
Received 27 March 2024, accepted 5 April 2024, date of publication 10 April 2024, date of current version 22 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3387046

Treating Temporal Function References in
Relational Database Management System
MICHAL KVET 1, (Member, IEEE), JOZEF PAPAN 2, AND MARTINA HRÍNOVÁ DURNEKOVÁ1
1Department of Informatics, University of Žilina, 010 26 Žilina, Slovakia
2Department of Information Networks, University of Žilina, 010 26 Žilina, Slovakia

Corresponding author: Michal Kvet (Michal.Kvet@uniza.sk)

This work was supported by the Vedecká grantová agentúra Ministerstva školstva, výskumu, vývoja a mládeže Slovenskej republiky a
Slovenskej akadémie vied (VEGA) Project, Developing and Applying Advanced Techniques for Efficient Processing of Large-Scale Data
in the Intelligent Transport Systems Environment, under Grant 1/0192/24.

ABSTRACT Databases form an inseparable part of the information systems. They hold the data formed by
the data models. Data are operated by the database management system, which takes an interlayer between
the data and the external environment. They can be purely obtained from the database using the Select
statement or can act as the inputs for the function calls. Data can be temporally or positionally oriented,
allowing the storage of multiple tuple states for one object. Temporal databases can be defined by various
precision frames and granularities, from object level through synchronization groups up to the est attribute
granularity. Inspired by temporal databases, we provide new solutions for managing functions, and code
can also evolve over time. Namely, individual parameters, properties, and method calculations may change
over time. It is not only about internal computation and performance optimization but also about ways of
processing and calculation. Thus, the function is not deterministic across the time axis. Existing solutions
are primarily based on versioning considering the function name, which, however, takes significant risk
related to the reference correctness as it depends on the function name. Precisely, there is no checking of
the validity referencing specific function versions. The proposed solution aims to prepare an automated,
robust transformation and mapping solution that emphasizes individual versions of the functions and calls
relevant functions based on the referenced time frames. Thanks to the provided reliable transformation
layer, multiple function versions can exist, respecting the valid version of the function that existed at the
time of validity of the relevant tuple. The function is always called by the original name, and a particular
version is automatically processed based on the input data and referred time frame. In the performance
evaluation process, we focus on three stages – pre-processing phase (parsing, checking, and loading),
version identification, and loading. Multiple solutions were created and discussed. The best results were
provided by model 4 based on the transformation module in the temporal layer, for which the total cost
of processing within the Select command, compared to the reference solution, was reduced by 68.40%. The
most significant savingwas detected in parsing and checking since the function versions are directly available
for the reference calls (72.96%). Version identification is done by the optimized searching B+tree index
tree, reducing the costs by up to 69.42%. The proposed solution is based on managing multi-versioning by
propagating new clauses, commands, and background processes, managing the whole system autonomously.
Furthermore, performance optimizations can later enhance individual versions, like more sophisticated data
structures. Thus, each version can have multiple implementations. The additional demands on data storage
and structure management are less than 1% globally.

INDEX TERMS Temporal databases, function versioning, dynamic function version mapping, relational
database, performance.

The associate editor coordinating the review of this manuscript and

approving it for publication was Vlad Diaconita .

I. INTRODUCTION
Currently, databases are an integral part of any informa-
tion system. Even simple monothematic applications use

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 54535

https://orcid.org/0000-0003-3937-7473
https://orcid.org/0000-0001-8118-7513
https://orcid.org/0000-0002-5169-9232

M. Kvet et al.: Treating Temporal Function References in Relational Database Management System

databases to store data, parameters, or configurations. Either
way, database systems must provide efficient storage for disk
space consumption and access and processing of complex
queries. Data in the relational schema is stored in the form
of blocks [1], which are accessed either sequentially or by
using indexes [2], [3].

Data was conventionally oriented in the initial phases of
the relational paradigm of the database system definition and
development. It means that only current valid states were
present in the database. Any Update operation expressed the
replacement of the original state with the new version [4]. Ide-
ally, a new state is placed on the original block; however, data
migrations can be present due to a lack of space in the block,
referring to the new block from the original repository using
the data pointer [5], [9]. It demands additional processing
since the index always points to the original data block. How-
ever, the row tuple is not present there. Data migrations do not
influence sequential data block scanning. During the devel-
opment of database technologies and the SQL paradigm, the
concept of temporal databases was released. Since then, it has
been possible to store the individual states of objects over
time and thus monitor their changes. Thus, the time frames
encapsulate each data row, mostly expressing the validity
range. Consequently, one object state can be expressed by
multiple rows. However, only one state can be valid at a time.

With the evolution of the objects and individual state rep-
resentations, it is worth dealing with the function references
and their time evolution. Namely, one function body can also
evolve over time, not only in terms of optimizing code to run
faster but also in terms of producing results. The calculations
and data treatments can evolve, and the same data inputs
can produce several outputs based on the temporal function
versions. Thus, it is necessary to build a robust apparatus for
treating function versions and apply relevant versions for the
call in a complex environment enhanced by various source
joining [4], [8].

This paper analyzes existing approaches to function ver-
sioning on the database layer by pointing to the limitations
of the current approaches. The paper´s goal is to create an
automated versioning system. The principles are analogous
to what cloud file repositories allow but at the level of a
parsed version of functions with the possibility of calling
them immediately.

The motivation is to maintain changes defined inside
the function, either in form of code optimization, but
mostly to preserve temporal changes of the implementation.
In case of changing function content, list of parameters
can be changed, but primarily, the mapping between input
and output values is changed. Although it is primarily
focused on the transportation systems, in which the evolv-
ing characteristics, parameters and environment reflection
must be considered, implemented techniques and proposed
solutions can be generally applied in any field of infor-
matics and intelligent information systems, by treating
patients and helath monitoring or in environmental data
analytics.

The paper’s main contribution is a set of models for func-
tion version management inside the Oracle database. Each
solution is critically described by pointing to its properties,
characteristics, and limitations. Proposed solution 4 seems to
be the most promising in terms of performance. The core of
this model is the transformation mapping module specified
by the temporal layer.

The paper is structured as follows: Section II defines the
problem and specifies the paper’s main research strategies
and contribution. Section III provides a brief summary of the
temporal database approaches by emphasizing architectures
and granularity precision management. This section is essen-
tial since it serves as the initial background for the proposed
solutions.

Section IV deals with function references and their
applicability in database systems. It points to parsing and
caching, indexing, and pre-storing function results in vir-
tual columns or analytical-oriented database architectures.
Section V points to the temporal functions and referencing of
the individual function versions. Proposed solutions are intro-
duced in section VI by emphasizing the mapping and version
transformation process, spreading the solution’s applicability
to the vast world of parallelism and data distribution. A per-
formance evaluation study is presented in sectionVII. Finally,
findings, conclusions, and future research perspectives are
stated in section VIII.

II. PROBLEM DEFINITION, PAPER CONTRIBUTION
Functions are an inseparable part of the programming. SQL
is a non-procedural language, but the environment always
supports procedural extension, which refers to the execution
code step-by-step. To serve that, PL/SQL language is sup-
ported by the Oracle database used in this paper. However,
any database system generally provides procedural extension
support, which can be applied. Methods referring to the pro-
cedures or functions are conventional [6]. This means that one
version of the code is present in the system in a parsed form,
which is then loaded in case of referencing. Thus, if a new
version is to be compiled, the original method definition is
replaced by the new one. Precisely, there is no version history.
From the database system point of view, there is no evidence
about the historical versions; source code of the previous
versions cannot be located.

Reflecting on the temporal environment, it is worth men-
tioning function references. The definition, implementation,
and function results can evolve over time based on the laws
and regulations, changed environmental characteristics, etc.
Imagine the evolving characteristics and parameters influenc-
ing the output. Precisely, for the production monitoring, a few
parameters were evaluated, however now, many precise sen-
sors and data are considered. Or consider the environmental
data standards and impacts, which are getting stricter every
year. Thus, it is clear that the function content is evolving,
not only from the efficiency of the implementation, but it
can strongly relate to the changing number of parameters
to be considered, as well as the mapping input into output

54536 VOLUME 12, 2024

M. Kvet et al.: Treating Temporal Function References in Relational Database Management System

values. Another example can be associated with calculating
salary and tax, which may change in individual periods. The
function remains the same (parameters, name, header, etc.),
but its internal rules have changed.

To make the system relevant and applicable in a tempo-
ral environment, it is necessary to consider time-evolving
characteristics and map the temporal approach into function
references [7]. That´s the reason for incorporating the tem-
poral paradigm and summary of the temporal approaches at
the data architecture level, stated in section III.
To make the system robust, it is necessary to create a com-

pelx solution that applies the appropriate version dynamically
and automatically based on the selected temporal framework.

Currently, there is no general approach and defined rules
for processing function version code, e.g., compared to the
GIT approaches used in common programming languages.
Although many partial solutions exist, they are mostly related
to the specific application domain or do not provide a robust
and secure layer. In [7], temporal data mining using functions
is discussed. Techniques for handling periodic facts is defined
in [6].

Individual versions differ primarily in the header of the
function and their names. Consequently, each user must be
aware of individual versions and call suitable versions based
on their unique name. However, such a premise is not suitable,
while the method version selection depends on the user’s
knowledge. Furthermore, there is no control mechanism to
check the selection of suitable candidates. Therefore, often,
only one code version is maintained, covering individual
temporal frames inside. However, there are three negatives
to mention:

• Source code becomes more and more complex, and even
parsed versions of it are so huge to be maintained by
the database – loading, and handling becomes more
and more time-consuming over time since new code is
implemented in one bulk document.

• It is always necessary to preserve the current source
code for the function, otherwise changes done in the past
could be lost, consequencing in the reliability breaches.

• During the process of compiling new implementation of
the function, original one is unavailable, limiting the per-
formance and accessibility inside the calling information
system.

The paper aims to answer the following challenges:

• How to optimize and split code into individual versions?
• How to manage versions and reflect the validity time
frame?

• How to limit function unavailability?
• How to secure versions by automatic mapping?
• How to ensure parallelism, synchronization and scala-
bility of the whole infrastructure?

• How to build robust layer considering automatic version
mapping?

Based on the previous discussion, it is clear, that robust
solution dealing with the function version must be developed.

Section IV deals with the existing solutions and workarounds
to manage temporal version references. Section V points
to the proposed solutions, which are not inly introduced,
but also critically discussed, supervised by the performance
evaluation study present in section VI. Computational study
focuses on three aspects:

• process of function version parsing, checking and com-
piling,

• identifying version,
• version control loading.

Four proposed solutions are presented, discussed and eval-
uated. The used data set relates to the environmental data
monitoring flights. As described in section VI, the best solu-
tion is associated with the temporal model, for which each
version is directly associatedwith the validity time frame. The
used temporal background layer is bi-temporal. In the used
environment, total processing costs were reduced by almost
70%. Specifically, for the parsing process, it reflected a cost
reduction of nearly 73%, version identification reflected a
69% reduction, and for version loading and application, costs
were reduced by nearly 54%. However, it’s not just about
numbers, the primary goal is to create a dynamic mapping
infrastructure where the system automatically selects the cor-
rect version of the feature. Thus, the user only defines the call
of the temporal function, the actual selection of the temporal
version is done automatically by the database system itself.

The above performance reflected the data retrieval pro-
cess. However, the additional costs of maintaining the entire
ecosystem should also be emphasized. Based on the evalu-
tion, added cost increase is expressed at the level of 0.89%.

III. TEMPORAL DATABASES
Temporal databases form an extended evolutionary step of
the relational paradigm. Instead of storing only current valid
values, in which the object is identified by the unique iden-
tifier - primary key, temporal databases point to the object
itself and multiple versions valid during the defined time
range [9]. Thus, the original object identifier is no longer
sufficient, it is extended forming the composite definition –
object identifier, validity time range, and data themselves.
Thus, if there is any change in the object’s state value, a new
state must be composed as an inseparable element [10]. To be
precise, all data attributes must be filled in. If the object
update does not change all data attributes, original values
must be copied to the new state definition [11], [12]. Although
the state identification is straightforward and easy, there can
be many duplicates and real change reflection is hard to
locate [13], [14].

Another approach states the table column as a processed
precision [17]. The used model is called an attribute-oriented
system (Fig. 2). It is based on associating temporal dimen-
sions to each attribute separately. The advantage of the
solution lies in the ability to process each attribute separately
by the update operation. Thus, no duplicate tuples are present,
and the database layer is optimized. On the other hand,

VOLUME 12, 2024 54537

M. Kvet et al.: Treating Temporal Function References in Relational Database Management System

additional data demands are present, caused by the temporal
time frames referred to by each attribute. Furthermore, getting
any state requires combining individual attribute values.

The synchronization groups cover the intersolution
between object-level and attribute-oriented granularity man-
agement. The change operations define synchronization
groups. They can be detected automatically, or manual
selection can also be done. Each synchronization group is
temporarily defined and consists of individual attributes or
groups that can be set as the subelement. Fig. 1 shows the
data model for the group definition.

FIGURE 1. Group-level temporal architecture – data perspective [17].

Data_val expresses a synchronization group, which is then
handled as a single unit. Thanks to that, the temporal layer
does not reference individual attributes but synchronization
groups in the event of change.

Fig. 2 shows the architecture of the solution. Compared to
the attribute-oriented approach, an additional group detection
module, composition, and drop is created. Instead of reflect-
ing attributes, data_val values are referenced.

FIGURE 2. Group-level temporal architecture – architecture [17].

Temporal databases do not need to define the time elements
precisely strictly. In [18] and [19], fuzzy temporal databases
focus on the relational model transformation and retrieval
process. Spatial enhancements of the temporal paradigm are

listed and discussed in [20], [21], and [22]. Temporal data
clustering for fuzzy association is covered by [7], followed
by the function pattern definition discussed in [24] and [25].
Although we are not directly considering a distributed envi-
ronment in this paper, it is worth mentioning temporal models
for sharing function content in that environment since it will
be an integral next step for research and development. The
core principles and implementation details can be found in
[28], [29], and [33]. RDF/OWL storage and management
in relational database management systems considering data
distribution is discussed in [34]. All the mentioned solutions
point to the need for proper data sharing in a distributed
environment. These concepts can be applied not only to
the data itself, but were also prepared for functions in a
conventional (non-temporal) environment. Our future goal is
to propose a methodology for the distribution of temporal
function versions. We deliberately do not deal with it directly
in this paper, because a prerequisite is the correct and robust
design of the data layer at the level of one node, as presented
in the proposed solutions.

IV. FUNCTION MANAGEMENT AND REFERENCES
SQL is a non-procedural language that specifies the data to
work with, but there is no mention of how to access the
data, locate them, where they are physically stored, etc. All
these tasks are part of the database system decisions. In con-
trast, each relational database system covers the procedural
extension, too, in which a person strictly specifies individual
operations and flow step-by-step. The name of the associated
procedural module can vary based on the database system
type. For the Oracle Database, which will be used in the
computational study, procedural language is the so-called
Procedural Language for SQL (PL/SQL). It primarily focuses
on the methods – procedures, and functions- but also pack-
ages them as a group ofmethods, triggers, anonymous blocks,
etc. Regardless of the type, it is a sequence of individual com-
mands, navigations, conditions, and routines. Each method
consists of the header, parameters (optional), local variables
(optional), and body between BEGIN and END commands.
Usually, the code is written to the files, stored in the file
system outside the database, and a particular function is then
compiled [23], [27], [28].

Compilation itself is a staged process. First, it must be
checked whether the syntax and individual routines are
valid. If so, the source code is transformed into the parsed
compressed version, readable by the database system and
optimizer. This version is stored in the system structures,
and individual parameters and properties are extracted to the
system tables. A pre-stored system version is used for the
recompilation, so the function definition source stored in the
file system is no longer necessary. Fig. 3 shows the flow.

When using a call, an already parsed and prepared version
is used. Oracle Database can even change the order of the
commands inside the method and rearrange it (if enabled
by the system parameter PLSQL_OPTIMIZE_LEVEL), pro-
viding an additional optimization level. Inside the function

54538 VOLUME 12, 2024

M. Kvet et al.: Treating Temporal Function References in Relational Database Management System

FIGURE 3. PL/SQL code compilation - flow.

definition, references to the other objects (tables, views,
methods) are extracted. Therefore, if any referred object is
used, a particular method is automatically flagged as invalid,
forcing the system to recompile it at the latest at its next call.

To execute a function, it is necessary to load the parsed
definition from the database to the instance memory (struc-
ture Library_cache) if it is not already there. Then, the input
data values are obtained, and the function can be executed,
producing the defined output. The problem is that the function
can be robust and require huge system resources, and it can
last several seconds, even minutes, or hours for complex ana-
lytics [29], [33]. If the same function is called several times
with the same parameters, the same code must be executed
multiple times, right? To limit that, a function can be marked
to navigate the system to store the pair–input values and
resulting output in the Result Cache structure of the database
instance memory. Access and mapping is almost immediate
since it is in the memory (currently delimited mainly by the
fast NVMe memories). The method is defined by the unique
identifier originating from the system tables, or a secure hash
value can be used.

Result Cache memory structure is sophisticated and reli-
able, so if the function is structurally changed, pre-stored
values are automatically marked as irrelevant and deleted
from the Result Cache memory structure. The data flow from
the calling environment point of view is depicted in Fig. 4.

Function references and calls are relevant parts of the
data management layer and can generally be treated sim-
ilarly to the attribute values. So, they can be indexed by
forming a function-based index key (based on the assump-
tion that the function is deterministic); function results can
be physically stored in the analytical structures, providing
a de-normalization layer and improving data access and
evaluation perspectives and performance. Furthermore, mate-
rialized views can hold data physically based on complex
queries and function calls. If the materialized view log is
present, a fast refresh can be done automatically based on

the source data changes, so it is ensured that the materialized
view always provides up-to-date values and reflects any data
change.

The following section points to the temporal extensions
and function version management.

FIGURE 4. Executing function.

V. TEMPORAL FUNCTIONS
The idea and concept of temporal functions and version
reflection were created soon after the first release of the
object-oriented temporal model. It was clear that individual
function versions would need to be treated sooner or later.
To serve that, the function version system needs to be placed
in the database system world. Unfortunately, the already
provided versions cannot be considered robust, and particular
partial solutions are rather logical concepts that are physically
implemented and built.

The core concepts were based on source file versioning and
dynamic loading. Thus, for each function, several code source
files were present; each file consisted of the header-defining
version (commonly associated with the validity time frame).
However, such a concept had many drawbacks. First, it was
necessary to ensure version consistency and that there was
only one valid version at the time. On the other hand, it was
necessary to identify time frames when the version was not
defined, invalid, or the code could not be successfully com-
piled. This additionally brought the fundamental requirement
of version change management. Namely, if you compile a
method, it does not automatically mean that a new version
needs to be released. Each new version should be associated
with the implementation change regarding the data handling

VOLUME 12, 2024 54539

M. Kvet et al.: Treating Temporal Function References in Relational Database Management System

and outputs. Thus, if only code optimization is done inside,
it does not mean the new version will be created.

The preliminary concept and version management are
shown in Fig. 5. There are source files present in the file
system. If the function is to be called, a particular version
is loaded, including all checking (syntax, semantics, etc.),
parsing, notifying system tables, recording the change, and
the execution process itself. Thus, it is clear that significant
additional steps are necessary, forming enormous resource
demands and time consumption. As evident, it limits the
parallelism since only one version can be in the system at
a time. All these switches are necessary to form the main
limitation and applicability of the solution.

The initial solution was slow and resource-intensive, and
the entire management and reliability treatment was com-
plicated. If the code modifications were implemented only
from a performance point of view without creating new ver-
sions, the whole solution would be challenging to manage.
It was simply too complicated, bringing significant additional
costs [34].

FIGURE 5. Version codes.

In addition to the already mentioned shortcomings,
it should be noted that the individual source code had to be
kept in the form of files, which, however, were stored outside
the database. The database system itself did not manage them
or provide any security layer for them. Instead, it was the task
of the developers to ensure the availability and security of
these files, as well as the monitoring of changes, versions,
and accessibility in case ofmoving to another repository, disc,
etc. [27], [35], [36].

A. Bi-TEMPORAL SOLUTION HANDLING FUNCTION
VERSIONS
All the mentioned applied principles led to creating a
bi-temporal approach to managing function versions. The
first level took individual versions, which influence output
values (the structural body of the function was changed), e.g.,
the principles of the tax calculationwere changed. The second
level held changes in the implementation, which, however,
did not impact the mapping between input and output. That
is, it is only a matter of changing the effectiveness of the
implementation, for example, by changing the data struc-
ture, optimization of query processing, and so on. Such a
change mustn’t affect the output. So, it does not refer to

a new version, just a change in processing efficiency. The
architecture is shown in Fig. 6. Layer-holding versions refer
to the timeline or transaction identifiers that can be used
(commonly expressed by the System Change Number (SCN)
value). The implementation layer does not need to refer
to the validity; transaction references, correction identifiers,
or simple sequential values can be used. In principle, if the
function has several implementations and can be used, the
only difference is in the performance and system resource
consumption perspective.

FIGURE 6. Treating versions in a linked list.

B. SOURCE DATA FILE MANAGEMENT
Based on the previous analysis, it is evident that storing
source code outside of the database is not reliable since
there is no supervision of the source files. Furthermore, the
database system cannot directly locate the files for security
reasons. To make a workaround, a database directory object
must be created. Privileges to the database user must be set on
the database and the operating system file (to make the files
accessible). However, it is still impossible to fully control
the changes, identify new versions, and locate them because
the actions are out of database management. In [8], function
code services were moved into the database by introducing
a system table storing code files in the large objects (LOB)
format. To serve that, character or binary LOBs are used [8],
delimited by three elements:

• Function identifier (Function_id) obtained by the
object_id column of the dba_procedures data dictio-
nary. For the package, individual functions need to be
referenced. Therefore, the identifier is extended by the
subprogram_id attribute (for standalone functions, sub-
program_id attribute values always value 1). Please note
that the name of the function stated in the following
query is only for representative purposes, and the name

54540 VOLUME 12, 2024

M. Kvet et al.: Treating Temporal Function References in Relational Database Management System

itself is not considered an identifier for the version ref-
erence:

select object_name, object_id, subprogram_id
from dba_procedures;

• Temporal attributes expressing validity, such as temporal
references, are commonly managed by the bi-temporal
principles stated above. Validity can be expressed by
two attributes: delimiting the start and end points in the
defined representation [17] and allowing the provision
of undefined versions at some time. If only the validity’s
begin point (BD) is defined, then undefined representa-
tions must be stated in a specific way, commonly with
no reference to the function code content.

• Content—the source code for the function, extracted by
the 1:1 mapping—one source file consists of one version
of the function.

This structure makes it easy to maintain efficiency and
references to individual versions. Moreover, all existing
temporal approaches can be used, whereas the table is tempo-
ral (reflecting object-level temporal architecture). However,
what about the limitations and real applicability? First,
creating binary objects from the source code is impossi-
ble, so the additional mapping layer would be inevitable.
Moreover, the code remains original, so the syntactical,
semantical checks must always be present. Mapping between
the database and source files must be present. Finally,
there is no way to use parallelism because, before the
call, the particular version must be loaded, parsed, and
made valid. Fig. 7 shows the basic architecture and data
flow.

FIGURE 7. LOB holding function versions.

In conclusion, storing source function data directly in the
database brings only a slight security level, so the transaction
manager can identify versions and load them smoothly with-
out contacting the external repository. However, the problem
of parallelism is not solved. Releasing is too demanding and
resource-consuming - all loading steps must be done, and
they are mostly represented by various checks and optional
transformations.

C. STORING PARSED DATA IN THE DATABASE
The stated source data file management extension is defined
by storing pre-parsed functions. Compared to the original
solution, checking, parsing, and other keeping activities can
be limited since they have already been done once at the
beginning. Naturally, if there is a change in the referenced
objects, such function versions are marked as invalid, and
the system is asked to compile them during the next call.
Consequently, apart from the parsed versions, which can be
directly loaded and then run, the original source code (in the
format of LOBs) must be present to compile the method after
any reference change. Still, parallelism is restricted for each
temporal function call caused by the necessity of loading.

D. MULTIPLE FUNCTION MAPPING NAMES
The last solution presented in this section originates from the
previously mentioned concepts. However, the main empha-
sis is to remove the previous limitation in the necessity
of sequential processing of function calls. Considering that
many variants (versions) of a given function can be called
within one Select statement, constant needs for loading and
mapping and the associated costs are apparent. The indi-
vidual records in the data processing are not sorted in any
way by default. So, it would result in swapping between
versions and would cause the necessity of multiple calls of
the same version within a single query. One of the solutions
defined in [17] is to create partitions based on function fea-
ture versions. If there are several temporal functions in one
query, subpartitions (subsections) are created, unlimited to
the number of levels. Thanks to that, the function is loaded
into the system for each leaf node of the partition only
once. In addition, the system tables store the implementation
cost for each version of the function, making it possible to
appropriately choose the order of the functions in the partition
hierarchy.

This solution is based on versioning functions through
their names. All versions are installed (pre-loaded) directly
in the system, but the user usually only calls the root function
(without version specification). The original code, therefore,
needs to be dynamically parsed and replaced. However, it has
significant disadvantages, mainly from the point of view of
indexing and searching. Specifically, from the database layer,
it calls a different function (delimited by a different name
expressing the version), so the index would not be used! In
practice, this means that, on the one hand, the possibility
of parallelism has been significantly increased; on the other
hand, there is a performance problem related to indexing and
searching.

The entire system management is based on correctly map-
ping functions and their versions through created background
processes that dynamically ensure the correct assignment of
versions. Function_version_assigner_n worker processes are
allocated in the system. There is at least one such process,
and the total number of these processes is managed by the
MemoryManager system resource so that individual function

VOLUME 12, 2024 54541

M. Kvet et al.: Treating Temporal Function References in Relational Database Management System

FIGURE 8. Mapping names.

mappings are processed immediately without unnecessary
waiting [37]. Architecture is shown in Fig. 8.

In conclusion, differentiating function versions enables
temporal function management parallelism. However, it lim-
its the performance since the stated queries reference different
functions enhanced by the version definition. After all,
whereas the original query would be structurally changed,
the original execution plan identifier provided by the hash
function would also be changed. Although it could be solved
by hashing the original statement instead of transforming,
individual temporal function versions would not reflect rel-
evant functions enhanced by the temporal version control.

VI. PROPOSED SOLUTIONS
State of the art and analysis [38] have shown the direction
and focus on the consecutive development and research per-
spectives. In our proposed solution, the following aspects are
primarily handled:

• Enabling massive parallelism by limiting parsing, load-
ing, and transformation necessity across the versions.

• Dynamic version mapping, in which one temporal func-
tion header remains the same for all versions.

• Differentiating testing and officially released versions,
identifying and registering versions to limit test cases (if
the recompilation does not change the implementation of
the function nor create a new version, it is not necessary
to register and process the given function separately.
It can be merged within the scope of validity of the
previous version.

• Handling version implementation updates to improve
performance – the goal is to ensure that themost efficient
implementation of a given version is always executed.

• Registering a new function version, which will become
valid at the defined time point.

The architecture of the proposed solution is depicted in
Fig. 11. The Temporal_version_loader background process
checks individual versions. This process ensures the loading
of the version and proper mapping of the implementa-
tion performance enhancements of the individual versions,
emphasizing the validity of the individual versions. Addi-
tionally, there is a Temporal_registrator process that is
responsible for recording a new version in the temporal layer
managing functions. Furthermore, it checks the consistency
of the temporal frames to limit any version overlapping over
time.

The temporal function manager provides those functional-
ities:

• Register temporal function.
• Register new version:

◦ valid immediately,
◦ valid in the future.

• Register version implementation change.
• Recompile registering new version/version implementa-
tion change – transforming existing functionality into a
new temporal element.

• Disable ALL – temporal function no longer accepts
any new versions nor implementation changes for the
particular version.

• Disable versioning—The temporal function no longer
accepts new versions, but the implementation of the
existing version can be changed to improve performance
(but it does not influence the relationship mapping
between input parameters and provided data outputs).

• Merge versions—This functionality is used when com-
piling code several times, which creates new versions.
However, if the code is still the identical, consecutive
versions can be merged.

The data layer for the temporal function registration is in
Fig. 9. The temporal database consists of the function iden-
tifier. Whereas the package, object_id and subprogram_id
can frame it are stored. Then, there is a temporal reference,
defined by the beginning point of the validity. Thus, each
new state automatically limits the definition of the previous
version. On the other hand, there can be situations where the
version should be applicable only during the defined time
frame, but the next version is unavailable. To serve the correct
limit of validity (ED), a specific function version is registered,
expressing that the code is unavailable but that the existing
version can no longer be used. Then, there is a sequence for
performance implementation change control. Finally, there is
an object reference to the parsed version of the source code.
Thus, syntactical, semantical, and privilege checks are done
only once during the initial parsing and loading. The object

54542 VOLUME 12, 2024

M. Kvet et al.: Treating Temporal Function References in Relational Database Management System

FIGURE 9. Proposed architecture.

owner and authid method are stated (definer or current_user).
The data model is shown in Fig. 10.

Object_id and subprogram_id form the identifier of
the method. BD reflects the first level of temporality.
Perf_update_seq refers to the second level of the tempo-
rality. The executable function version is accessible via
object_reference.

FIGURE 10. Temporal function management data layer.

It is a bi-temporal model dealing with the validity of
the versions (the first temporal layer) and reflection of the
performance implementation changes (the second temporal
layer). It can, however, happen that the existing version is
later identified as incorrect and must be replaced. The system
must record that an improper version was released in the
past since it could be used for analytics, evaluation, and
processing. Thus, the proposed solution can be extended

to the multi-temporal system by identifying three temporal
dimensions:

• version validity,
• performance implementation changes,
• version corrections (modeled by the transaction begin-
ning point, based on the concept that the current version
is considered to be correct in an unlimited manner).

A. DATABASE STRUCTURE IMPACTS
The main advantage of the proposed solution is that it uses
logical version identifiers, which are part of the object ref-
erence address. Thanks to that, the name of the method
remains the same. The user-defined code is not changed (e.g.,
by using translation operation applying the correct function
version, as used in the existing solutions). Thus, existing
execution plans registered to the defined statements remain
the same and must not be evaluated. Furthermore, the code is
not version-dependent because the correct version is applied
dynamically based on the data. Therefore, if a new function
version is released, the source code is not impacted. Another
aspect relates to structural optimization to improve perfor-
mance. In principle, the newest method is considered themost
effective. Thus, the version with the maximal sequence_id is
selected to be executed.

As evident from the above specification, the database layer
and optimization have direct access to all the versions of the
functions, so there is no need to parse, locate, load, all the
required data are already present in the database system tables
and directly accessible using the stored object version pointer.
Thus, the only activity is to load the content of the function
version from the database into the instance memory if it is
not there yet. The various properties can be obtained from the
dba_procedures or generally dba_objects based on the type of
condition:

select ∗ from dba_procedures;

select ∗

from all_objects

where object_type

in (‘PROCEDURE’, ‘FUNCTION’, ‘PACKAGE’);

The dba_arguments data dictionary view can obtain param-
eter specifications. Object_name refers to the name of the root
method, and package_name deals with the identifier name of
the method’s optional encapsulation using the package.

select a.∗, object_type

from dba_arguments a

join dba_objects o

on(a.object_id=o.object_id)
where object_type]
in (‘PROCEDURE’, ‘FUNCTION’, ‘PACKAGE’);

Object_id is a unique method identifier. Argument_name
refers to the parameters delimited by the data_type attribute
and position. The positive value of the position attribute
defines the order of the parameter in the input definition.
Value 0 of the position attribute refers to the type to be

VOLUME 12, 2024 54543

M. Kvet et al.: Treating Temporal Function References in Relational Database Management System

returned. In that case, argument_name holds a NULL value.
A complete list of individual columns, data types, and
descriptions can be found in [35].

B. REGISTRATION AND IMPLEMENTATION COMMANDS
In this subsection, implementation commands will be stated.
Three levels of applicability can be used – system level,
session level, and object level. There are two parameters to
be set:

• temporal_registration, which defaults to FALSE.
It expresses the behavior of the new function definition.
If set to FALSE, such a new function does not create
individual versions and is treated as conventional (if a
new version is to be compiled, it replaces the original
solution. Thus, no evolution is present for the function).

• temporal_versioning is applicable for the function,
which is temporal. By default, it holds a TRUE value,
expressing that each new compilation of the method
automatically releases a new version. A new version
must be stated and registered explicitly if set to FALSE.

The server precision level is always set, or default values are
applied, respectively. If not set explicitly, session-level values
inherit the values from the server. A similar approach is used
for the object level. An object is characterized by the method
itself.

The object level setting can be defined during the compi-
lation by the PRAGMA keyword or alter object . . .can be
used and enhanced by the setting object parameters. For sim-
plicity, the following stated code snippets refer to the function
definition; procedure management is similar. However, there
is no return value.

C. FUNCTION REGISTRATION
Using PRAGMA_TEMPORAL_REG ensures that the newly
created function will start creating individual versions and is
temporally registered. If the function is already present in the
system and has at least one version, the specified PRAGMA
is ignored since it has already been set to register temporal
versions. Vice versa, by using this PRAGMA definition, it is
possible to transform conventional (non-versioned) functions
into temporal ones. Physically, it invokes the introduced back-
ground process by checking the temporal validity frame and
register function.

create or replace function function_name
return data_type

is PRAGMA_TEMPORAL_REG;
[local variables definition]

- body:

begin . . . end;

/

D. VERSION REGISTRATION
During development, it can be useful to create various
versions, recompile solutions, etc. In that case, it is not
necessary to create new versions. Similarly, some versions

can be automatically replaced, with no reflection of tem-
porality, treated as an optimization of the existing code
with no reference to the change of the input and output
value mapping. The new version can be registered using the
PRAGMA_VERSION_REG keyword.

create or replace function function_name
return data_type

is PRAGMA_VERSION_REG;
[local variables definition]

- body:

begin . . .end;
/

E. VERSION MERGING
It can, however, happen that one code is recompiled multiple
times, creating multiple versions. By using the following
command, individual versions can be merged. It is assumed
that all versions are equal. Physically, the first version is
retained, and the others are removed. Individual versions can
be identified by their names, or the validity time frame can
be stated. Reflecting the performance updates of one version,
the newest one is always used.

alter function function_name MERGE VERSIONS

[{(list_of_version_identifiers)]
| (BD, ED)}];

Please note that only versions which are entirely covered
by the validity time frame are covered:

select versions

from the temporal_function_management

where process_temporal_frame

between BD and ED;

The process_temporal_frame function stated above pro-
duces a validity range for the particular function version.
It takes the local compilation timestamp. The end of the appli-
cability is calculated based on identifying the next version,
which limits the validity of the predecessor.

F. MANAGING TEST VERSION
Test versions are a specific category of temporal function
management. If the code is flagged as TEST, then it is not
temporally treated; no new version or performance update is
registered. It is primarily used in a development environment
to check the correctness of the new code. Such a function
can be compiled, but its original name is enclosed in the test
version:

create or replace function function_name
return data_type

is PRAGMA_TEST;
[local variables definition]

-- body:
begin . . .end;
/

54544 VOLUME 12, 2024

M. Kvet et al.: Treating Temporal Function References in Relational Database Management System

If the test version is not explicitly marked, then it is
assumed that performance optimization of the existing ver-
sion is to be set.

G. RECOMPILATION
The already created and compiled code can be enhanced by
the temporal registration using temporal or version options.
TEMPORAL_REG asks the system to register a function to
be temporal and create a version, while VERSION_REG cre-
ates a new version for the function, which is already marked
as temporal.
alter function function_name compile

{TEMPORAL_REG | VERSION_REG};

H. PLANNING
The above principles assume that the applicability of the new
registered version becomes immediate after the compilation.
An optional parameter of the PRAGMA clause offers to
set the precise beginning point of the validity, either by the
Interval or by timestamp specification. The value must refer
to the future. If not, an exception is raised, and a new version
is not compiled and registered:

alter function function_name compile

{TEMPORAL_REG | VERSION_REG}

VALIDITY {TO_DATE(input_val,
’DD.MM.YYYY HH24:MI:SS)

|

INTERVAL ‘value’
{DAY TO SECOND | YEAR TO MONTH}

};

I. REGISTER PERFORMANCE UPDATE
This clause allows you to optimize the performance of the
existing version either by applying new features, creating new
sophisticated methods, optimizing data flows, etc. By default,
the current version is optimized, but the definition can be
enhanced by stating the version identifier:

create or replace function function_name
return data_type

is PRAGMA_PERF_REG [version_identifier];
[local variables definition]

-- body:
begin . . .end;
/

If the given version identifier did not exist, processing
would end with an error.

Concluding the temporal function management, available
states of the temporal function are listed in Tab. 1:

VII. PERFORMANCE EVALUATION STUDY
The performance evaluation study was done using the flight
data monitoring data set. It takes the flights made over Euro-
pean space between 2018 and 2022. The ECTRL_ID attribute
can uniquely identify each flight. Associated measurements
and flight parameters are then delimited by the occurrence

TABLE 1. Results – existing approaches.

timestamp. In addition, the values are ordered in time through
the SEQ_ID attribute. The data set consists of 100 flight
parameters and planned and actual routes. It covers the flight
monitoring from the taxi through the take-off, flight itself,
up to landing, taxi, and parking. Besides, flight information
regions (FIRs) can be identified and associated based on
the positional data. In aviation, a flight information region
is a specified region of airspace in which a flight informa-
tion service and an alerting service (ALRS) are provided.
Each FIR is part of one air navigation region: Africa–Indian
Ocean Region (AFI); Asia Region (ASIA); Caribbean Region
(CAR); EuropeanRegion (EUR);Middle East Region (MID);
North American Region (NAM); North Atlantic Region
(NAT); Pacific Region (PAC); and South American Region
(SAM). FIRs vary in size. Smaller countries may have one
FIR in the airspace above them, and larger countries may have
several. Airspace over the ocean is typically divided into two
or more FIRs and delegated to controlling authorities within
countries that border it. A significant aspect of the FIR is
based on its evolution over time. Namely, the borders and
positions are not strictly set and are periodically evaluated.
Thus, their definitions also evolve. In this environment, indi-
vidual flights are monitored to calculate the flight efficiency,
fuel consumption, costs, and impact on the environment. Cur-
rently, the problem is even sharper, it is strictly inevitable to
reduce the impacts on the environment. This data set was also
selected based on the supporting projects of this research –
analyzing environmental data using the EverGreen project,
as well as researching and optimizing intelligent transport
systems (VEGA 1/0192/24). The data set consists of 500,000
flights with various lengths and frequencies of obtaining
the data. In total, the data set takes one planned route and
one real route for each flight, covered by 100 parameters
(80 are real, 10 are integer, five are textual 4 are express
time references, and 1 is JSON). On average, each flight
contained 1000 data rows (respectively, the data set itself
was modified in such a way by reducing the data sampling
rate).

An example of the data is shown in Fig. 11.
The parameters of the server on which the performance

evaluation study was done are stated in the following para-
graph:

VOLUME 12, 2024 54545

M. Kvet et al.: Treating Temporal Function References in Relational Database Management System

FIGURE 11. Data.

• Processing unit: AMD Ryzen 5 PRO 5650U, 2.30 GHz,
Radeon Graphics

• Memory: Kingston, DDR4 type, 2 × 32GB, 3200MHz,
CL20

• Storage: 2TB, NVMe disc type, PCIe Gen3 × 4,
3500MB/s for read/write operations

• Operating system: Windows Server 2022, x64
• Database system: Oracle Database 23c, release bundle
Oracle 23c Free, Developer Release Version 23.2.0.0.0.

The performance evaluation study focuses on the following
aspects, processed by the temporal functions:

• F1:This converts the local timestamp into the UTC
format by respecting summer and winter time. The
calculation is changed for each season. To be strictly
precise, it also applies leap seconds.

• F2:Getting FIR assignment based on the positional data.
• F3:Evaluating the impact on air pollution by respecting
the time-varying parameter limits.

• F4: Evaluating flight efficiency by comparing the
optimal and real route by respecting current weather
conditions and other restrictions.

• F5:Complex flight monitoring produces JSON, charac-
terizing the route (planned and real), flight efficiency
across individual FIRs, and flight parameters across all
regions.

The general rule for the provided computational study is
to experimentally analyze the performance impacts of the
staged compiling process, delimited by the loading process,
to enable proper function version execution.

For the evaluation, five solutions are referenced:
• REF refers to the existing solution in which the temporal
versioning has no specific support; individual versions
are located in the files. To get the proper function, a par-
ticular version needs to be identified based on the code of
the function header, followed by the parsing, checking,
loading, and executing.

• SOL1brings an additional security layer by storing the
code of the versions in the database. However, the
function code still needs to be parsed, checked, and
pre-processed before execution.

• SOL2 removes the necessity for parsing and checking
because the version is stored in a parsed version done
once during the initial processing.

• SOL3offers accessibility to all versions, which differ
in their names. All the versions are directly available
for execution; however, it is necessary to structural-
ize provided code definitions by replacing the original
function name with the applicable function version.

Consequently, whereas the code definition is changed,
execution plans that have already been created are not
associated and cannot be later referenced. Thus, each
function version produces a different Hash Plan ID
value.

• SOL4 describes the proposed solution by introducing a
transformation mapping module specified by the tem-
poral layer. Each version is associated with the validity
time frame and performance update options, forming a
bi-temporal layer by the sequences.

For the evaluation study, three experiments were done:

• Parsing and loading impacts.
• Impact of identifying the proper version.
• Loading the code from the database (or file storage) to
the database instance memory.

After all, the scalability of the solutions is discussed.
The first part of the evaluation study emphasizes parsing

and version loading impacts. REF solution does not bring
any module dealing with the versioning. They are stored
externally, outside of the database in the file system. Each
version is stored in a separate file, which can be grabbed to
start the parsing, checking, and loading process. Although the
process is straightforward, many swaps between the database
and file storage repository make the solution too demanding.
An improved solution (REFopt) creates data version parti-
tions for the execution task. Thus, each version is loaded
for the defined code frame only once and executed for each
occurrence. Although such structural re-optimization brings
benefits at the level of a specific code module, a signifi-
cant deficiency in the possibility of processing functions and
individual versions in a parallelism environment remains.
The source files consisting of the function version code are
accessible by the database directory object, enhanced by the
operating system, and database-granted privileges.

Storing individual version source files in the database layer
can bring significant benefits. The code is stored in the
database tables using extensive object attribute definitions.
First, each code version is directly placed in the database,
even in a non-parsed (original) form. The file storage does
not need to be handled. Second, the instance of the database
system has direct access to the database repository using
the background processes, I/O operations are optimized in
that manner. The disadvantage of the solution relates to the
block-oriented structure. Regardless of the amount of relevant
data in the block, the whole block must always be loaded
and processed. Additionally, the user must have a suitable
method of transforming their original source code into a large
object structure. SOL2 enhances the existing SOL1 principles
by storing pre-parsed and checked versions as objects. The
necessity of parsing and checking is limited since it is done
only once during the initial version of the treatment. The load-
ing is more straightforward, although the additional module
must be present for converting the pre-parsed version into an
executable source. The disadvantage of that approach relates
to the necessity of storing the original source code, as well,

54546 VOLUME 12, 2024

M. Kvet et al.: Treating Temporal Function References in Relational Database Management System

so the storage demands are almost twofold. Namely, if the
referenced objects are changed, a particular function version
is marked invalid andmust be compiled before the subsequent
usage. It, however, requires the original source code to check
the availability of the sources, privileges, proper references,
etc.

From the parsing and loading perspectives, SOL3 provides
sufficient power. Each version is directly accessible via the
unique name created from the original function identifier and
version extension. From the calling environment, individual
versions are directly accessible through the instance memory
structures and system table descriptions. However, for the
second evaluation step done in this paper – identifying the
proper version, enormous additional demands are present,
caused by the necessity to restructuralize user-defined code
and apply individual version headers – replace original func-
tion names with the version extensions. Consequently, the
code definition is changed on the fly, and additional perfor-
mance optimization is hard to do since the references evolve
over time and must be dynamically applied. Note that it is
not just about the versions themselves; these can even be
extended by several optimization techniques defined over
time.

Finally, the proposed solution refers to the temporal
paradigm. All the versions are directly parsed and accessible.
The original source code does not need to be stored. The
dynamic version pointers do direct mapping, so the original
names and user code definition remain. Version applicabil-
ity is done immediately. However, the Hash Plan ID values
remain the same, so the execution plans that have already
been created remain valid.

Tab. 2 shows the results, expressing the costs. Database
execution costs form the metrics covering the database sys-
tem resources, storage repository, loading necessity, memory
consumption, connected background processes, and process-
ing time. For declarative purposes, individual values are
expressed in percentages. It is based on calling function F1-
F5 10,000 times; the versions are selected randomly. The
evaluation was executed ten times, Tab. 2 expresses the aver-
age values.

TABLE 2. Parsing and checking impacts.

Whereas the versions to be called are randomly distributed
in the calling environment, the worst solution is provided
by the REF since it does not handle the parsing, checking,
and loading efficiency. REFopt makes partitioning across
the versions, and loading of a particular version is done
only once for the whole code. By using this optimization

technique, total processing costs can be reduced by 56.76%.
SOL1 is analogous to the REF but provides an additional
security layer by moving the source code to the database
repository. The total cost demands are 72.77%, which refers
to 27.23%. It is caused by limiting the necessity to contact file
repositories outside the database handling. If the optimization
by the partitioning is done, total processing demands are
39.91%, reflecting the 7.70% improvement compared to the
REFopt (considered as 100%). For the other architectures,
version partitioning and categorization to ensure one version
is loaded only once are not requested because the versions
are pre-parsed or directly accessible by the database system.
SOL2 requires 41.76%. However, it is essential to note that
compared to optimized version partitioning techniques, such
as version categorization is unnecessary. From the point of
view of thementioned statistics, the creation of categories and
the grouping of versions are not considered. By using addi-
tional evaluations, version partition management requires an
additional 5-10% costs (for the evaluated number of ver-
sions), depending on the statement or code complexity. With
the rise in the number of versions, additional requirements
can grow significantly. Solution SOL3 is excellent from the
loading perspective. Individual versions are directly available
but limited by the different names across the versioning.
Based on the defined environment, an additional 22.43% was
required to transform the existing source code with the func-
tion version name enhancements. It was more pronounced
for the SQL language, where it changed the statement code
format, fromwhich the execution plan is calculated. Although
existing plans can be present in the instance memory Library
Cache, the processed Hash Plan ID value differs, so the
mapping is not done, and a new execution plan must be
built. Furthermore, if any version is changed (even delimited
by the performance update), a new execution plan must be
created. In SQL, for the defined functions F1-F5, additional
demands are 34.12%. The PL/SQL is not so strict. Even
if the process plan changes, the function context switches
can apply the change more straightforwardly. Precisely, addi-
tional demands for PL/SQL are 10.74%. The best solution is
provided by the proposed solution SOL4 because the whole
management is done on the database level. Each function
version is compiled only once, and then directly accessible.
The mapping is supervised by the temporal module, which
shifts the function dynamically into the particular version
route. Furthermore, each version has a pointer to the latest
version, so the most optimized solution is always used. The
total demands are 27.04%. Compared to the original solution
(REF), there is a 72.96% improvement. Reflecting on SOL2’s
storage of the parsed version in the database, the improvement
is 35.25%. Finally, comparing version header naming (SOL3)
and our proposed solution, processing costs refer to 81.64%
(improvement: 18.36%).

It is worth mentioning that except for the proposed
solution SOL4, only the current performance update reflec-
tion is stored and thus loaded for each function ver-
sion. Thus, each version was provided just by one source

VOLUME 12, 2024 54547

M. Kvet et al.: Treating Temporal Function References in Relational Database Management System

code – the latest one (based on the highest sequence
number).

The second part of the performance evaluation reflects
identifying the proper function version based on the data and
validity reference. In this case, REFopt and SOL1opt are irrel-
evant since they do not provide any additional layer regarding
version identification. It does not matter whether this process
takes place during version identification or categorization
through version partitioning. Based on the evaluation, there is
less than a 1% difference between the original and optimized
solutions.

REF solution does not store and specify validity ranges,
so the code header must always be loaded to identify a suit-
able version. If it is found, the scanning can be ended, but all
the versions need to be evaluated. Furthermore, if it does not
identify performance updates, all versions must be scanned
in any situation since they can be distributed randomly. Stor-
ing versions in the database (SOL1 and SOL2), either in
the original or parsed form, makes sense. The data table
storing the content is temporal, so the identification is done
on the database layer. The bi-temporal architecture allows
the management of not only versions themselves but also
performance updates for each version. Version identification
(SOL3) did not prove itself. Considering the naming and
validity, reflection requires access to the temporal layer taking
versions and a correlation with the disc storage to locate and
transfer particular versions based on their name. Tab. 3 shows
the results.

TABLE 3. Identifying proper version.

Extracting only current performance updates of the ver-
sions into a separate temporal architecture can reduce costs
to 25.32%, which refers to the 17.20% improvements.

The last evaluated process is associated with loading the
code from the database (or storage repository) to the database
instance memory. If the function versions are already avail-
able and stored in the database repository, it just needs to
be loaded into the instance memory – executable version.
To make the evaluation relevant and comparable, instance
memory is wholly flushed away before each experiment since
the version could be there, so the loading would not be
necessary, influencing the results. The flushing uses code unit
granularity, so the whole user-specified code is treated as a
single unit, encapsulated by the flushing operation from both
sides. Tab. 4 shows the results. The REF solution is the most
demanding since two steps must be done – loading from the
file into the temporary database repository, then loading into
the instance memory and consecutive management. SOL1
and SOL2 provide almost the same results. Data are present
in the database. The difference between them is based on the
size – the parsed version is commonly optimized and, thus,

requires a smaller size, so the loading takes a smaller number
of blocks and is faster. Based on evaluating the discussed
functions, the difference between SOL1 and SOL2 is 10.32%.
SOL3 is based on the fact that the versions are present in
the system and are referencable by the system tables. Indi-
vidual versions act as standard conventional functions from
the execution point of view because each can act separately,
caused by the name resolution. The proposed solution SOL4
combines the benefits of all the above architectures. The only
thing that must be done is to load the executable function
version content from the database to the instance memory
like ordinary functions. From the management’s point of
view, there is no additional space for optimization. However,
reflecting the real applicability, it is worth pointing to the
transfer between the database and instance memory. There-
fore, in future research, we will emphasize creating function
version baselines to define the version priorities because
individual versions do not cover the same validity time frame
and considered data numbers. Therefore, individual function
versions are not executed with the same ratio. The most often
used function versions should be preferred to be placed in the
memory. Thanks to future evaluation studies and methods to
collect function calls, it will be possible to set priorities and
transform existing memory structures to serve the executable
codemore efficiently. This task, however, is not related exclu-
sively to the function versions but can apply to any function
type management, even outside of the relational paradigm.

The results reached are shown in Tab. 4.

TABLE 4. Identifying proper version.

A. SUMMARY
The computational evaluation study specified in this section
points to three aspects of the temporal function version
management and handling. We have been dealing with the
parsing, checking, and, generally, compiling process since
versions can be stored in the source code format outside the
database in ordinary files. This is the most critical activity and
takes 50% of the whole process of function management. The
second aspect points to logically identifying the correct ver-
sion, making it accessible for consecutive reference. It takes
32%. The remaining 18% refer to loading the pre-parsed
version by making it directly executable. This activity trans-
fers the data from the storage repository (database) into the
instance memory. It also includes notifying system tables
for the references and object descriptions. Tab. 5 shows the
logical costs of the whole process by applying the weights
of individual activities. The REF solution obtained the worst
results, which does not provide sufficient structures to serve
and locate versions. Similarly, SOL3 is not relevant for further
analysis and actual use precisely because of the necessity

54548 VOLUME 12, 2024

M. Kvet et al.: Treating Temporal Function References in Relational Database Management System

TABLE 5. Results - summary.

FIGURE 12. Function version management costs.

of changing the execution plan and influencing global sys-
tem performance. Comparing REF and SOL3, the difference
between those two solutions is 10.70%. From a global level,
the SOL1opt and SOL2 solutions are very similar, and the
code structure retentionmethod has no significant effect. This
is, however, caused by the function called pre-partitioning.
If it were not there, the total demand of the SOL1 would be
67.75%. The best solution is provided by the model presented
in this paper (SOL4). It achieves the best results at all levels.
The total processing cost demands are 31.60%. The results
are shown in Tab. 5. Graphical representation of the costs is
depicted in Fig. 12.

B. SCALABILITY
Based on the presented computational study and results, it is
clear that the proposed solution provides significant perfor-
mance improvements and is powerfully relevant compared to
the existing techniques and approaches. However, temporal
databases are characterized by the significantly increasing
data over time. Compared to conventional databases, in which
an update statement replaces the original state, a new tuple
is created in temporal databases, and original values remain
in the system. Although some purge activities can be identi-
fied, such as removing historical data from the system, in a
data analytical environment, most of the data should remain
accessible. Thus, the number of data to be handled, treated,
and stored continuously expands. To serve and declare the
flexibility of the proposed solution, this part discusses the
scalability of individual solutions. To note, to make the solu-
tions comparable and generally applicable, only optimized
solutions for REF and SOL1 will be stated. Sequential ver-
sion scanning does not make sense because of the strict
performance degradation. The initial data set was described
at the beginning of this section. Then, two other data sets

FIGURE 13. Scalability.

with analogous properties were used. The main difference is
the amount of temporal data and the related increase in the
number of versions. The ratio between the versioning and the
amount of data remains preserved. Fig. 13 shows the results.

The first data set takes the original data amount, the second
data set is 10 times larger, the third is 100 times larger, and
the last and fourth are 1000 times larger. They are denoted by
the symbols DS1 to DS4.

VIII. CONCLUSION
Data to be handled by intelligent information systems must
be temporally oriented, allowing monitoring of changes over
time. Current valid data are still the most critical; however,
maintaining historical data offers a vast perspective for ana-
lytics and decision-making but also creates future prognoses
to adequately react to the changed parameters and properties.
The application domain experts must make the decisions
based on the complex, accessible, and verifiable data.

In the temporal environment, various architectures have
been proposed, varying in terms of processed granularity and
data precision, starting with object-oriented data and ending
with attribute-delimited temporal data on the second corridor.
The intersolution, also discussed in this paper, is delimited
by the temporal synchronization groups, by which the stored
data do not cover duplicates. Furthermore, it is possible to
process multiple attributes as a single unit, optimizing the
temporal reference layer.

A natural question regarding function evolution is raised by
treating, accessing, and processing temporal databases. This
paper discusses the techniques of multiple-function version
management and proper mapping based on the validity time
frames. The most significant disadvantage of the existing
approaches is related to limiting parallelism. Namely, one of
the existing solutions takes versioning to the file repository
level. Consequently, the proper function version must be
dynamically loaded into the system.

This requires not only parsing and the entire checking
and loading processes. Above all, only one version of such
a function can be in the system at a given time since the
entire query evaluation is reduced to sequential processing.

VOLUME 12, 2024 54549

M. Kvet et al.: Treating Temporal Function References in Relational Database Management System

Although various enhancements have been provided in the
past, e.g., based on storing versions in the database in the form
of large objects or storing pre-parsed function versions, there
is still an increasing demand for complex and reliable solu-
tions. Nowadays, it is essential to ensure massive parallelism
and support its spread. Our proposed solution emphasizes
temporal function version enhancement andmapping through
the temporal database to make the function version man-
agement applicable, reliable, and scalable. Thanks to that,
all versions are accessible in the system and can be directly
loaded from the database repository into the memory. All
versions are stored in the parsed formats, so the compilation
is straightforward. This paper produced several techniques
to manage temporal functions, followed by the definition of
commands and discussion related to version identification
and references in the development system. It goes through
the registration of the function and management of individ-
ual versions up to the merging process. However, it is not
just about versioning. It can be worth optimizing the code
specified by the version. Thus, new compilation does not
automatically mean releasing a new version, but the existing
one can be optimized e.g. using more advanced data struc-
tures. The proposed bi-temporal function mapping solution
reflects the versioning in the first layer, and the second tem-
poral layer deals with the performance updates.

The core part of the paper covers the definition of tempo-
ral functions and existing solutions, which are discussed by
pointing to their properties and limitations. The bi-temporal
solution takes the function header and maps it to the function
body represented by the version codes and interconnected
list of changes. The structure is operated by the Function
Mapper background process. Another solution is related to
the file management holding versions in the LOB repos-
itory, followed by the solution storing parsed data in the
database and multiple function mapping names. Based on the
provided analysis, it is clear that storing the parsed version
is inevitable for ensuring the performance of the version
mapping. Section V points to the proposed solutions. They
primarily handle dynamic version mapping, manage test-
ing and released versions, handle internal version updates,
register new versions and map them. The massive paral-
lelism should cover all these activities by enabling aspects
of scalability in a complex temporal environment. Section VI
drives you through various proposed techniques and enhance-
ments, like command registration, function types, apply-
ing PRAGMA keyword, version registration and merging,
dynamic recompilation, and performance update registration.
All these aspects and characteristics are properly discussed
in the section, allowing the creation of complex, robust, and
performance-efficient solutions.

The performance evaluation study highlights four archi-
tectures managing function versions. Three criteria were
considered – costs of the parsing and loading, impact of
version identification, and loading the code from the database
or file storage, respectively, to the database instance memory.
These steps are critical for the process of data retrieval. Based

on the experiments associated with flight monitoring, the
best solutions were obtained by the SOL4 described by the
transformation mapping module introducing a transforma-
tion mapping module in a temporal layer. Each version is
associated with the validity time frame in the function ver-
sion header for that solution. The mapping is automatic and
operated by the introduced background processes. Overall,
it can reduce management, mapping, and loading costs by
up to 70%, compared to the reference solution characterized
by the temporal versioning located in the source files, fol-
lowed by the loading and mapping. In this aspect, it is worth
mentioning that most of the original solutions differ in ver-
sions by name. Thus, the user must ensure proper call of the
version.

In addition to the performance, processing costs, and
techniques of mapping individual versions, it is essential
to emphasize the additional costs associated with managing
temporal versions of functions. Namely, version manage-
ment requires maintaining data structures, mapping, and
background processes supervising the whole architecture
and processes. Based on the computational study, proposed
temporal version management enhancements impact perfor-
mance by less than 1% in most cases, reflected by the change
operations and new version registration.

When dealing with temporal function management and
proper version mapping, numerous challenges can be iden-
tified associated with the code split, version management,
ensuring availability, security, and references using automatic
mapping. All these significant difficulties were considered
and solved by the proposed solutions. From the performance
point of view, there are no significant limitations; the archi-
tecture does not require huge additional costs and storage.
It reflects less than 1% of additional costs compared to the
whole database storage.

The proposed solution does not significantly impact the
performance. Based on the computational study, proposed
temporal version management enhancements impact perfor-
mance by less than 1% in most cases. The designed solutions
can distinguish between test and release function versions.
Individual versions are bi-temporally considered, allowing
the change of source code in terms of changed conditions and
calculations, but also allowing the optimization of the code
itself, with no reflection on the input and provided output
values.

As in any practical solution, the proposed methodolo-
gies, concepts, and architecture have limitations. It cannot
correctly handle non-deterministic functions because such
values cannot be pre-calculated and shared across multiple
queries and analytical reports. If there is any change that
should be applied for multiple versions, they must be han-
dled and recompiled sequentially, causing temporary delays
and unavailability. Furthermore, problems are caused by the
proposed models, which are characterized by the beginning
of the validity of the version only. In that case, determining
the proper version is more complicated since there is no
strict time frame range. During future development, we will

54550 VOLUME 12, 2024

M. Kvet et al.: Treating Temporal Function References in Relational Database Management System

emphasize the internal transformation to the temporal begin
and end date format (BD-ED).

Another limitation that has not been addressed yet relates
to the distributed environment. Cloud systems are charac-
terized by high availability, where individual data images,
models, and structures are mirrored to multiple cloud repos-
itories and regions by building sophisticated availability
domains. To make the system consistent, it is necessary
to automatically apply invidiual function versions to all
repositories. For now, it is done by the core data synchroniza-
tion processes, which do not empower the system correctly.
Namely, if the function version is not adequately shared
across the whole ecosystem, some repositories and loca-
tions could call improper versions since a new release is not
unavailable there.

In future research, emphasis will be placed on reflecting
such functions in the dynamic views, spreading functions
across the data distribution architectures, and deeper anal-
ysis of the scalable function references. Besides, we will
focus on creating function version baselines to optimize the
availability of the function versions directly in the instance
memory, so the loading between the database storage and
instance memory for the execution will not be necessary.
This requirement is also reflected in the need for system
performance in cloud environments, where a large amount of
memory can be provisioned, so the focus should be on the
loading and availability.

REFERENCES
[1] S. Chaturvedi and T. Nagpal, ‘‘Efficient querying and indexing of moving

data objects,’’ inProc. Int. Conf. Futuristic Technol. (INCOFT), Nov. 2022,
pp. 1–6, doi: 10.1109/INCOFT55651.2022.10094348.

[2] N. Mukherjee, S. Chavan, M. Colgan, M. Gleeson, X. He, A. Holloway,
J. Kamp, K. Kulkarni, T. Lahiri, J. Loaiza, N. Macnaughton, A. Mullick,
S. Muthulingam, V. Raja, and R. Rungta, ‘‘Fault-tolerant real-time ana-
lytics with distributed Oracle Database in-memory,’’ in Proc. IEEE
32nd Int. Conf. Data Eng. (ICDE), May 2016, pp. 1298–1309, doi:
10.1109/ICDE.2016.7498333.

[3] S. Pendse, V. Krishnaswamy, K. Kulkarni, Y. Li, T. Lahiri, V. Raja,
J. Zheng, M. Girkar, and A. Kulkarni, ‘‘Oracle Database in-memory on
active data guard: Real-time analytics on a standby database,’’ in Proc.
IEEE 36th Int. Conf. Data Eng. (ICDE), Apr. 2020, pp. 1570–1578, doi:
10.1109/ICDE48307.2020.00139.

[4] Y.-C. Chen, W.-C. Peng, and S.-Y. Lee, ‘‘Mining temporal patterns in
time interval-based data,’’ IEEE Trans. Knowl. Data Eng., vol. 27, no. 12,
pp. 3318–3331, Dec. 2015, doi: 10.1109/TKDE.2015.2454515.

[5] P. Terenziani, ‘‘Nearly periodic facts in temporal relational databases,’’
IEEE Trans. Knowl. Data Eng., vol. 28, no. 10, pp. 2822–2826, Oct. 2016,
doi: 10.1109/TKDE.2016.2585483.

[6] A. Belussi, E. Bertino, and B. Catania, ‘‘An extended algebra for constraint
databases,’’ IEEE Trans. Knowl. Data Eng., vol. 10, no. 5, pp. 686–705,
Sep. 1998, doi: 10.1109/69.729722.

[7] C.-H. Chen, H. Chou, T.-P. Hong, and Y. Nojima, ‘‘Cluster-based
membership function acquisition approaches for mining fuzzy temporal
association rules,’’ IEEE Access, vol. 8, pp. 123996–124006, 2020, doi:
10.1109/ACCESS.2020.3004095.

[8] H. Nindito, A. V. D. Sano, and A. R. Condrobimo, ‘‘Comparative study of
storing unstructured data type between BasicFile and SecureFile in Oracle
Database 12c,’’ in Proc. Int. Conf. Inf. Manage. Technol. (ICIMTech),
Nov. 2016, pp. 146–149, doi: 10.1109/ICIMTech.2016.7930319.

[9] S. Arora, ‘‘A comparative study on temporal database models: A sur-
vey,’’ in Proc. Int. Symp. Adv. Comput. Commun. (ISACC), Sep. 2015,
pp. 161–167, doi: 10.1109/ISACC.2015.7377335.

[10] M. Finger, ‘‘A logical reconstruction of temporal databases,’’ J. Log.
Comput., vol. 10, no. 6, pp. 847–876, Dec. 2000, doi: 10.1093/log-
com/10.6.847.

[11] A. Nuijten and P. Barel, Modern Oracle Database Programming: Level
up Your Skill Set to Oracle’s Latest and Most Powerful Features in SQL,
PL/SQL, and JSON. New York, NY, USA: Apress, 2023, p. 576.

[12] J. Máté and J. Šafařík, ‘‘Transformation of relational databases to
transaction-time temporal databases,’’ in Proc. 2nd Eastern Eur.
Regional Conf. Eng. Comput. Based Syst., Sep. 2011, pp. 27–34,
doi: 10.1109/ECBS-EERC.2011.14.

[13] A. Beiraimi, K. Pu, and Y. Zhu, ‘‘Towards optimal snapshot mate-
rialization to support large query workload for append-only temporal
databases,’’ in Proc. IEEE Int. Congr. Big Data, Jul. 2018, pp. 268–271,
doi: 10.1109/BIGDATACONGRESS.2018.00048.

[14] M. Kvet, ‘‘Enhanced data locking to serve ACID transaction prop-
erties in the Oracle Database,’’ in Proc. 34th Conf. Open Innov.
Assoc. (FRUCT), Nov. 2023, pp. 73–80, doi: 10.23919/fruct60429.2023.
10328165.

[15] M. Kvet and J. Papan, ‘‘The complexity of the data retrieval
process using the proposed index extension,’’ IEEE Access,
vol. 10, pp. 46187–46213, 2022, doi: 10.1109/ACCESS.2022.
3170711.

[16] M. Yu, C. Chai, and G. Yu, ‘‘A tree-based indexing approach for diverse
textual similarity search,’’ IEEE Access, vol. 9, pp. 8866–8876, 2021, doi:
10.1109/ACCESS.2020.3022057.

[17] Developing Robust Date and Time Oriented Applications in
Oracle Cloud: A Comprehensive Guide To Efficient Date and
Time Management in Oracle Cloud 1, Kvet, Michal—Amazon.com.
Accessed: Feb. 6, 2024. [Online]. Available: https://www.amazon.com/
Developing-Robust-Oriented-Applications-Oracle-ebook/dp/B0BZJG8
G7Q/ref=sr_1_1?crid=1JD46TW1GIW0S&keywords=Developing+Robu
st+Date+and+Time+Oriented+Applications+in+Oracle+Cloud&qid=1707
159540&sprefix=developing+robust+date+and+time+oriented+applicati
ons+in+oracle+cloud%2Caps%2C243&sr=8-1

[18] N. Mahmood, S. M. A. Burney, S. A. Ali, K. Rizwan, and S. A. K. Bari,
‘‘Fuzzy-temporal database ontology and relational database model,’’ in
Proc. 9th Int. Conf. Fuzzy Syst. Knowl. Discovery, May 2012, pp. 573–577,
doi: 10.1109/FSKD.2012.6233841.

[19] M. Hudec, ‘‘Fuzzy data in traditional relational databases,’’ in Proc.
12th Symp. Neural Netw. Appl. Electr. Eng. (NEUREL), Nov. 2014,
pp. 195–200, doi: 10.1109/NEUREL.2014.7011504.

[20] F. Kong, B. Jiang, G. Yue, and J. Wang, ‘‘Deep data imputation
for UAV low-altitude sensing considering spatial–temporal interaction,’’
IEEE Sensors J., vol. 24, no. 6, pp. 8170–8183, Mar. 2024, doi:
10.1109/JSEN.2024.3354330.

[21] H. Yu, X. Zhang, Y. Wang, Q. Huang, and B. Yin, ‘‘Fine-grained accident
detection: Database and algorithm,’’ IEEE Trans. Image Process., vol. 33,
pp. 1059–1069, 2024, doi: 10.1109/tip.2024.3355812.

[22] M. Zhu and T. Risch, ‘‘Querying combined cloud-based and relational
databases,’’ in Proc. Int. Conf. Cloud Service Comput., Dec. 2011,
pp. 330–335, doi: 10.1109/CSC.2011.6138543.

[23] V. K. Myalapalli and B. L. R. Teja, ‘‘High performance PL/SQL program-
ming,’’ in Proc. Int. Conf. Pervasive Comput. (ICPC), Jan. 2015, pp. 1–5,
doi: 10.1109/PERVASIVE.2015.7087001.

[24] M. Adnan and R. Alhajj, ‘‘A bounded and adaptive memory-based
approach to mine frequent patterns from very large databases,’’ IEEE
Trans. Syst., Man, Cybern., B, Cybern., vol. 41, no. 1, pp. 154–172,
Feb. 2011, doi: 10.1109/TSMCB.2010.2048900.

[25] K. J. Upadhya, A. Paleja, M. Geetha, B. D. Rao, and M. S. Chhabra,
‘‘Finding partial periodic and rare periodic patterns in temporal
databases,’’ IEEE Access, vol. 11, pp. 92242–92257, 2023, doi:
10.1109/ACCESS.2023.3308820.

[26] N. T. Nguyen, ‘‘Consensus-based timestamps in distributed temporal
databases,’’ Comput. J., vol. 44, no. 5, pp. 398–409, Jan. 2001, doi:
10.1093/comjnl/44.5.398.

[27] Performance Analysis of PL/SQL Query Optimization Techniques|IEEE
Conference Publication|IEEE Xplore. Accessed: Jan. 31, 2024. [Online].
Available: https://ieeexplore.ieee.org/document/8991362

[28] A. Vaisman and E. Zimányi, Data Warehouse Systems: Design and Imple-
mentation. New York, NY, USA: Springer, 2014, p. 625.

[29] A. de Mauro, F. Marzoni, and A. Walter, Data Analytics Made Easy: Use
Machine Learning andData Storytelling in YourWorkWithoutWriting Any
Code. U.K.: Packt Publishing, 2021.

VOLUME 12, 2024 54551

http://dx.doi.org/10.1109/INCOFT55651.2022.10094348
http://dx.doi.org/10.1109/ICDE.2016.7498333
http://dx.doi.org/10.1109/ICDE48307.2020.00139
http://dx.doi.org/10.1109/TKDE.2015.2454515
http://dx.doi.org/10.1109/TKDE.2016.2585483
http://dx.doi.org/10.1109/69.729722
http://dx.doi.org/10.1109/ACCESS.2020.3004095
http://dx.doi.org/10.1109/ICIMTech.2016.7930319
http://dx.doi.org/10.1109/ISACC.2015.7377335
http://dx.doi.org/10.1093/logcom/10.6.847
http://dx.doi.org/10.1093/logcom/10.6.847
http://dx.doi.org/10.1109/ECBS-EERC.2011.14
http://dx.doi.org/10.1109/BIGDATACONGRESS.2018.00048
http://dx.doi.org/10.23919/fruct60429.2023.10328165
http://dx.doi.org/10.23919/fruct60429.2023.10328165
http://dx.doi.org/10.1109/ACCESS.2022.3170711
http://dx.doi.org/10.1109/ACCESS.2022.3170711
http://dx.doi.org/10.1109/ACCESS.2020.3022057
http://dx.doi.org/10.1109/FSKD.2012.6233841
http://dx.doi.org/10.1109/NEUREL.2014.7011504
http://dx.doi.org/10.1109/JSEN.2024.3354330
http://dx.doi.org/10.1109/tip.2024.3355812
http://dx.doi.org/10.1109/CSC.2011.6138543
http://dx.doi.org/10.1109/PERVASIVE.2015.7087001
http://dx.doi.org/10.1109/TSMCB.2010.2048900
http://dx.doi.org/10.1109/ACCESS.2023.3308820
http://dx.doi.org/10.1093/comjnl/44.5.398

M. Kvet et al.: Treating Temporal Function References in Relational Database Management System

[30] R. Tian, H. Zhai, W. Zhang, F. Wang, and Y. Guan, ‘‘A survey
of spatio-temporal big data indexing methods in distributed environ-
ment,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15,
pp. 4132–4155, 2022, doi: 10.1109/JSTARS.2022.3175657.

[31] R. Ma, X. Han, L. Yan, N. Khan, and Z. Ma, ‘‘Modeling and querying
temporal RDF knowledge graphs with relational databases,’’ J. Intell. Inf.
Syst., vol. 61, no. 2, pp. 569–609, Oct. 2023.

[32] B. El Idrissi, S. Baïna, A. Mamouny, and M. Elmaallam, ‘‘RDF/OWL
storage and management in relational database management systems:
A comparative study,’’ J. King Saud Univ. Comput. Inf. Sci., vol. 34, no. 9,
pp. 7604–7620, Oct. 2022.

[33] Q. H. Le and M. Diaz, Developing Modern Database Applications With
PostgreSQL: Use the Highly Available and Object-Relational PostgreSQL
to Build Scalable and Reliable Apps. U.K.: Packt Publishing, 2021, p. 417.

[34] P. R. G. Cordeiro, G. D. C. Cavalcanti, and R. M. O. Cruz,
‘‘Dynamic ensemble algorithm post-selection using hardness-
aware Oracle,’’ IEEE Access, vol. 11, pp. 86056–86070, 2023, doi:
10.1109/ACCESS.2023.3304912.

[35] V. K. Myalapalli and P. R. Savarapu, ‘‘High performance SQL,’’ in
Proc. Annu. IEEE India Conf. (INDICON), Dec. 2014, pp. 1–6, doi:
10.1109/INDICON.2014.7030467.

[36] N. Wang, A. Kamali, V. Kantere, C. Zuzate, V. Corvinelli, B. Frendo, and
S. Donoghue, ‘‘A hybrid cost model for evaluating query execution plans,’’
in Proc. IEEE 6th Int. Conf. Artif. Intell. Knowl. Eng. (AIKE), Sep. 2023,
pp. 133–138, doi: 10.1109/aike59827.2023.00030.

[37] Z. Ling, L. Qi, Z. Qianyuan, and C. Wei, ‘‘The study of adjustment and
optimization of Oracle Database in information system,’’ inProc. Int. Conf.
Comput. Inf. Sci., Jun. 2013, pp. 442–445, doi: 10.1109/ICCIS.2013.123.

[38] A. Badia, SQL for Data Science: Data Cleaning, Wrangling and Analytics
With Relational Databases. New York, NY, USA: Springer, 2020.

MICHAL KVET (Member, IEEE) became anAsso-
ciate Professor in applied informatics with the
Faculty of Management Science and Informat-
ics, University of Žilina, Slovakia, in 2020. He is
currently a recognized researcher, a conference
speaker, and an Oracle ACE Alumn. He is the
author of several textbooks and monography in
temporal database processing. He is the author of
more than 70 scientific articles indexed in IEEE-
Xplore, Scopus, or WOS. He is certified for SQL,

PL/SQL, analytics, and cloud databases. His research is devoted to tem-
poral databases, indexing, performance, analytics, and cloud computing.
He strongly participates with Oracle Academy and he is a part of multiple
Erasmus+ projects. Besides, he is a Consortium Leader of the Erasmus+
project dealing with environmental analytics. He also organizes multiple
database workshops annually.

JOZEF PAPAN received the Ph.D. and Doctorate
degrees in applied informatics from the Faculty of
Management Science and Informatics, University
of Žilina, Slovakia, in 2015 and 2020, respectively.
He is currently the Head of the IP Fast Reroute
Research Team, the Director of the Fortinet Net-
work Security Academy, and a member of Cisco
Academy with the Faculty of Management Sci-
ence and Informatics. He is also the Teacher of
the following subjects: Securing Networks with

Fortinet (Fortinet Academy), Principles of ICS (Cisco), and Network
Architectures (Linux + Networks). He is the author or coauthor of more
than 30 scientific papers published in scientific journals and presented at
international conferences. His research interests include IP fast reroute, fault-
tolerance, protocols and services in IP networks, WSN, the IoT, modeling
and simulation of computer networks, smart sensors, wireless technology,
portable devices, technical cybernetics, and cloud computing.

MARTINA HRÍNOVÁ DURNEKOVÁ is currently
pursuing the Ph.D. degree in applied informat-
ics with the Faculty of Management Science and
Informatics, University of Žilina. Her research
interests include data analysis, data warehouses,
architectures and performance impacts, and scal-
ability and cloud technologies.

54552 VOLUME 12, 2024

http://dx.doi.org/10.1109/JSTARS.2022.3175657
http://dx.doi.org/10.1109/ACCESS.2023.3304912
http://dx.doi.org/10.1109/INDICON.2014.7030467
http://dx.doi.org/10.1109/aike59827.2023.00030
http://dx.doi.org/10.1109/ICCIS.2013.123

