
Received 8 February 2024, accepted 3 March 2024, date of publication 10 April 2024, date of current version 19 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3387278

Adaptive Group Shuffled Symbol Flipping
Decoding Algorithm
WAHEED ULLAH , (Senior Member, IEEE), LING CHENG , (Senior Member, IEEE), AND
FAMBIRAI TAKAWIRA , (Member, IEEE)
School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg 2017, South Africa

Corresponding author: Waheed Ullah (waheed@ieee.org)

ABSTRACT The paper introduces two decoding techniques based on grouping for symbol flipping non-
binary LDPC codes. Firstly, a new technique of adaptive grouping of variable nodes in each iteration using
bit reliability and majority voting of each received symbol is presented. Grouping of variable nodes and
the subsequent decoding are based on individual symbol reliability and majority voting. To form groups
adaptively, the cumulative density of variable nodes is used where a high priority group is considered to
contain the most unreliable variable nodes and is decoded while the second priority group contains variable
nodes having a second level of reliability and so on. Secondly, a fixed grouping technique is applied to
symbol flipping decoding of non-binary LDPC codes. In the fixed grouping decoding, each group contains
an equal number of variable nodes, and selected symbols in each group are flipped according to pre-defined
flipping criteria. Numerical results and analysis show that the proposed group-based hard decision symbol
flipping decoding algorithms have the advantage of reduced computational complexity and show better
performance. Therefore, the proposed algorithms can be considered for applications like data storage and
mobile communication.

INDEX TERMS Adaptive group shuffled decoding, non binary LDPC, symbol flipping decoding, sum
product algorithms, layered decoding, channel coding.

I. INTRODUCTION
The current focus of research on LDPC codes is aimed at
reducing decoding computational complexity and improving
performance, particularly for non-binary LDPC (NB-LDPC)
codes. While NB-LDPC codes have higher computational
complexity compared to binary LDPC codes, [1], [2], they
offer the advantage of being directly mappable to the order
of modulation, as demonstrated in several works such as [3],
[4], and [5]. The NB-LDPCmessage passing algorithm in [3]
over GF(q) has a computational complexity in an order of
O(q2) during check node processing and is the main hurdle
in implementation. The check node complexity is reduced by
using an efficient log-domain based fast Fourier transform
(FFT) in [6]. The FFT based sum-product algorithm in
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[6] reduces the check node processing complexity from
O(q2) to O(qlogq). To further reduce the computational and
implementation complexity, an Extended Min-Sum (EMS)
algorithm in [7] is presented which has greatly reduced the
check node computational complexity and has the imple-
mentation advantage over the other algorithms. For hardware
implementation, authors in [8] and [9] present a Bubble
Check algorithm to reduce the number of comparisons
during check node processing without any performance
loss. Reliability based majority logic decoding algorithm
is similar to message passing decoding but it sends only
the most reliable field message and is considered as the
low computational algorithm. In the iterative majority logic
decoding (MLgD) algorithm for non-binary LDPC codes,
each symbol is iteratively updated by extrinsic information-
sums (EXIs) with the most reliable field element along each
edge of the Tanner graph. The iterative reliability based hard
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(IHRB) and soft (ISRB) MLgD algorithms in [10] have low
complexity but show better performance only for parity check
matrices with high column weights. These two algorithms
in [10] are further improved by introducing soft reliability
information at the initialization to achieve better trade-off
between complexity and bit error performance by proposing
several modifications in [11] and [12]. To overcome this
drawback, an improvement to these algorithms is presented
in [13] by introducing reliability updates in terms of bit rather
than symbols. The bit reliability based decoding algorithm
for NB-LDPC is comparatively more efficient and is termed
as weighted bit reliability based (wBRB) algorithm [14].
This bit reliability based algorithm requires integer and
Galois field operations only which helps to reduce the
hardware implementation complexity and processing time.
To further enhance the wBRB decoding algorithm, a full
bit-reliability based decoding scheme is proposed in [14].
To lower the processing complexity, this algorithm uses the
binary representation of non-zero entries of the parity check
matrix.

However, the hardware implementation of the NB-LDPC
codes is still a challenge. To achieve hardware friendly
architecture, a reduced complexity decoder architecture via
layered decoding of LDPC codes is presented in [15]. A more
hardware friendly high-throughput quasi-cyclic LDPC codes
based on layered decoding scheme is presented in [16] for
binary LDPC codes [17], [18]. Later this concept has also
been adopted in [19] and [20] for non-binary LDPC decoding
algorithms.

In a layered scheme, the LDPC decoding algorithm
processes information by dividing check nodes or variable
nodes of the Tanner graph. Basically, this scheme divides
the Tanner graph into subgraphs which are termed as
layers [20], [21], [22]. Interestingly, both the vertical and
horizontal processing of the layers achieve the same goal of
fast convergence and better performance. Fully serialization
of the LDPC codes can restrict the throughput and, thus,
partial serial architecture, in which each layer contains
more than one column or row, for VLSI implementation
is presented in [21]. Standard parallel message passing
LDPC decoder [23] normally takes much more iterations for
decoding process to converge which causes high decoding
delay. Secondly, desired LDPC code can have large codeword
length which can be difficult for hardware implementation
in a fully parallel manner. The aim of the layered LDPC
decoder [21] is to increase the convergence speed and
facilitate the hardware implementation.

The standard sum-product algorithm (SPA) updates the
check node at k th iteration from the information values
calculated at the previous iteration, (k − 1)th, while in the
shuffle decoding technique, certain values could already be
computed based on a partial computation of values at variable
nodes. These partial computed information can be used for
the check node update at the same k th iteration instead of
previous values calculated at (k − 1)th iteration. This method

provides the shuffling of the check and variable nodes and is
called a group shuffle decoding [19], [24].

Other than the message-passing decoding, a simplified
method to correct an error in the received sequence is
the symbol flipping (SF) decoding algorithm. In the SF
decoding, an unreliable symbol position is detected and a
correct symbol value is chosen for that position. A majority
logic decision based algorithm is presented in [25], where
a symbol position to be flipped is determined by majority
decision while the flipped value is obtained from channel
output by flipping individual bits of a symbol with low
reliability. Another algorithm termed as weighted algorithm
B (wt.Algo B ) presented in [26] introduces the binary
Hamming distance and plurality logic for performance
improvement. The parallel symbol flipping decoding (PSFD)
algorithm in [27] flips multiple symbols per iteration and
has introduced the concept of voting for each variable
node. The maximum value of the flipping function is used
in conjunction with the voting value of the corresponding
variable nodes to identify a symbol to be flipped. The PSFD
has shown good performance only for parity check matrix
of large column weight. A multiple voting based PSFD
(MV-PSFD) algorithm is proposed in [28] to improve bit
error rate performance of the PSFD algorithm. TheMV-PSFD
algorithm has implied amethod ofmultiple voting levels from
each failed checksum to the corresponding variable nodes.
The performance of a symbol-reliability based message-
passing decoding (SRBMP) decoding algorithm [29] has
been improved by multiple voting symbol flipping (MV-SF)
decoding algorithm [30]. The MV-SF only passes the most
reliable Galois field elements from each variable node to the
corresponding check node. Therefore, a list of test vectors
is required to compute the flipping function for each check
node. MV-SF has shown an improved performance but due
to the test vectors, its complexity increase with an increase in
the size of the Galois field. Recently, low complexity voting-
based symbol flipping decoding algorithms are presented
in [31] and [32] which can flip single as well as multiple
symbols per iteration and have shown better bit error rate
performance.

The method of adaptive layering [19] based on the most
unreliable VNs, can be explored for possible utilization in a
symbol flipping NB-LDPC decoding algorithm to improve
performance as well as convergence speed. To address
the low complexity implementation of the SF decoding
algorithms, an adaptive group shuffled and a fixed group-
based symbol flipping decoding algorithm is proposed. The
proposed methods have two main advantages over other NB-
LDPC algorithms. One advantage is the hardware-friendly
simple architecture and second is the fast convergence due
to multiple symbols flipping per iteration which reduces the
overall decoding computation. The followings are the main
contributions of this paper:

1) The article introduces a new method for adap-
tively grouping variable nodes by utilizing the cumulative
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distribution function of the received bit sequence, which has
been corrupted by Gaussian random noise. This approach
combines the reliability of variable nodes based on majority
voting. It differs from the layered decoding method presented
in [21] and the shuffled decoding technique presented in [19].
The proposed method adaptively selects variable nodes in
each group based on their reliability. Groups with lower
reliability are decoded first, and then, three levels of voting
are defined to determine whether to select the next group for
processing or terminate and move on to the next iteration.
Voting and variable node reliability have not been used in the
literature to form and process groups until now. In [19], the
non-binary sum-product algorithm decodes the least reliable
variable nodes in a group, and variable nodes that meet certain
conditions are excluded from the group.

2) The main challenge in the conventional symbol flipping
decoding algorithm is the computation of the flipping
function, which leads to high computational complexity.
To address this issue, an adaptive group-based symbol
flipping algorithm is proposed. In this approach, the flipping
function is only computed for the selected group, which
reduces processing latency. This differs from the traditional
SF decoding presented in [31] and [32]. A group is selected
for decoding based on certain conditions, especially after
the first iteration. Therefore, this technique helps to reduce
overall computation as not all groups are selected for
decoding. Additionally, this adaptive grouping scheme aims
to improve the bit error rate (BER) performance, especially
at low signal to noise ratio (SNR) regions.

3) To reduce computational complexity in the symbol
flipping decoding, a fixed grouping technique is employed.
Variable nodes are evenly divided among a predetermined
number of groups. Unlike the fixed grouping technique
presented in [21], this proposed technique only processes a
group if it contains variable nodes that are erroneous.

The rest of the paper is divided into sections as follows.
Section II briefly explains the existing layered and grouping
schemes in literature. The proposed group based symbol
flipping decoding algorithms are presented in section III.
Section IV is based on the results and discussion of the
existing and proposed methods. Finally, Section V gives the
conclusion of the paper.

II. BACKGROUND
A. SYSTEM MODEL
Consider a regular parity check matrix, denoted as H with
dimension m× n defined over the Galois field (GF) size q >
2. Each element hi,j(1 ≤ i ≤ m, 1 ≤ j ≤ n) of H belongs to
GF(q) where q = 2r and r represents the number of bits in
each symbol. Now, let’s think of a specific type of NB-LDPC
code C(N , γ, ρ) of length N which is designed for a regular
parity checkmatrixH . This code has a length ofN for a parity
check matrix of H , each column has a constant weight of γ
and each row has a constant weight of ρ. In the Tanner graph
representation of this LDPC code with parity check matrixH ,

the non-zero entries (hi,j ̸= 0) show the ith check node (CN)
connected to the jth variable node (VN) and the Tanner graph
edge connection is given byM (j) = {i : 1 ≤ i ≤ m, hi,j ̸= 0 }
and N (i) = {j : 1 ≤ j ≤ n, hi,j ̸= 0}.
Now, consider a codeword ccc = (ccc1,ccc2, . . . ,cccj, . . . ,cccn)

in C. The binary representation of the jth symbol in ccc
is cccj = (cj,1, cj,2, . . . , cj,t , . . . , cj,r ), 1 ≤ t ≤ r . This
binary sequence is subjected to binary phase shift keying
(BPSK), where 1 is modulated as +1 and 0 is modulated
as −1. Consequently, the BPSK modulated jth symbol xxx j =

(xj,1, xj,2, . . . , xj,t , . . . , xj,r ) is transmitted over an additive
white Gaussian noise (AWGN) channel. At receiver, the
jth symbol yyyj = (yj,1, yj,2, . . . , yj,t , . . . , yj,r ) is obtained
from the transmitted sequence xxx j by adding the additive
white Gaussian channel noise sequence nnnj, with N (0, σ 2)
distribution for its samples yyyj, represented as yyyj = xxx j +

nnnj. Finally, the hard decision (HD) binary sequence zzzj =

(zj,1, zj,2, . . . , zj,t , . . . , zj,r ) for the jth received symbol yyyj is
determined as:

zj,t =

{
0, if yj,t < 0
1, if yj,t ≥ 0

(1)

B. GROUP FORMATION
In literature, Group-Shuffled [21], [24] sum-product decod-
ing algorithms divide either check nodes or variable nodes
of the relevant bipartite graph into small sub-groups called
layers. Also each main iteration is broken into multiple sub-
iterations. The group might have one or more than one
rows and columns. In some methods, a quasi cyclic parity
check matrix is divided horizontally into groups in such a
manner that each group has exactly one non-zero entry in
each column. This is the most common method used for sum-
product LDPC decoder hardware implementation. For the
variable nodesV1,V2, . . . ,Vj, . . . ,Vn, letGτ be a group, then
a set of groups G is given by:

G = {G1,G2, . . . ,Gτ , . . . ,Gα}, 1 ≤ τ ≤ α (2)

The n number of variable nodes are divided into α groups
and each group is comprised of n/α = β variable nodes for
1 ≤ j′ ≤ β where j′ is the variable node index within the
group. For α = 1, the group based decoding becomes the
standard flooded schedule SPA.

It is observed that in one iteration the SPA algorithm can
fully process in parallel while the shuffle SPA decoding
process message passing in serial. This parallel shuffle
scheme for LDPC code is called group shuffle decoding.
In this algorithm, the code length is divided into specified
groups where in each group the updating of messages is
completed in parallel while inside the group, information is
processed serially. The group shuffle decoding is summarised
as:

• Within the same group, message passing is processed in
parallel.

• Between the groups, message passing is processed in
serial.
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The variable nodes can be divided into groups of different
sizes based on the local girth and edges of Tanner graph [24]
which increases the bit error performance and convergence
speed. The local girth of a variable node is used for the
appropriate partition.

A dynamically re-grouping of VNs in each iteration based
on simple binary and integer decision is presented in [19].
The following metric decides the selection of VNs from the
index set variable nodes with least reliable decision and high
probability to be corrected during updates:

Ej = �j(
∑
i∈M (j)

sssi) (3)

where �j(x) =
x
γ (j)γmax and γmax = maxj[γ (j)]. For C to be

an irregular code, then γ (j) is the number of 1’s in jth column
and γmax is the maximum number of 1’s in the codeword C.
This equation (3) can be associated with the flipping function
of the Gallager algorithm B and it gives the number of failed
check-sum. The flipping metric is defined as:

Fj =

∑
i∈N (j)

q(i,j)sssi (4)

where

q(i,j) =

 1, if max
j′∈N (i)

Ej′ = Ej and Ej ≥ h̄

0, else
(5)

Here, Fj counts the number of unsatisfied check-sums and
h̄ is an integer optimized numerically. This method of iden-
tifying the most unreliable VNs can be explored for possible
utilization in the NB-LDPC to improve performance as well
as convergence speed. In literature, Group-Shuffled [21], [24]
sum-product decoding algorithms divide either check nodes
or variable nodes of the relevant bipartite graph into small
sub-groups called layers. Also each main iteration is broken
into multiple sub-iterations. The group might have one or
more than one rows and columns. Also the quasi cyclic parity
check matrix is divided horizontally into groups in such a
manner that each group has exactly one non-zero entry in each
column.

In layered decoder, extrinsic information is exchanged
more sufficiently due to division of main iteration into sub-
iteration. Therefore, this scheme results in more accurate
decision and fast convergence as compared to non-layered
decoding techniques. In the group decoding algorithm,
groups are processed sequentially and VNs belonging to
the same group are updated in parallel. These grouping
techniques are developed for the message passing sum-
product algorithm and have not yet applied to the symbol
flipping decoding technique.

III. PROPOSED ADAPTIVE GROUP SHUFFLED SF
DECODING
In this section, a new dynamically re-grouping of variable
nodes in each iteration using bit reliability and majority

voting of individual received symbol is presented for the
class of symbol flipping decoding of NB-LDPC codes. The
VNs achieving least reliability are grouped together and then
variable nodes with second level of reliability are grouped
and so on with the last group comparatively being more
reliable. This grouping is accomplished by taking cumulative
density function (CDF) of the received sequence which
is being contaminated by Gaussian random noise. In this
algorithm, the number of variable nodes in a group are
selected according to the reliability value of each variable
node. Secondly, a fixed grouping scheme is applied to the
symbol flipping decoding algorithm in which the variable
nodes are divided equally among predefined number of
groups. During the sub-iterations, a group is selected for
decoding if it contains a variable node connected to a failed
check.

A. ADAPTIVE GROUP SHUFFLING
For the given parity check matrix H defined over GF(q), the
received sequence is divided into groups such that each group
contains variable nodes based on the bit reliability of each
symbol.

Variable nodes are grouped based on the reliability of
the channel received soft and hard decision information.
A symbol is considered to be less reliable if it has a smaller
reliability value and vice versa. The following equation is
used to compute reliability of individual symbol.

R(k)j (zzz(k)j ,yyy
(k)
j ) =

r∑
t=1

(2z(k)j,t − 1)y(k)j,t (6)

Here,R(k)j calculates the reliability information of a jth symbol

at k th iteration for the hard decision symbol sequence zzz(k)j
and the channel soft information yyy(k)j . A symbol is considered

to be less reliable if the numerical value of R(k)j (zzz(k)j ,yyy
(k)
j ) is

smaller. As the received bit sequence is Gaussian random, the
individual bit reliability is combined as a symbol reliability
using equation (6).

It is important to mention that each group can have
different number of variable nodes. The group containing the
variable nodes with maximum votes is considered to be the
most unreliable. After decoding of the first group, the next
group is decoded under the defined criterion.

In this paper, a group priority scheme is used to speed up
the convergence. A priority is given to a group which contains
variable nodes with most probable erroneous tentative
decision and are more likely to be corrected. In (2), the
reliability of a group increases fromG1 toGα . Based on preset
threshold, the variable nodes with minimum reliability are
grouped as G1, and variable nodes with the second reliability
are grouped inG2 and so on. A group can be chosen randomly
in the case that there is a tie among groups.

To group variable nodes, assume that the cumulative
density function of Rj is known and let this be FRj and the
probability density function (PDF) be fj .
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Definition: Use inverse of FRj for grouping and let α be
the total number of groups. Then the number of variable
nodes are allocated to the group τ if and only if the following
condition holds:

FRj
(
1 −

τ

α

)
< Rj ≤ FRj

(
1 −

τ − 1
α

)
(7)

In this section, majority voting scheme presented in [32] and
[31] is explainedwhere each unsatisfied check node gives one
vote to the relevant variable node. The jth variable node then
collects all the votes, say V (k)

j , from the failed check nodes at
k th iteration.

V (k)
j =

∑
i∈M (j)

V (k)
i,j (8)

where V (k)
i,j = 1 if sss(k)i ̸= 000, otherwise V (k)

i,j = 0. Those
variable nodes fulfilling the condition Vj ≥ Vth will be
passed to calculate the flipping function. This reduces the
computational complexity from n number of variable nodes
to just few variable nodes, say δδδ(k). Here δδδ(k) stores all the
positions of those variable nodes having votes greater than
the predefined threshold Vth and δ(k)j′ is the position of the
jthvariable node. In other words, δδδ(k) stores the positions of all
the variable nodes having less reliable information and must
be replaced with reliable symbols from GF(q).

After decoding of the first least reliable group, the decoder
has to take decision whether to terminate the sub-iteration
and go to main iteration or continue to decode next group.
To make this decision, average voting of the variable nodes in
that group is computed again. The average voting before and
after flipping of the group are compared in order to decide
whether to move to next group or terminate sub-iteration
and shift to next main iteration. If the average voting of the
group after flipping is less than before flipping, then next
group is selected for decoding based on the defined criterion.
Therefore, three types of average voting of the variable nodes
are required.

Average voting of each group before flipping are stored
until the group processing is terminated for next iteration.
However, average voting of each group is re-computed only
after symbol flipping in that particular group. Average voting
of a group remains the same if no symbol is flipped in a group.
At each decoding iteration, three types of voting values are
computed as follow:
V̄τ : Average votes of each group. This voting is fixed after

grouping the VNs till next iteration.
V̂τ : Average votes for group Gτ after decoding.
V̈τ : Average votes for group Gτ after decoding of group

τ − 1.
Let β(k,τ ) be the number of variable nodes in a group

τ . Then, the voting based reliability of each group τ at k th

iteration is determined by the following method:

V̄ (k)
τ =

V (k)
τ

β(k,τ )
(9)

where V (k)
τ is the sum of votes for a group τ .

FIGURE 1. Flow chart of group decoding.

Let τ be a group to be decoded, then a next group Gτ+1
is selected for decoding based on voting using the following
criterion:

τ =

{
Gτ+1, if (V̂τ > V̄τ ) ∥ (V̂τ > V̈τ )
Terminate sub-iteration, otherwise.

(10)

Here, ∥ is used for logical OR operator. The flow chart for
equation (10) is shown in Figure 1. Algorithm 1 outlines
the procedure for implementing the adaptive group shuffling
technique.

Algorithm 1 Adaptive Group Shuffling
1. Set τ=1 to α.
2. Compute average voting V̄τ for each group using
equation (9).
3. Decode group τ .
4. Compute votes V̂τ after flipping.
5. If the condition in equation (10) is false then terminate sub-
iterations.
6. Set τ = τ + 1. If τ = α, terminate sub-iteration, else go
to 2.

B. BIT RELIABILITY BASED SF DECODING
In this section, each group is decoded using bit reliability
based symbol flipping decoding algorithm (B-MSFD) [31].
The flipping function is computed only for the variable
nodes in the selected group τ which results in reduced
computational complexity.

The symbol position that needs to be inverted should
be part of the failed checks’ set. If the flipping position
doesn’t fall within the set of erroneous variable nodes T.
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Then, a variable node is chosen at random from the set
of erroneous VNs. This random selection ensures that the
decoder’s flipping operation alters function values to prevent
infinite loops [4], [31], [32]. The ith syndrome for the jth

hard decision symbol at the k th iteration can be expressed
as:

sss(k)i =

∑
j∈N (i)

hi,jzzz
(k)
j . (11)

A received codeword is considered valid when sss(k)i equals 000
for the ith check node. The reason for the check sum failure,
denoted as sss(k)i ̸= 000, can be attributed to the involvement
of variable nodes with errors. These check sums that have
failed are stored in a variable υ. For 1 ≤ i ≤ m, this can be
expressed as:

υ = {i| sssi ̸= 000}. (12)

The variable nodes contributing to the successful check sum
are stored in a variable ῡ. For 1 ≤ i ≤ m, this can be
represented as follows:

ῡ = {i| sssi = 000}. (13)

Assume that ψ is a vector representing the positions to be
flipped; it must be a subset of T as specified in equation (14).
Since ῡ comprises all the correct variable nodes contributing
to sss(k)i = 000, the variable nodes responsible for the failed
checks, to which ψ must belong as a subset, are defined for
j ∈ N (i) in the following manner:

ψ ∈ T = N (i)\(υ ∩ ῡ). (14)

Equation (14) contains all the variable nodes contributing to
the failed checks.

To incorporate the dependability stemming from the Galois
field’s structure, we define a vector of extrinsic weighting
coefficients denoted as θθθ = [θ0, θ1, . . . , θk , . . . , θr ].
In this context, θk represents the extrinsic weighting factor
corresponding to d(zzz(k)j, σ (k)i, j) = k for values of k within
the range of 0 ≤ k ≤ r . When dθ (zzz(k)j,σ (k)i,j) ≥ 2,
it contains limited valuable information and carries a notably
low probability of being corrected [31]. Consequently, the
distribution of the weighting coefficients is adjusted to θ =

[θ0, θ1, θ2] for the summation of extrinsic information. These
coefficients are subsequently optimized through simulation.

Let j′ be the symbol in a group τ . Then, the flipping func-
tion E (k,τ )

j′ (zzz(k,τ )j′ ) to find unreliable variable node position

P(k,τ )j′ is computed for the group τ as follows:

E (k,τ )
j′ (zzz(k,τ )j′ ) = zzz(k,τ )j′ ⊙ yyy(k,τ )j′ +

∑
i∈Mj′

θd(zzz(k,τ )
j′

,σ
(k,τ )
i,j′

) (15)

Here,⊙ is the binary operator. Let β(k,τ ) be the size of group τ
which shows the total number of variable nodes in that group.

P(k,τ )j′ = argmin
1≤j′≤β(k,τ )

{E (k,τ )
j′ (zzz(k,τ )j′ )} (16)

The flipping position P(k)j′ must be a member of T as
specified in equation (14); otherwise, a variable node is
randomly selected from the set of erroneous variable nodes
mentioned in (14).
Once the least reliable flipping position is chosen, the sym-

bol value at that position is updated by flipping the erroneous
bit in the symbol. The absolute values of the channel’s soft
information are referred to as reliability information, where
a bit with the smallest absolute value within a symbol is
considered to be erroneous, as explained in [25]. The smaller
the absolute value of a bit, the lower its reliability, and
conversely. The formula for calculating the absolute value of
a bit in the j′th received symbol is provided as follows:

ý(k,τ )j′,t = argmin
1≤t≤r

|y(k,τ )j′,t | (17)

The corresponding bit ź(k,τ )j′,t in the hard decision symbol

z(k,τ )j′ is then flipped. The expression for the flipped bit is
written as:

ź(k,τ )j′,t =

{
1, if z(k,τ )j′,t = 0

0, otherwise.
(18)

Corresponding to the hard decision bit flipping in a symbol,
the channel soft reliability information yyy(k,τ )j′ is also updated
using equation:

y(k,τ+1)
j′,t =

{
−1 − y(k,τ )j′,t , if z(k,τ )j′,t = 0

1 + y(k,τ )j′,t , if z(k,τ )j′,t = 1.
(19)

The new hard decision symbol sequence is updated for the
next (τ + 1)th sub-iteration as:

zzz(k,τ+1)
= (zzz(k,τ )1 , zzz(k,τ )2 , . . . , ź́źz(k,τ )j′ , . . . , zzz(k,τ )

β(k,τ )
) (20)

Algorithm 2 presents the steps for computing the proposed
A-BMFSD technique.

C. FIXED GROUP SF DECODING
In this section, the concept used in [15], has applied to the
symbol flipping decoding algorithm. For the given parity
check matrix H defined over GF(q), variable nodes are
divided into groups such that each group contains more than
one variable node and the sizes of all the groups are equal. For
the variable nodes v1, v2, . . . , vj, . . . , vn, let Gτ be a group of
H as shown in Figure 2. Then, a set of the groups G is given
by:

G = {G1,G2, . . . ,Gτ , . . . ,Gα} (21)

for 1 ≤ τ ≤ α and α shows the total number of groups.
It should be noted that in the proposed fixed group decoding,
only those groups are chosen for decoding which have
erroneous variable nodes and result in failure of check-sum.
Thismethod helps to decrease overall decoding complexity

as all the groups are not computed specially for iteration
k > 1. The group containing all the reliable variable nodes
are not included in the computation of flipping function
and symbol value selection. The proposed grouping scheme

53810 VOLUME 12, 2024



W. Ullah et al.: Adaptive Group Shuffled Symbol Flipping Decoding Algorithm

Algorithm 2 Proposed Adaptive Group Shuffled SF (A-
BMSFD)
1. Initialization: For 1 ≤ j ≤ n, 1 ≤ t ≤ r and 1 ≤ i ≤ m.
The hard decision binary sequence zzzj =

(zj,1, zj,2, . . . , zj,t , . . . , zj,r ) for the jth received symbol
yyyj is obtained by (1).
2. Create CDF values.
3. For k = 1 to Imax .
4. Check if sss(k) = 000 or if k = Imax , declare zzz(k) as codeword
and stop decoding.
5. Map CDF values to the reliability values R as in (7) to form
groups from low to high reliability.
6. Compute average voting V̄τ for each group using
equation (9).
7. For τ = 1 to α.
8. Find those VNs contributing to failed checks-sum inGτ by
using (12), (13) and (14).
9. Select candidate symbol value by using (15),(11) and (17).
10. Update HD sequence and the soft information by
using (18), (19) and (20) respectively.
11. Calculate votes V̂τ after flipping.
12. If the condition in equation (10) is false, then go to 14.
13. Set τ = τ + 1. If τ = α, terminate sub-iteration, else go
to 8.
14. Set k = k + 1. Go to 4.

FIGURE 2. Vertical group decoding.

results in reducing the decoder computational burden. Based
on the following condition, a new set of groups Ḡ is formed
as follows:

Ḡ = {Gτ : Gτ ∩ T ̸= φ, 1 ≤ τ ≤ α}, (22)

where φ is an empty set. Let c(k) is the number of groups
such that c(k) ≤ α. Then the new set of groups Ḡ contains
c(k) number of groups at k th iteration which might be less
than or equal to α and each group size is fixed as βF =

n
α
.

Figure 2 shows the vertical processing order of the proposed
scheme.

To decide the number of symbols to be flipped per group,
let ϒ be the preset threshold, then it can be determined in
combination to the column weight γ and the number of the
variable nodes contributing to the failed checks [31]. If ξ is
the total number of symbols to be flipped per iteration then it
can be given as follows:

ξ =

{
ξ1, if ϒ ≥ ε1ρ

ξ2, else
(23)

where ε1 is an integer value. Based on the value of ξ , the
number of flipping positions is determined. ξ2 is normally
kept as 1 to avoid decoder oscillation. The proposed decoding
algorithm for fixed grouping is given as Algorithm 3.

Algorithm 3 Fixed Group SF (F-BMSFD)
1. Initialization: For 1 ≤ j ≤ n, 1 ≤ t ≤ r and 1 ≤ i ≤ m.
The hard decision binary sequence zzzj =

(zj,1, zj,2, . . . , zj,t , . . . , zj,r ) for the jth received symbol
yyyj is obtained by (1).
2. Divide the parity check matrix H into groups using (2).
3. For k = 1 to Imax .
4. Check if sss(k) = 000 or if k = Imax , declare zzz(k) as codeword
and stop decoding.
5. Find erroneous VNs by using (12), (13) and (14).
6. Select groups to decode by using (22).
7. For τ = 1 to c(k) where c(k) is the number of groups having
at least one erroneous VN.
8. Select candidate symbol value by using (15),(11) and (17).
9. Update HD sequence and the soft information by using
(18), (19) and (20).
10. Set τ = τ + 1. If τ = c(k), then terminate sub-iteration,
else go to 8.
11. Set k = k + 1. Go to 4.

IV. COMPLEXITY ANALYSIS
The decoding computational complexity and memory
requirement of the proposed algorithms in comparison with
existing B-MSFD decoding algorithm are evaluated in this
section. The computational complexity of the algorithms are
explained in terms of numerical computation per iteration.
The flipping function for the proposed adaptive group
decoding is computed for the selected group only. Let α be
the total number of groups and β(k,τ ) is the size of a group τ at
k th iteration, where β(k,τ ) varies each time with k and τ . Let
C be a NB-LDPC code over GF(q) = 2r , for a given regular
parity check matrix H of size m × n where each column of
H has constant weight of γ and each row of H has constant
weight of ρ. The total number of edges of the Tanner graph
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is δ = nγ . The main complexity of the algorithm is due to
the computation of the flipping function in the equations (15)
and (11). To convert the received sequence into hard decision
binary sequence and then to symbol sequnce zzz at the decoder
initialization, the algorithms require nr real comparisons.
Let b and c(k) be the converging values such that 1 ≤ k ≤ b

and 1 ≤ τ ≤ c(k), then to compute the syndrome check-
sum for valid codeword, nγ Galois field multiplications
and nγ − m Galois field additions are required. For each
transmitted code-word, the numerical value of the variables
k and τ changes. b is the convergence value for a particular
transmitted code-word of length n. Similarly, the numerical
value of vairable c(k) changes during each iteration and
might not obtain the maximum value α. To get the extrinsic
information-sums (EXIs) for the n symbols, the decoder
requires nγ Galois field multiplications and nγ Galois field
additions. But in the case of the layered decoder, the EXIs
are computed for β(k,τ ) number of variable nodes in a group
τ at the k th iteration. Then, β(k,τ )γ Galois field additions
and multiplications are required. To compute the reliability of
jth symbol, r real comparisons are required. Voting for each
group is obtained after syndrome check-sum computation.

To get votes for a particular symbol j, γ − 1 additions
are required. For the code-word of symbols n, a total
of nγ − m additions are required. This is the additional
computation in the proposed adaptive layered decoding
(A-BMSFD) algorithm in comparison to F-BMSFD and
B-MSFD algorithms. The complexity of the proposed
A-BMSFD algorithm involves computation of the binary
Hamming distance d(zzz(k,τ )j , σ

(k,τ )
i,j ) for each edge, the binary

function zzz(k,τ )j ⊙ yyy(k,τ )j for β(k,τ ) number of symbols.

To compute reliability R(k)j , r real additions are required.
To form predefined number of groups α based on the
reliability, n comparisons are required. Similarly, to compute
the votes for each group, β(k,τ )(γ − 1) integer additions are
required. To compute the Hamming distance d(zzz(k,τ )j′ , σ

(k,τ )
i,j′ )

of a symbol j′ in a group τ , β(k,τ )γ integer comparisons
are required and to compute summation of θ (k,τ )

d(zzz(k,τ )
j′

,σ
(k,τ )
i,j′

)
,

β(k,τ )(γ − 1) additions are required. To find the position of
least reliable symbol P(k,τ )j′ , β(k,τ ) comparisons are required
and ξ (k,τ )r comparisons are required to flip a bit in ξ (k,τ )

number of symbols. After symbol flipping, to move to next
group or exit to main iteration k + 1, α − 1 comparisons are
required. Since the proposed A-BMSFD algorithm does not
need any loop detection procedure as in B-MSFD algorithm,
the decoder computational complexity is reduced. For the
F-BMSFD algorithm, the size of each group βF is fixed
and also the grouping is not adaptive, therefore, it does not
require voting and reliability information. In comparisons to
B-MSFD algorithm, the group based decoding reduces the
computation of the flipping function as it computed for the
number of variable nodes in a group instead of whole code-
word n.

The proposed algorithms for NB-LDPC codes also have
an advantage of reduced memory consumption for storing the
values of the flipping function as well as flipped values due
to the fact that computation is done for the selected group
only. However, the values for the CDF are required to store
for the allocation of VNs in the next iteration which increases
the memory size. Let r bits be required to store each of the
symbol overGF(q) and b-bit be required for storing floating-
point values for each of the reliability metric, then these
algorithms require nrb bits to store the received sequence.
Similarly, the hard decision symbol sequence zzz(k,τ )j′ requires

nr bits and the extrinsic information-sums σ (k,τ )
i,j′ requires

β(k,τ )ρr bits.
To store the weighting coefficients θ (k,τ )

d(zzz(k,τ )
j′

,σ
(k,τ )
i,j′

)
of the

binary Hamming distance, ρb bits are required to store
the values. To keep each value of the flipping function
in (15), a b bits memory is required and β(k,τ )rb bits for
all the values. Similarly, β(k,τ )b and ξ (k,τ )r bits of memory
are required for storing P(k,τ )j′ and ý(k,τ )j′,t respectively. The
proposed algorithms reduce the memory requirement from n
to β(k,τ ). The A-BMSFD algorithm requires only r bits to
store the value for the flipped symbol.

Table 1 shows the complexity of the proposed adaptive
and fixed group based decoding algorithms in comparison to
B-MSFD algorithm. From the table, it can be observed that
algorithms A-BMSFD, F-BMSFD and B-MSFD algorithms
have similar complexity in the case all the groups are
decoded. Since the overall complexity of an algorithm
depends on the converging value b, the effect of number of
iterations k has been shown in computing numerical values of
various decoding operations. The converging value of k varies
for each code-word transmission and also for each value of
SNR.

Also in case of adaptive group shuffled decoding, the
values of c(k) and β(k,τ ) are not fixed and can be as small
as 1, while in the fixed layered decoding algorithm, c(k) can
be less than α as those groups having no erroneous variable
nodes are not included in decoding.

V. RESULTS AND PERFORMANCE ANALYSIS
In this section, the proposed adaptive group shuffled SF
algorithm is compared with the flooding schedule SF
algorithms. The algorithms in the following examples for the
NB-LDPC code (n, γ, ρ) with γ and ρ as the column and
row weights respectively, have been simulated using BPSK
as the modulation technique. In the following examples,
the total number of iterations are kept as Imax = 15.
The performance and processing complexity of the proposed
groups based algorithms are compared with flooding sched-
ule SF algorithm in the literatures [31] and [32]. An all-zeros
codeword is transmitted over additive white Gaussian channel
using binary phase shift keying modulation. 1 is modulated as
+1 and 0 is modulated as −1. The CDF values are generated
once for each value of SNR. Both y − axis and x − axis
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TABLE 1. Computational complexity for various decoding algorithms.

values are rounded to two digits for simplicity and for easy
mapping. The weighting coefficients θ = [θ0, θ1 . . . , θr ] of
the proposed A-BMSFD as well as B-MSFD algorithm [31]
are set as θ = [2, 0.75, 0.5] for d

θ (zzz(k,τ )j ,σ
(k,τ )
i,j ) ≥ 2 as it has

very low probability to be corrected and does not carry much
useful information [13]. Also, the values of θ should be in a
decreasing order of reliability information. The higher value
means more reliability and vice versa. It should be noted
that in the following examples, the proposed algorithms flip
single symbol per group. The number of symbol per group
for the B-BMSD algorithm is also set as 1. In the following
examples, the maximum group size of the proposed decoding
algorithms are kept as 6.
Example 1: In this example, the proposed decoding

algorithms are simulated using a half rate quasi-cyclic (QC)
NB-LDPC code (120,3,6) over GF(128), whose column and
row weights are 3 and 6, respectively. The performance of
the proposed algorithms are also compared with B-MSFD
algorithm in the literature. The BER performance of the
proposed A-BMSFD and F-BMSFD algorithms show better
BER performance than B-BMSFD algorithm as illustrated by
performance curves in Figure 3.
The performance gap between non-layered B-MSFD and

the proposed layered algorithms is around 0.5dB at the
BER of 10−3. BER curves show that the proposed adaptive
group shuffled based NB-LDPC decoding algorithm has
an improved performance than the proposed fixed group
decoding algorithm.
Example 2: In this example, the NB-LDPC code (105,2,5)

over GF(8) is used to demonstrate the BER performance of
the proposed decoding algorithms in comparison to B-MSFD.
Here, the parity check matrix H with constant row weight
γ = 2 is based on the construction method presented
in [33] and the alist format is available on the web site [34].
In this example, the code-word length is 105 and this cannot
be divided equally into groups. This is a special case of
F-BMSFD algorithm and in this case, the even three groups
have one more variable node and the group size is 18, while
the odd three groups contain 17 variable nodes. Thus, the first
odd layer contains 17 variable nodes and the second even
layer contains 18 variable nodes and so on.

FIGURE 3. BER performance of NB-LDPC code (120, 3, 6) over GF (128).

From the BER curves shown in Figure 4, it is observed
that the proposed adaptive group shuffled decoding algorithm
performs better than flooded schedule B-MSFD algorithm
at higher SNR. From the curves, it is also clear that these
algorithms have less performance for ultra low column
parity check matrices. The reason is that these algorithms
use the technique to isolate the variable nodes contributing
to failed checks and for the ultra low column weight
matrices, it becomes difficult to isolate the variable nodes
in error by comparing the set of VNs contributing to failed
and successful check nodes. In this example, as shown in
Figure 4, the proposed A-BMFSD algorithm has shown better
BER performance in comparison to F-MSFD and B-MSFD
algorithms.
Example 3: In this example, Figure 5 shows the symbol

error rate performance (SER) of the proposed algorithms
in comparison to non-layered symbol flipping decoding
algorithm. The non-binary LDPC decoding algorithms are
simulated for a regular QC NB-LDPC code (120,4,8) over
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FIGURE 4. BER performance of NB-LDPC code (105, 42) over GF (8).

GF(128) to get the SER performance curves. This code
has a parity check matrix with constant column weight
γ = 4 and constant row weight ρ = 8. The SER perfor-
mance curves show similar trends as the BER performance
curves.

From the symbol error rate performance curves in the
Figure 5, it is clear that the proposed decoding algo-
rithms SER performance is also better than that of the
B-MSFD algorithm. From the Figure 5, the proposed
F-BMSFD algorithm SER performance at ≈ 10−3 is
better than B-MSFD algorithm by approximately 0.5dB.
Similarly, at SER=≈ 10−3, the coding gain for A-BMSFD
algorithm compared to F-MSFD algorithm is about 0.5dB.
The proposed A-BMSFD algorithm has shown better SER
performance in comparison to F-BMSFD as well as B-MSFD
algorithms. In this example, it can be noted that the proposed
grouping based decoding performance is better for the
relatively high column weigh of the NB-LDPC codes. In the
symbol flipping decoding algorithm, the complexity is,
mainly, given by the computation of the flipping function.
The proposed A-BMSFD algorithm takes advantage of
the adaptive grouping and computes the flipping function
for the variable nodes contained in the selected group τ
only.

The reason for the better BER performance of the
A-BMSFD algorithm is the reliability and voting based
additional information to identify the position of least reliable
variable node. In the adaptive scheme, the most unreliable
variable nodes are grouped together. This benefits the flipping
function to identify the flipping position more accurately as
compared to the B-MSFD algorithm.
Example 4:A half rate QCNB-LDPC code (120, 3, 6) over

GF(128) is used whose column and row weights are 3 and 6,

FIGURE 5. SER performance of NB-LDPC code(120, 4, 8) over GF (128).

FIGURE 6. SNR versus average number of iterations for NB-LDPC code
(120, 3, 6) over GF (128).

respectively. The average iteration (b) versus SNR is given
in Figure 6 to illustrate the complexity and convergence of
the proposed NB-LDPC decoding algorithm in comparison
to B-MSFD algorithm in the literature.

For the average number of iteration at 5.5dB, the numerical
computation complexity of the considered algorithms are
listed in Table 2. In the B-MSFD and F-BMSFD algorithms,
as the number of symbols to be flipped in each iteration
and group, are not fixed and can vary each time. Therefore,
to compute numerical complexity, the number of symbol
flipped per group is fixed as 1 for all these algorithms.
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TABLE 2. Numerical complexity of various algorithms at 5.5dB for
code(120, 3, 6) over GF (128).

Remember that B-MSFD algorithm is using the code-word
as single group. Looking at curves in Figure 6, the trend
line of the convergence of B-MSFD algorithm is slower than
adaptive layered and fixed layered algorithms. At 5.5dB,
the average number of iteration of the adaptive layered
decoder is getting close to B-MSFD algorithm. Since at
higher SNR, there are less number of errors in the received
sequence, therefore the convergence of the three algorithms
are getting closer at 6.5dB. The primary reason for fast
convergence of the fixed layered decoding algorithm is due
to the identification of erroneous variable nodes in each
group. In a F-BMSFD algorithm, a group is processed only
if it contains variable nodes which is useful in identifying a
least reliable symbol, but this in turn increase the number of
integer comparisons as it is obvious from the IC/RC section
of Table 2. This feature of the F-BMFSD algorithm increases
the complexity by 40% from A-BMSFD algorithm, but 16%
less than B-MSFD algorithm.

In Table 1, computational complexity of the algorithms are
listed while in the Table 2, the computations are given as
empirical values which are computed at 5.5dB. In the Table 2,
the computation are carried out for NB-LDPC code (120, 3,
6) over GF(128) and the average computations are obtained
by repeating the code-word transmission for 1000 times.
From the Table 2, it is clear that complexity of the newly
proposed algorithms is much lower than the existing symbol
flipping B-MSFD algorithm in literature. The total number of
operations for the proposed NB-LDPC algorithms as well as
for the B-MSFD algorithm are given in Table 1.
The empirical data in Table 2 is obtained by computing the

statistical average of the numerical values of c(k) and β(k,τ ).
The numerical result in Table 2 are dependant on the vari-

ables listed in Table 1. In case of A-BMSFD algorithm, the
numerical values depend on b which is the maximum value
attained at which the algorithm converges, c(k), β(k,τ ) and
ξ (k,τ ). The convergence of the proposed decoding algorithms
depends on bwhich is the main iteration loop while c(k) varies
at every k th iteration and shows the complexity of the sub-
iteration loop. Table 2 clearly demonstrates that the proposed
A-BMSFD algorithm is numerically less complex compared
to the other algorithms listed. The size of the specific group
τ , denoted as β(k,τ ), affects both the decoding latency and
numerical complexity. This observation is further supported
by the curves depicted in Figure 6. From the complexity
curves in Figure 6, the average value of b for B-MSFD
algorithm is around 4.2. The total number of variable nodes
for B-MSFD algorithm is 120. By replacing the variables in

Table 1 by numerical values to compute GA, the number of
operations are computed as 6804which are approximately the
same as the empirical values in Table 2.

Similarly, for the F-BMSFD algorithm, the value of b is
3.2 as illustrated in Figure 6. The value of c(k) is obtained
as 2.69 by comparing the values in Table 1 and Table 2
for b = 3.2 and βF = 20. These values are in close
approximation to get the empirical result in Table 2. The
average number of iterations for A-BMFSD algorithm is b =

4.12 as shown in Figure 6, while the empirical value of group
size is β(k,τ ) = 14.4. By replacing these values in the Table 1
and comparing with Table 2, the value of c(k) is computed
as 1.35. From the Table 2, it is observed that the proposed
adaptive layered decoder has almost 64% less computational
complexity than B-MSFD algorithm in terms ofGF additions
and multiplications, but approximately 4% more than fixed
layered decoding algorithm. As the extrinsic information sum
is computed for the selected number of variable nodes in
a group, i.e βF and β(k,τ ) for F-BMSFD and A-BMSFD
algorithms respectively, the number of computation for the
proposed algorithms are much less than B-MSFD algorithm.
Secondly, the proposed algorithms converge faster than B-
MSFD algorithm and, thus, the numerical complexity is
computed for less number of iterations.

The proposed adaptive group A-BMSFD algorithm has
extra integer additions to compute voting of each symbol
in the received hard decision sequence. Therefore, it has
an increased complexity in comparison to the fixed group
F-BMSFD decoding algorithmic as shown in Table 2. From
Table 2, it can be observed clearly that the complexity due to
IA/RA of the adaptive layered decoder is around 22% less
than that of B-MSFD algorithm and almost similar to the
F-BMSFD algorithm.

The methods were evaluated for their time consumption
using a Dell Optiplex 7780 AIO PC equipped with an Intel
Core i7-10700 CPU and 16.0 GB of RAM in order to
demonstrate the algorithm’s complexity. MATLAB 2021 and
Windows 10 were used as simulation software. In the case of
the A-BMSFD algorithm, the time required for each iteration
to compute from equation 15 to equation 20 was measured
at 1.82 seconds. In contrast, the BMSFD algorithm took
2.07 seconds per iteration for an NB-LDPC code (120, 3, 6)
over GF(128). Similarly, for the same code, the F-BMSFD
algorithm took 1.87 seconds per iteration.

The average number of iterations of the layered decoding
algorithms are less than non-layered symbol flipping decod-
ing and it has an improved BER performance. Therefore, the
proposed schemes provide an appealing trade-off between
BER and complexity.

VI. CONCLUSION
The paper introduces two layered decoding algorithms for
symbol flipping NB-LDPC codes, which employ grouping
techniques to lower the computational complexity of the
flipping function for the received symbols. These techniques
help to reduce the decoder processing latency when selecting
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new candidate symbol values to correct errors in the message.
The CDF based adaptive grouping scheme applied to the SF
decoding algorithm helps to reduce numerical computation
and also results in an improved BER performance. The
proposed A-BMSFD algorithm uses the reliability of the
received bit sequence and also takes into account the voting
based reliability of each variable node. The voting based
reliability informations are used to process the next group or
terminate the sub-iterations. In the fixed decoding algorithm,
each group contains a fixed number of variable nodes and
the group is processed only if it has some erroneous variable
nodes. The proposed two grouping methods can be applied
to quasi-cyclic as well as non-quasi-cyclic NB-LDPC codes.
The numerical results show that the proposed grouping
schemes have efficiently reduced the decoder computation
and also achieved better bit error rate performance. Compared
to non-layered symbol flipping decoding, the average number
of iterations in the layered decoding algorithm is lower
and has a better BER performance. Therefore, the proposed
method provides an attractive trade-off between BER and
complexity.
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