s.
The graph shows that the SEMPC approach achieves the
most accurate and stable speed tracking of the expected
speed profile, considering riding comfort. The speed tracking
performance is significantly improved. Figure 4(b) illustrates
the displacement control curve of the train’s first carriage.
It can be observed from the graph that the SEMPC approach
effectively enhances the displacement tracking accuracy.
Figures 4(c) and 4(d) represent the relative speed and relative
distance between the first and second carriages of the train,
respectively. These figures demonstrate that the SEMPC

TABLE 2. The performance comparison of different algorithms in
single-section scenario.

approach excels in controlling the relative speed and relative
distance between carriages to ensure safe train operation.

Figures 5(a) and 5(b) depict the changes in traction/braking
forces and traction/braking variation rates during the train
operation process. In Fig. 5(a), both SEMPC and MPC
algorithms control the traction/braking forces, ensuring
they remain within the constraints of the traction/braking
control unit’s output performance. However, in Fig. 5(b), the
MPC algorithm fails to control the traction change within
the constraints, unlike the SEMPC approach. the SEMPC
approach adapts to the performance of the traction/braking
control unit, ensuring that traction/braking variation rates
remain within the constraints throughout the train operation.
Finally, Figs. 5(c) and 5(d) display the speed error curve and
displacement error curve during the train operation process.
These figures show that the SEMPC approach effectively
reduces both speed and displacement errors. It rapidly
maintains errors close to zero after sharp changes in the
expected curve, resulting in the lowest average speed and
displacement errors. Combined with the results presented in
Table 2, it is evident that the proposed algorithm achieves
better control performance with lower average speed and
displacement errors. The distance from the train to the
expected stopping point is only 0.004 m after the train comes
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FIGURE 6. Performance comparison of different algorithms in the multi-section train operation scenario, including (a) speed profile tracking,
(b) displacement profile tracking, (c) inter-carriage relative distance, and (d) inter-carriage relative speed.

FIGURE 7. Performance comparison of different algorithms in the multi-section train operation scenario, including (a) input curve, (b) input increment
curve, (c) speed error curve, and (d) displacement error curve.

to a stop, which is significantly better than the MPC and
AFSMC algorithms. Additionally, the input cost is only
0.44% higher than the MPC algorithm or 8.32% higher than
the AFSMC algorithm.

Consequently, the SEMPC approach exhibits precise,
stable, and safe operational control, with the best control
performance, as long as constraints such as traction/braking
force and traction/braking force variation rates are met.

B. MULTI-SECTION TRAIN OPERATION SCENARIO
The second scenario entails a multi-section train opera-
tion, aiming to validate the algorithm’s performance in a
real-world scenario encompassing multiple operating sec-
tions over long distances. The overspeed protection curve,
expected trajectory, and slope data in this scenario are
derived from real onboard data of an urban rail line. Both
the overspeed protection curve and the desired trajectory
are calculated by onboard equipment based on the actual
environmental parameters of the railway route. The data in
this multi-section train scenario exhibit complexity, uneven-
ness, and nonlinearity. Consequently, achieving precise,
smooth, and secure train operation control poses a significant
challenge for ATO control. In this simulation, N = Np =

Nc = 3. The control and output weighting matrices are set as
follows:

Q = diag([0.05, 1012, 1012, 1012, 1012, 1012, 50, 1012,

1012, 1012, 1012, 1012, 0, 0, 0, 0, 0, 0]),

R = 10−8
× diag([1, 1, 1, 1, 1, 1]).

The performance metrics for the three algorithms are
compared and presented in Table 3. Notably, the parking

distances for the three sections are 14687 m for Section I,
25279 m for Section II, and 33086 m for Section III.

As shown in Fig. 6(a) and Fig. 6(b), when facing the
expected speed profile of the train in the complex multi-
section real-world scenario, the AFSMC algorithm exhibits
unstable control, performing the worst. In contrast, the
SEMPC and MPC algorithms can adequately track the
expected trajectory, yet the SEMPC approach achieves
superior precision. Figures 6(c) and 6(d) reveal that sim-
ilar to the single-section train operation scenario, in the
context of the complex multi-section real-world scenario,
the SEMPC approach continues demonstrating outstanding
control performance in inter-carriage relative speed and
relative distance.

Figures 7(a) and 7(b) show that the AFSMC algorithm
struggles to achieve train operation control under the
constraints of traction and braking forces. The MPC
algorithm faces challenges in controlling train operation
under constraints on traction and braking force variations.
Balancing the output performance of the traction control unit,
the braking control unit, and riding comfort, the SEMPC
approach performs superiorly compared to the other two
algorithms. Figures 7(c) and 7(d) depict the train speed error
curve and train displacement error curve in the complex
multi-section real-world scenario. These figures illustrate that
the algorithm employed in this paper significantly reduces
train speed and displacement errors at any stage in the
real-world scenario compared to the other two algorithms.
This achievement leads to minimal overall average speed and
displacement errors.

Referring to the input costs in Table 3, it is evident that
the SEMPC approach only requires a 0.67% increase in
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TABLE 3. The performance comparison of different algorithms in multi-section scenario.

TABLE 4. The performance comparison of different algorithms with disturbance.

input costs compared to the MPC algorithm. Meanwhile,
it achieves a 21.71% improvement in average speed error
precision, a twofold enhancement in average displacement
error precision, and a 99.53% improvement in stopping error
precision. On the other hand, compared to the AFSMC
algorithm, the SEMPC approach incurs a 12.91% increase
in input costs, and the average speed error and average dis-
placement error are respectively 0.12 times and 0.005 times
those of the AFSMC algorithm. Moreover, the stopping error
is 0.0018 times that of the AFSMC algorithm.

In summary, in a multi-section train operation scenario,
the SEMPC approach outperforms the MPC and AFSMC
algorithms, ensuring superior train control, ensuring safe,
punctual, efficient, and smooth train operation while adhering
to constraints on traction, braking forces, and their variations.

C. TRAIN OPERATION SCENARIO WITH DISTURBANCE
Considering that trains will encounter different types of
wind disturbances when operating in the open air. This
paper conducts a thorough comparison of the proposed
SEMPC approach with other control algorithms to validate its
performance in the train operation scenario with disturbance.
Specifically, we conducted the experiments to verify the
performance of the algorithm with different kinds of wind
disturbances. The two groups of wind disturbances are
constant disturbance and harmonic disturbance respectively.
The former uses the stable wind model of the train in the
operating process [42], while the latter is a kind of model of
the gust, which can approximately reveal the action process of
wind disturbance on the train [43]. The change of disturbance
is shown in Fig. 8. The performance metrics for the three
algorithms with disturbance are compared and presented
in Table 4.

1) CONSTANT DISTURBANCE
In this case, the constant disturbance is used as the stable wind
model, and the disturbance model is as follows

ŵ = 0.2,

where ŵ represents the disturbance in train operation sce-
nario. The comparison of different algorithms with constant
disturbance is shown in Fig. 9.

FIGURE 8. Change of (a) constant disturbance and (b) nonlinear
disturbance in train operation scenario.

In Fig. 9, this paper shows four evolutions, such as relative
distance, relative speed, speed error and displacement error,
which can reflect the stability of the algorithm. Combining
Fig. 9 with Table 4, it can be seen that the SEMPC approach
can keep the relative distance no more than 0.0005 m and
the relative speed no more than 0.001 m/s, and the overall
change fluctuation is smaller than that of the compared
methods, showing the superior performance of the proposed
approach with constant disturbance. On the other hand, the
average displacement error of the proposed approach is kept
at 0.1093 m, the average speed error is kept at 0.0165 m/s,
and the parking accuracy is 0.0881 m. It can be seen that the
SEMPC approach shows the best performance with constant
disturbance in control accuracy and stability.

2) NONLINEAR DISTURBANCE
In this case, a gust model in harmonic form is used as a
nonlinear disturbance, and the specific wind characteristics
are as follows:

ŵ = 0.1 + 0.1 ∗ cos (t),

where ŵ represents the harmonic disturbance in train
operation scenario. The comparison of different algorithms
with harmonic disturbance is shown in Fig. 10.
As can be seen from Fig. 10, the influence of harmonic

disturbance on train operation is greater than that of constant
disturbance. Nevertheless, the SEMPC approach performs
well and can maintain accurate and stable control of trains
under safety constraints. To be specific, in Figs. 10(a) and (b),
the control of relative distance and relative speed of the
other two algorithms with disturbance fluctuates violently,
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FIGURE 9. Performance comparison of different algorithms with constant disturbance, including (a) inter-carriage relative distance,
(b) inter-carriage relative speed, (c) speed error curve, and (d) displacement error curve.

FIGURE 10. Performance comparison of different algorithms with nonlinear disturbance, including (a) inter-carriage relative distance,
(b) inter-carriage relative speed, (c) speed error curve, and (d) displacement error curve.

but the performance of the SEMPC approach fluctuates
slightly. This means that the SEMPC approach achieves
stable and safe ATO control under nonlinear disturbance.
As can be seen from Fig. 10(c) and (d), in the train
operation scenario with nonlinear disturbance, the average
speed error and average displacement error of the SEMPC
approach also perform well, and the fluctuation is small.
Combined with Table 4, it can be seen that the SEMPC
approach performs better than the other algorithms with
harmonic disturbance, and the accuracy of control is highest.
In general, the proposed SEMPC approach can deal with dis-
turbances and ensure the safe operation of trains in practical
application.

V. CONCLUSION
In this paper, a stability-enhanced model predictive control
approach tailored for urban rail transit trains has been
developed. This approach has comprehensively accounted
for the nonlinear characteristics of train operations and the
intricate constraints within the track design. Through the
proposed approach, it has achieved precise control over
both train speed and station stopping while guaranteeing
the relative speed and distance between train carriages.
Experimental results have validated the algorithm’s ability to
ensure safe, punctual, efficient, and smooth train operations
across diverse scenarios. However, this paper assumes that
each carriage of the train can be controlled independently
and different carriages follow the corresponding trajectory
to achieve ATO control, which requires better hardware
conditions and communication efficiency of equipment, and
its cost will further increase. Therefore, in the future, we hope
to simplify the algorithm so that it can be integrated into
the onboard equipment of urban rail transit trains and its
performance can be verified in practice.
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