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ABSTRACT As production system estates become larger and more complex, ensuring stability through
traditional monitoring approaches becomes more challenging. Rule-based monitoring is common in
industrial settings, but it has limitations. These include the difficulty of crafting rules capable of detecting
unforeseen issues and the burden of manually maintaining rule sets. A potential solution to effectively
manage complex system states is log anomaly detection. Workflows for log anomaly detection utilize
several fundamental components. These include preprocessors for data cleansing, parsers to extract
structured information from raw log data, encoding algorithms to convert extracted data into usable
model input features, anomaly detection methods to isolate anomalous signals, and feedback mechanisms
to incrementally improve model performance. This study explores the current state of research into
online parser-supported log anomaly detection methods, investigates recent research trends, compares the
performances of parser and anomaly detection methods using common public datasets and metrics, and
assesses their performance evolution over time. Additionally, it classifies available methods using a newly
introduced taxonomy, highlights current research gaps, and recommends future research directions.

INDEX TERMS Log parsing, log template extraction, online algorithms, anomaly detection.

I. INTRODUCTION
Enterprise production service teams are responsible for
ensuring the health of production estates through proactive
monitoring and repair. The real-time monitoring of large,
integrated system environments, however, is a non-trivial
affair. Traditional rule-based approaches to monitoring have
many weaknesses. Creating rules capable of detecting
unforeseen issues is challenging and the effort required to
manually maintain rule sets is significant.

Modern anomaly detection approaches have shown the
potential for practical use against many different forms of
log targets (e.g., failures [1], security/network intrusions [2],
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[3], [4], performance degradation indicators [5], [6], etc.).
Anomaly detection methods don’t require rule creation or
maintenance. Also by nature, they are designed to detect
events that are out of the ordinary, making them capable of
discovering unforeseen issues. For these reasons, they have
the potential to improve upon the weaknesses of rule-based
approaches.

Log anomaly detection methods come in many forms.
Event-based methods attempt to detect log events not seen
previously during periods of system normality. Sequence-
based methods make predictions of events based on a
window of previous ones, and flag those that fall outside
their predictions as anomalies. Online log anomaly detection
differs from other forms of anomaly detection in that the input
data used is highly unstructured, oftentimes inconsistent in
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FIGURE 1. Typical log anomaly detection workflow.

format, and must be processed incrementally. The challenge
of managing this unstructured data is a key focal area of log
anomaly detection research.

Log anomaly detection is not a one-step process. It involves
data mining to extract structured, meaningful information
from raw log sources, feature transformation or vectorization
to translate information into usable model input features, and
anomaly detection mechanisms to detect and report anoma-
lous signals (Fig. 1). Log anomaly detection workflows can
also incorporate other functions such as preprocessing and
feedback.

Although log parsers have many forms, they have the same
goal: to extract log templates (also known as log signatures or
events) from raw log data. Log templates represent multiple
log entries of the same event, which differ only in their
parameters. They are created by replacing the dynamic
parameters with wildcards or placeholders.

Software generates log entries through the invocation of
logging commands. Log parsers contribute to log anomaly
detection by encoding unique event sequences from logs
into inputs for anomaly detection models. They provide an
invocation record of calls across active code branches, rep-
resenting the logical execution flow of monitored processes.
As parsers target the characteristics of logs, they can be
considered domain-specific. Log parsers have been shown
to improve the quality of generated log representations and
increase downstreammodel performance [7]. They can prove

advantageous over generic encoding methods that do not
consider logging practices.

Figure 2 illustrates an example of a parser utilized within a
log anomaly detection workflow. The log signatures extracted
by the parser are used to vectorize a sequence of events
that follow the flow of raw log entries. This sequence is
encoded into an event count matrix using sliding or fixed
windows. The log anomaly detection algorithm uses the event
count matrix as input. With this workflow, anomalous signals
can be detected from the representative numerical encoding
produced by the parser and vectorization process.

Offline parsers extract templates either by directly refer-
encing log output statements from system source code [8]
or by deriving templates from historic log data through
algorithmic means [9], [10], [11]. In contrast, online methods
derive templates incrementally from real-time log data [12],
[13], [14]. They ‘‘process log data item by item in a streaming
manner, and do not require a batch of data to be available
before executing’’ [15]. Online parsers are useful because
they can be applied without source code access, historical
log data, or offline training. They can be used to manage
log drift through incremental template learning, and they
perform the same or better than their offline counterparts in
terms of average parsing accuracy [16]. This study focuses
specifically on online parsers for this reason.

Like log parsing, anomaly detection methods can function
online or offline. There are many forms of these methods,
including statistical, machine learning, and deep learning
approaches. Anomaly detection workflows can utilize indi-
vidual models or ensembles. They typically target abnormal
log events or abnormal sequences of events. They can also
target abnormal parameter sequences, timing abnormalities,
and other combinations of such features. DeepLog, for
example, uses multiple LSTMmodels to target log events and
parameter sequences with timing-related metadata integrated
into the feature set [17]. However, the performance of log
anomaly detection approaches varies widely. This perfor-
mance variance is apparent not only between methods but
also depending on the log source analyzed (see Section VI).

There have been several surveys on log anomaly
detection-related topics over the past years. These generally
have focused specifically on parsing technologies or
particular types of anomaly detection (such as deep learning)
independent of the types of parsers being used [18], [19].
To our knowledge, this is the first survey focusing on the
intersection of online parsers and anomaly detectionmethods.
It makes the following contributions. First, we summarize
and consolidate the current state of research into online
parser-supported log anomaly detection workflows, taking
inventory of all relevant components. Second, we analyze
recent trends in research, including the evolution of
achievable accuracy for these components. Third, we propose
a new taxonomy to describe and categorize these workflows,
summarizing all relevant studies to date using this taxonomy.
Finally, we highlight and discuss research gaps discovered
through our analysis and provide direction for future research.
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FIGURE 2. Example of a log anomaly detection method using log parsing.

Ultimately, the motivation for this study is to support the
industrialization of online log anomaly detection methods for
production system monitoring. Through this exploration of
the current landscape of online parser-supported log anomaly
detection research, we hope to facilitate this process.

The rest of this paper is organized as follows. Section II
describes the five research questions addressed in this study.
Section III explains the research method used to formulate
the responses to these questions, including a description of
our systematic literature review process and how method
performances were compared. Section IV addresses Research
Question (RQ) 1, examining log anomaly detection research
trends. Section V addresses RQ2, comparing online parsing
method performances and presenting parser performance
trends over time. Section VI formulates a response to RQ3,
performing a similar comparison of online parser-supported
log anomaly detection method performances. Section VII
addresses RQ4, presenting a taxonomy to classify online
parser-supported log anomaly detection workflows. Sec-
tion VIII focuses on RQ5, identifying and discussing the
research gaps discovered through our study. Section IX
reviews related works. Section X discusses internal and exter-
nal threats to validity. Finally, Section XI presents our conclu-
sions, including a discussion of future research directions.

II. RESEARCH QUESTIONS
We aim to assess the state of online parser-supported log
anomaly detection research by addressing the following
research questions:

RQ1. What are the current research trends in
onlineparser-supported log anomaly detection
research? To answer this question, we compared
citation counts for online parsers discovered through
our previous systematic literature reviews to those
since 2021 (extracted from Scopus1) [20], [21].
We divided these recent studies by type and compiled
statistics on all newly introduced methods. Using this
data, we performed a trend analysis.

RQ2. How has the performance of online log parsers
evolved? To answer this question, we compiled
an up-to-date inventory of online parsing methods
using our systematic literature reviews. We compiled
evaluation results using the most common public
datasets andmetrics found across studies and graphed
them in order of method introduction date.

RQ3. How has the performance of online parser-
supported log anomaly detectionmethods evolved?
To answer this question, we combined online parser-
supported log anomaly detection methods discovered
in our previous paper with those found in this study’s
systematic literature review [21]. We then compiled
reported metrics for these methods using the most
frequently used public log datasets.

RQ4. How can different forms of online log anomaly
detection be classified? To answer this question,
we developed a taxonomy based on the log anomaly

1https://www.scopus.com
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TABLE 1. Online/incremental log parser citations.

detection methods discovered through our studies.
We then verified the taxonomy by using it to classify
these methods.

RQ5. Does existing online parser-supported log anomaly
detection research contain gaps that merit future
exploration? To answer this question, we assessed
the studies discovered through our systematic
literature reviews, compiled potential issues, and
highlighted areas that we found to be lacking in
coverage. We discuss the significance of these gaps
and the potential for future research to improve upon
these areas.

This paper extends our preliminary research results
presented at APSEC 2021 as part of the ERA (Early Research
Achievements) track [21]. All research questions presented in
this study are extensions of the original literature review. All
figures, data, and conclusions drawn from the original work
are cited accordingly.

III. RESEARCH METHOD
In this study, we performed a refreshed literature review of
online parser-supported log anomaly detection. We compiled
and compared the results from evaluations discovered
through this review to perform method comparisons. This
process provided the foundation for this study and is
described below in greater detail.

A. SYSTEMATIC LITERATURE REVIEW
To address the RQs, we initiated a refreshed systematic
literature review of online parser-supported log anomaly

2Newly discovered from a survey in this paper’s literature review [41].

detection methods using the results from our two previous
studies. Our first study yielded 358 results for a keyword
search of ‘‘log parsing’’ via Scopus [20]. After excluding
articles not written in English and duplicates, 340 studies
remained. These articles were reviewed, irrelevant articles
were discarded, and research targeting online/incremental
approaches to log parsing were selected. Snowballing was
performed using citation searches in Research Gate,3 and a
final list of online parsers was compiled.

In our subsequent ERA (Early Research Achievements)
publication, we performed a systematic literature review
of online parser-supported log anomaly detection methods
using citations of online parsers discovered through our
previous study. A search in Scopus resulted in 276 articles.
Of these, 124 were duplicates or written in a non-English
language [21]. Of the remaining 152, relevant log anomaly
detection methods were compiled, and the results were
summarized and presented for discussion.

This research used our previous survey results to ini-
tiate an up-to-date review of online parsers and online
parser-supported log anomaly detection methods. We per-
formed a citation search in Scopus for all previously discov-
ered studies to extract a collection of new relevant literature
(reflecting the data available as of January 1st, 2024).
We analyzed modern research trends by comparing statistics
on recent studies with those from our previous literature
reviews (RQ1). We used this refreshed review to compile
and compare online parser and online parser-supported
log anomaly detection method performance (RQ2-RQ3).
We developed a taxonomy of online parser-supported log
anomaly detection methods and verified it by classifying all
methods discovered through our literature reviews (RQ4).
Finally, we summarized existing research gaps to suggest
directions for future work (RQ5)

B. PERFORMANCE COMPARISONS
To compare the performance of online parsers and online
parser-supported log anomaly detection methods, we com-
piled the results of evaluations from studies identified through
our current and previous systematic literature reviews [20],
[21]. When compiling the results, we prioritized method
evaluations performed within their own introductory papers.
Any scores that deviated heavily from those discovered
in other comparative studies were discarded. We chose
evaluations using the most frequently utilized public log
datasets and standard metrics for the broadest comparison
possible. Performance was graphed in the order of method
introduction. We analyze and discuss performance trends
using this data in Sections V and VI.

IV. LOG ANOMALY DETECTION RESEARCH TRENDS
In previous work, we compiled all known online parsing and
online parser-supported log anomaly detection methods [20],
[21]. To analyze modern log anomaly detection research

3https://www.researchgate.net
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TABLE 2. Breakdown of recent log anomaly detection studies (2021 - January 1st, 2024).

trends, we refreshed this review through the compilation of
research conducted since 2021 using citation searches in
Scopus. This search yielded 766 new citations (Table 1).
These citations were filtered to remove duplicates and
non-English language articles. The resulting parser and log
anomaly detection method studies with relevance are listed
in Tables 2 and 3.

4Uses a BiGAN with an ensemble of ‘‘base classifiers’’ [109].
5https://github.com/IBM/Drain3
6Uses Drain as part of online template matching.
7Includes direct vectorization with or without regex style filtering.

As seen from Table 1, since 2021, the most frequently cited
online parsers continue to be Drain (38%) and Spell (23%).
In contrast, parsers with equal or higher average PA scores
using the LogHub public log data collection [143], [188] have
been cited significantly less (see Fig. 4 and 8). Parsers such as
LTmatch [35], Paddy [29], and SwissLog [23], for example,
have higher average PA values reported using the 16 log
datasets in LogPAI’s Loghub. Still, they represent only a tiny
percentage of the online parser citations since 2021 (1%, 2%,
and 6% respectively). This under-representation highlights a
gap in modern log anomaly detection research that merits
future attention (discussed further in Section VIII).
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FIGURE 3. Deep learning usage for log anomaly detection since 2021.

FIGURE 4. Online parser study citations totals.

FIGURE 5. Online parser use in studies since 2021.

A. DEEP LEARNING UTILIZATION
Of the 149 new log anomaly detection studies discovered
since 2021, the vast majority (84%) use deep learning
approaches, signifying a continued shift from more tra-
ditional anomaly detection techniques (Fig. 3). Over half
(56%) used online parsing methods, 86% of which were
used in combination with deep learning (Fig. 7 and Table 2).

TABLE 3. Parsing methods introduced since 2021.

In comparison, 21% used direct vectorization or NLP (omit-
ting template extraction via parsing), 8% utilized custom or
manual parsing, and only 5% utilized offline parsing. All
studies using offline parsing also used deep learning anomaly
detection. The remaining 19 studies used some form of a
parser, but the details were omitted.

B. PARSING METHOD UTILIZATION
Figure 5 shows that Drain continues to be the most commonly
used parser since 2021 followed distantly by Spell. Drain
was used in 82% of online parser-supported studies and Spell
was used in 13% (Table 2). Only seven studies used offline

8Described as online but doesn’t include incremental learning.
9Can be implemented in parallel mode.
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FIGURE 6. Distribution of online/offline parsers introduced since 2021.

parsing, illustrating that such methods have drastically fallen
out of favor.

Numerous parsing methods have been introduced since
2021, demonstrating that log parser research remains
extremely active (Table 3). 37% of the methods introduced
are online (Fig. 6). Three are derivatives of Drain and Spell.
Modern log anomaly detection studies primarily use online
parsing (see Fig. 7), so the volume of new offline parsers
introduced (i.e., 29 methods) is somewhat surprising. Of the
46 new parsers discovered in total, only five support parallel
processing (Table 3).

RQ1. What are the current research trends in onlineparser-
supported log anomaly detection research? Log parsing
continues to be an extremely active research area. Since
2021, 46 new parsing methods have been introduced
(Table 3). 37% are online methods, and 63% are offline
(Fig. 6). As over half of the log anomaly detection studies
since 2021 used online parsing, the comparatively large
number of newly introduced offline parsers is surprising
(Fig. 6 and 7). Drain, followed by Spell, are the most
commonly utilized parsers (Fig. 5). Most studies used
deep learning techniques, demonstrating a shift away
from traditional machine learning and statistical algo-
rithms (Fig. 3). Although direct vectorization methods
are becoming more common (21%), online parsing
workflows remain the most popular overall (Fig. 7).

V. ONLINE LOG PARSER PERFORMANCE
Our systematic literature reviews discovered 33 online pars-
ingmethods in total. Three (i.e., Drain3, Drain+, and Spell+)
are derivative implementations of preexisting approaches,
and 48% (39% excluding derivatives) were introduced since
2021. These methods are listed in Table 4.

We assess the performance of online parsers by comparing
the results of studies discovered through our systematic
literature reviews. We compile the results from the most
commonly utilized datasets and metrics to perform this
comparison. These results provide an inventory of available
online parsers and a reference for their performance.

FIGURE 7. Parsing types used in log anomaly detection studies since
2021.

A. AVERAGE PA
Parsing accuracy (PA) is a metric representing the ratio of
correctly parsed log entries relative to the total number of
entries evaluated [16]. It is a standard metric that can be used
for comparing different parsing methods. Figure 8 shows that
online log parser performance has steadily increased since
the original introduction of SHISO [12] in 2013. PA values
using the 16 log datasets in LogHub (representing both
parser accuracy and robustness) have gradually improved.
A significant portion of this improvement (0.751 to 0.865)
coincides with the introduction of the Drain parser in 2017.
This improvement may be why Drain remains the most
heavily utilized online parser in log anomaly detection
research (Fig. 5).

The average PA achievable against the 16 log datasets
in LogHub has improved with the introduction of recent
parsers such as Paddy [29], SwissLog [24], LTmatch [35],
LogPunk [204], Drain+ [196], Hue [199], and Brain [192].
However, the improvement margin has decreased due to the
higher overall level of accuracy demonstrated by modern
methods in general. Experimentation with these modern
parsers in anomaly detection workflows would still be
worthwhile. Their lack of representation in log anomaly
detection studies is a significant research gap, and this topic
is discussed in more detail in Section VIII.

B. OTHER PERFORMANCE METRICS
Aside from PA, other commonly used parser performance
metrics include precision, recall, F-score, and the Rand
index. This study compiles available evaluation results using
these metrics to provide a broad performance comparison.
Although Dendrogram purity [32], Levenshtein edit dis-
tance [225], and loss functions [31] also appear, they are used
infrequently, and thus excluded from our summary.

Several studies use a stricter form of PA requiring all
dynamic parameters to be identified for a template to be
considered correctly parsed [26], [194]. This form of PA
is used in only a limited number of studies, and like with
the metrics previously mentioned, we have excluded it for
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FIGURE 8. Average PA of online parsing method evaluations using the 16 public log datasets in LogPAI’s Loghub.

this reason. However, it would provide for a higher-quality
assessment if its use was more widely adopted.

Table 4 summarizes the reported PA, F-score, and Rand
index values achieved for the most common public log
datasets used in online parser comparison studies (i.e., the
HDFS and BGL log datasets). Parsers tend to perform
extremely well against the HDFS dataset with a minimal
score deferential. One reason for these high scores is the
low diversity of log statement formats. With over 11 million
log entries, the HDFS dataset contains only 30 unique
templates (14 from the 2k entry sample provided by
LogHub) [188]. This issue is discussed in more detail in
Section VIII.

The BGL dataset has relatively more templates (619
from over 4.5 million log entries), making gaps in parser
performance more apparent. With this dataset, it can be
seen that newer parsers such as Brain, LogPunk, Paddy, and
SwissLog match or outperform the Drain parser in terms
of PA. Note that these results are also reflected in the
methods’ average PA values recorded against the 16 datasets
in LogPAI’s Loghub (Fig. 8).

In regards to Rand index values, Prefix-Graph outscores
Drain for the BGL dataset (0.993 versus 0.912), and Drain
outperforms Prefix-Graph for theHDFS dataset (1.000 versus
0.989). However, Prefix-Graph matches or outperforms the
Drain parser on seven of the ten datasets evaluated in its
study (with a higher average Rand index value of 0.975 versus
Drain’s 0.953) [213]. It alsomatches or outperforms Spell and
FT-tree on eight of these datasets.

RQ2. How has the performance of online log parsers
evolved? Since 2021, 17 new online parsers have been
introduced, three being derivative implementations of
previous methods. Table 4 lists all known online parsers
and their PA, F-score, and Rand index values achieved
against the BGL and HDFS public log datasets. The
performance of online parsers has gradually increased
over time (Fig. 8). Modern parsing methods score very
high in accuracy and robustness. Although Brain [192]
shows the highest recorded average PA for the 16 public
log datasets in LogPAI’s Loghub, it hasn’t been used in
log anomaly detection research (Table 2). In contrast,
Drain and Spell remain heavily utilized, even with their
lower average PA scores.

VI. LOG ANOMALY DETECTION PERFORMANCE
Log parsers have been generally well assessed for robustness
through the use of many public log datasets. Log anomaly
detection methods, however, have not benefited from the
same level of evaluative coverage. These studies generally
utilize only a small number of datasets for evaluation. Out
of those used, the HDFS and BGL datasets are the most
common. To perform a broad performance comparison,
we utilize these same datasets with common metrics.
Performance results were ordered by the date of anomaly
detectionmethod introduction, and we analyzed the evolution
of performance improvements seen over time. The results of
this analysis are discussed below in the following sections.
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TABLE 4. Online/incremental log parser performance (BGL/HDFS Datasets).

A. HDFS DATASET ASSESSMENT
The first log anomaly detection method evaluated using an
online parser discovered through our systematic literature
reviewwas the PCA algorithm, used in the introductory paper
for the Drain parser in 2017 [14]. This paper compares the
performance of different offline and online parsers (Drain,
SHISO, Spell, and IPLoM) used in combination with PCA
as part of a log anomaly detection workflow. Although the
F-score values for this study were not directly reported,
we were able to calculate them using the metrics presented
in the paper in combination with known features of the
HDFS dataset. In this study, Drain (online) and IPLoM
(offline) had the highest overall performance. Used with
PCA, they both produced an F-score value of 77.02%. With
Spell and SHISO, this value dropped to 76.83% and 74.57%
respectively.

Zhang et al. evaluated their semi-supervised and unsuper-
vised anomaly detection methods using a similar comparison
of the Drain, AEL, and IPLoM parsers [44]. The F-score
values against the datasets in their study increasedwhen using
Drain in combination with their semi-supervised method
(sADR). Using their unsupervised anomaly detection method
(uADR), Drain outperformed the other approaches in half of

the cases. This illustrates that parser choice can significantly
impact log anomaly detection workflow performance.

Several months after the original Drain parser study
in 2017, the DeepLog anomaly detection method was
introduced. This method, which utilizes online parsing and a
parallel LSTM deep learning approach, was evaluated against
the HDFS dataset [17]. DeepLog significantly improves
performance over PCA with an F-score of 96%. Since
then, improvements have continued. Many new online
parser-supported log anomaly detection methods have been
introduced with higher reported scores (Fig. 9). LCC-HGLog
and Zhang et al. have achieved the highest recorded F-score
against this dataset (99.9%) [71], [105]. Many other methods
have realized F-scores above 99%, starting with LogRobust
in 2019 [226]. Although the vast majority of studies have
yielded F-scores over 95%, several have failed to do so [57],
[76], [86], [104], [106], [107], [227]. For viewing ease,
Figure 9 omits these studies. These methods, however, are
included in our analysis in subsequent sections.

B. BGL DATASET ASSESSMENT
Figure 10 summarizes the log anomaly detection method
F-score values recorded against the BGL dataset. Most have
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FIGURE 9. Evolution of online anomaly detection method performance (F-score) using the public HDFS dataset.

TABLE 5. Rule-based failure detection accuracy.

achieved scores at or above 90%. Those that have performed
worse have been excluded for readability. This high level
of performance is significant given the relative complexity
of the dataset. It illustrates the strength of recent online
parser-supported log anomaly detection methods against
complex log targets.

Figure 11 shows a more detailed view of these results.
Many of the methods recorded higher recall values than
precision. This suggests that although these methods may
be proficient at detecting anomalies, they likely produce
many false positives. False positives are a significant
concern for method industrialization since these signals
can drown out true alerts when used for systems mon-
itoring. To deal with such issues, false positive mitiga-
tion strategies such as model feedback mechanisms are
required. Table 6 (discussed in more detail in subsequent
sections) confirms that these mechanisms have yet to be

adequately researched. We discuss this topic in more detail in
Section VIII-B.

C. PERFORMANCE AGAINST BOTH DATASETS
Many recent online parser-supported log anomaly detection
methods have performed well against both the HDFS and
BGL datasets. SwissLog, for example, has an F-score of 99%
recorded against both. Figure 8 shows that the SwissLog
parser performs the second highest in terms of average PA
for the sixteen public log datasets in LogPAI’s Loghub. This
high average parsing accuracy is likely a supporting factor for
the method’s success against multiple datasets.

Like SwissLog, LCC-HGLog, LogBP-LORA,AllInfoLog,
Zhang et al. (2023), BERT-Log, LogLR, LogPal, and S3M
are also robust against both the HDFS and BGL datasets,
achieving F-score values at or above 99% (Fig. 9 and 10).
A common factor amongst these methods is their use of deep
learning. They also all use either semantic sequencing or
graphical feature encoding.

D. RULE-BASED METHOD COMPARISON
The use of rule-based methods for log monitoring in
industrial settings is ubiquitous. These methods trigger
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FIGURE 10. Evolution of online anomaly detection method performance (F-score) using the public BGL dataset.

alerts based on rules configured to detect the presence of
specified keywords in log entries. Crafting rules capable of
detecting unforeseen issues, however, is challenging. The
manual creation and maintenance of rules is also very time-
consuming. Production service engineers often rely upon a
standard configuration set for this reason.

In our previous work, we compared rule-based meth-
ods to anomaly detection approaches using an industrial
dataset [228].We found that anomaly detectionmethods were
muchmore accurate, but suffered from a large number of false
positives. In this study, we extended theEvaluator class of our
component-based log anomaly detection pipeline framework
to support the assessment of the BGL and HDFS public
log datasets. We then assessed the pipeline’s rule engine
component with these datasets, measuring its performance
using a standard set of industry keyword rules (containing the
tokens ‘‘error,’’ ‘‘exception,’’ and ‘‘failure’’).

The results of this experiment are shown in Table 5. As can
be seen, the online parser-supported log anomaly detection
methods summarized in this review (Fig. 9 and 10) signif-
icantly outperform the rule-based approach. The rule-based
approach also resulted in an extremely large number of false
positives (131,462 from the HDFS dataset and 517,401 from
the BGL dataset).

10Uses a filtering algorithm to reduce related sets of alerts to a single initial
alert per failure [229], [230].

RQ3. How has the performance of online parser-supported
log anomaly detection methods evolved? The achievable
accuracy of online parser-supported log anomaly detec-
tion methods (as reported through the use of F-score
values against the HDFS and BGL public log datasets)
has steadily increased over time.However,many of these
methods produce comparatively high recall values for
the BGL dataset, suggesting the presence of a large
number of false positives. These methods are generally
effective against the log types used and hold promise for
real-world adaptive system monitoring tasks. They also
perform significantly better than traditional rule-based
approaches.

VII. TAXONOMY
Online parser-supported log anomaly detection methods
are constructed from a composition of components (both
mandatory and optional). Here, we classify these methods
using the types of components utilized. First, we construct a
taxonomy of online parser-supported log anomaly detection
workflows based on their components (Fig. 13). We then
verify the taxonomy by using it to categorize the online
parser-supported log anomaly detection methods discovered
through this study. This taxonomy serves to organize modern
research into core functional categories, elucidate component
attributes and features, and highlight coverage gaps to inform
future studies.
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FIGURE 11. Online anomaly detection method performance (precision, recall, and F-score) using the BGL dataset.

A. PRIMARY COMPONENTS
1) PREPROCESSING
Some log anomaly detection workflows utilize preprocessing
components. These components include NLP functions and
filters to remove characters and character sequences (such
as punctuation or stop-words) [174]. Another tactic is term-
splitting, which aims to separate connected tokens (for exam-
ple, splitting the string ’’TimeoutException’’ into ’’Timeout’’
and ’’Exception’’) [229]. Another approach is replacing
predetermined character patterns with wildcard symbols
(e.g., IP addresses with ‘‘<:IP:>’’). These domain-specific
replacement rules have been shown to improve parser per-
formance, and some parsers even include token replacement
functions as a data-cleansing step [14], [231].

2) PARSING
Log parsing is an active area of research with new techniques
being introduced continuously (Table 3). Methods such as
LenMa, ML-Parser, and SwissLog use clustering [23], [40],
[209]. Parsers based on heuristics are also popular, having
been shown to work well with many different anomaly
detection methods [232]. Heuristic techniques are frequently
coupled with fixed-depth parsing trees, as seen with Drain,
FT-tree, Hue, OLMPT, and TCN-Log2Vec [14], [25], [38],
[124], [199]. Many modern parsers such as Brain, Cognition,
and Craftsman use parsing trees with variable depth [30],
[192], [194].

Longest Common Subsequence (LCS) is an algorithm
used for log parsers based on the observation that ’’the
constant representing a message type often takes most of
the sequence and the parameter values assume only a small
portion’’ [22]. However, this approach alone can lead to
under-partitioning [14]. Frequent Pattern Mining (FPM) is a
well-known parsing approach utilized for offline parsers such
as SLCT, as well as several online parsers (Fig. 12) [233].

Of the more recent methods, newer techniques such as
EvolvingGranular Classifiers (eGC) andKeyword Extraction
have been used [33], [197], [234]. Paddy employs a dynamic
dictionary for parsing, and LogSlaw uses a static one [29],
[205]. Prefix-Graph uses a graph representation [213].
MoLFI and LTD-MO, both offline parsers, use evolutionary
and swarm optimization algorithms [11], [207]. Note these
categories have been excluded from our taxonomy as no
online methods were discovered that use them.

As shown in Figure 12, diverse techniques are used to
implement log parsers. These techniques are used both in
isolation and in combination with others. As parsing method
research continues and new methods are introduced, these
techniques are expected to grow and expand.

3) ENCODING
Zhao, Jiang, and Ma introduced three feature categories: log
event count vectors, log event index sequences, and log event
semantic vectors [234]. Ma et al. presented an alternative
classification method consisting of the following categories:
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FIGURE 12. Online parser method classifications.

counts, indexes, events, sequences, time, parameters, graph-
ical features, and others [235]. Our systematic literature
review confirmed these latter categories to be comprehensive,
and we have included them as-is within our log anomaly
detection workflow taxonomy.

Note that with this categorization method, sequence
features imply the use of event windows, but the type
of window (i.e., fixed, sliding, or session-based) is not
determinable. The encoding strategies for event windows,
however, are highly dependent on the logs being assessed.
Session windows can be used and are oftentimes preferred
when a session identifier is available (as with the HDFS
dataset block ID for example). Fixed or sliding windows are
generally selected when these identifiers are not available
(as with the ThunderBird dataset) [236]. The window type
is therefore less of a feature of the log anomaly detection
method and more of an adaptation based on the log source.
For this reason, we feel it is reasonable to omit them as
distinct encoding types within the taxonomy.

4) ANOMALY DETECTION
Log anomaly detection methods come in many forms. These
can be divided into statistical, traditional machine learning,
and deep learning types. In modern online parser-supported
log anomaly detection research, deep learning is the most
heavily utilized (Fig. 3).

Table 6 classifies the log anomaly detection methods
discovered through our systematic literature review. The
majority of these studies (84%) use deep learning. Utilized
methods include neural networks (NN), different forms of
recurrent neural networks (RNN), graph neural networks
(GNN), convolutional neural networks (CNN), generative
adversarial networks (GAN), transformers, autoencoders
(AE), and logical tensor networks (LTN) [237]. The remain-
ing 16% use statistical and traditional machine learning
approaches. These include supervised, unsupervised, and
dimensionality reduction methods. In some cases, ensembles
of multiple model types are used as well.

5) FEEDBACK
Feedback mechanisms provide corrective information back
to log anomaly detection models to enhance performance.
These mechanisms can help manage log drift and reduce false
positive signals. Feedback mechanisms are implemented
in two primary ways: through iterative model improve-
ments (e.g., network weight updates) or corrective filtering
mechanisms external to the model. Filtering mechanisms
include rule-based overrides on model outputs and input
filtering at the preprocessor level. Our systematic literature
review of online parser-supported log anomaly detection
methods revealed only two studies that included feedback
mechanisms (Table 6). Both were implemented as model
update functions [17], [117].

B. CATEGORIZATION OF METHODS
To verify our proposed taxonomy, we used it to classify
the log anomaly detection methods discovered through our
systematic literature review. Table 6 contains the results of
this classification. Figure 12 shows the associated parser
classifications.
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FIGURE 13. Online anomaly detection workflow taxonomy.

RQ4. How can different forms of online log anomaly
detection be classified? As online log anomaly detection
workflows are composed of a combination of primary
components, they can be easily classified by the exis-
tence and type of these components. Our proposed
taxonomy provides a breakdown of currently avail-
able component types to create these categorizations
(Fig. 13). Using this taxonomy, we successfully classified
the online log anomaly detection studies discovered
through our systematic literature review and verified
the taxonomy’s comprehensiveness. The resulting clas-
sifications are listed in Table 6.

As can be seen from these results, Drain is by far the
most commonly utilized parser. This trend has continued with
modern studies since 2021 (Fig. 5). As for anomaly detection
methods, deep learning approaches were the most frequently
used (Fig. 3). 73% of these studies utilized sequence-
based encoding, and sequences were produced using various
techniques (Word2Vec, FastText, BERT, etc.). Preprocessors
were used in 16% of the workflows, but it is worth noting that
regex replacement style preprocessing was included in many
others as part of their parser’s data cleansing step. Only two
studies implemented feedback mechanisms, both in the form
of model update functions. This lack of feedback coverage is
a significant research gap that merits future attention.

Through this classification, we confirmed that our pro-
posed taxonomy is sufficient for categorizing the workflows
available to date. However, the taxonomy will likely expand

as research continues and new approaches are introduced.
The addition of eGC as a parsing type (with the introduction
of the eLP parser) is one example of this [197]. As research
progresses, we will likely see more such expansions.

VIII. RESEARCH GAPS
While many studies introduce new methods, few explore
component features and the intersection of their use against
different forms of data. Research shortcomings discovered
through our study include the lack of diversity in component
utilization, the limited exploration of false positive mitigation
strategies, the lack of real-world use case studies, and the
sub-optimal assessment of log anomaly detection workflow
robustness. These gaps are discussed in more detail in the
following sections.

A. COMPONENT COMBINATIONS
Overall, Drain is the most frequently utilized online parsing
method (Tables 1, 2, and 6). Although other online parsers
have achieved higher performance (Fig. 8), they are used
rarely in anomaly detection studies. Parser selection can
significantly affect the performance of log anomaly detection
workflows [168]. Han et al. demonstrated improvements
in F-score values using Drain instead of Spell [89]. Fu et
al. showed that while a ‘‘high parsing accuracy does not
definitely imply high anomaly detection performance,’’
anomaly detection methods performed more effectively and
efficiently using heuristic-based log parsers [232]. Their
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TABLE 6.AQ:5 Classification of online parser-supported log anomaly detection studies.

11Selects the best parser by performance against each dataset (amongst the Spell, Drain, and FT-Tree online parsers).
12Uses Drain for the BGL dataset and Spell for the HDFS dataset.
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findings suggest that some combinations of parsers and
anomaly detection methods lead to more optimal outcomes,
but a limited number of parsers were considered. Le and
Zhang also found that ’’the performance of models is
highly influenced by log parsers’’ [247]. Some combinations
handled noise better than others. For example, parsers such
as Drain, which tend to overproduce log events, can hinder
forecast-style, event sequence prediction approaches to log
anomaly detection.

Combinations of other component types may also result in
different performances. Xingfang et al. found that differing
log representations have ‘‘a non-negligible influence’’ on
downstream model effectiveness, but there exists ‘‘no single
log representation technique that performs the best across
all models and datasets’’ [7]. Similarly, combinations of
different preprocessors, filters, and feedback mechanisms
may also introduce different advantages. The evaluation of
the intersection of these componentsmerits future exploration
for this reason.

In Table 6, we present a categorization of online
parser-supported log anomaly detection methods discovered
through our systematic literature reviews. This categorization
was performed using our newly introduced taxonomy from
Section VII. It reveals some interesting findings. First,
methods with the highest F-scores (within the top ten) for
both the HDFS and BGL datasets all use deep learning.
They also use either semantic sequencing or graphical
feature encoding. A mixture of preprocessing components
and log parsers are used, but Drain is the most frequently
applied parsing method overall. This evaluation, however,
is still incomplete in terms of component coverage. A more
comprehensive analysis of different component combinations
against public and industrial datasets would be beneficial.
Such a study could reveal insights into the strengths and
weaknesses of component combinations and help guide
achievable improvements to the overall accuracy of log
anomaly detection pipelines.

B. FEEDBACK MECHANISMS
Feedback mechanisms provide a return route for corrective
adjustments to log anomaly detection models. They allow for
incremental improvements to model accuracy and reductions
in false positives. They are also a key approach for
managing log drift. However, our recent work revealed that
the effectiveness of mitigating drift via current feedback
methods with sequence-based anomaly detection models is
limited [248]. These findings suggest that more extensive
research on these topics is needed.

Du et al. introduced an unlearning framework that uses
‘‘a new objective function that aims to maximize the loss to
unlearn reported abnormal samples’’ [249]. DeepLog uses an
incremental process to update LSTMweights using corrected
false positive signals provided by domain experts [17]. The
DeepLog study found that simply increasing the amount of
training data from one to ten percent did not significantly

increase model precision. However, predictions and F-score
values improved when incremental feedback updates were
applied, regardless of the amount of data used in the
initial training phase. These findings show that feedback
mechanisms could be even more important than training data
quantity for increasing model accuracy. Overall, however,
very few anomaly detection studies have incorporated such
mechanisms (Table 6).

Feedback mechanisms have the potential to improve the
effectiveness of log anomaly detection workflows signif-
icantly. They are also a key approach for managing the
degradation of model quality post-deployment. The lack of
coverage of these mechanisms can be considered a significant
research gap, and work to fill this void is an important area
for future focus.

C. REAL-WORLD USE CASE STUDIES
Another significant log anomaly detection research gap is the
lack of real-world use case studies. Log anomaly detection
methods have been assessed mainly with a select number
of public datasets. However, Petrescu et al. reveal that
‘‘industry logs are typically heterogeneous, thus threatening
the applicability of log parsing in practice’’ [15]. There have
been several log anomaly detection implementations used
in industrial settings and research initiatives. Antić et al.
introduced LOMOS, a solution functioning ‘‘in the context
of supply chain resilience’’ that seeks to discover anomalous
behavior that rule-based solutions may miss (implemented
as an extension of LogBERT using the Drain parser) [250].
DeCorus-NSA is a solution developed by IBM for data center
syslog monitoring [110]. There remains, however, a severe
lack of evaluative studies on log anomaly detection methods
in industrial settings.

Currently, rule-based monitoring approaches dominate the
industry. These methods do not scale well against varied log
sources, and their use can be burdensome [251]. However,
like rule-based methods, log anomaly detection approaches
also have strengths and weaknesses. In our previous work,
we compared rule-based methods to anomaly detection
methods using an industry dataset [228]. We found that
while anomaly detection methods were more accurate, rule-
based methods proved superior in practicality. The rule-based
method was capable of detecting the evaluated incident with
minimal delay and without producing false positives. While
this evaluation was performed offline with only a single
incident type, it reveals the need to better assess anomaly
detection methods using real-world data.

Log anomaly detection literature commonly focuses on the
accuracy and robustness of methods. However, more practical
factors such as setup time, maintenance effort, running costs,
and explainability are poorly studied. Real-world use case
studies can help bridge these gaps and provide a more
holistic picture of the challenges and benefits associated
with applying log anomaly detection methods to real-world
problems.
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D. MODEL ROBUSTNESS MEASURES
Many online log parsers have been assessed for robustness
using the 16 public log datasets in LogPAI’s Loghub. Some
parsers, however, have not been evaluated to this extent.
As mentioned in Section V-B, the HDFS and BGL datasets
are the most commonly used to assess parser performances.
However, these datasets (HDFS in particular) have relatively
few unique templates [16]. Preferably, parsers should be
evaluated against a more diverse collection of log entries
(including real-world industry data) and assessed with better
metrics. Suchmetrics should include, for example, the stricter
form of PA that considers the proper identification of dynamic
parameters.

Log anomaly detection method studies suffer from these
issues even more as most evaluations have only used a
small number of publicly available datasets. As with parsers,
assessing thesemethods using average performancemeasures
across a diverse collection of data would be informative and
useful. It would better reveal the methods’ ability to deal with
differing data sources, prove their real-world usability, and
help reveal areas for further development.

RQ5. Does existing online parser-supported log anomaly
detection research contain gaps that merit future explo-
ration? Gaps in log anomaly detection research include
the lack of thorough component combination eval-
uations, exploration of feedback mechanisms, real-
world use case studies, and robustness assessments.
Addressing these gaps could have a significant impact
on the real-world usability of log anomaly detection
methods. For this reason, they deserve future focus and
attention.

IX. RELATED WORK
This section introduces an overview of peripheral topics
related to online parser-supported log anomaly detection.
These topics are beyond this study’s scope but are significant
research areas adjacent to our work. All studies presented
were discovered through our systematic literature review
described in Section III-A.

A. FEDERATED LEARNING
The majority of log anomaly detection studies discov-
ered through our review covered single-process solutions.
However, some work also explored federated and paral-
lel approaches. De La Torre Parra et al. introduced a
method of generating global federated learning models
through the aggregation of local transformer-based model
parameters [123]. Similarly, Shin and Kim introduced a
federated learning framework that uses a global server to
average and update aggregated weights from local site deep-
learning models [161]. Guo et al. introduced a lightweight
federated learning approach called FLOGCNN, attempting
to address distributed log anomaly detection concerns such
as bandwidth and privacy issues [50]. Wittkopp and Acker
introduced a decentralized, federated learning method to

synchronize distributed models trained on local data using
model student and teacher roles [252].
Yang et al. introduced a distributed processing method

for large-scale logs using Spark Streaming [81]. With this
approach, they were able to improve the efficiency of
parsing the HDFS dataset with Drain. Henriques et al.
evaluated performance improvements usingDask [135]. They
found that parallel processing outperformed their sequential
approach to log anomaly detection even when using only two
workers on a single node with two cores.

B. TRANSFER LEARNING
Some studies have explored log anomaly detection model
transfer learning. These studies aim to develop workflows
that can detect anomalies from multiple systems and mitigate
cold-start issues when targeting new log sources. Chen et al.
explored these topics with the introduction of LogTransfer,
a framework that utilizes fully connected networks for
anomaly classification between source and target sys-
tems [253]. Han and Yuan proposed an alternative approach
called LogTAD. Their method performs transferable log
anomaly detection without requiring labeled anomaly records
from both the source and target systems [65].
LogTAD draws inspiration from the Deep Support Vector

Data Description (Deep SVDD) method. Deep SVDD is a
form of deep one-class classification that aims to model
’’normality’’ by ’’minimizing the volume of a hypersphere
that encloses the network representations of the data’’ [254].
Huang et al. introduced a method for transfer learning using
pseudo labels, annotations, and model training on unlabeled
target data using a source classifier [255]. Finally, Liu et al.
introduced LogBD, a method that uses domain adaptation
to apply knowledge learned from source systems to target
systems, ‘‘enabling the detection model to detect anomalies
from multiple systems.’’ [95].

C. HYPERPARAMETER TUNING
Log parsers and anomaly detection models generally require
the tuning of hyperparameters to maximize their perfor-
mance. This parameter tuning is often performed manually or
through grid search. Improvements can be realized, however,
through the use of algorithmic tuning. Marlaithong et al.
proposed one such method, using the Artificial Bee Colony
(ABC) algorithm to optimize the three key hyperparameters
of the Drain parser [256]. Zhang et al. introduced the use
of Population Based Training (PBT) to optimize PoS weight
coefficients and anomaly detection model hyperparameters
through parallel model training [105]. These methods can
reduce the effort needed to configure log anomaly workflow
parameters. They can also contribute to improvements in
overall model performance.

D. SURVEYS
Zhaoxue et al. conducted a literature review of ’’log
processing in the context of AIOps and big data’’ [257]. They
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examined log enhancement, parsing, and analysis. Although
they included a summary of a selection of offline/online log
parsers and log anomaly detection methods, they did not
compare specific accuracy metrics. Zhang et al. performed
a general survey on log parsing, providing a performance
comparison of 17 open-source solutions (five of them being
online methods) against the 16 public log datasets available
in LogPAI’s Loghub [18]. They presented a categorization
of parsing methods consisting of four core types: clustering,
frequent pattern mining, heuristics, and program analysis.

He et al. reviewed automated log analysis research,
including sections covering several log parser and anomaly
detection model characteristics [258]. They addressed log
feature extraction types but did not perform accuracy compar-
isons. Ma et al. reviewed system log features utilized for log
analysis and touched upon parsing methodology [235]. They
presented comparative accuracy scores for several online
and offline log parsers. Their categorization method for log
features is utilized within our own log anomaly detection
method taxonomy presented in Section VII.
Zhao, Jiang, and Ma introduced a basic framework for

log anomaly detection and summarized recent detection
models and technologies [234]. Their survey categorized
encoding types, anomaly detection methods, and a selection
of online and offline log parsers. Landauer et al. performed
a systematic literature review of deep learning for anomaly
detection in log data [19]. They reviewed deep learning-based
log anomaly detection studies, summarizing the algorithmic
approaches and encoding details of the workflows covered.
Their review omits parser associations and performance
statistics. Le and Zhang performed numerous experiments
using deep learning log anomaly detection methods to
analyze the impact of training data strategies, grouping
approaches, class distributions, and data noise [247]. They
found that these factors can significantly impact anomaly
detection performance and provided observations on the
nature of this impact.

X. THREATS TO VALIDITY
In this section, potential threats to validity are considered.
Subsection X-A discusses internal threats, while X-B covers
external ones.

A. THREATS TO INTERNAL VALIDITY
This survey compiles online log parser and log anomaly
detection method evaluation results from multiple studies.
Because workflow configurations can subtly differ between
evaluations, the outcomes may vary. Although care was taken
to minimize these differences using identical public datasets
and metrics, factors such as hyperparameter usage and the
log entry distribution amongst training and test sets could
affect the results (and consequently, our own comparison of
these reported results). Whenever possible, cross-checking of
evaluations from multiple studies was performed, and only
commonly reported outcomes from these experiments were
utilized.

B. THREATS TO EXTERNAL VALIDITY
The performance of online log parsers and online
parser-supported log anomaly detection methods can differ
significantly depending on the targeted dataset. For online
parsers, this threat has been mitigated to some extent by
evaluating parser performance against a diverse collection of
public log data (i.e., the 16 log datasets available in LogPAI’s
Loghub). There have been few assessments, however, using
proprietary, industry-specific logs. For this reason, the
performance achievable against these log targets may differ
significantly from what has been presented.

Log anomaly detection methods may also be susceptible to
variations in performance. Performance differences against
other forms of log data for these methods are more likely
given the lack of evaluative studies on their robustness.
To date, most log anomaly detection studies have utilized
only a select number of public log datasets for evaluation.
Additionally, the log datasets often differ between studies.
For this reason, it may be difficult to generalize the reported
results to new data forms.

Finally, the studies covered in this survey focus primarily
on log anomaly detection targets such as system errors,
irregular states, and exceptions. The performance achieved
when applying these methods to other anomaly detection
targets may differ. Differences in performance may also be
observed when applying these methods to unstructured data
outside of the log domain.

XI. CONCLUSION AND FUTURE WORK
Log anomaly detection workflows heavily utilize online
parsers. Of those used, Drain remains the most popular even
though recent parsers have been shown to achieve higher
average PA (Table 6 and Fig. 8). Drain is open source and
performs significantly better than previous methods. This is
likely one key reason for its continued popularity, even with
higher-performing methods now available.

Of the studies surveyed since 2021, 84% used deep
learning techniques, highlighting a shift from traditional
machine learning approaches (Fig. 3). As the F-score values
for anomaly detection methods have generally improved over
time, there may be some data-based justification. However,
ensemble methods using weak classifiers have performed as
well as or better than deep learning methods in some evalua-
tions (e.g., Adaboost using the HDFS dataset, as illustrated
in Figure 9) [116]. These results suggest that while deep
learning methods do show significant potential, there is merit
in exploring traditional machine learning algorithms in future
experiments as well. Exploring traditional machine learning
approaches is not just for the performance potential but also
to avoid the inherent weaknesses that plague deep learning
methods (such as heavy resource utilization and long training
times).

While log parsing remains heavily utilized in log anomaly
detection research, direct vectorization approaches for log
anomaly detection are becoming more prevalent (being used
in 21% of the studies discovered since 2021 as shown in
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Fig. 7). The popularity of online log parsing, however, sig-
nificantly contributes to the highly accurate results produced
by modern log anomaly detection workflows. Since 2021,
46 new parsing methods have been introduced (Table 3).
37% of these methods are online implementations (Fig. 6).
The average PA of online parsers has steadily increased over
time (Fig. 8). In 2023, Brain achieved the highest average PA
recorded for the 16 log datasets in LogPAI’s Loghub (0.981),
improving upon SwissLog’s score of 0.962 achieved in 2020
[23], [192].
Anomaly detection approaches have also shown gradual

improvements in performance. These improvements are
apparent when comparing results from individual evaluations
against a common set of public log datasets. Since the
introduction of DeepLog in 2017, the F-score values of new
methods using the HDFS dataset have steadily increased
(Fig. 9). Although these improvements have been small and
gradual, they are noteworthy given the high performance
achieved by DeepLog originally. Similar performance com-
parisons against the BGL dataset show historically high levels
of achieved F-score values (Fig. 10). As research of new
methods has continued, these advancements in performance
have as well.

Online parser-supported log anomaly detection methods
are built from a collection of fundamental components, but
they differ significantly in their type and arrangement. Our
taxonomy categorizes methods based on these components
(Fig. 13). Using the taxonomy, we classified all anomaly
detection workflows discovered through our systematic lit-
erature review (Table 6). This categorization shows common
trends in research and can be used to guide experimentation
with more diversified component sets in the future.

Log anomaly detection research has some gaps, including
the lack of comparative studies on different combinations
of workflow components, limited exploration of feedback
mechanisms, the lack of real-world use case studies, and
insufficient anomaly detection method robustness assess-
ments. Research efforts to fill these gaps through future work
would be beneficial. The main directions for this work should
include in-depth comparative studies on combinations of
anomaly detection workflow components and datasets (with
better robustness measures), real-world use case assessments
of these workflows, and the development and evaluation of
false-positive mitigation strategies.

Parser selection may significantly impact the accuracy of
log anomaly detection models [69]. Hence, a comprehensive,
comparative study combining different online parsers with
high-performing anomaly detection techniques would be
useful. An evaluation of anomaly detection model robustness
using a large, shared set of diverse log data would also be
advantageous. This data should include public datasets and
real-world industry log data containing real-world incidents.
The robustness of models is a critical factor for industrial use,
and there is a need to properly measure and account for it.

Such an experiment could be performed using our
component-based online anomaly detection pipeline

framework [228]. Representative log anomaly detection
component types (as defined through our taxonomy) could
be implemented as new Encoder and Decoder classes,
and evaluated in all possible combinations against an
extended collection of public and private log data. For
parser performance, the stricter form of PA (i.e., requiring
all dynamic parameters to be identified for a template to
be considered correctly parsed) should be used to better
represent parsing quality. The results of such an experiment
would be extremely informative. These extensions to the
framework would also prove useful for future researchers.

Online parser-supported log anomaly detection methods
eliminate the need for manual rule setup and maintenance
and have the potential to better detect unforeseen issues.
Significant improvements in system estate reliability could
be realized through the use of these methods and through
the continued advancement of the technologies that support
them. Our goal in performing this study is to encourage
and promote such improvements through the analysis of
the current state of these technologies and the provision of
direction for future research.
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