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ABSTRACT Fuzzy PID control is a control method with good adaptability and stability in complex
environments. It is used to achieve precise regulation and stable control of the system. In this paper,
a fish scale evolution GSOM is proposed to improve the control method of fuzzy PID. Firstly, the fish
scale regulation system is established and the differential evolution theory is introduced to realize the
evolutionary upgrading of the system. Secondly, the GSOM module is introduced. The system is optimized
by self-organizedmapping neural network to achieve dynamic regulation of polymorphic inputs. Meanwhile,
the fuzzy rule base and parameter regulation mechanism in fuzzy PID control are dynamically optimized.
Improve the performance of the control system. Finally, the control method of improved fuzzy PID for
fish scale evolution GSOM is simulated using MATLAB. The simulation experiments also compare several
traditional PID control methods. The comparison indexes include stability, robustness, control accuracy and
feedback output effect. The results show that the method in this paper is more stable and has fewer iterations
when facing the dynamic input environment. The tracking error and control output of the controller system
are significantly improved. It has good feedback output effect, solves the saturation problem and has higher
control accuracy.

INDEX TERMS Fish scale regulation system, differential evolution, GSOM, dynamic regulation, fuzzy rule
base, parameter regulation mechanism.

I. INTRODUCTION
In the field of control engineering, PID (Proportional-
Integral-Derivative) controller is a classical feedback control
algorithm. It is widely used in industrial control systems [1],
[2], [3], [4], [5], [6], [7]. The PID controller regulates the
output of the system by means of three components: pro-
portional, integral and differential to achieve precise control
of the target value. However, the traditional PID controller
performs poorly when facing complex and nonlinear systems.
For example, the field of multi-machine cooperative control
in industrial robotics [8]. In order to overcome the limitations
of traditional PID controllers, fuzzy PID control has emerged.

The basic form of fuzzy PID control is based on
the introduction of fuzzy logic theory to traditional PID
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control [9]. It enables the controller to handle fuzzy and
uncertain inputs, thus improving the robustness and adapt-
ability of the system. Today’s fuzzy PID controllers are
composed of three main components: fuzzification, fuzzy
inference and defuzzification. The fuzzification stage con-
verts the input and output quantities into fuzzy sets. The fuzzy
inference stage generates fuzzy outputs by reasoning based
on a set of fuzzy rules. And the defuzzification stage con-
verts the fuzzy output into actual control quantities. In recent
years, domestic and foreign scholars have proposed many
innovative methods and models for the field of fuzzy PID
control [10], [11], [12], [13], [14], [15], [16], [17].

Literature [10] proposed a fuzzy adaptive PID control
method for a multi-mechanism wheeled mobile robot. The
method adjusts the parameters of the PID controller in real
time through a fuzzy logic system. Thus, smooth and effi-
cient movement of the robot is realized. However, the design
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and parameter adjustment of the fuzzy logic system is more
complicated. It requires a large amount of experimental data
and experience to determine the fuzzy rules and parameters.
This increases the difficulty of designing and debugging the
system. A fractional order general type 2 fuzzy PID con-
troller design algorithm is given in literature [11]. Themethod
utilizes the NT-type approximation algorithm to obtain the
defuzzification results directly, avoiding the traditional iter-
ative approximation process. Simulation results show that
the controller optimizes the system response speed and
stabilization time compared to other controllers under per-
turbation and parameter uncertainty. However, the algorithm
is limited by the scope of application of the approximation
algorithm. Therefore the dynamic adaptation performance of
the controller still needs further improvement. Literature [12]
proposed a single axis rotary inertial guidance system with
fuzzy PID control based on tracking differentiator. This single
axis rotary inertial guidance system utilizes a dual closed
loop controller. Where the position loop uses a conventional
PID algorithm and the velocity loop uses a tracking dif-
ferentiator based fuzzy PID algorithm. This ensures stable
velocity control of the system. However, when the system
is faced with rapidly changing external disturbances, the
fuzzy PID controller is unable to adjust the parameters in
a timely and effective manner, resulting in the stability of
the system being compromised. Literature [13] proposed a
multi-loop decentralized control method for discrete fuzzy
systems under dynamic triggering. The study designed a
multi-loop decentralized H∞ class PID control. Resource
saving and decentralized design of controllers are achieved
through the idea of dynamic event triggering mechanism and
node distribution. In terms of control accuracy, there exists a
large delay to the system state change. It leads to a reduction
in control accuracy.

Literature [14] proposed a fuzzy predictive PID based DC
motor speed control. The study formed a predictive PID con-
troller by combining a fuzzy PID controller and a backward
level controller. The mean absolute error and mean square
error were significantly reduced. However, the method is
more sensitive to the selection of fuzzy rules and param-
eters in practical applications. Literature [15] investigated
an online PID parameter optimization control method for
wind power generation system based on genetic algorithm.
The method proposes an anti-saturation PID control strategy
using genetic algorithm. It can effectively solve the integral
saturation problem and suppress the harmonics in the out-
put waveform to improve the power factor of the system.
However, in practical applications, the control method exists
sensitivity to the parameter settings of the genetic algorithm.
The controller output curve is not satisfactory enough under
dynamic changes. Further optimization of the algorithm is
needed to improve the stability and consistency of the control
effect.

A PID controller tuning method based on chaotic atom
search optimization algorithm is given in literature [16].
The study effectively improves the convergence speed and

FIGURE 1. Overall program flow design diagram.

accuracy of the algorithm by introducing a chaotic version of
the atomic search optimization algorithm. It shows superior
performance in DC motor speed control. However the effect
of the controller output curve needs to be further optimized
and improved. Literature [17] proposes a multi-objective
simulated annealing algorithm to rectify the PID controller.
In the paper, the method is compared with single objective
simulated annealing algorithm and constant gauge tuning PID
controller. The flexibility of this paper’smethod in PID tuning
is demonstrated. However, the PID controller underperforms
in terms of tracking error and stability to dynamic changes.
The simulated annealing algorithm needs further optimiza-
tion and upgrading.

In this paper, a fish-scale evolution GSOM improved
fuzzy PID control method is proposed. It introduces the fish
scale regulation system, differential evolution theory [18]
and dynamic regulation of GSOMmodule [19]. It effectively
improves the stability, control accuracy and feedback output
effect of traditional fuzzy PID control. The method provides
a new research scheme for the control optimization of fuzzy
PID. The flow design diagram of this paper is shown in Fig. 1.
The terminology about this paper is shown in Table 1.
This paper is experimentally compared with the traditional

method. The specific performance is as follows:
(1) Stability. The improved fuzzy PID controller can reach

a steady state faster compared to the traditional PID.The
optimization rules of the FSEG PID controller enable the
system to respond quickly to changes in the target setting.
The vibration amplitude is smaller in the face of disturbance
signals, showing higher stability and anti-interference ability.

(2) Robustness. Under the changing input environment, the
FSEGPID controller has fewer iterations and is easy to enter a
stable state. Compared with the traditional PID controller, the
FSEG PID controller has faster response speed and control
capability.

(3) Control accuracy. Through the error tracking effect
and output disturbance analysis, the optimized FSEG PID
controller exhibits a small range of error tracking. It has
efficient control accuracy. It can effectively control the output
disturbance and realize the accurate tracking of the target
value.
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TABLE 1. Interpretation of nouns.

(4) Feedback output effect. Among the fuzzy PID controls,
FSEG PID has the shortest feedback output time. It shows
faster response speed and more accurate control ability.

II. RELATED WORK
A. FISH SCALE CONDITIONING SYSTEM
Fish scale regulation system is a regulation system based
on the arrangement of fish scales. It aims to optimize the
performance of a fuzzy PID controller. The design of the
system is inspired by the behavioral characteristics of fish in
different water temperature environments. In particular, fish
scales aggregate at lower water temperatures to reduce the
surface area for heat dissipation in order to maintain body
temperature. At higher water temperatures, fish scales are
dispersed to increase the surface area for heat dissipation.
The role of the fish scale regulation system is to simulate
this behavioral feature to cope with different working envi-
ronments and task demands. The introduction of differential
evolution theory further optimizes and upgrades this system.
The process of the fish scale regulation system is mainly
divided into initializing the population, calculating the differ-
ences of scene parameters, and updating the population state.

Initializing the population is one of the key steps in build-
ing a fish scale regulation system. Define the parameter
space of the control system, which includes proportional
coefficients (Kp), integral coefficients (Ki) and differential
coefficients (Kd ). The parameter space needs to set the
range and accuracy of the parameters according to its spe-
cific application scenario. Set the range of Kp, Ki and Kd
all to [a, b] and the precision all to p. Set up initialized
individuals to be represented with the help of a collection
of individuals. That is, F = {f1, f2, · · · · · · ,fm}. The set of
individuals F is the initial starting point of the population.

For each individual in F , generate its own correspond-
ing Kp, Kd and Ki respectively which can be denoted
asH = {f1→ (Kp1,Ki1,Kd1),f2→ (Kp2,Ki2,Kd2), · · · · · · ,

fm → (Kpm,Kim,Kdm)}. Kp, Ki and Kd corresponding to
each individual satisfy the range requirement [a, b] between,
which meets the set accuracy requirement. For each individ-
ual, its fitness is calculated using differential evolution theory.
That is, the performance of the system at the moment based
on the current parameter settings is evaluated to assess the
control effect. It is known that the commonway of calculating
the fitness in differential evolutionary algorithms is based on
the error function. Therefore, in the scenario of fuzzy PID
control, the error function is used to evaluate the control
effect. The metrics for calculating the fitness are as follows

Fit =

∑m

i=1
(out target_i − outactual_i)2 (1)

where, Fit is the total fitness function of the initialized pop-
ulation of fish scales. m is the total number of individuals.
out target_k and outactual_k are the target and actual outputs of
each individual system in the scenario of fuzzy PID control.
Thus, the error function here is constant based on the error
between the actual output of the system and the target out-
put. The fitness of a single individual is calculated as the
absolute value of the difference between the actual output
of the system and the target output for that individual. i.e.
Fit(k) = |out target_k − outactual_k |. The smaller the value of
the fitness thus calculated, the better the control of the system.
The higher the fitness of an individual, thus the more likely it
is to be the parent of the next generation.

The initial individuals generated are formed into an ini-
tial population, which serves as the starting point for the
differential evolution algorithm. Each individual in the pop-
ulation represents a PID control strategy. It is known that
H = {f1→ (Kp1,Ki1,Kd1), f2→ (Kp2,Ki2,Kd2), · · · · · · ,

fm→ (Kpm,Kim,Kdm)}. An individual parameter vector can
be used to represent Xk = (Kpk ,Kik ,Kdk ). Kpk , Kik and Kdk
are the proportionality coefficients, integral coefficients and
differential coefficients of the k-th individual, respectively.
The process of initializing the population can be denoted as
Xk = (rand(a, b), rand(a, b), rand(a, b)).
Scene parameters are the important parameter factors in the

actual application scenarios of this paper. The process of cal-
culating the differences of scene parameters is a very critical
step in the fish scale regulation system. It is used to evaluate
the current working state of the system to decide whether the
population is clustered or dispersed. The actual scene param-
eter is denoted by 8 and its reference value is represented as
a vector form. 8ref = [φ1, φ2, · · · · · · , φm]. The difference
between the current scene parameter 8ref and the reference
scene parameter 8current is calculated using the reference
scene parameter 8ref . i.e., 18 = |8current − 8ref |. This
difference determines the aggregation or dispersion state of
the population in the fish scale regulation system for dynamic
regulation of scene changes. In the model, the influence of
the scene parameters on the parameters of the fuzzy PID
controller and the response of the controller to changes in the

VOLUME 12, 2024 55009



Z. Wang et al.: Control Method for Improved Fuzzy PID of GSOM for Fish Scale Evolution

FIGURE 2. Perturbation of the control output.

scene parameters are set. The controller output is expressed
as

u(t) = (Kp + 18k ) · e(t_k) + (Ki + 18k )

·

∫ t

0
e(τ )dτ + (Kd + 18k ) · (de(t_k)

/
dt) (2)

where, u(t) is the output of the fuzzy PID controller at the
moment t . e(t_k) denotes the deviation of the k-th individual
at the current moment. That is, the error between the desired
value and the actual value. e(t_k) corresponds to the fitness
function, i.e., e(t_k) ↔ Fit(k).

∫ t
0 e(τ )dτ represents the

integral term of the deviation. It represents the accumulation
of the deviation over time. de(t)

/
dt denotes the differential

term of the deviation. It represents the rate of change of
the deviation over time. 18k is the difference between the
current scene parameter 8current_k and the reference scene
parameter 8ref _k for the k-th individual. The main purpose
of the difference of the scene parameters in the fish scale
regulation system is to regulate the system output in the fuzzy
PID control. It fine-tunes the system control effect through
the fitness function of each individual.

When perturbation information is present in the con-
troller, the system control output changes non-directionally.
As shown in Fig. 2. Therefore, the fish scale regulation
control characteristic theorem is established in the updating
group state. The theorem can effectively inhibit this phe-
nomenon. The theorem contains the following parameters.
The important current parameter of fuzzy PID is 0current . The
ideal regulation parameter is 0goal . The parameter threshold
is 0threv. The total fitness function of the fish scale initial-
ized population is Fit . The fish scale aggregation coefficient
is σgatherand the fish scale dispersion coefficient is σdisperse.
The details of the theorem are shown as follows.

(1) If 0current < (0goal − 0threv) · Fit , then the fish scales
are aggregated. The fisheye regulation system will reduce
the magnitude of variation of the fuzzy PID parameters to
maintain the stability of the controller. Update the parameter:
0current = Fit · 0current + σgather · (0goal − 0current ).

(2) If 0current ≥ (0goal − 0threv) · Fit , the fish are
scattered. The fish scale regulation system will increase
the magnitude of change of the fuzzy PID parameter to
speed up the adaptation to the changing environment. Update
parameter:0current = Fit ·0current−σdisperse ·(0current−0goal).
(3) If |0current−0goal | ≤ 0threv, the fish population remains

in a stable state. The fish scale regulation system uses the
general fuzzy PID parameter regulation strategy. Continue to
keep the controller in equilibrium.

The parameter0current in the Fish Scale Regulation Control
Characterization Theorem is specified as the fuzzy set center
position parameter and the gain parameter. The fuzzy set
center position parameter and the gain parameter affect the
affiliation function characteristics and the dynamic stability
of the fuzzy PID system. They determine the degree of output
saturation of the system. Therefore the application of the
fish scale regulation control characteristic theorem is the key
to adjust the controller output saturation degree of the fish
scale regulation system. It can effectively prevent the occur-
rence of oversaturation and undersaturation phenomena of
the system and maintain the stable operation of the system.
Here σgather and σdisperse are the feedback results of the
differential evolutionary algorithm to dynamically adjust the
fishscale system.σgather and σdisperse are adjusted as

σgather = σgold + p1 · (0goal − 0current ) (3)

σdisperse = σdold + p2 · (0current−0goal) (4)

where, σgold and σdold are the fish scale aggregation coeffi-
cient and fish scale dispersion coefficient before adjustment.
p1 is the scaling factor in the differential evolution algorithm.
It is used to control the step size of the adjustment. p2 is the
convergence factor in the differential evolutionary algorithm.
It is used to control the step size of the adjustment. In the dif-
ferential evolutionary algorithm, both p1 and p2 are constants
and take values in the range of [0, 1]. It is mainly used to
control the magnitude of adjustment. When 0goal deviates far
from 0current , the magnitude of adjustment of σgold and σdold
will become larger to speed up the convergence of the system.
When 0goal is close to 0current , the adjustment amplitude will
decrease to keep the stability of the system. In this way, differ-
ential evolution can dynamically adjust the aggregation and
dispersion coefficients in the fish scale adjustment system.
This enables the system to better adapt to different working
environments and task requirements. Thus, the effect of fuzzy
PID control is improved. Among them, the control diagram
of the differential evolution feedback fish scale system is
shown in Fig. 3. After the initialization of the group, the
calculation of the difference of the scene parameters and the
update of the group state, the establishment of the fish scale
regulation system after differential evolution is completed.
For different individual F = {f1, f2, · · · · · · ,fm} and initial-
izedH = {f1→ (Kp1,Ki1,Kd1),f2→ (Kp2,Ki2,Kd2), · · · · · · ,

fm → (Kpm,Kim, Kdm)}. We can complete the tasks of
adaptation iteration, controller output response, parameter
optimization and saturation regulation through the fish scale
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FIGURE 3. Control diagram of a differential evolutionary feedback fish scale system.

FIGURE 4. Structural modeling of GSOM in individuals with fish scales.

regulation behavior. Reliable guarantee is provided for sys-
tem stability and regulation performance.

B. DYNAMIC ADJUSTMENT OF GSOM
The established fish scale regulation system needs further
optimization to adapt to the steady state operation under
the complex changing environment and improve the system
robustness.The GSOMmodule is a self-organized neural net-
work structure. It has the characteristics of dynamic growth
and polymorphic input dynamic regulation. The introduc-
tion of GSOM module in the fish scale regulation system
can make the system better adapt to the constantly chang-
ing complex input environment and realize stable operation.
The GSOM structure of the fish scale individual is shown
in Fig. 4.

Each neuron in a self-organizing neural network structure
can be considered as the root node of the network. And the
connection weights between neurons are expressed as the
strength of the branches. The weight relationship of neurons
determines the flexibility of fish scale regulation. It can be
expressed as follows

W =

∑m

d=1
(8current_d − 8ref _d )(8current_d − η

· (∂8
/
8current_d )) (5)

where W is the total weight. Here the neuron equivalent is
the fish scale individual F = {f1, f2, · · · · · · ,fm}. 8current_d
is the current scene parameter of the dth neuron individual.
8ref _d is the reference scene parameter of the dth neuron
individual. η is the learning rate. It is used to control the
step size of weight update. Due to the dynamic adjustability
of GSOM itself, the neurons are replaced with actual fish
scale individuals to form fish scale individual neurons. This
way the weights can determine the information transfer of
the fish scale individual neurons. It is the key to dynamic
parameter tuning. A self-organizing mapping neural network
is a network structure that contains multiple layers of such
fish-scale individual neurons. This self-organizing mapping
neural network becomes even more complex when multiple
complex inputs are involved in the practical application of
fuzzy PID control. Therefore, the main goal of GSOM is to
map the input space into a low-dimensional topology while
maintaining the topological relationships between the input
data. This accomplishes steady-state operation in complex
changing environments and also reduces the complexity of
the data. For each fish scale individual fd in the fuzzy PID, it is
first mapped into a neural network by competitive learning.
Each GSOM fish scale neuron individual corresponds to
a8current_d and aweightW (d) which indicates the position of
that neuron in the input space. By constantly adjustingW (d)
dynamically, the individual fish scale neuron can gradually
adapt to the distribution characteristics of the input space. The
input variables in the fuzzy PID control are set to be N, which
are denoted as Input = {input1, input2, · · · · · · , inputN }. The
fuzzy rules are M denoted as NL = {nl1, nl2, · · · · · · , nlM }.
The weight of each fuzzy rule is denoted as W (d) of the
individual fish scale. Then the weight parameter in the fuzzy
PID can be dynamically updated by GSOM as

Winput i (d_(t + 1)) = Winput i (d_t) + η(t) · 0threv(t)

· (Wnlj (d_t) −Winput i (d_t)) (6)

where, Winput i (d_(t + 1)) denotes the weight of the ith input
variable at moment t + 1. Winput i (d_t) denotes the weight of
the ith input variable at moment t. η(t) is the learning rate
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FIGURE 5. Comparative experiments on fitting effects.

at moment t . 0threv(t) is the parameter threshold at moment t .
Wnlj (d_t) denotes theweight of the jth fuzzy rule at moment t .
The following explanation is given for the working princi-

ple of Eq. (6). In the process of weight updating, the learning
rate η(t) controls the step size of weight updating so that
it decreases gradually during the training process to ensure
stability. The difference weightWnlj (d_t)−Winput i (d_t) rep-
resents the topological relationship between the jth fuzzy rule
and the ith input variable. This means that only the neurons of
the input variables associated with the weights of the current
fuzzy rule are updated.0threv(t) denotes the threshold limit for
the desiredweight change.When theweights of the fuzzy rule
gradually converge to the weights of the input variables. Then
dynamic regulation and optimization of weights is achieved.

Based on the above information, the fuzzy PID controller
can adaptively optimize the weights according to the chang-
ing control environment. So that the fish scale regulation
system is optimized by self-organized mapping neural net-
work. It can improve the fitting effect of the output curve of

the PID controller. So that the fuzzy PID controller regulates
the output more accurately and achieves more stable opera-
tion. About the fitting effect of PID controller output curve.
The method of this paper compares SA PID and GA PID. the
fitting effect comparison experiment is shown in Fig. 5.

Figures (a-d) show the fitting effect of SA PID. The fitting
curve is basically able to fulfill the fitting task. The number
of iterations at the stabilization threshold is basically between
30-50 times. Figures (e-h) show the fitting effect of GA PID.
When the controller output curve changes greatly, the fitting
curve error is large. The number of iterations at the stabiliza-
tion threshold is basically between 50-100 times. In the range
of 50-100 iterations interval, the phenomenon of not being
able to reach the stabilization state occurs. Therefore the
stabilization effect is poor. Figure (i-l) shows the fitting effect
of FSEG PID.FSEG PID has a better fitting curve compared
to SA PID and GA PID. The number of iterations is basically
stable between 0-20. The validity of the established method
is verified.
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C. DYNAMIC OPTIMIZATION OF FUZZY PID CONTROL
1) FUZZY RULE BASE
Now, based on the above information, the fuzzy rule base [20]
and parameter adjustment mechanism in fuzzy PID control
are dynamically optimized. Set up the fuzzy rule base in
fuzzy PID control. The fuzzy rule base is initialized as Rkij.
The general rule is defined as if e = ei, and ec =

ecj, then u = uk . The general rule can be based on the
empirical information in the actual application scenario. The
evaluation function T =

∑m
d=1 (et )

2is set. The affiliation
function is parameterized and this parameter is updated by the
Fish Scale Adjustment Control Characteristic Theorem. The
parameterized affiliation function is denoted as P(fk ; c, σ ) =

e−(fk−c)2
/
2σ 2

. fk denotes the random variable of the affilia-
tion function. If P(fk ; c, σ ) < (Pgoal(fk ; c, σ ) − Pthrev) ·

Fit(k) and T =
∑m

d=1 (et )
2

≤ Fit(k), the update rule
of the affiliation function becomes P(fk ; c, σ ) = T ·

P(fk ; c, σ ) + σgather · ((Pgoal(fk ; c, σ ) − P(fk ; c, σ )). Oth-
erwise, the update rule is P(fk ; c, σ ) = Fit(k) · P(fk ; c, σ ) +

σgather ·((Pgoal(fk ; c, σ )−P(fk ; c, σ )). Such an update rule in
the fuzzy rule base will make it possible to better regulate its
own response attributes when faced with control inputs under
different conditions. Improving the feedback output effect
of fuzzification and fuzzy inference. There is also a need
to improve the fuzzy rule base by the differential evolution
idea in it to select and retain the rules with higher adaptation
in the fish scale evolution GSOM. It is known that Xk =

(Kpk ,Kik ,Kdk ) take the fish scale regulation mutation opera-
tion as K new

pk = K old
pk + P({∥; ⌋, σ ) · (R∇⊣\⌈∞ −R∇⊣\⌈∈).

Where Rrand1 and Rrand2 are randomly selected rule bases.
P(fk ; c, σ ) is the mutation factor. K old

pk and K new
pk are the

scale parameters of the kth fish scale individual before and
after the update, respectively.Kik andKdk mutation operations
are carried out with the same operation. The cross mutation
operation in the rule base is denoted as

Kchild1 =

{
K new
pk if Rrand1/Rrand2 ≤ rand(a, b) or CR

K old
pk otherwise

(7)

where, Kchild1 is the crossover parameter of Kpk . CR is
the probability of cross-mutation. Kchild2 and Kchild3 are
both cross-mutated in the same way. The principle of
cross-mutation of the rule base is to keep the rules with higher
fitness and discard the rules with lower fitness.

2) PARAMETER REGULATION MECHANISM
The parameter tuning mechanism in fuzzy PID is the key
to improve the performance of the control system. How-
ever, since fuzzy PID requires the determination of fuzzy
sets, affiliation functions, and fuzzy rules, this increases
the complexity of system modeling and regulation. There-
fore, the parameter tuning of the fuzzy PID controller is
more complex compared to the traditional PID control.
There is performance instability in parameter tuning. Espe-
cially, the problem is more prominent when dealing with

FIGURE 6. Stability effects of conventional PID and FSEG PID output
curves.

complex dynamic systems and rapidly changing environ-
ments. In order to overcome the above shortcomings, this
paper optimizes the parameter regulation mechanism from
the established fish scale evolution GSOM to complete the
further upgrading of fuzzy PID. Define the multi-objective
function in fuzzy PID, which includes output error and rate
of change, etc.

J (8current , 0current ) =

∑m

d=1
(8current · σ 2

gather + 0current

· σ 2
disperse)/(µ1 · e2d + µ2 · ė2d ) (8)

where J (8current , 0current ) is the parameter objective func-
tion with respect to 8current and 0current . µ1 and µ2 are
both weighting coefficients. ed is the error at the current
moment.ėd is the rate of change of the error at the current
moment. The parameters 8current and 0current are iteratively
updated according to the fish scale evolution GSOM. The
set values of the parameter initialization are 8current = 1
and 0current = 2. If the operations taken satisfy conditions
1 and 2 respectively. i.e., Vd > Xnd + (W input i (d_(t +

1))· 1−Winput i (d_(t+1))· 2) orVd ≤ Xnd+(W input i (d_(t+
1))· 1 −Winput i (d_(t + 1))· 2) · Fit(d). Then the parameter
optimization rule taken is

Para =


Vd · Para,Winput i (d_(t + 1)) = Winput i (d_t)

Condition1

Winput i (d_(t + 1)) · Para,Winput i (d_(t + 1))
∗

Condition2

(9)

where Vd is the parameter update factor of the dth individual.
Para is the general parameter collectively. Winput i (d_(t +

1)) = Winput i (d_t) denotes the weights after updat-
ing. Winput i (d_(t + 1))

∗
denotes that the weights remain

unchanged after updating. For the convenience of representa-
tion,Condition 1 andCondition 2 denote the conditions 1 and
2 satisfied by the parameter optimization rule, respectively.
The parameters of the new iteration select the fish scales with
higher fitness as the next generation population.

Based on the above information, the fuzzy rule base and
parameter regulation mechanism are dynamically optimized.
It combines with the fish scale regulation control character-
istic theorem, which can help the controller to make a fast
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FIGURE 7. Stabilization effect of interfering signals encountered before and after FSEG PID optimization.

response to the disturbance signal. Thus, the vibration ampli-
tude of the controller output curve is reduced after reaching
the steady state and basically remains stable. This process can
improve the robustness and stability of the control system and
realize more reliable control effect.

D. EXPERIMENTAL ANALYSIS
In this part, the effectiveness of this paper will be verified by
experimental simulation. The comparison indexes are stabil-
ity, robustness, control accuracy and feedback output effect.
The simulation experiments are now analyzed.

1) STABILITY
The stability of fuzzy PID control is reflected in the smooth-
ness of the controller output curve and the ability to resist
interference. Specifically manifested in the controller’s resis-
tance to system perturbations and parameter changes. So that

the system can operate stably near the target value. A stable
fuzzy PID controller output curve has a small amount of
overshoot and oscillation, and can respond quickly to changes
in the target setting. Fig. 6 demonstrates the stabilization
effect of the conventional PID and FSEG PID output curves.
In Fig. 6, the conventional PID output curve does not reach a
good stabilization state in the setup time. While the FSEG
output curve is close to the steady state after 8 seconds.
The stabilization effect becomes more significant with the
increase of time.

Fig. 7 demonstrates the stabilization effect of the controller
output curve before and after the FSEG PID optimiza-
tion after reaching the steady state and encountering the
disturbance signal. In which the primary and secondary opti-
mization are carried out through the parameter optimization
rules, respectively. Figs. (a-d) show the FSEG PID before
optimization. figs. (e-h) show the FSEGA PID. figs. (i-l)
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TABLE 2. Comparison of FSEG, FSEGA and FSEGA2 metrics.

show the FSEGA2 PID. table 2 demonstrates the number
of iterations (rounded upwards), the stabilization factor, and
the stabilization time corresponding to the three approaches,
respectively.

From Fig. 7, it can be seen that in the four experiments
of FSEGA2 PID, the stabilization curves after encountering
disturbance signals have smaller vibration amplitude com-
pared to FSEG PID and FSEGA PID. It is verified that the
optimized FSEG PID has a better stabilization effect. Based
on the above analysis, the simulation process verifies that
the optimized FSEG possesses higher stability when facing
interference signals.

2) ROBUSTNESS
The robustness of fuzzy PID control is expressed as the
ability to maintain stability and control performance under
different varying input environments. In this experiment,
we compare the stabilization effect of FSEG PID and con-
ventional PID under varying input environments. As shown
in Fig. 8. Figures (a-c) show the robustness effect of FSEG
PID. Figs. (d-f) show the robustness effect of the conventional
PID. the iteration numbers of the FSEG PID are 143, 119, and
128, respectively. the iteration numbers of the conventional
PID are 201, 172, and 195, respectively. the convergence
thresholds and the optimal parameters of the two methods are
relatively close to each other. This experiment verifies that the
FSEG PID has fewer iterations in case of input environment
changes. It is easier to enter the steady state and more robust.

3) CONTROL ACCURACY
The control accuracy of fuzzy PID is reflected in the ability
to handle system tracking errors. In this experiment, we com-
pare and analyze the application of different methods in
fuzzy PID controllers to evaluate their impact on system
tracking error. Finally judge the control accuracy of different
methods. Figure 9 shows the error tracking effect and output
interference of the general PID controller and the constant

FIGURE 8. Stabilization effects of FSEG PID and conventional PID in
changing input environments.

PID controller. Figure 10 shows the error tracking effect and
output interference of FSEGA PID and FSEGA2 PID.

The output interference in Figure 9(a) and (c) both has
a maximum drop, a minimum drop and an extreme drop.
The larger the limit difference, the more confusing the out-
put interference will be, and the worse the error tracking
effect will be. There are interference-free signal parts in both
the outputs of Figure 9(b) and (d). Then the smallest drop
at this time is scattered on the yellow plane. They have
countless extreme drops, and the extreme drops are unstable.
Therefore, the error tracking effect at this time is the worst.
The output interference in Figure 10(a-c) has a maximum
drop, a minimum drop and an extreme drop. The range of
the interference-free signal part in Figure 10(d) is larger.
It means there are fewer interfering signals in the output inter-
ference. Although there are countless extreme gaps, within
the range, interference information appears less frequently.
A wide range of interference-free signals makes the output
interference more stable.

Since the control accuracy of fuzzy PID is reflected in the
ability to process system tracking errors, the error tracking
effects in Figures 9 and 10 can intuitively reflect the con-
trol accuracy. The error curve can be regarded as an ideal
error curve. The higher the consistency between the output
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FIGURE 9. Error tracking and output disturbances in general PID controllers and constant PID controllers.

FIGURE 10. Error tracking effects and output disturbances of FSEGA PID and FSEGA2 PID.

errors of different methods over time and the Error curve, the
higher the control accuracy. Therefore, according to the error
tracking effect in Figure 9, it can be seen that the control
accuracy of the general PID controller is better than that

of the constant PID controller. The control accuracy shown
in Figure 9(a) and (c) is better than Figure 9(b) and (d).
In Figure 10, the control accuracy of FSEGA2 PID is better
than that of FSEGA PID. The above analysis verifies the
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FIGURE 11. Feedback output effect.

effectiveness of the method in this paper in terms of control
accuracy.

4) FEEDBACK OUTPUT EFFECT
In fuzzy PID control, the feedback output is one of the impor-
tant indicators to evaluate the performance of the controller.
This part compares the effect of different methods before and
after time offset. These methods include FSEG PID, GA PID
and SA PID. simulation results are shown in Fig. 11.
After experimental observation, it is found that FSEG PID

has a better feedback output effect compared to other meth-
ods with the shortest feedback output time. It shows faster
response speed and more accurate control capability. This
means that in the control process, FSEG PID can sense and
respond to the system state faster. Thus, the tracking and
control of the target value can be realized.

III. CONCLUSION
In order to improve the control effect of fuzzy PID, this
paper proposes a fish scale evolution GSOM to improve the
control method of fuzzy PID. The method mainly consists
of fishscale affine optimization algorithm, differential evo-
lution algorithm and GSOM module. Among them, the fish
scale affine optimization algorithm is a heuristic algorithm.
It solves the problem of changing controller input environ-
ment by simulating the synergy between fish scales. Differen-
tial evolutionary algorithm is an optimization algorithm based
on inter-individual differences and variation operations. It is
used to find the global optimal solution.GSOM dynamic
regulation is a self-organizing mapping neural network.
It enables dynamic regulation of polymorphic inputs and
optimizes the system control parameters.GSOM improves the
fuzzy rule base and parameter regulation mechanism in fuzzy
PID. It enhances the flexibility and robustness of the con-
troller andmakes it more suitable for control tasks in complex
environments. Simulation experiments verify that the method

proposed in this paper possesses better results in terms of
stability, robustness, control accuracy and feedback output
effect. Therefore, the method in this paper has important
practical significance and application value for improving the
performance of control systems and solving control problems
in real engineering.

IV. LIMITATIONS AND FUTURE WORK
In this paper, there is a problem of computational complexity
in optimizing the fuzzy rule base and parameter regulation
mechanism with the help of GSOM. As the optimization
of fuzzy rule base and parameters requires a large number
of iterative computations and searches. Especially in high
dimensional spaces. This can lead to high computational
cost and affect the real-time and efficiency of the algorithm.
To solve this problem, we consider introducing more efficient
optimization algorithms or improving the existing algorithms
in the future. In addition, the use of model simplification and
dimensionality reduction techniques to reduce the compu-
tational complexity is also one of the scopes we consider.
Examples include feature selection, dimensionality reduc-
tion algorithms, etc. In addition, fuzzy PID control will
become more complicated when a multi-order control system
is involved in practical application scenarios. For example,
the multi-machine cooperative task in the multi-intelligent
body cooperative intelligent loading robot. Therefore, about
the fuzzy PID in the multi-order control system environment
is also the aspect we want to focus on in the future.
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