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ABSTRACT Facial paralysis refers to the abnormal behavior of facial muscles caused by a disorder of the
facial nerve, mainly manifested as facial asymmetry. In recent years, deep learning has found extensive
applications in facial paralysis detection research. However, most existing methods are constrained to
assessing the severity of facial paralysis, thereby concealing crucial symptoms within black-box models.
Compared to the severity of facial paralysis, the symptoms of facial paralysis are of greater significance to
both physicians and patients. To address this issue, this paper proposes a facial paralysis symptom detection
model based on facial action units (AUs). To enhance the accuracy of AU intensity prediction, a novel
Difference Ensemble Method (DEM) is introduced. This method leverages differential information between
frames within the same video to improve the accuracy of predictions for the current frame. Building upon
the predicted AU intensity sequences for keyframes in a video, an interpretable model for detecting facial
paralysis symptoms is designed. This model employs an active means to describe the asymmetry in facial
muscle strength and utilizes co-occurrence matrices to detect synkinesis. It is noteworthy that DEM is
exclusively trained on a dataset of normal faces but exhibits excellent performance when transferred to a
facial paralysis dataset. Additionally, DEM exhibits higher accuracy in predicting AU intensity compared
to existing methods. The F1 scores for detecting facial muscle function in the eyebrow, eye, and mouth
regions with our proposed model are 80.0%, 79.23%, and 90.91%, respectively. To demonstrate the model’s
performance, a synkinesis detection experiment is conducted, further validating its applicability in facial
paralysis detection.

INDEX TERMS Co-occurrence matrix, difference ensemble method, deep learning, facial paralysis
symptom detection, facial action unit.

I. INTRODUCTION
Facial paralysis, also known as facial nerve paralysis, is a
commonly encountered clinical condition [1]. Following the
onset of the disease, motor dysfunction in themuscles respon-
sible for facial expressions becomes apparent, resulting in
asymmetrical mouth and eye movements. This condition
significantly impacts patients’ social activities, diminishing
their quality of life [2]. Approximately 1.67% of people
worldwide experience facial paralysis [3], and it affects
individuals across various age groups. In the contemporary

The associate editor coordinating the review of this manuscript and

approving it for publication was Abdullah Iliyasu .

context, the prevalent pressures of survival and substantial
workloads, particularly among the younger population,
contribute to an alarming increase in the incidence of facial
paralysis each year [4].

Detecting facial paralysis is crucial for assessing the degree
of dysfunction in the facial nerve and muscles, as well as
for monitoring changes in a patient’s physical health during
treatment and follow-up [5]. At present, the detection of
facial paralysis is judged by clinicians according to their own
clinical experience and relevant standards, due to the existing
medical conditions and the limited number of relevant
specialists, and the problem of doctor-patient imbalance is
more serious [6]. In addition, it is difficult for paralyzed
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patients to find their facial paralysis in the early stage,
which makes it difficult for many patients to get timely and
effective treatment, further aggravating the condition. On the
other hand, doctors are influenced by subjective factors when
making a diagnosis of facial paralysis. At present, themedical
community utilizes various facial nerve grading scales to
evaluate patients’ faces. These including the Sunnybrook
Facial Grading System (SFGS) [7], the House-Brackmann
Scale [8], the Toronto facial grading system (TFGS) [9],
[10], and Facial Nerve Grading System 2.0 (FNGS2.0) [11],
among other. Unfortunately, there is no unified standard
for evaluating facial nerve function, leading to inconsistent
diagnostic conclusions and treatments by different doc-
tors for the same patient. This discrepancy significantly
impacts patients’ timely consultations, doctors’ choice of
medical methods, and the prompt evaluation of treatment
efficacy.

In recent years, numerous studies leveraging deep learning
have achieved automatic detection of facial paralysis. For
example, Hsu et al. introduced a deep hierarchical network
(DHN) designed for the quantitative analysis of facial
paralysis, utilizing a straight-line segmentation strategy based
on face landmark localization [12]. Liu et al. proposed
an objective method using facial videos and applying
machine learning models to provide assessment results [13].
Parra-Dominguez et al. proposed a method for detecting
facial paralysis in face photographs. Facial asymmetry was
measured using facial landmarks, and a binary classifier
based on a multilayer perceptron approach provided the
output labels [5]. However, the method based on facial
landmarks is not the underlyingmechanism of facial paralysis
and cannot further explain the symptoms and causes of facial
paralysis.

Liu et al. proposed a parallel hierarchical convolu-
tional neural network that combines the structure of Long
Short-Term Memory (LSTM) networks to quantitatively
assess the severity of facial paralysis through facial asym-
metric features in regions and temporal changes in image
sequences [14]. Xu et al. proposed a two-path LSTM network
to extract global and local facial motor features, fuse the
extracted advanced characterization information, and finally
evaluate facial paralysis [15]. Zhang et al. proposed a deep
learning-based method for the automatic prediction of facial
paralysis grading [16]. These methods operate as end-to-
end black box models, where the picture or video data of
facial paralysis patients is input, and the facial paralysis grade
is output. Although these methods demonstrate satisfactory
predictive effects, they lack the capability to provide an expla-
nation for the symptoms of facial paralysis. Both doctors and
patients require an understanding of the underlying causes
of facial paralysis, not solely its degree. Furthermore, it is
important to note that deep learning methods heavily depend
on a substantial amount of high-quality data. Individuals
with facial paralysis often exhibit reluctance to share their
photos or videos, posing a challenge in implementing

deep learning methods with a limited dataset for facial
paralysis.

Facial paralysis symptoms are interpreted based on the
intensity of Facial Action Units (AUs) in the Facial Action
Coding System (FACS), addressing the requirements of both
physicians and patients. The FACS is a widely used protocol
for recognizing and labeling facial expressions, providing a
description of the movement of facial muscles [17]. AUs
are defined as the minimum units of facial movement. They
can appear individually or in combination, and each facial
movement activates one or more AUs. The intensity of an
action unit (AU) reflects the contraction state of the facial
muscles. FACS uses the letters A to E to represent AU
intensity changes from barely detected or tracked (A) to
maximum intensity (E).

To accurately analyze facial paralysis symptoms, it is
crucial to first accurately predict AU intensity. For example,
Zhao et al. proposed a joint patch and multi-label learning
(JPML) framework, leveraging group sparsity to identify
important facial patches. JPML then employs a multi-label
classifier, constrained by the likelihood of co-occurring AUs,
to enhance prediction accuracy [18]. Li et al. designed a set
of the adaptive region of interest (ROI) cropping networks,
learning regional characteristics separately. They utilized
multi-label learning to integrate the output of individual ROI
cropping networks, explored interrelationships between these
networks, and obtained global characteristics for sub-region
AU detection [19]. Wu et al. introduced a contrasting feature
learning method utilizing Convolutional Neural Network
(CNN) learning. This method extracts feature differences
between neutral faces and those displaying AUs, facilitating
AU detection based on these distinctive features [20]. YaoXia
proposed a three regions-based attention network (TRA-Net)
that divides the face into upper, middle, and lower regions.
AUs are grouped according to their occurrence locations, and
higher-level features are extracted using three consecutive
soft attention modules for final AU detection [21]. It is evi-
dent that numerous studies enhance AU prediction accuracy
by identifying differences between actions or by narrowing
the model’s focus. These insights serve as inspiration for the
design of our model.

To address these problems and build upon previous
experiences, a new method for facial paralysis symptom
detection based on facial action units is proposed. The
contributions are as follows:

1) We introduce a novel difference ensemble method
to enhance the accuracy of AU intensity pre-
diction for the current frame. This is achieved
by leveraging differential information between the
current frame and other frames within the same
video.

2) We utilize the Active Mean (AM) to characterize
AU intensity in video sequences for detecting abnor-
mal facial functions and leverage a co-occurrence
matrix for identifying synkinesis. This method not

VOLUME 12, 2024 52401



H. Niu et al.: Facial Paralysis Symptom Detection Based on Facial Action Unit

only exhibits strong interpretability but also provides
valuable insights into the essence of facial paralysis
symptoms.

The remainder of this paper is organized as follows:
Section II reviews relevant literature on facial action unit
intensity prediction and facial paralysis detection. Section III
provides a detailed description of the difference integration
method and the facial paralysis symptom detection model.
Section IV introduces the dataset and outlines the data
preprocessing process. Section V describes the model
training process, backbone network selection, comparative
experiments, and the results of facial paralysis symptom
detection. Finally, Sections VI and VII conclude with a
discussion of the results.

II. RELATED WORK
A. FACIAL ACTION UNIT INTENSITY PREDICTION
Facial AU intensity prediction, a pivotal task in facial behav-
ior analysis, has garnered widespread attention in recent
years. Zhang et al. proposed a weakly supervised block depth
model based on two attentional mechanisms to predict AU
intensity [46]. Chen et al. utilized a regional attentional AU
strength estimation method via uncertainty-weighted multi-
task learning with a multi-head self-attention mechanism to
avoid redundancy and achieve attentional coding for each
patch [47]. These innovative methods provide strong support
for accurate estimation of facial action intensity. In the field
of facial expression analysis and face recognition [57], [58],
[59], facial action unit strength prediction has received much
academic attention. Seuss et al. employed a hybrid approach
to estimate AU strength for emotion assessment via linear
regression [48]. Wang et al. introduced a multiple facial AU
recognition and intensity estimation method, implemented by
modeling the relationship between AUs in feature space and
label space [22]. Hupont et al. proposed a real-time method
for detecting the intensity of AUs based on the scale of a facial
action coding system. Real-time processing is achieved by
combining a histogram of gradient descriptors with a linear
kernel support vector machine [23]. Wei et al. proposed a
regression method capable of obtaining AU intensity robustly
and accurately. The method extracts multi-scale spatial
features and corresponding temporal features from faces in
a sequence of video images and learns the local relationships
of these spatiotemporal features [24]. Ge et al. designed the
Adaptive local - global Relational Network to be flexibly
adapted to facial tasks by adaptivelymining explicitly defined
muscle regions of the face to enhance the visual details of
facial appearance and texture [44]. Ntinou et al. proposed a
simple but effective method based on heatmap regression to
solve the problem of localization and strength of AUs [49].
These methods not only contribute significantly to the basic
AU intensity estimation but also have potential applications in
sentiment analysis. To improve the efficiency of AU intensity
estimation, Fan et al. introduced knowledge distillation (KD)

for training models [50]. However, these methods do not
fully consider the dynamic characteristics of the subject as
an individual, resulting in the inability to comprehensively
extract dynamic information. In this context, Ma et al.
proposed a method to quickly construct an AU intensity
prediction model and successfully constructed an automatic
estimation model of AU intensity for face images [51].
Different from the above methods, DEM improves the
accuracy of AU intensity prediction for the current frame
with the assistance of other frames in the same video.
Comparative experimental results demonstrate superior per-
formance in AU intensity prediction compared to existing
methods.

B. FACIAL PARALYSIS DETECTION
Detection of facial paralysis symptoms has been widely
studied in recent years because of the obvious psycho-
logical and functional impact of this disorder on patients.
In clinical practice, facial abnormalities are detected through
a systematic visual examination of facial morphology and
muscle movements [1]. During the assessment, the patient is
asked to perform specific facial movements such as smiling,
raising the eyebrows, closing the eyes, and bulging, which are
then scored by the clinician on a facial grading scale [13].
In addition, there are many types of facial nerve grading
scales available [7]. However, these traditional assessment
methods are time-consuming and subjective, as the process
must rely on medical professionals to perform them. In recent
years, deep learning has been widely applied in the healthcare
sector [60], [61], [62], particularly in the assessment of the
severity of facial paralysis. The cascade encoder structure
adopted by Wang et al. fully exploits the advantages of
face semantic features in face spatial information extraction,
which contributes to the accuracy of facial paralysis assess-
ment [52]. While Parra-Dominguez et al. performed facial
palsy detection on images by keypoint analysis [5]. Gogu et
al. proposed an automatic facial paralysis recognition method
for classifying facial paralysis and healthy subjects [53]. Ge et
al. proposed a new adaptive local-global relational network
(ALGRNet) for facial AU detection and used it for facial
paralysis severity classification [45]. Literature [14], [15],
and [16] also uses deep learning algorithms to classify the
severity of facial paralysis. However, most current methods
use end-to-end black-box models to classify the severity of
facial paralysis but fail to adequately capture the problem of
facial paralysis symptoms potentially in the black-boxmodel.
Boochoon et al. also pointed out several challenges faced
by deep learning in facial paralysis detection, including the
quality of the data and the interpretability of the model of
the machine learning algorithm [63]. Compared to existing
methods, this study uses facial AU intensity to detect
facial muscle function and the AU co-occurrence matrix
to detect synkinesis, which is more interpretable and can
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TABLE 1. AUs from the Facial Action Coding System.

meet the needs of doctors and patients for facial paralysis
detection.

III. METHODOLOGY
A. FACIAL ACTION UNIT
The facial AU describes the changes in appearance caused by
a set of facial muscle movements, and their combination can
convey various facial expressions. Facial AUs are considered
as the mapping from facial muscles to facial actions. They
are chosen as the foundational elements for interpreting facial
paralysis symptoms, distinguishing our method significantly
from other facial paralysis detection methods. The 12 AUs
used in our model and their corresponding muscles are shown
in Table 1.

B. MODEL ARCHITECTURE
The overall architecture of the facial paralysis symptom
detection model is shown in Figure 1. The model is
divided into two parts based on the AUs: the prediction
of AU intensity and the facial paralysis symptom detection
based on the AU intensity. As facial paralysis symptoms
are better revealed during dynamic movements, videos are
selected as input for the AU intensity prediction model. Data
processing is required before prediction can be performed.
The processed data is input into the AU prediction model
based on the difference ensemble method to predict AU
intensity. To improve the accuracy of each frame’s prediction,
other frames from the same video are randomly selected to
assist in the prediction process. Facial paralysis symptoms
are detected using the predicted AU intensity. Detection of
abnormal facial muscle function by calculating the active
mean value of AU. Additionally, synkinesis between facial
muscles is detected using the AU co-occurrence matrix.

C. DIFFERENCE ENSEMBLE METHOD
The difference ensemble method (DEM) is a strategy that
can improve the accuracy of AU intensity prediction for the
current frame by predicting the difference between frames.
DEM requires the establishment of two models: the original
value prediction model (OVPM) and the difference value

prediction model (DVPM), with the data flow between the
models illustrated in Figure 2.

To improve the accuracy of the ith frame original data
Xi to predict Yi, the original value prediction model needs
another original data Xj to assist the prediction. In the original
value prediction model, two sets of original data, Xi and
Xj, serve as inputs, yielding predicted values Yi and Yj after
model inference. Simultaneously, the model also generates
intermediate features F (k)

i and F (k)
j corresponding to the

input data Xi and Xj. The difference value prediction model
takes the form of the difference 1F (k)

i,j between intermediate

features F (k)
i and F (k)

j as its input, producing the difference

1Yi,j between the predicted values Yi and Yj.1F
(k)
i,j and1Yi,j

are defined as follows:

1Fi,j(k) = Fi(k) − Fj(k) (1)

1Yi,j = Yi − Yj (2)

where F (k)
i represents the kth intermediate feature generated

when predicting input Xi. 1Yi,j is required as the label of the
difference value prediction model during model training.

The predicted value of Xi is Yi(j) with the assist of Xj. The
Yi(j) is calculated by

Y (j)
i = Yj +1Yi,j (3)

where Yj is original value predicted from Xj by original
value prediction model.1Yi,j is difference value predicted by
difference value prediction model.

In order to ‘‘shop around’’, m original data Xj1 , Xj2 , . . . ,
Xjm are used to assist in the prediction, and the prediction
value of Y (j1)

i , Y (j2)
i , . . . , Y (jm)

i of Yi are obtained respectively.
The average of all prediction values is calculated as the final
prediction values Ŷi. The overall structure of DEM is shown
in Figure 3. The pseudo code is shown in Algorithm 1.

In Section V-B, an appropriate backbone network is
selected for the original and difference value prediction
model. In addition, the improvement effect of DEM was
verified. Several key points should be considered when using
the DEM:
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FIGURE 1. The overall architecture of facial paralysis symptom detection. Note that due to the principle of mirror
symmetry, a flip operation was performed on the right face during data processing.

FIGURE 2. Data flow of the original value prediction model and the
difference value prediction model.

FIGURE 3. The overall structure of DEM.

1) The model parameters of the difference value pre-
diction model depend on those of the original value
prediction model. This dependency arises from the fact
that the former requires the intermediate features of
the latter as inputs, which are directly influenced by
the model parameters of the original value prediction
model. Consequently, any adjustments made to the
model parameters of the original value prediction
model require retraining the difference value prediction
model. The trained original value prediction model
and the difference value prediction model should be
matched for use.

Algorithm 1 DEM-Based AU Intensity Prediction
Require: Facial movement video X
Ensure: AU intensity Y
1: Xi, Xj← Perform ith, jth frame extraction on X ;
2: Yi,F

(k)
i ← OVPM (Xi) for each k ∈ {1, 2,. . . , l};

3: Yj,F
(k)
j ← OVPM

(
Xj

)
for each k ∈ {1, 2,. . . , l};

4: Compute 1F (k)
i,j = F (k)

i − F
(k)
j ;

5: 1Yi,j← DVPM
(
1F (k)

i,j

)
;

6: Compute Y (j)
i = Yj +1Yi,j;

7: Calculate Yi = avg
(
Y (j)
i

)
;

2) The method proves more effective in enhancing results
for problems involving the assessment of fuzzy degrees
and may not be as effective in improving outcomes
for classification problems, such as cat and dog
recognition.

3) The method calculates the difference value by subtract-
ing corresponding elements from two feature vectors.
Thus, it is crucial to ensure that the feature meanings
represented by the corresponding elements in the
subtracted feature vectors are consistent.

4) Similar backbone networks are chosen for both the
original value prediction model and the difference
value prediction model to ensure seamless integration
of shallow features from the former into the corre-
sponding shallow locations of the latter, and to enable
smooth integration of deep features from the former
into the corresponding deep locations of the latter.

D. SYMPTOM DETECTION BASED ON AU
The AU intensity is predicted by DEM, as discussed in the
previous section. Furthermore, the prediction accuracy can
be gradually enhanced with the assistance of other frames.
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TABLE 2. The 10 AUS used for abnormal facial function detection.

In this section, AU intensity sequences are employed to detect
two symptoms of facial paralysis: abnormal facial muscle
function and synkinesis.

1) ABNORMAL FACIAL MUSCLE FUNCTION DETECTION
MODEL
Abnormal facial muscle function is mainly reflected in the
asymmetry of AU intensity values. Asymmetry is the main
basis for our abnormal detection. The judgment of abnormal
facial muscle function involves comparing the difference in
AU intensity between the left and right faces. The activemean
(AM) is defined to describe AU intensity in video sequences,
and it can be represented as follows:

AMpos =
1
|S|

∑
i∈S

AUi,p os (4)

S =
{
i | AUi, left is active orAUi,right is active} (5)

where i represents the index of a video sequence, pos
indicates the position of the left or right face, AUi,pos
represents the AU intensity value in the ith frame at the
pos position, and AMpos represents the AM value of the pos
position. The AU activities can be determined using a given
threshold. If the value is greater than the threshold, the AU is
considered active; otherwise, it is considered inactive. In this
study, the threshold is set to 0.5.

The difference between the AM of left and right facial
muscles is utilized to describe the asymmetry in their
activation. It is defined as

1AM = AMleft − AMright (6)

where1AM is the difference between the left and right facial
muscles. If 1AM is greater than 0, it means that the left
facial muscle is stronger than the right facial muscle. On the
contrary, if 1AM is less than 0, it means that the right facial
muscle is stronger than the left facial muscle.

In order to meet the clinical assessment requirements for
facial paralysis, ten AUs were selected, corresponding to the
eyebrow, eye, and mouth areas. Ten AUs in FACS were used
for abnormal facial function detection as shown in Table 2.

The1AM sum of multiple AUs in the same area was taken
as the difference value of left and right face activity in that
area. If there is a large difference between the left and right
faces, the muscle function of the weaker side is considered
damaged. The degree of damage is quantified by the value of
|1AM |.

2) SYNKINESIS DETECTION MODEL
Facial synkinesis is a feature secondary to facial paralysis.
Specifically, when a patient with facial paralysis attempts to
voluntarily contract one facial area, abnormal and involuntary
muscle contractions occur in the other facial area [26].
In other words, two uncorrelatedAUs are activated simultane-
ously when synkinesis occurs in the face. The co-occurrence
matrix (CM) was used to describe the probability of
co-activation between AUs. Left and right face asymmetry is
discussed separately. Four CMs are built, includingCMleft|left ,
CMleft|right , CMright|left , and CMright|right . The probability of
an element in row i and column j of CMpos1|pos2 activation is
defined as

P(AUpos1,iis active|AUpos2,jis active) =
NAUpos1,i+AUpos2,j

NAUpos2,j
(7)

where pos1 and pos2 represent the left or right face, i and
j indicate the number of AU, NAUpos1,i+AUpos2,j is the total
number of simultaneous occurrences ofAUpos1,i andAUpos2,j,
and NAUpos2,j is the number of occurrences of AUpos2,j.
A threshold is set to determine whether AU was activated or
not. If it is greater than the threshold, the AU is considered
active, otherwise, it is considered inactive. The threshold is
set to 0.5.

The difference between the left and right faces is obtained
by calculating the difference between the two co-occurrence
matrices CMright−left|left and CMleft−right|right , defined as

CMright−left|left = CMright|left − CMleft|left (8)

CMleft−right|right = CMleft|right − CMright|right . (9)

The co-occurrence difference matrix describes the dif-
ference in co-occurrence between the left and right sides.
If the value is positive, it means that the co-occurrence of the
opposite side is stronger than that of the same side. On the
contrary, the same side is stronger than the opposite side.
The degree of difference can be described by |CMright−left|left |

and |CMleft−right|right |, which is the absolute value of the two
matrices. If the difference exceeds this threshold, the twoAUs
are considered to be highly correlated. The threshold was
taken to be 0.3.

While synkinesis shares a resemblance with the co-
occurrence matrix, there exist distinctions. Synkinesis neces-
sitates the fulfillment of two conditions: firstly, a lower
correlation among AU pairs in individuals without facial
paralysis; secondly, a higher correlation among AU pairs in
patients afflicted with facial paralysis. Consequently, when
utilizing the co-occurrence matrix, it becomes imperative
to selectively filter correlated AU pairs within the normal
population.

Mavadati et al. statistically analyzed the AU co-occurrence
matrix of 12 basic expressions of normal subjects’ expres-
sions and the results are shown in Fig. 4(a) [27]. To meet
the needs of facial paralysis synkinesis detection, the AU
co-occurrence matrix was filtered. In this matrix, elements
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FIGURE 4. AU co-occurrence matrix and mask matrix to meet the needs of facial paralysis synkinesis detection.

above the threshold (0.5) were filtered out and set to black,
while elements below the threshold were retained and set to
white, resulting in the filtered result as shown in Fig. 4 (b).
This matrix was used as a mask to filter the co-occurrence
difference matrix. The pseudo code is shown in Algorithm 2.

Algorithm 2 Au-Based Facial Paralysis Detection
Require: AU intensity Y
Ensure: Facial Paralysis Symptoms Z
1: Compute AM by equation 4;
2: Compute 1AM = AMleft − AMright ;
3: if 1AM > 0 then
4: Z ← Abnormal right side of face;
5: else
6: Z ← Abnormal left side of face;
7: end if
8: Compute CM by equation 8 and equation 9;
9: Filter CM ;

10: if CM ̸= 0 then
11: Z ← synkinesis;
12: else
13: Z ← no synkinesis;
14: end if
15: return Z ;

IV. DATA PROCESSING
A. DATASETS
The DISFA+ dataset is a public dataset with high-quality AU
intensity labels [27]. It contains posed and spontaneous facial
expression data for a set of individuals and provides manually
labeled frame-based annotations of the intensity of twelve

FACS facial actions. The intensity of each AUwas labeled on
a 6-point intensity scale [0-5]. DISFA+ selected nine subjects
from DISFA and asked them to imitate 42 facial movements
and record their postural facial movements [28]. These par-
ticipants covered a wide range of ethnicities, including Asian,
African American, and Caucasian. Compared to other public
datasets (such as DISFA, BP4D [29]), the distinctive feature
of the DISFA+ dataset lies in its unique collection process,
which involves instructing participants to mimic 42 facial
expressions. This approach is akin to the way doctors request
patients to perform a series of facial movements during
facial paralysis diagnoses. Furthermore, the DISFA+ dataset
exhibits standardized and distinct AU features, facilitating
enhanced model learning and performance. Consequently,
we have chosen the DISFA+ dataset as the foundation for
our research.

To test the performance of the facial paralysis symp-
tom detection model, videos of the facial movements
of 34 patients with facial paralysis were obtained from
various channels. The demographic and facial behavior
video information of the patients with facial paralysis is
reported in Table 3. In these videos, specialists annotate the
motor functions of the patient’s left and right facial muscles
(including the eyebrows, eyes, and mouth). Considering the
privacy protection of patient information, this dataset could
not be publicly published.

B. DATA PREPROCESSING
Process the input video data to transform it into half-face
keyframe images. The data processing is divided into
three main steps: face target detection, filtering to extract
keyframes, and splitting the face into halves.
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TABLE 3. Demographic and facial behavior video information of patients
with facial paralysis.

1) FACE TARGET DETECTION
The Retinaface target detection model is used to select the
face target box sequence in the video. 5 facial feature points
(left eye, right eye, nose tip, left corner of mouth, right corner
of mouth) are predicted by the Retinaface model.

2) FILTER TO GET KEYFRAMES
The method of filtering keyframes by subtracting two images
requires the face’s position in the image to remain relatively
stable. To ensure facial stability, we select the midpoints of
three feature points (left eye, right eye, and nose tip) that
do not move with facial expressions as relative positioning
points. Subsequently, the images are downsampled to 48 ×
48 pixels using Bilinear interpolation. This downsampling
helps eliminate the effects of small-scale shaking while
retaining large-scale variations in facial behavior. The two
downsampled images were subtracted and a pixel threshold
was set to filter out similar frames.

3) SPLIT HALF OF THE FACE
Firstly, an affine transformation is applied using three feature
points (left eye, right eye, and nose tip) to achieve face
alignment. Secondly, the image is resized to 512× 512 pixels
by filling the surrounding areas with a grey bar. Thirdly,
the face image is manually divided into two parts: the left
and the right. Finally, the right half-face image is flipped to
obtain the data format for the model input. The image size of
the input model is 512 × 256.

V. EXPERIMENT AND RESULT ANALYSIS
In this section, model training and facial paralysis symptom
detection experiments are conducted to select the best
backbone network and validate the performance of the
proposed model.

A. MODEL TRAINING
After data processing, a total of 10,010 frames were obtained
from the DISFA+ dataset. These images were divided into
an 8:2 ratio and used as a train set and test set for the original
value prediction model, respectively. To train the difference
value prediction model, a new dataset needs to be created.
This model requires the difference between the feature maps
of the two frames as well as the difference between the
corresponding labels. To achieve this, we combined frames
from the same video in the DISFA+ dataset in pairs,
ensuring that the combined frames were not duplicated. After

TABLE 4. Accuracy of different networks in predicting raw values in the
test set.

this process, 78,400 distinct frame pair combinations were
obtained and subsequently divided into training and testing
sets in an 8:2 ratio for the difference value prediction model.

The PyTorch is chosen as the deep learning framework
and the NVIDIA GeForce RTX 3090 GPU is used for
the experiments. After numerous tests, optimal training
hyperparameters are determined: the initial learning rate is
set to 0.0001, employing an exponential decay strategy for
learning rate scheduling with a decay gamma coefficient of
0.98. The chosen loss function is cross-entropy loss. The
batch size is adjusted based on the video memory size. In this
study, the 3090 GPU has a video memory size of 32G.
The batch size of the original value prediction model is set
to 64. As the original value prediction model also utilizes
video memory during the training of the difference value
prediction model, the batch size for training the difference
value prediction model is set to 16.

The input of the difference value prediction model depends
on the output of the original value prediction model.
Consequently, during model training, the original value
prediction model is executed first, obtaining the feature map,
which is then used as input for the difference value prediction
model. The 1Y range outputted by the difference value
prediction model is discrete and falls between −5 and 5. The
final prediction results of the DEM are continuous numerical
values, with a range limited to between 0 and 5.

B. SELECTION OF BACKBONE NETWORK
The most effective and suitable backbone network is selected
through comparative experiments. Compare the performance
of VGG, ResNet, DenseNet, MobileNet, and Efficient-Net
in predicting original values [30], [31], [54], [55], [56]. The
comparison results are shown in Table 4.

In Table 3, 5GG-19 demonstrates the highest performance
in predicting the original values. In comparison to other
networks, the VGG neural network demonstrates several
advantages. Firstly, the VGG neural network has a relatively
simple structure, facilitating the output of intermediate
feature maps. Secondly, due to the significantly large fully
connected part of the VGG neural network, the features
in the convolutional part are relatively abstract. However,
ResNet and DenseNet have deeper layer structures with
a higher number of intermediate feature map outputs,
making it challenging to determine the optimal solution.
Moreover, they include only one fully connected layer, and
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FIGURE 5. Network structure of DEM.

thus, in the later convolution stages, the original value
prediction network is already close to the final prediction
value. This approximation can interfere with the difference
prediction model, affecting its ability to make more accurate
predictions for differences. Experimental results indicate that
the prediction accuracy of MobileNet and EfficientNet is
above 90%, but still lower than VGG-19. Therefore, the
VGG-19 was chosen as the backbone network for the original
value prediction model, which is more suitable for DEM.

Combined with the discussion in Section III-C, the original
value prediction model and the difference value prediction
model should use similar backbonemodels. Therefore, VGG-
19 was selected as the backbone network for the difference
value prediction model. The network structure of the DEM is
illustrated in Figure 5.

C. EFFECT IMPROVEMENT OF DEM
For each frame, m frames from the same set of keyframes
are randomly selected as inputs to the DEM. The accuracy of
predicting AU intensity and the processing time per image
in the test set when m takes different values are shown in
Figure 6.
From Figure 6, it can be seen that the accuracy of

predicting AU intensity gradually increases from 91.07% to
96.66% with the increase of m value. The experimental data
demonstrate that DEM is an effective method with a more
noticeable improvement effect. In particular, the accuracy
increased by 4.6% when m was between 0 and 2, after which
the accuracy changed slowly. In addition, the processing time
per image increases linearly with the growth of m. Therefore,
in practical applications, the selection of m needs to find a
balance between prediction accuracy and processing time.
In this study, we consider setting the value of m to 2.

D. COMPARISON WITH RELATED WORKS ON AU
INTENSITY PREDICTION
To demonstrate the superiority of our method, we compare
it with other methods proposed in the literature. Table 5

FIGURE 6. Effect improvement of the DEM. (a) represents the AU intensity
prediction accuracy. (b) represents the processing time for each image.

presents a comparison of the Mean Absolute Error(MAE),
Intraclass Correlation Coefficient(ICC), and Pearson Cor-
relation Coefficient(PCC) results between our proposed
method and other approaches on the DISFA+ dataset.

Walecki et al. [32] introduced the Copula Ordinal
Regression (COR) framework to separate AU-dependent
probabilistic modeling from edge modeling of AU intensity.
Kaltwang et al. [33] proposed the Doubly Sparse Relevance
Vector Machine (DSRVM) for the continuous estimation
of facial behavior interpretation strength. Wang et al. [22]
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TABLE 5. Performance comparison of AU intensity prediction on DISFA+.

presented a multi-task feature learning technique for sharing
features and a Bayesian network to capture AU label
dependencies for AU intensity estimation. Walecki et al. [34]
proposed a deep Convolutional Neural Networks-conditional
random field (CNN-CRF) model to estimate multiple
AU intensities. Zhang et al. [35] introduced a Bilateral
Ordinal Relevance Multi-instance Regression model to
learn a frame-level intensity estimator with weakly labeled
sequences. Wang et al. [36] employed a deep framework
to learn the basic attributes of each image. Support vector
AU identification and support vector regression AU intensity
estimation are trained by maximizing the log-likelihood
AU mapping function. Ntinou et al. [49] utilized Heatmap
Regression to estimate the AUs intensity. Chen et al. [47]
adopted a regional attentional AU intensity estimation
methodwith UncertaintyWeightedMulti-task Learning (RA-
UWML) with a multi-head self-attention mechanism to avoid
redundancy and achieve attentional coding for each patch.
Ge et al. [45] proposed an adaptive local-global relational
network (ALGRNet) model for facial AU detection to
estimate the severity of facial paralysis. As can be seen from
Table 5, our method achieves better performance compared
to the others. This result fully validates the effectiveness and
superiority of our model.

E. FACIAL PARALYSIS SYMPTOM DETECTION BASED ON
AU
The AU intensity sequences for the left and right halves
of the face in the video were obtained using the AU
prediction model based on DEM. Facial paralysis symptoms
were detected through an active-mean-based facial muscle
function detection model and a co-occurrence matrix-based
synkinesis detection model, both leveraging AU intensity
sequence information.

1) ABNORMAL FACIAL MUSCLE FUNCTION DETECTION
The facial muscle function of the patients in the dataset
was detected using an active-mean facial muscle function
detection model. To ensure detection accuracy, a professional

FIGURE 7. Effect of detection of abnormal facial muscle function.

doctor labeled the facial muscle function strength of the left
and right faces in the eyebrow, eyelid, and mouth areas in the
videos of patients with facial paralysis. The labeling rules are
as follows: if the left face is stronger than the right face, it is
marked as 1; if the right face is stronger than the left face, it is
marked as -1; if the difference between the two is not obvious,
it is marked as 0. Subsequently, the facial muscle function of
the dataset of patients with facial paralysis was evaluated, and
the measure of the effect is shown in Figure 7.
As can be seen in Figure 7, the facial muscle function

detection model has the highest detection effect for the mouth
region and a slightly lower effect for the eyebrow and eye
regions. Improvement in the detection results for the eyebrow
and eye regions is planned for future work.

2) SYNKINESIS DETECTION
Only a small number of videos in the collected dataset
show significant synkinesis. We demonstrate an experiment
for synkinesis detection. Figure 8 illustrates the facial
AU intensity curve of the patient. Figure 9 shows the
co-occurrence difference matrix.

As seen in Figure 9, for AU5 and AU20 the co-occurrence
value of the right face relative to the right face is stronger
than that of the left face relative to the right face, as can
also observed in Figure 8. The experimental results align with
our expectations. Due to the absence of a gold standard, the
outcomes of these experiments cannot be directly compared
with those of other studies. In our forthcoming work,
we plan to collect additional data for synkinesis detection
experiments.

VI. DISCUSSION
Our research focuses on the use of computer vision
techniques to detect facial paralysis, a common condition.
By exploring the potential of extracting facial AU intensity
from video data, we introduce a non-invasive method for
detecting symptoms of facial paralysis, thereby advancing the
use of artificial intelligence in healthcare. Our work addresses
the need for low-stress, low-cost, and more accessible
methods for facial paralysis detection, thereby enhancing
the diagnostic and decision-making process in healthcare.
In addition, the methods of our research can be integrated
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FIGURE 8. AU intensity curve for a certain patient. (a) represents the intensity variation of AU5 in the left and right half-faces. (b) represents the
intensity variation of AU20 in the left and right half-faces.

FIGURE 9. Co-occurrence difference matrix.

with medicine, enabling healthcare professionals to use
advanced computational techniques to detect and analyze
facial paralysis.

In this study, facial function was detected based on the
asymmetry of AU intensity on both sides of the face. Facial
asymmetry has also been highlighted in the literature [37],
[38] as a key factor in detecting facial paralysis. Additionally,
asymmetry analysis plays a crucial role in evaluating the
success of surgical interventions following facial resusci-
tation therapy. Previous studies primarily concentrated on
analyzing static asymmetrical facial features, neglecting
adequate consideration of synkinesis features. To address this
research gap, we opted to use video as an input for the model
and propose methods for detecting synkinesis. Based on the
experimental results, the method is promising and worthy of
encouragement.

The facial paralysis symptom detection method pro-
posed in this paper, based on facial AU, holds significant

applicability and potential utility in diverse healthcare
environments. Firstly, the method offers a non-invasive
and privacy-preserving solution. In contrast to traditional
detection methods like electro-neurography (ENoG) [39],
surface electromyography (sEMG) [40], and electromyogra-
phy (EMG) [41], the approach utilizes video data for facial
feature extraction. These features can be easily captured,
resulting in considerable time and resource savings, thereby
enhancing efficiency in medical scenarios. Secondly, our
method not only detects abnormal facial muscles through
AU intensity but also identifies synkinesis using the AU co-
occurrence matrix. To the best of our knowledge, there are
no studies on synkinesis detection in facial paralysis, and
we are the first to introduce it. Additionally, our method
can be applied in telemedicine applications to facilitate
remote detection and monitoring of individuals at risk of
facial paralysis, especially in remote or resource-poor areas.
Remote detection can further enable early identification
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of potential facial paralysis symptoms, promoting timely
intervention and treatment and thereby enhancing the overall
quality of care for the individual.

In terms of computational complexity, our approach
heavily relies on predicting and analyzing facial Action
Unit (AU) intensity, which is a computationally relatively
lightweight task. Nevertheless, our method necessitates
processing a substantial amount of video data, potentially
exerting pressure on computational resources, especially
when dealing with high-resolution or high-frame-rate videos.
However, given the continuous development of computing
technology, we believe that this challenge can be effectively
addressed.

This research currently has some limitations, primarily the
lack of a large patient dataset. Because the sensitivity of
patient privacy makes it challenging to collect enough data
in healthcare, it is difficult to accumulate the large amount of
data needed to train a robust and widely applicable machine
learning model. This limitation has been acknowledged in
other studies [42], [43]. To address this challenge efficiently,
we utilized a normal face dataset for model training in the
initial phase, and the transfer to facial paralysis symptom
detection yielded positive results. Based on the available
experimental results, the real-world application of the model
may face some inherent constraints and limitations. Future
work will concentrate on optimizing the model to enhance the
accuracy of facial muscle function detection in the eyebrow
and eye regions. In the meantime, we will gather more data
from facial paralysis patients to validate the performance
of the synkinesis detection model. Ultimately, we plan to
integrate this model into an application to offer supportive
assistance in clinical settings.

VII. CONCLUSION
In this study, we propose a highly interpretable model for
detecting facial paralysis symptoms. The prediction accuracy
of AU intensity is significantly improved by introducing a
novel DEM. The method fully leverages information from
other frames in the same video to effectively support the
prediction of the current frame. We utilize the AU intensity
of video keyframes to detect facial paralysis symptoms.
Abnormal facial muscle function is detected by analyzing
the mean AU intensity values. The AU co-occurrence matrix
is used to detect facial paralysis synkinesis. Following
comparative experiments, the backbone network that is
most suitable for the DEM is selected, providing a solid
foundation for accurate prediction of AU intensity. The
experimental results demonstrate that the method not only
outperforms existing methods in terms of performance but
also exhibits the ability to effectively transition from normal
facial AU detection to detecting facial paralysis patients.
Future research will focus on optimizing the model to further
improve the accuracy of facial muscle function detection in
the eyebrow and eye regions. It is also planned to increase
the dataset size to validate the synkinesis detection model

to ensure its robustness in a wider range of scenarios and
populations.
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