
IEEE GEOSCIENCE AND REMOTE SENSING SOCIETY SECTION

Received 8 March 2024, accepted 18 March 2024, date of publication 10 April 2024, date of current version 19 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3387314

Hybrid Conv-Attention Networks for
Synthetic Aperture Radar Imagery-
Based Target Recognition
JISEOK YOON 1, (Member, IEEE), JEONGHEON SONG2, (Member, IEEE),
TANVEER HUSSAIN3, (Member, IEEE), SUNDER ALI KHOWAJA 4, (Member, IEEE),
KHAN MUHAMMAD 5, (Senior Member, IEEE), AND IK HYUN LEE 1,6, (Member, IEEE)
1IKLAB Inc., Siheung-Si 15073, South Korea
2Korea Aerospace Research Institute, Daejeon 34133, South Korea
3Department of Computer Science, Edge Hill University, L39 4QP Ormskirk, U.K.
4Department of Telecommunication Engineering, University of Sindh, Jamshoro 76080, Pakistan
5Department of Applied Artificial Intelligence, Sungkyunkwan University, Seoul 03063, South Korea
6Department of Mechatronics Engineering, Tech University of Korea, Siheung-Si 15073, South Korea

Corresponding authors: Khan Muhammad (khanmuhammad@g.skku.edu) and Ik Hyun Lee (ihlee@tukorea.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) Grant funded by Korean Government [Ministry of
Science and ICT (MSIT)] under Grant 2021R1F1A1050022; and in part by the Gyeonggi-do Regional Research Center (GRRC) Program
of Gyeonggi Province, Development of an Intelligent Inspection System and an Autonomous Navigation System for the Transportation of
Multi-Material Parts, under Grant GRRC TUKorea2023-B03.

ABSTRACT In this study, we propose hybrid conv-attention networks that combine convolutional neural
networks (CNNs) and transformers to recognize targets from synthetic aperture radar (SAR) images
automatically. The proposed model is designed to obtain robust features from global and local patterns
in the SAR image, utilizing the weights of a pre-trained backbone model with self-attention structures.
Furthermore, we adopted pre-processing and training methods optimized for transfer learning to enhance
performance. By comparing and analyzing the performance between the proposed model and conventional
models using the OpenSARShip and MSTAR dataset, we found that our system significantly outperforms
conventional approaches, with a performance improvement of 24.06%. This considerable enhancement is
attributed to the ability of the model to leverage the 2D kernel-based approach of CNNs and the sequence
vector-based approach of transformers, offering a comprehensive method for SAR image target recognition.

INDEX TERMS Synthetic aperture radar (SAR), target recognition, deep learning (DL), transfer learning,
convolutional neural networks (CNNs), transformers.

I. INTRODUCTION
Synthetic aperture radar (SAR) imaging is a technique that
captures the reflection of transmitted electromagnetic waves
in 2- and 3-dimensional forms [1], [2]. It is highly resistant
to environmental factors like haze, smog, and clouds. SAR
is known for its ability to quickly capture large areas of
land using airborne or satellite-mounted devices, making it
an ideal choice for surveillance applications in both military
and civilian sectors [2], [3]. SAR is crucial in various applica-
tions, including security surveillance, disaster response, and
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environmental monitoring. However, monitoring vast areas
solely through human efforts can be challenging. Therefore,
an urgent need for automation has driven researchers to
develop advanced detection and recognition systems.

Recent advancements in artificial intelligence have signifi-
cantly enhanced systems utilizing SAR images, streamlining
tasks like automatic target recognition (ATR), land cover
classification, segmentation, and image noise reduction [4],
[5], [6], [7], [8], [9]. The research presented in this paper
contributes to this progressive field, specifically focusing on
refining the classification aspect integral to ATR systems [2],
[3], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20]. This endeavor is crucial as classification forms the
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FIGURE 1. The proposed model consists of three main parts: embed, feature extraction, and classification. (zoom in for more clarity).

bedrock of efficient and accurate target recognition in varied
real-world scenarios.

In automated systems, the spotlight has shifted to deep
learning (DL) methodologies, celebrated for their efficacy
and streamlined approach, negating the need for intricate
feature vector designs characteristic of traditional meth-
ods [11], [12]. A popular tactic within DL is transfer learning,
where pre-trained classifiers, initially devised for generic
object classification, are repurposed [13], [14]. Despite
the widespread adoption of this strategy, it is challenging
to pinpoint a model that’s intricately tailored for SAR
images, as most are honed for publicly available data sets
rather than the unique characteristics of SAR imagery.
Recognizing this gap, several researchers have proposed
models meticulously optimized for SAR image classification,
aiming to enhance the precision and reliability of automated
systems in processing and interpreting SAR imagery [3],
[10], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25].

Previous research has focused on the overfitting problem of
existing convolutional neural networks (CNNs). For example,
Chen et al. [10] proposed A-ConvNets composed of sparse
layers to solve this issue. Moreover, Lin et al. [21] introduced
the CHU-Net, a robust SAR data classification network
integrating convolutional highway layers, max pooling, and
dropout for efficiency with limited data. The architecture
achieved notable accuracy, effectively addressing SAR’s
processing challenges and illustrating the network’s pro-
ficiency in DL with scarce labeled data. Zhang et al. [3]
proposed a domain adaptation-based method using hetero-
geneous features to overcome the vulnerability of noise
from the A-ConvNets method. Deng et al. [15] developed an

amplitude-phase CNNs (AP-CNN), utilizing amplitude and
phase data from sparse images, enhanced by a bi-iterative
soft thresholding (BiIST) algorithm to improve quality.
This approach improved classification accuracy more than
traditional amplitude-based methods, especially with limited
training data. In another approach, Li et al. [16] proposed a
metric learning method to obtain robust performance even
in insufficient dataset environments. They designed a two
step training process; first, they designed CNNs to extract
the trainable features, and second, the features were used for
metric learning processes.

Other research groups proposed hybrid models by com-
bining the CNNs with other DL models. Wang et al. [17]
presented a novel approach by combining CNNs and
long short-term memory (LSTM) networks in a multiview
framework. The methodology involved using multiple CNNs
modules to extract deep features from single-view SAR
images and then employing a spatial attention module
to focus on relevant target details and suppress noise.
Subsequently, the LSTM module performed feature fusion
using the correlations of features from adjacent azimuths,
enhancing recognition performance with multiview image
inputs. Feng et al. [23] developed a network based on the
attributed scattering center (ASC) model with an electromag-
netic scattering feature (ESF) module, utilizing convolutional
layers and Bi-LSTM for enhanced SAR ATR. This design
improved target recognition accuracy and interpretability by
integrating SAR characteristics into DL. Zhang et al. [18]
focused on using the traditional features efficiently, propos-
ing a DL model combined with the histogram of oriented
gradient (HOG) features called HOG-ShipCLSNet. This
model uses the CNNs structure, feature pyramid networks,
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feature ensemble, and attention mechanism. Wang et al. [19]
proposed a convolutional transformer (ConvT) tailored to
few-shot learning scenarios, integrating convolutional lay-
ers with transformers to construct a hierarchical feature
representation that captures both local and global depen-
dencies. It introduced hybrid loss and auto augmentation
strategies to optimize the model for limited SAR images,
enhancing its recognition capability and generalization per-
formance without additional SAR target images in training.
Wang et al. [20] introduced a multiscale attention super-class
CNNs (MSA-SCNN). The method enhanced SAR target fea-
ture representation through multiscale feature fusion coupled
with channel and spatial attention modules, emphasizing
the importance of different scale features. Additionally,
introducing super-class labels helped increase feature differ-
ences between categories, aiming to improve the network’s
fine classification ability and generalization across various
SAR images. Feng et al. [22] developed the part attention
module (PAN), enhancing SAR vehicle target recognition
with a focus on interpretability by integrating electromagnetic
scattering characteristics. The network, featuring a PAN,
adapted to the importance of different target parts, ensuring
precise and transparent recognition and showcasing robust
performance in diverse conditions. Wen et al. [24] proposed
a multimodal framework integrating phase-history, scattering
topology, and image data for SAR ATR, enhancing fea-
ture extraction and fusion. The paper showcased its high
recognition accuracy on the MSTAR dataset, particularly
with limited data, highlighting its potential to advance SAR
ATR capabilities significantly. Zhang et al. [25] proposed
the MGSFA-Net, integrating SAR scattering features with
DL through a hybrid structure utilizing multi-scale fea-
ture enhancement and graph convolution networks (GCN)
for SAR ship target recognition. This method enriches
feature diversity and accuracy, improving performance in
few-shot scenarios on FUSAR-Ship and OpenSARShip
datasets.

Conclusively, this study aims to solve data scarcity and
the need for adaptability in SAR imagery by introducing
a hybrid conv-attention network. This network combines
the strengths of CNNs and transformers [26], [27], [28],
two technologies that have shown remarkable performance
in recent AI research. The hybrid model’s unique ability
to fuse local and global features lies at the crux of our
architecture. This comprehensive representation is crucial
for effectively recognizing targets in SAR images. Our
approach distinguishes itself from existing algorithms by
providing a balanced and sophisticated analysis of SAR
imagery designed to capture the intricate patterns inherent
in such data. The proposed model leverages pre-trained
models to develop a robust system adaptable to varying types
of SAR images against the limitations of small-scale SAR
datasets. It consists of three core modules: an embedder
using a backbone CNNs model [29] with proposed trainable
upscale structures to merge the outputs of each stage, features
extraction by employing self-attention (SA), which extracts

global features from the 1D feature sequence, and a classifier
using the ensemble structure.

This paper aims to identify three types of ships - bulk
carrier, container ship, and tanker - from the OpenSARShip
dataset [30], [31]. Additionally, it strives to recognize
different categories of military vehicles using three distinct
scenarios from the moving and stationary target acquisition
and recognition (MSTAR) dataset [32]. The study will be
conducted in detail and organized as follows. Section II
explains the proposed methodology, including the proposed
system processes and proposed model architecture. The
results and comparisons of our experiments are detailed in III.
Finally, the overall study is concluded in Section IV with a
discussion regarding useful research in SAR imaging in real-
world applications.

II. METHODOLOGY
A. THE PROPOSED SYSTEM
The proposed system is a transfer learning-based methodol-
ogy consisting of pre-processing and classification models
to recognize targets using SAR images automatically. The
pre-processing of this system transforms the input image into
a form suitable for the proposed model, which consists of
algorithms that optimize the characteristics of the employed
SAR image used for transition learning. Because of the
acquisition process of the images, they have a massive range
of pixel values, various image widths & height sizes, and a
single channel.

Therefore, three processes were adopted for the normaliza-
tion of pixel values, image resizing, and channel upsampling.
i) First, the pixel values are normalized in the [−1, 1] range
using z-score values with µ = 0.5 and σ = 0.5. ii) Then,
using bilinear interpolation, the input images are resized as
1×224×224. iii) Finally, concatenating three times from one
input image, the input image is upsampled as 3× 224× 224.

Our proposed method utilizes the ConvNext model and the
SA of the transformers as a hybrid model fused with some
layers of the pre-trained model and newly designed layers
(Figure 1). A detailed structural description is shown in sub-
section B.

To utilize the system configured above, it is necessary
to design a training process optimized for the data used to
achieve the best results. Therefore, we have established
strategies for small data and converging the global minimiza-
tion of training losses. The first strategy is to augment the
small training datasets using physical transformation. The
data augmentation algorithm consists of flip, thin plate spline,
affine transform, perspective transform, and random crop.
The SAR image is acquired using a satellite, and parts that can
be deformed into the shape of an object during the acquisition
process are reflected in the augmentation algorithm.

Additionally, for the random crop, data augmentation and
the detection result of the OpenSARShip dataset can be
corrected during the training process [30], [31]. Then, each
algorithm transforms the images based on probability. For
the second strategy, the weights of the new layers of the
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FIGURE 2. Target SAR images of the proposed system in the OpenSARShip and MSTAR dataset.

model that cannot use pre-trained weights are initialized
based on the normal distribution. In addition, a scheduler
that changes the learning rate in the form of a cosine wave,
called the cosine annealing learning rate, was used to prevent
convergence to the local minima [33]. When using this
scheduler, the learning results continue to change for each
epoch; the validation dataset was constructed to store the
model with the best performance.

B. THE PROPOSED MODEL ARCHITECTURE
The proposed hybrid model combines CNNs, which can
acquire local patterns on input images, and the SA structure
of the transformers, which can extract global patterns. The
main parts include an embedder, feature extractors, and a
classifier (Figure 1). The embedder transforms an input image
into a 1D sequence form with C channel size. The proposed
embedder transforms 2D feature maps into an optimized
feature sequence; in this case, a pre-trained ConvNext model
is utilized. The feature extractor is used to acquire features
from a sequence using an SA structure. The classifier is based
on an ensemble structure that uses average scores.

1) EMBEDDER
The proposed embedder extracts a 96 × 56 × 56 2D feature
vector using a 3 × 224 × 224 image and transforms the 2D
feature vector into a CE × 56/p · 56/p 1D sequence again,
where p is the patch size, and Cf is the factor of the output
channels of the embedded.

First, the 2D feature vector is extracted by using the output
of the intermediate layers of pre-trained ConvNext and the
proposed upblock. The ConvNext consists of a single input
filter (stem), four stages, and a classifier, where the partial
outputs of the stages outputs were used for making the 2D
feature vector. In our study, we used the first to third outputs
of the stages. Each stage output of the pre-trained model
has half the sizes of W and H compared to the previous
output, and the channel length is doubled. In other words,
the feature vector size of Oi is upsampled, and the length
of the channels decreases. Therefore, the ConvTranspose2d
layer was adopted, which flexibly selects the size of the scale
(s) and the length of output channels [34]. The modified
ConvNext block (CNB) [29] smooths the upsampled feature
vector. In our case, the filter and padding size of the
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convolution layer and the hidden layer size of the multi-layer
perceptron (MLP) were modified except for the whole
structure flow. Here, the MLP structure consists of two linear
layers with a single Gaussian error linear unit (GELU) [35].
The kernel size is 3, the padding size is 1, and the hidden
layer size is designed to increase as much as the input
channel length multiplied by the MLP ratio RC . Moreover,
the inputs of ConvTranspose2d and CNB are activated and
normalized using a rectified linear unit (ReLU) [36] and
LayerNorm to improve learning stability [37]. In this process,
the LayerNorm is based on the z-score, as mathematically
given in Equation 1.

x ′
=

x − µx
√

σx + ϵ
· α + β, (1)

where α and β are trainable factors, and ϵ is used to prevent
that sigma becoming zero. Through the approaches, a 2D
feature map is acquired from the merged local features
obtained from each stage.

Next, the obtained CE × 56 × 56 sized 2D feature map
is transformed into a 1D sequence. For this process, the 2D
feature map is downsampled by the patch size (p), of which
the result is CE × 56/p × 56/p. Then, the feature map is
reshaped as a 56/p · 56/p × CE sized 1D sequence. Before
using the sequence as input of the feature extractor, the class
token as the positional encoding is injected to increase the
performance. The class token is a representation vector for
the sequence [27]: the trainable parameter. Here, we use a
1 × 1 × 96 · p vector. This class token is attached in front
of the sequence vector; therefore, the final sequence shape is
(56/p · 56/p + 1) × CE . The final process of the embedder
is positional encoding. The proposed model uses SA in the
proposed feature extractor. In this case, positional encoding
is performed because the positional information between
sequences is required. The proposed method is the sinusoidal
position, as given in Equation 2.

P(i,2j) = sin(i · l−
2j
CE ) + γ

P(i,2j+1) = cos(i · l−
2j
CE ) + γ, (2)

where i is an element of position vector {0, . . . , (56/p·56/p)},
j is channel index, l is fixed weight of the positional encoding,
and γ is trainable bias which has 1 × 56/p · 56/p × CE .
For our model, the weight l was 6273. After all of the
above processes, the sequence vector is normalized by the
LayerNorm.

2) FEATURE EXTRACTOR
The feature extractor is for extracting the global patterns, and
it is designed in a form capable of learning residual com-
ponents and utilizes the SA structure. In addition, a Fourier
feature transformation (FFT) structure [38] was used to
include the high-frequency components in the structure
utilizing linear layers where the FFT is a combination of
channel-wise cosine & sine waveforms.

FIGURE 3. Accuracy performances using various sampled training data in
the GRD/VV of OpenSARShip.

Next, the transformed vector propagates through other
SA-based feature extractors to obtain an optimized feature
sequence vector. However, a positional encoder was added
again in each SA output because positional information can
be blurred when using the residual structure in multiple
SA-based feature extractors. Herein, the extractors were
repeated N times, and their number varied depending on the
data types. The SA structure used in these processes is shown
in Figure 1, which aims to express similarity in a sequence
probabilistically in the value vector. For this process, the
query, key, and values vectors are obtained by splitting the
first output vector of the linear layer. Then, a probability
vector can be obtained through softmax output, in which the
input is the product of the query and key vectors. Finally,
the optimal feature information in the sequence is obtained
by reflecting this in the value vector using the multiplied
probability vector. In this structure, the query and key are
normalized by the L2 norm, as shown mathematically in
Equation 3.

x ′
=

x
∥x∥2

. (3)

The obtained feature sequence passes through an MLP
structure, a feedforward network, and is finally transformed
into one optimized feature sequence. In the MLP structure,
the hidden layer size is also a changeable parameter.
Therefore, the hidden layers of different sizes were adopted
according to data types, and the proposedmodel was designed
to adjust the ratio of input layers.

3) CLASSIFIER
The proposed classification process is an ensemble-based
method using multiple classifiers. A classifier is attached to
each proposed feature extractor to obtain each output, and
the output is summed to obtain a final classification result.
Each classifier has a structure in which an adaptive average
of the acquired feature sequence is obtained for each channel
information, and each class is expressed through a weighted
sum of the acquired channel information. In this process, the
adaptive average is the weighted sum of the input sequence,
and the LayerNorm is used to normalize the input feature
sequence.
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TABLE 1. Key parameters of the model in each scenario.

TABLE 2. Number of data in each case.

FIGURE 4. Accuracy performances compared in the SOC scenario of
MSTAR.

III. EXPERIMENTAL RESULTS
A. DATASET
1) OpenSARShip
The OpenSARShip dataset (Figure 2), obtained from
Sentinel-1 SAR images by the Shanghai Key Laboratory of
Intelligent Sensing and Recognition, has two types: ground
range detected (GRD) and single look complex (SLC).
Each type is based on dual-polarization using VV (vertical
transmit and vertical receive) and VH (vertical transmit
and horizontal receive). Here, four types of GRD datasets
were used separately (GRD/VV, GRD/VH, SLC/VV, and
SLC/VH) to check the flexibility of the proposed system.
Moreover, the dataset has 17 labels for ship images, which is
a strongly imbalanced number. However, some ship images

are unsatisfactory for evaluating the systems owing to the
number of images in some labels. Therefore, we used only
three labels for our experiment: bulk carrier (Bulk), container
ship (Container), and Tanker (Table 2).

2) MSTAR
The MSTAR dataset (Figure 2), crafted by Sandia National
Laboratories using the STARLOS sensor, achieves a detailed
resolution of 1 foot (0.3m). For an in-depth classification
performance evaluation, the dataset is examined under three
scenarios: standard operating conditions (SOC) and extended
operating conditions (EOC-1 and EOC-2) (Table 2). In the
SOC scenario, the model is trained on data captured at a 17◦

depression angle and tested on images at 15◦, encompassing
all ten vehicle classes, including diverse vehicles such as the
2S1 rocket launcher, BMP2, BRDM2, BTR60, BTR70, D7
bulldozer, T62, T72 tanks, ZIL131 truck, and the ZSU23/4
air defense unit. These classes are represented under various
conditions, marked by changes in aspect and depression
angles, alongside unique serial numbers.

Under the EOC-1 scenario, the focus is narrowed to
4 specific targets: 2S1, BRDM2, T72, and ZSU23/4 from the
SOC. For these, training occurs at 17◦, with testing expanded
to 30◦ to assess performance under more varied conditions.
EOC-2 scenario introduces a specialized subset featuring
8 variants of the T72 tank (labeled A04, A05, A07, A10,
A32, A62, A63, and A64), maintaining the training at 17◦

and testing at 15◦ to evaluate the algorithm’s ability to discern
closely related models. These rigorous and diverse conditions
are designed to thoroughly test and validate the robustness of
classification algorithms.

B. EXPERIMENTAL ENVIRONMENT
The proposed system was implemented on MATLAB ®
2021a and Pytorch 2.1.0 with CUDA toolkit 12.1 in the
Ubuntu 20.04.6 LTS 64-bit OS. In addition, the hardware
environment used a GeForce RTX 4090 and an AMD ®
Ryzen threadripper pro 5975wx 32-cores x 64 CPU and 256
GB RAM. The augmentation algorithms were implemented
via Kornia [39], and the pre-trained model was loaded from
PyTorch Image Models [40].

C. IMPLEMENTATION DETAILS
1) MODELS
The hyperparameters of the proposed models were modified
to fit a specific data type. Bymodifying the parameters shown
in Table 1, a model optimized for data characteristics can be
obtained. The parameters were obtained heuristically.
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TABLE 3. Comparison results using various types of DL models in the proposed system.

TABLE 4. Confusion matrix results of the proposed model in OpenSARShip.

TABLE 5. Confusion matrix results of the proposed model in SOC scenario of MSTAR.

2) TRAINING DETAILS
All data augmentation algorithms had 0.5 probabilities. The
augmentation process for random crops was utilized only in
the OpenSARShip dataset, except in the MSTAR dataset. For
the optimization process, cross-entropy loss [41] andAdamW
optimizer were adopted [42]. The main parameters of the

AdamW optimizer are the learning rate and the weight decay.
Here, the decay was set to 10−5, and the learning rate was
changed using the cosine annealing scheduler-based learning
rate, in which the range of the values is [0, 0.001] and the
maximum number of iterations is one epoch. The batch and
maximum epoch sizes were 48 and 200. The model with
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TABLE 6. Confusion matrix results of the proposed model in EOC-1
scenario of MSTAR.

the best validation data (15% of training data) performance
between 150− 200 epoch was selected as the optimal model.

D. RESULTS AND DISCUSSION
For this study, we selected eight models for comparison:
the early CNN models VGG [43] and ResNet [44], the
latest CNN models ResNext [45] and ConvNext [29], the
transformer models ViT [27] and Swin Transformer [28],
and the hybrid models LambdaNet [46] and CoAtNet [47].
All systems, including the proposed system, were imple-
mented using only tiny-size models (VGG11, ResNet26,
ResNext26ts, ViT tiny, ConvNext tiny, SwinTransformer tiny,
LambdaResNet26, and CoAtNet-0), and they utilized the
same experimental environments as the proposed one. All of
the models were analyzed by receiver operating characteristic
(ROC). Thus, they were evaluated through the accuracy
(Acc.), specificity (Spec.), precision (Prec.), recall (Rec.),
and F1 score (F1.) [48]. In addition, a comparative analysis
was conducted to evaluate the performance of each model in
a limited training environment using training data sampled at
a ratio of 5% to 100%. (Figure 3). Furthermore, the proposed
model was analyzed precisely using the confusion matrix
with ROC analysis. Also, the inference speed of the proposed
system was compared and analyzed using frame-per-second
(FPS) units. Finally, we compared the proposed system with
other systems in the SOC scenario of the MSTAR dataset.
Specifically, we compared the performance of our system
with methods proposed in other papers using only accuracy
(Figure 4).

1) ROC ANALYSIS IN THE OpenSARShip
The evaluation results in Table 3 show that the proposed
model had the highest performance in the OpenSARship
datasets. The model was improved by 3.57 − 11.49%
compared to the lowest-performance models and by
0.90 − 5.01% compared to the highest-performance model.
The models were selected using F1 scores and evaluated in
terms of each metric. Moreover, the hybrid, latest CNNs,
and transformer models performed remarkably in every
dataset except for the proposed model. If the results were
explained in detail, the best models in each dataset were as
follows: ResNext26 in GRD/VV, CoAtNet-0 in GRD/VH,
SwinTransformer tiny in SLC/VV, and ConvNext tiny in
SLC/VH. The second-best models in each case were as

follows: CoAtNet-0 in GRD/VV and GRD/VH, ConvNext
tiny in SLC/VV, and SwinTransformer tiny in SLC/VH.

Furthermore, the proposed model was analyzed precisely
using the confusion matrix with ROC analysis (Table 4).
As seen in the F1 results, the proposed model shows
remarkable classification performance of the bulk carrier of
GRD and the container ship of SLC. Conversely, it was found
that the model has a relatively lower classification accuracy
in the container ship of GRD, the Tanker of SLC/VV, and the
bulk carrier of SLC/VH.

2) ROC ANALYSIS IN THE MSTAR
The results of the comparative analysis for eight models in the
proposed system in the MSTAR data are as follows (Table 3).
First, based on accuracy, the proposed system in the SOC

scenario had an overall good performance of 0.9880−0.9979.
The proposed model slightly decreased by less than 0.01 −

0.04% in each metric compared to the Swin transformer
tiny model, which had the second-best performance within
the system. It also showed performance improvements of
0.09 − 0.87% compared to the lowest performance model.
In the EOC-1 scenario, the proposed system had high

performance and deviation (0.7941 − 0.9852). Compared to
the Swin transformer tiny model, which had the best and
second-best performance, the proposedmodel in this scenario
showed performance improvements of 1.78 − 5.58% and
6.84 − 24.06% performance improvements compared to the
lowest-performing model in each metric.
The proposed system in the EOC-2 scenario had a

performance range of 0.9557 − 0.9886 based on accuracy,
but there was some variation in performance. Like the
SOC scenario, the proposed model had minor decreases of
less than 0.02 − 0.15% in each metric compared to the
best-performing model within that system. It also showed
0.45 − 3.30% performance improvements compared to the
lowest-performing model.
Moreover, we analyzed the confusion matrix for each

scenario in the proposed model-based system. In the SOC
scenario, we found that BRDM2 and ZSU23/4 had 100%
classification performance, while BMP2 had the lowest
classification performance (Table 5). In the EOC-1 scenario,
T72 had the best classification performance, while 2S1 had a
relatively low classification performance (Table 6). Finally,
in the EOC-2, we confirmed that the A07, A10, and A64
T72 tanks had 100% classification performance, while the
classification performance for A32 was insufficient (Table 7).

3) ANALYSIS OF INFERENCE TIME
In this section, we have evaluated the speed at which each
dataset can be processed on the proposed system. The
performance has been measured in FPS to determine the
system’s ability to operate in real-time.
On the OpenSARShip dataset, we obtained the following

results: 574.14 FPS (GRD/VV), 560.76 FPS (GRD/VH),
522.90 FPS (SLC/VV), and 473.45 FPS (SLC/VH). On the
MSTAR dataset, the inference time results are as follows:
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TABLE 7. Confusion matrix results of the proposed model in EOC-2 scenario of MSTAR.

556.65 FPS (SOC), 567.03 FPS (EOC-1), and 566.91 FPS
(EOC-2).

Our experiments have shown that the proposed system can
easily exceed the real-time processing threshold of 30 FPS in
all modes and datasets. The lowest recorded FPS was 473.45,
indicating that the system is robust enough to handle even the
most demanding datasets in real-time.

4) COMPARATIVE ANALYSIS OF MODEL PERFORMANCES
ACROSS DIFFERENT SAMPLING RATIO
In this session, we compared and analyzed the performance
of eight different models in a limited training environment
(Figure 3). Each model was trained on a proposed system,
and the training data was randomly sampled from 5% to
100% (5% interval) per label in 1,014 provided training data
samples. The validation data set was fixed at 150 samples.

The analysis revealed that the accuracy of all models
surpassed 80% when the training data was sampled at
70%. Notably, the proposed model demonstrated superior
performance, even in situations with slightly less data,
indicating that the proposed system can ensure a certain
level of performance. When compared to other models,
it was evident that the proposed model exhibited the highest
performance. However, it was observed that when the training
data was sampled at less than 35%, all models, including the
proposed model, struggled to learn effectively, highlighting
the challenges of training with very tiny datasets.

5) COMPARATIVE ANALYSIS OF SYSTEM PERFORMANCES
A comparative analysis was conducted to evaluate the
effectiveness of different system architectures for SAR
target recognition in the SOC scenario of the MSTAR
dataset (Figure 4). In this proposed system environment,
we compared a proposed hybrid model (Hybrid) and a swin
transformer tiny (SwinT) against several established meth-
ods, including ConvT, AP-CNN, MSA-CNN, CNN-LSTM,
the Knowledge Integration framework for Domain Adaptive
SAR target recognition (KIDA), and the CNN embeddings
and metric learning (CNN E&ML) approach.

In the SOC scenario of the MSTAR dataset, our com-
parative analysis showed that Hybrid and SwinT achieved
remarkable accuracies (99.75% and 99.79%, respectively),
matching the performance of the CNN E&ML model.

This demonstrates the effectiveness of advanced models
like hybrids and transformers in SAR image analysis,
suggesting their potential for enhanced accuracy in real-world
applications.

IV. CONCLUSION
This study proposes a DL-based system for automatically
recognizing targets in SAR images. The model designed in
this system uses transfer learning and hybrid conv-attention
networks that fuse the partial model of pre-trained ConvNext
and the SA structure of the transformers to utilize the
local and global patterns in the image for this task.
Furthermore, pre-processing and training processes were
designed considering transfer learning utilization and input
data characteristics. As indicated by the experimental results,
the proposed hybrid model had outstanding performances
in all data environments, even compared to the pre-trained
models. Therefore, the proposed system can be used as an
element technology in an automated surveillance system
using satellites or unmanned aircraft, even if only small
amounts of data are used.

Regardless, in the OpenSARShip dataset, since the pro-
posed system used only 3 labels (bulk carrier, container ship,
and tanker) among the 17 labels due to the limitation of data
composition, additional research on system development that
is robust to more types of labels should be conducted for
system research that can perform sufficiently in the real world
environment. In addition, leveraging knowledge distillation
methods [49] to efficiently reduce models’ size or exploring
self-supervised learning [50] that are robust in small-scale
dataset environments could lead to a more optimized system
design. Furthermore, the utilization of generative AI models
such as variational autoencoders [51], generative adversarial
networks [52], and diffusion models [53] can effectively
augment training data, thereby enhancing the performance
of classification models. Given the reality of minimal
training data in some practical settings, pursuing research
based on few-shot learning methods [54] is imperative.
These approaches can address the challenges of scarce data
availability by enabling models to perform well even when
presented with few or no labeled examples.
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