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ABSTRACT The increasing age of our society is connected to a rising number of people suffering from
disorders. One such disorder is Parkinson’s disease (PD). Predictions indicate that the number of individuals
affected by PD will more, than double in the future. Neurologists and data scientists consider handwriting as
one of the motor symptoms of PD and recognize it as a valuable resource for detecting this disorder. Within
this framework, we introduce an innovative system for Parkinson’s disease detection, which encompasses
several key stages. The process commences with data augmentation and preprocessing, subsequently leading
to the segmentation of online handwriting into Beta strokes. Following that, feature extraction is carried out
utilizing the Beta-elliptical approach and the fuzzy perceptual detector. Finally, we employ bidirectional long
short-termmemory (BLSTM) for the classification task. To assess the performance of our system, we created
a new online Arabic handwriting dataset designed for detecting Parkinson’s disease. The results we obtained
affirm the efficacy of our proposed system. Through comprehensive evaluations conducted on the PaHaW
dataset, we achieved good accuracy, thereby highlighting that our system surpasses the performance of
existing systems.

INDEX TERMS Parkinson’s disease, online handwriting, PD patients, healthy controls, Beta-elliptical
approach, fuzzy perceptual detector.

I. INTRODUCTION
Parkinson’s disease (PD) is a complex and chronic neurode-
generative disorder that primarily affects movement. The

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Kafiul Islam .

exact cause of PD is not fully understood, and it likely
involves a combination of genetic and environmental factors
such as air pollution, solvents and pesticides [1], [2], [3].
PD occurs due to the gradual deterioration of specific neurons
in the brain that produce a neurotransmitter called dopamine.
Dopamine plays a crucial role in regulating movement and
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coordination [4], [5], [6]. As dopamine levels decrease, indi-
viduals with Parkinson’s disease experience a wide range of
symptoms [7], [8], [9], including:

1) Tremors: Involuntary shaking or trembling of the
hands, arms, legs, jaw, or face, usually when at rest.

2) Bradykinesia: Slowness of movement, making every-
day tasks more challenging.

3) Muscle Rigidity: Stiffness of muscles, often leading to
decreased range of motion and discomfort.

4) Postural Instability: Difficulty maintaining balance and
an increased risk of falls.

5) Gait Disturbances: Changes in walking pattern, such as
shuffling steps and decreased arm swing.

6) Non-motor symptoms: These can include cognitive
changes, mood swings, sleep disturbances, constipa-
tion, and more.

Even individuals undergoing dopaminergic treatment or
deep brain stimulation experience a decline as they age, and
their mortality rate surpasses that of the broader population by
a factor of two to three [10]. Moreover, it is expected that the
number of people impacted by PD will surpass double going
up from 4 million, in 2005 to 9 million, by the year 2030
[11]. The growing occurrence of PD is expected to have an
impact, on healthcare systems due to the increased needs and
reduced productivity commonly observed in individuals with
PD. Consequently, PD has become a burden on society [12].
PD is known for its gradual onset, and symptoms can be

subtle in the early stages. It’s common for the symptoms of
PD to go undetected or be mistaken for other issues until the
disease has progressed to a point where they become more
noticeable. This delay in detection is one of the challenges
in diagnosing PD accurately in its early stages [13]. Indeed,
the timely detection of PD in its initial phases holds piv-
otal importance, enabling the implementation of appropriate
interventions to mitigate morbidity and alleviate the health-
care load among the elderly.

The diagnosis and treatment of PD can involve a range
of procedures, and not all medical facilities are equipped to
offer every procedure. The availability of diagnostic tools
and treatment options can vary depending on the level of
specialization and resources of the medical facility. Some
procedures, especially invasive ones like deep brain stim-
ulation (DBS) surgery, require specialized expertise and
equipment that may only be available at certain medical
centers or neurology clinics [14]. Considering the costs and
complexities involved in some diagnostic methods along,
with the risk of incorrect diagnosis, there is a pressing need,
for an effective technique that provides reliable accurate
detection of PD. Such a method would contribute to enhanc-
ing the well-being and quality of life of patients.

Changes in handwriting can be a sign of Parkin-
son’s disease [15]. The act of handwriting involves skills,
such as coordinating motor abilities, perception, precise
motor control and planning movements. These abilities are
notably affected by several neurodegenerative diseases like

Parkinson’s disease and Alzheimer’s Disease that impact the
brain’s functioning. People, with PD have shown signs of
dysgraphia or micrography which can be used as indicators to
identify the likelihood or presence of the disease [16]. There-
fore, the analysis of handwriting is widely acknowledged as
a cost-effective and practical approach to detect PD in real-
time.

There are twoways to capture handwriting data; offline and
online. In the offline method, handwritten content on paper is
captured using a scanner. In the online method, a specialized
device like a graphic tablet is used to track sequential data
such as pressure [17], [18]. In this present work, we focus on
the online method.

Undoubtedly, the detection of PD using online handwrit-
ing poses several challenges and difficulties. One of the
primary challenges lies in the variability in handwriting
impairments [19]. In fact, PD affects individuals differently,
and the handwriting impairments seen in PD patients can also
vary widely. Some patients may exhibit micrographia (abnor-
mally small handwriting), while others may show changes in
the speed, pressure, or fluency of their handwriting. This vari-
ability makes it difficult to establish consistent handwriting
features for PD detection.

Furthermore, Parkinson’s symptoms, especially in its
early stages, can be subtle and overlap with other condi-
tions. Online handwriting analysis must distinguish between
Parkinson’s-induced motor impairments and those caused by
other factors, such as cognitive decline, fatigue, stress or
depression.

Another difficulty in the detection of PD using online
handwriting tasks is the progression over time. In fact, the
progression of PD can also be different for each patient,
which means that handwriting impairments may change over
time. This poses a challenge for the detection system as it
needs to account for these changes in handwriting over time.

The small size of available datasets represents another
difficulty for the detection of PD. In other words, there are
a limited number of large, publicly available datasets of
online handwriting from PD patients and healthy controls.
This makes it difficult to train and evaluate machine learning
models for PD detection.

As a result, the development of a new system becomes
imperative to differentiate the online handwriting attributes
associated with PD from those observed in the general elderly
population.

The main contributions of our present work can be outlined
as follows:

• A publicly available online Arabic handwriting dataset
has been created, consisting of five tasks contributed
by 30 PD patients and 30 healthy controls.

• The Beta strokes segmentation is adopted to segment the
online handwriting.

• The Beta-elliptical approach [20], [21] and the fuzzy
perceptual detector [22], [23] are adopted for the first
time in the features extraction to the PD detection
system.
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The remainder of the paper is structured as follows.
Section II takes notable research works on PD detection.
Section III provides a comprehensive presentation of the
dataset we have created. In Section IV, we thoroughly
explain the methodology employed by our proposed system.
Section V shows the experimental setup and performance
evaluations. Finally, section VI states the conclusion and
future impression of the proposed system.

II. RELATED WORKS
In recent years, there has been increasing interest in the appli-
cation of biometrics in themedical field. Especially in the task
of PD detection using online handwriting. In [24], Nolazco-
Flores et al. proposed a novel PD detection using online
handwriting. In their system, the authors introduce spectral
and cepstral handwriting features alongside the previously
utilized temporal, kinematic, and statistical handwriting fea-
tures. Initially, temporal and kinematic features are computed
based on displacement, statistical features (SF) are derived
from displacement, horizontal and vertical displacement,
while spectral (SDF) and cepstral (CDF) features incorporate
displacement, horizontal and vertical displacement, and pres-
sure. Given the limited size of the existing dataset, the authors
balance the training set by augmenting the smaller class to
match the larger one. Subsequently, both classes are aug-
mented to enhance the training data for patients, with random
Gaussian noise introduced in all augmentations. The next
step involves selecting the most pertinent features using the
modified fast correlation-based filtering method (mFCBF).
Finally, autoML techniques are employed to train and evalu-
ate over ten individual and ensemble classifiers. Regarding
this work, while data augmentation can help address the
limited dataset size, introducing random Gaussian noise may
lead to artificially inflated performancemetrics or overfitting,
particularly if not carefully controlled.

In [25], Lamba et al. proposed a novel PD detection
using online handwriting. To release their system, the authors
extracted 29 kinematics features from the raw time-series
data. Then, they used the genetic algorithm and mutual
information gain feature selection methods to select the rel-
evant features. Finally, they used Support Vector Machines,
Random Forest, AdaBoost and XGBoost to evaluate the per-
formance of their system. As a critical view of this work,
while genetic algorithms and mutual information gain are
commonly used feature selection methods, they may not
always identify the most relevant features or could overlook
important patterns in the data.

In the research study of Diaz et et al. [26], the authors
have introduced a novel model that relies on one-dimensional
convolutions and employs Bidirectional GRUs to discern
unique patterns within the handwriting sequences of individ-
uals with Parkinson’s disease (PD) as well as those without
the neurodegenerative disorder. Diverse sets of dynamic
features, obtained from online graphomotor samples col-
lected from both PD patients and control subjects, serve as
the model’s input. The convolutional layers, as part of the

process, conduct sub-sampling and acquire proficient feature
representations before forwarding the sequences to the Bidi-
rectional GRU component of the network. One-dimensional
convolution and bidirectional GRUs were used also in the
work of Moetesum et al. in [27] for the purpose of detecting
unique patterns within the handwriting sequences of Parkin-
son’s disease (PD) patients. The model takes as input a
collection of traditional spatio-temporal, pressure, and kine-
matic characteristics derived from the online graphomotor
samples of both PD patients and healthy controls. Subse-
quently, the convolutional layers perform sub-sampling prior
to training a stacked bidirectional GRU model. The convolu-
tional neural networks is used also in the study of Diaz et al.
in [28] to extract features from three representations which
are raw images, median filter residual images, and edge
images. The combined feature vectors extracted by the three
CNN models were then fed into traditional machine learning
algorithmswhich are support vectormachines, random forest,
AdaBoost, and ensemble similar.

Mucha et al. in [29] introduced an approach for iden-
tifying Parkinson’s disease utilizing fractional derivatives
derived from handwriting patterns. The study employed the
PaHaW dataset [30] for its analysis. From this dataset, veloc-
ity, acceleration, and jerk measurements were extracted, and
subsequent calculations were performed for mean, median,
standard deviation (std), and maximum (max) values. Feature
selection was carried out using Spearman’s and Pearson’s
correlation methods. The classification task was performed
with a random forest classifier, resulting in the attainment
of the highest accuracy at 89.91%. As a critical view of this
work, using a random forest classifier may limit the explo-
ration of alternative classifiers that could potentially yield
better performance or provide insights into the underlying
data characteristics.

Impedovo et al. in [31] explored the utilization of
dynamic handwriting features in the context of PD detec-
tion. In this investigation, a portion of the PaHaW
dataset [30] was employed. Each feature underwent anal-
ysis and ranking through a linear SVM classifier based
on its predictive accuracy, with only the features possess-
ing higher-ranking attributes being retained. The classifi-
cation task was performed using six distinct classifiers,
leading to an accuracy of 74.76% achieved by ensemble
classifiers.

For differentiating between healthy and Parkinson’s dis-
ease individuals, Zham et al. in [32] extracted fourteen
dynamic features. After that, they used the SPSS statistical
tool to make a Spearman correlation coefficient analysis. Fea-
ture selection was carried out using the Relief-F method. For
classification, they used the Naïve Bayes classifier. To evalu-
ate their system, they created a new dataset containing three
handwriting tasks and an Archimedean-guided spiral sketch-
ing. The best result is obtained with an accuracy of 93.30%
using a spiral sketching task. Regarding this work, using a
Naïve Bayes classifier may not fully exploit the complexity
of the data or account for potential nonlinear relationships
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between features, limiting the discriminatory power of the
classification model.

Kotsavasiloglou et al. in [33] introduced an automated
system for detecting PD. In their proposed system, various
features related to normalized velocity variability, veloc-
ity’s standard deviation, mean, and signal entropy were
extracted. Feature selection was carried out using the Weka
tool, employing thirteen different feature selection meth-
ods. For classification, six classifiers were employed: naive
Bayes, AdaBoost (J48), logistic regression, J48, support vec-
tor machine, and random forest. Through these classifiers,
an average accuracy of 91%was achieved in the classification
task using their own dataset, collected from 24 PD patients
and 20 healthy controls, containing drawings of ten basic
horizontal lines in both left-to-right and right-to-left direc-
tions from each participant. In another work, Drotár et al. [30]
showed that kinematic and pressure features in online hand-
writing can be used for the differential diagnosis of PD.
For classification, they compared three different classifiers
which are K-nearest neighbors (K-NN), ensemble AdaBoost
classifier, and support vector machines (SVM).

Detecting Parkinson’s disease through online handwrit-
ing remains an ongoing challenge, despite the multitude of
methods that have been proposed. These methods all share a
common goal: the objective discrimination between individu-
als with Parkinson’s disease and those who are healthy. Upon
examining the existing literature, we have identified various
technical deficiencies and limitations that have prompted
the development of our proposed methodology. Specifically,
the task of detecting Parkinson’s disease entails the analy-
sis of dynamic and continuous hand movements, a process
for which current approaches often falter in accommodat-
ing the inherent variability in individual handwriting styles
and speeds. These methods rely on simplistic feature rep-
resentations that may fail to capture the subtle intricacies
of online handwriting, consequently risking accuracy issues.
Our proposed methodology seeks to rectify these technical
shortcomings by presenting a more comprehensive solu-
tion that effectively addresses the complexities involved in
Parkinson’s disease detection, thus constituting a signifi-
cant contribution to this advancing domain. In this research,
we explore the utility of the Beta-elliptical approach, and the
fuzzy perceptual detector as means of extracting features with
the aim of precisely distinguishing between healthy and PD
patients.

Indeed, the Beta-elliptical approach and the fuzzy per-
ceptual detector are used for features extraction in various
tasks like writer identification [34], [35], signature verifica-
tion [36], [37] and character recognition [38]. In fact, the
Beta-elliptical approach is based on a description combining
two aspects: 1) Beta functions that characterize the veloc-
ity profile in the dynamic domain. 2) Elliptic arcs which
characterize the handwriting trajectory in the static domain.
Moreover, the fuzzy perceptual detector represents a common
practice for examining handwritten documents by search-
ing for the occurrence of special visual perception. In other

words, these techniques are employed to extract features
that characterize biometrical, kinematical, and graphical data,
demonstrating their versatility in different applications within
the realm of biometrics and document examination.

To the best of our knowledge, this is the first time where
the Beta-elliptical approach and the fuzzy perceptual detec-
tor have been applied to the field of detecting Parkinson’s
disease. Furthermore, we are interested to use the Recurrent
Neural Networks (RNNs), specifically Bidirectional Long
Short-Term Memory (BLSTM), in the classification stage.
Further details regarding our online Arabic handwriting
dataset for analyzing Parkinson’s disease and a comprehen-
sive exposition of our proposed system will be presented in
forthcoming sections.

III. PROPOSED ONLINE ARABIC HANDWRITING
DATASET FOR PARKINSON’S DISEASE DETECTION
While the investigation of Parkinson’s disease (PD) has gar-
nered considerable attention from researchers, there are a
lack of available databases for the evaluation of handwriting
patterns. Additionally, our understanding of PD-related pat-
terns is constrained and biased towards existing datasets [39].
To address this gap, we collected a novel online Arabic
handwriting dataset, at the Neurology Department, Habib
Bourguiba Hospital, Sfax, Tunisia, designed to detect Parkin-
son’s disease. Through this initiative, we provide researchers
with access to this dataset for exploration and study [17].

A. SUBJECTS
We recruited a total of 40 individuals diagnosed with Parkin-
son’s disease for this study. However, only 30 of these PD
patients were able to actively participate, as the remaining
10 were unable to complete the required tasks and were
consequently excluded from the study. In summary, our
online Arabic handwriting dataset for the analysis of Parkin-
son’s disease comprised 30 individuals diagnosed with PD
(16 women and 14 men) with an average age of 58 years,
alongside 30 healthy controls (10 women and 20 men) with
an average age of 60 years. Written informed consent was
obtained from each participant.

All the individuals involved in this study are native Arabic
speakers, right-handed, and have received a minimum of
6 years of education. None of the participants exhibited any
psychiatric symptoms or had a history of illnesses that impact
the central nervous system, except for Parkinson’s disease.
The healthy controls were selected based on rigorous criteria:
none of them had Parkinson’s disease or essential tremor, and
they had no history of intracranial diseases or neurological
symptoms or signs. Additionally, none of the participants had
a history of alcohol or drug abuse, and none of the healthy
controls had a family history of Parkinson’s disease.

Table 1 presents the demographic information of the study
participants.

During the data collection process, the neurologists at the
NeurologyDepartment, Habib Bourguiba Hospital, Sfax con-
ducted various clinical assessments, including the Movement
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TABLE 1. Demographic information of the study participants.

TABLE 2. Clinical data of PD patients.

Disorders Society Unified Parkinson’s disease Rating Scale
(MDS-UPDRS), both during off and on periods [40]. Addi-
tionally, the neurologists identified the specific phenotypes
of Parkinson’s disease (PD) patients, categorizing them as
either tremor-dominant (TD) or postural instability/gait diffi-
culty (PIGD) subtypes [41]. Furthermore, crucial information
such as the age of disease onset, disease duration, and the
daily dosage of levodopa equivalent (LED) was meticulously
recorded. The severity of PD was assessed using the Hoehn
and Yahr (H-Y) stage, and PD patients underwent exami-
nations in both ‘‘Off’’ and ‘‘On’’ periods, with assessments
conducted one hour after their regular dopaminergic medi-
cation intake. At the time of the study, their symptoms were
effectively managed, and they were not receiving any anal-
gesic treatment. Additional details regarding the clinical data
of PD patients can be found in Table 2.

B. DATA ACQUISITION SYSTEM
Our novel online Arabic handwriting dataset for the detection
of Parkinson’s disease was created by employing a Wacom
digitizing tablet (Intuos Pro, model PTH-660). A custom-
built software program, developed within the C# platform,
was utilized for data capture, recording various signals which
are x-position, y-position, and pressure. The output data from
this tool is stored in a CSV file, containing these signals.
Furthermore, the signals generated by the pen were converted
into PNG images.

C. TASKS
During the data collection process, participants were seated
in a comfortable chair with a seat height fixed at 45 cm. They
were instructed to maintain contact between their elbows and
a table positioned at a height of 80 cm. Notably, the chair
and table heights were not adjustable. The concept involves
requiring individuals to complete tasks that are anticipated to

FIGURE 1. Examples of sample tasks executed by (a): PD patients during
their ‘‘Off’’ periods, and (b): Healthy control participants.

be challenging for PD patients. Participants were instructed to
replicate five distinct handwriting tasks displayed on the right
side of the digitizing tablet. The initial task involvedmanually
tracing an ellipse repeatedly for thirty seconds. The second
task entailed drawing a spiral. Task three involved writing
the digit 8 five times. The fourth task required writing the
Arabic word ‘‘ ’’ two times. Lastly, the fifth task involved
tracing the Latin character ‘l’ continuously eight times. Each
participant completed the tasks at their own pace, with their
handwriting speed and size being consistent with their indi-
vidual preferences.

Figure 1 showcases sample tasks executed by both PD
patients during their ‘‘Off’’ periods and by healthy control
participants.

IV. PROPOSED PARKINSON’S DISEASE DETECTION
SYSTEM
The methodology addressed in this work consists of five
main stages: data augmentation, preprocessing, segmenta-
tion, feature extraction, and classification. This methodology
is summarized in Figure 2. Details of each stage are presented
in the following subsections.

A. DATA AUGMENTATION
In general, the training dataset available for Parkinson’s
disease detection tasks does not adequately encompass the
variations in hand movements. To overcome this prob-
lem, numerous researchers in many fields of research have
resorted to the use of the data augmentation method to
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FIGURE 2. The proposed Parkinson’s disease detection system from online handwriting.

develop more training samples and model the variation of a
given person [42].
In the data augmentation phase of our work, we employed

the approach described by Hamdi et al. in [43]. More specif-
ically, we applied geometric techniques, encompassing the
italicity angle, magnitude ratio variation, and baseline incli-
nation angle. Figure 3 demonstrates the application of data
augmentation on a spiral example extracted from our dataset.

B. PREPROCESSING
The pretreatment step involves the application of a low-pass
filter to the input path. This is done to reduce the impact
of noise and errors introduced by the acquisition system’s
temporal and spatial quantification. Specifically, we employ
a Chebyshev type II filter with a cut-off frequency of fcut =

12Hz, which is aligned with the frequency ripple observed
in handwriting. Next, a procedure of normalization is imple-
mented to standardize the size of the handwriting by adjusting
its height to a constant value of h = 128, while maintaining
the same aspect ratio of length to height. To normalize each
point along the hand movement trajectory, we calculate the
normalized values (x_norm and y_norm) using the following
equations:

xnorm = h.
x − x_min

m
(1)

ynorm = h.
y− y_min

m
(2)

where

m = max(maxx − minx ,maxy − miny) (3)

In these equations, (x, y) denote the original point coordi-
nates, while (x_norm, y_norm) represent the coordinates after
the normalization process. Figure 4 illustrates the preprocess-
ing applied to an example of spiral extracted from our dataset.

C. SEGMENTATION
To segment the online handwriting, the initial step entails
representing the curvilinear velocity using (4).

Vσ (t) =

√(
dx(t)
dt

)2

+

(
dy(t)
dt

)2

(4)

Following that, we distinguish between two types of points
within Vσ (t):

- The double inflection point, denoting a speed change
and signaling the shift from one neuromuscular subsystem to
another or from one neurophysiologic impulse to the next.

- The local minimum, indicating the curvilinear velocity’s
local minima.

Afterward, the curvilinear velocity is partitioned into
smaller segments referred to as Beta strokes. These strokes
are defined by the presence of two consecutive local minima
or double inflection points in the velocity profile. Fol-
lowing this division, the handwriting trajectory is further
subdivided into strokes based on the corresponding points
derived from the curvilinear velocity. Figure 5 illustrates an
application of segmenting a spiral example taken from our
dataset.

D. FEATURES EXTRACTION
We are keen on integrating the Beta-elliptical approach into
our Parkinson’s disease detection system. This choice is jus-
tified by the fact that the Beta-elliptical approach has the
capability to effectively model hand movements by integrat-
ing both its constituent elements: the elliptic arcs and the Beta
impulses [44], [45]. Consequently, the alignment between
these two profiles enables a more precise characterization
of online handwriting compared to alternative methods like
the oscillatory and geometric approaches. As a result, we are
able to derive numerous parameters that capture both the geo-
metric and kinematic aspects, encompassing attributes repre-
senting smoothness, regularity, speed, fluidity, precision, and
coordination. This allows for a more accurate representation
of the intricate dynamics of handwriting, which can reveal
subtle deviations associated with Parkinson’s disease. More-
over, the Beta-elliptical approach lies in its ability to offer
a comprehensive and nuanced analysis of hand movements,
which can be indicative of motor impairments associated with
Parkinson’s disease. Furthermore, by leveraging the Beta-
elliptical approach, your system can analyze handmovements
in real-time. This capability is crucial for detecting immediate
changes or fluctuations in motor performance, which may
not be captured by methods relying on static or pre-recorded
data.

Additionally, our goal is to incorporate the fuzzy per-
ceptual detector to precisely depict the handwriting tra-
jectory [22], [23]. The justification for utilizing the
fuzzy perceptual detector in features extraction for a
Parkinson’s disease detection system stems from their
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FIGURE 3. Application of data augmentation on an example of spiral extracted from our dataset. (a): original sample, (b) after applying the data
augmentation method.

FIGURE 4. Application of preprocessing on an example of spiral extracted from our dataset. (a): original sample, (b) after applying the preprocessing
method.

effectiveness in enhancing the discriminative power of the
system. In fact, by incorporating fuzzy elementary per-
ceptual codes, systems can benefit from advanced fea-
ture extraction methods that improve the accuracy of PD
detection.

Indeed, handwriting emerges as a consequence of the
activation of N neuromuscular subsystems. This activation
begins within the neuronal system and is subsequently trans-
mitted via motor nerves to engage the muscles in the hand
and arm. Considerable research has been dedicated to explor-
ing the impact of these neuromuscular subsystems on the
dynamic profile, often referred to as the velocity profile. The
results of these studies indicate that each subsystem produces
an impulsive signal that can be approximated using a Beta

function [46], depicted as follows:

pulseβ(K , t, q, p, t0, t1)

=

{
K .

(
t−t0
tc−t0

)p
.
(
t1−t
t1−tc

)q
if t ∈ [t0, t1]

0, elsewhere

}
(5)

The generated impulse possesses a clearly defined initia-
tion time t0 and termination time t1, signifying the duration
of the impulse. At time tc, the impulse reaches its peak
amplitude K , with intermediate parameters p and q. Formula
6 offers a means to compute the velocity profile.

V (t) =

∑n

i=1
Vi(t − t0i)

=

∑n

i=1
pulseβi(Ki, t, qi, pi, t0i, t1i) (6)
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FIGURE 5. Application of segmenting a spiral example extracted from our dataset (a): Velocity profile modeling, (b) Geometric profile modeling.

In their research paper [21], Boubaker et al. present an
innovative method for modeling the velocity profile. They
introduce the simplified Beta-Elliptic model, which includes
a continuous training component. In our study, we have
utilized this model. Within this technique, the curvilinear
velocity during the time interval [t0, t1] can be partitioned
into two components:

1) An impulsive element as expressed in (7).

VImp (t) = K ·

(
t − t0
tC − t0

)p

·

(
t1 − t
t1 − tC

)q

(7)

In this context: t0 and t1 indicate the initial and final times
of the constructed impulse, tc represents the moment when
the impulse achieves its maximum amplitude, denoted as K .
P and q are intermediary parameters.

2) A continuous training element computed using (8).

VTra (t) = A ·

[
(t − t0)3

3
−

(t1 − t0) · (t − t0)2

2

]
+ Vi (8)

where:

A = −6 ·
Vf − Vi

(t1 − t0)3
(9)

where: t0 and t1 indicate the initial and final times of the
constructed impulse, Vi and Vf represent the velocities at the
initial and final times of the constructed impulse.

Ultimately, the curvilinear velocity is established by com-
bining the impulsive element and the continuous training
element. This fusion is accomplished by adding the two
components together, as outlined in (10).

VR (t) = VImp (t) + VTra (t) (10)

FIGURE 6. Parameters of the geometric profile.

In the geometric profile, it’s feasible to model each Beta
stroke by employing two adjacent elliptic arcs, specifically
E1 (a1, b1, θ1, θp1) and E2 (a2, b2, θ2, θp2), as depicted in
Figure 6. These arcs share identical inclination angles (θ1 =

θ2 = θ ). To ensure a seamless transition of curvature when
transitioning from the first elliptic arc to the second, the
relationship between the lengths of their minor and major
axes must adhere to the condition specified in (11).

a2 = a1 ·

√
b2
b1

(11)

where:
-a1 corresponds to half of the major axis length of the

ellipse linked with the first arc.
-a2 corresponds to half of the major axis length of the

ellipse associated with the second arc.
-b1 signifies half of the minor axis length of the ellipse

supporting the first arc.
-b2 signifies half of the minor axis length of the ellipse

supporting the second arc.
Moreover, as part of the features extraction process,

we integrate the coefficient representing the logarithmic rela-
tionship between curvilinear velocity and curvature radius,
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TABLE 3. Form of EPC.

denoted as λ and commonly known as the two-thirds power
law. To determine this parameter, we compute the mean
absolute gradient of the parametric curve representing the
variation in the logarithm of curvilinear velocity concerning
the logarithm of curvature radius, as defined in (12).

λ =
1
N

×

N∑
n=1

∣∣∣∣ ln (Vσ (tn+1)) − ln (Vσ (tn))
ln (Rc(tn+1)) − ln (Rc(tn))

∣∣∣∣ (12)

where:
- N stands for the total number of points in the current

stroke.
- n stands for the current index of points in the trajectory,

and tn denotes the corresponding execution time.
Additionally, we compute the normalized Jerk which rep-

resents the change of acceleration with time per stroke for
a fixed average velocity. In fact, when we normalize Jerk
in relation to the average speed of the executed trajectory
stroke, we effectively eliminate the component associated
with the speed gain while emphasizing the component asso-
ciated with undulation. It’s worth noting that the movement
optimization approach developed by Flash and Hogan [47]
aims to minimize a criterion function referred to as ‘Jerk’.
This criterion function involves calculating the integral over
the time interval [ti, tf ] of the sum of the squares of the third
derivatives of hand displacement along the cartesian plane
axes (O, X, Y) with respect to time, specifically, in the x and
y directions.

CJerk =
1
2

∫ t2

t=t1

[(
d3x(t)
d3t

)2

+

(
d3y(t)
d3t

)2]
dt (13)

Normalized_Jerk =
CJerk

Average velocity
(14)

Furthermore, taking inspiration from the Perceptual The-
ory for On-line Handwriting Segmentation (PerTOHS) the-
ory as outlined in references [21] and [22], we propose to use
the fuzzy perceptual detector into our PD detection system.

This approach involves utilizing the inclination angle of the
major axis of the ellipse θ to associate each Beta stroke with
one of the four distinct types of Elementary Perceptual Codes
(EPC) described in Table 3.

We divide the trigonometric circle into eight segments,
aligning each segment with the Elementary Perceptual Codes
(EPC), as demonstrated in Figure 7.

FIGURE 7. Presentation of EPCs on the trigonometric circle.

EPCs may display uncertainty and hesitation, influenced
by factors like hand disorders. In response to this challenge,
we integrated fuzzy logic theory to allocate a membership
degree to each EPC. As a result, we derived four distinct fea-
tures: FEPC1, FEPC2, FEPC3, and FEPC4, each representing
the membership degree of EPC1, EPC2, EPC3, and EPC4,
respectively.

In brief, every Beta stroke is defined by a comprehensive
set of 27 features, as detailed in Table 4. The first nine features
capture the modified neuromuscular excitations evident dur-
ing hand movements, while the following fourteen features
elucidate the geometric characteristics of the handwriting
trajectory. The λ parameter furnishes an elaborate account of
the fluctuations in the curvature radius along the path traced
during online handwriting. The last three parameters present
the pen pressure at the different position point of stroke.

E. CLASSIFICATION BASED ON BLSTM
Recurrent Neural Networks (RNNs) are commonly used for
sequential modeling. However, they encounter the challenge
of vanishing gradients, which hampers their ability to effec-
tively learn from extended sequences of data [48]. Long
Short-Term Memory (LSTM) was specifically designed to
address this issue. LSTM is tailored for modeling time series
data with prolonged dependencies, offering a solution to the
vanishing gradient problem [49]. Compared to RNNs, LSTM
replaces conventional hidden units with memory blocks.
These memory blocks comprise one or more memory cells.
Each memory cell includes a self-connected memory cell
(referred to as ct ), which aids in preserving the cell’s current
state from one moment to the next. Additionally, LSTM
incorporates three multiplicative gate units, which are:

1) The forget gate, denoted as ft , regulates the amount
of information from prior sequences that should be
forgotten.
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TABLE 4. Extracted features based on the Beta-elliptical approach and
the fuzzy perceptual detector.

2) The input gate, labeled as it , governs the extent to
which information from preceding sequences should be
inputted.

3) The output gate, represented as ot , manages the extent
to which information from prior sequences should be
outputted.

Figure 8 provides a visual representation of an LSTM
network, with a single input, a single output, and a single
memory block.

Input Gate : it = sigm(Wixt + Uiht−1 + bi) (15)

Forget Gate : ft = sigm(Wf xt + Uf ht−1 + bf ) (16)

Output Gate : ot = sigm(Woxt + Uoht−1 + bo) (17)

FIGURE 8. Visualization of an LSTM network.

Input Modulation : c̃t = tanh(Wcxt + Ucht−1 + bc) (18)

Memory cell Update : ct = it ⊙ c̃t + ft ⊙ ct−1 (19)

Output : ht = ot ⊙ tanh(ct ) (20)

where:
- xt represents the input data at time t that contains the

features vector for t th Beta stroke of the trajectory.
- W and U denote the weight matrices.
- b represents the bias vector parameter.
- sigm represents the sigmoid function.
- tanh represents the hyperbolic tangent function.
- ⊙ denotes the element-wise multiplication operation.
LSTM networks can only access the past context for each

individual time step. To address this limitation, the utiliza-
tion of Bidirectional LSTM networks is recommended [50].
In practice, BLSTM networks leverage both past and future
context information by processing data in both the forward
and backward directions, employing two distinct hidden
layers.

Hence, the output of the forward layer, denoted as ht ,
and the output of the backward layer, denoted as h′

t , are
computed. Subsequently, the ultimate output is produced
by combining ht and h′

t , as elucidated in the subsequent
equations.

Forward layer : ht = LSTM (xt , ht−1) (21)

Backward layer : h′
t = LSTM

(
xt , h′

t+1
)

(22)

Final output layer : yt = Whyht +Wh′yh
′
t + by (23)

where:
- LSTM(.) represents the LSTM updating.
- Why and Wh′y designate the weights of forward and
backward layers respectively.

- by denotes the bias of the final output layer.
In our study, the BLSTM is constructed using two

multi-layer LSTM networks, coupled with a fully connected
layer followed by a Softmax layer, as illustrated in Figure 9.

To elaborate further, the forward multi-layer LSTM net-
work processes the input vectors S = {s (1) , s (2) , . . . , s (z)}
where s (t) represents the feature vector for the t th

Beta stroke in the trajectory. This operation results in
a hidden state sequence denoted as [h1, h2, . . . , hz].
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FIGURE 9. The BLSTM for PD detection.

Simultaneously, the backward multi-layer LSTM network
handles the input vectors in the reverse order, given by
S = {s (z) , s (z− 1) , . . . , s (2) , s (1)}. This operation yields
another hidden state sequence, [h′

1, h’2, . . . , h’z]. Conse-
quently, the outputs of the forward and backward layers,
hz and h′

z, are fed into the fully connected layer, fol-
lowed by a Softmax layer for the ultimate classification
process.

V. EXPERIMENTS AND DISCUSSION
In this study, we showcase the effectiveness of our Parkin-
son’s disease detection system by evaluating it with both
our own dataset and the publicly available Parkinson’s
disease handwriting database established by Drotár et al.
in [30].

A. EXPERIMENTS AND RESULTS USING OUR OWN
DATASET
In the evaluation, we utilized stratified 10-fold cross-
validation. The database was divided into ten distinct and
complete subsets of equal size. Each subset was treated as
a test set, while the combination of the remaining subsets
served as the training data. To enhance the dataset’s diversity,
we applied data augmentation, creating 30 new variations
for each original training sample. The entire procedure was
iterated 10 times, until each fold was used once as test set. The
accuracy for each subset was computed and then averaged to
determine the overall accuracy.

Table 5 displays the classification accuracies achieved on
our dataset.

Looking at Table 5, it’s clear that the results of our sug-
gested system, show considerable promise in Parkinson’s
disease detection from online handwriting. The accuracy
of the first task, which was tracing an ellipse repeat-
edly for thirty seconds, reached the best value of 93.33%.
This can be explained by the fact that PD often involves

TABLE 5. Results obtained using our dataset.

impaired coordination and difficulties in controlling fine
motor movements. Tracing an ellipse requires precise hand-
eye coordination, and individuals with Parkinson’s disease
may struggle with maintaining the smooth and controlled
movements necessary for accurate tracing compared with
healthy controls. The worst accuracy result was 80.00% for
the fourth task which was writing the Arabic word ‘‘ ’’ two
times. This may be explained by task complexity. In other
words, the complexity of writing the specific Arabic word
involving a combination of fine motor skills, coordination,
and cognitive processes may not be sufficient to highlight
the subtle motor control differences often seen in Parkin-
son’s disease. The accuracy results achieved for the rest of
the tasks indicate the efficacity of using the Beta-elliptical
approach and the fuzzy perceptual detector for feature extrac-
tion, in combination with BLSTM for classification in early
detection of Parkinson’s Disease.

B. EXPERIMENTS AND RESULTS USING PARKINSON’S
DISEASE HANDWRITING DATABASE
To test the robustness and to evaluate the effectiveness
of our system, we conducted the experiments also using
Parkinson’s disease Handwriting Database (PaHaW) [30].
The Parkinson’s disease handwriting database consists of
multiple handwriting/drawing samples of 37 PD patients and
38 healthy controls (HC).

Participants were requested to complete eight handwriting
tasks in accordance with a pre-filled template: 1. Drawing
an Archimedes spiral; 2. Writing in cursive the letter l; 3.
The bigram le; 4. The trigram les; 5. Writing in cursive the
word lektorka (‘‘female teacher’’ in Czech); 6. porovnat (‘‘to
compare’’); 7. nepopadnout (‘‘to not catch’’); 8. Writing in
cursive the sentence Tramvaj dnes už nepojede (‘‘The tram
won’t go today’’). All the tasks are displayed in figure 10.
In the evaluation process, we employed stratified 10-fold

cross-validation. The dataset was divided into ten equal-
sized, mutually exclusive subsets. For each subset, we used
the union of the remaining subsets as the training data.
In addition, we applied data augmentation, generating 30 new
variations for each original training data sample. The entire
procedurewas iterated 10 times, until each foldwas used once
as test set. We then averaged the accuracies of the different
subsets to compute the overall accuracy.

Table 6 presents an overview of the results obtained using
PaHaW database.
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FIGURE 10. Illustration of PaHaW database tasks [30].

TABLE 6. Results obtained using PaHaW database.

It can be seen from the results presented in Table 6 that our
proposed system using the Beta-elliptical approach and the
fuzzy perceptual detector in features extraction and BLSTM
in classification achieves a good accuracy compared to the
existing systems.

The comprehensive outcomes of our proposed system,
evaluated on the PaHaW database using a similar experimen-
tal setup, demonstrate notable enhancements in classification
performance for the tasks 1, 2, 3, 4, 5 and 8 com-
pared to the findings of Drotár et al., [30], Diaz et al.,
[28], Moetesum et al., [27], Diaz et al., [26]. our approach
exhibits superior results specifically in classifying spiral
patterns. However, when classifying the two words porov-
nat and nepopadnout, our method performs comparably to
Diaz et al., [26].

This confirms the effectiveness of the proposed system to
detect PD from online handwriting and to serve as a candidate
solution for real use in a clinical setting.

C. DVANTAGES AND LIMITATIONS OF OUR PROPOSED
WORK
1) ADVANTAGES
The advantages of this innovative system for Parkinson’s dis-
ease detection include its comprehensive approach, starting
from data augmentation and preprocessing to the segmen-
tation of handwriting into Beta strokes. Feature extraction
employs advanced methods, such as the Beta-elliptical
approach and fuzzy perceptual detection, ensuring robust-
ness. The utilization of bidirectional long short-term memory

(BLSTM) enhances classification accuracy. Additionally, the
creation of a new online Arabic handwriting dataset tailored
for Parkinson’s disease detection demonstrates the system’s
adaptability to different languages and cultural contexts. The
obtained results confirm the effectiveness of the proposed
system, showcasing superior performance compared to exist-
ing systems through thorough evaluations on the PaHaW
dataset.

2) LIMITATIONS
The limitations of this innovative system for Parkinson’s dis-
ease detection include its reliance on online handwriting data,
which may limit applicability to patients with limited motor
control. Additionally, the effectiveness of the system may
vary depending on the quality and consistency of handwriting
samples. Further research is needed to validate its perfor-
mance across diverse populations and languages, as well
as to explore its scalability and real-world implementation
challenges.

VI. CONCLUSION
Wepresent in this paper an innovative system designed for the
detection of Parkinson’s disease. This system encompasses
several crucial stages, beginning with data augmentation
and preprocessing, followed by the segmentation of Beta
strokes. Subsequently, we perform feature extraction using
the Beta-elliptical approach and the fuzzy perceptual detector.
Ultimately, our classification task employs bidirectional long
short-term memory (BLSTM). To evaluate the effectiveness
of our system, we created a new online Arabic handwriting
dataset specifically tailored for Parkinson’s disease detec-
tion. The results we obtained underscore the efficacy of our
proposed system. Through comprehensive assessments con-
ducted on the PaHaW dataset, we achieved a high level of
accuracy, clearly demonstrating that our system outperforms
existing systems in this context.

In future works, we plan to give attention to, among others,
studying the effectiveness of different parameters in order to
give a high weight for some parameters that can enhance the
variation between PD patients and healthy controls. Further-
more, we intend to employ Hamilton-Jacobi-Bellman (HJB)
equation-based learning for neural networks in forthcom-
ing research endeavors [51], [52]. This approach serves as
a versatile and potent method for tackling optimal control
challenges across a broad spectrum of application domains.
Moreover, we plan to evaluate the performance of the medi-
cation on off and on periods.
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