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ABSTRACT The electroretinogram (ERG) is a clinical test that records the retina’s electrical response to a
brief flash of light as a waveform signal. Analysis of the ERG signal offers a promising non-invasive method
for studying different neurodevelopmental and neurodegenerative disorders. Autism Spectrum Disorder
(ASD) is a neurodevelopmental condition characterized by poor communication, reduced reciprocal social
interaction, and restricted and repetitive stereotyped behaviors that should be detected as early as possible to
ensure timely and appropriate intervention to support the individual and their family. In this study, we applied
gated Multilayer Perceptron (gMLP) for the light-adapted ERG waveform classification as an effective
alternative to Transformers. This study presents the first application of gMLP for ASD classification,
which employs basic multilayer perceptrons with fewer parameters than Transformers. We compared the
performance of different time-series models on an ASD-Control dataset and found that the superiority of
gMLP in classification accuracy was the best at 89.7% compared to alternative models and supports the use
of gMLP in classification models based on ERG recordings involving case-control comparisons.

INDEX TERMS ASD, deep learning, electroretinogram, ERG, gated MLP, transformer, waveform.

I. INTRODUCTION
A. POTENTIAL FOR ERG DIAGNOSIS IN CNS DISORDERS
The full-field electroretinogram (ERG) is the waveform
recorded from the eye under dark- or light-adapted (DA or
LA) conditions in response to a brief flash of light. Clinically,
the ERG waveform can be used for the diagnosis of
conditions affecting the retina, such as inherited or acquired
diseases [1]. Because the retina is an extension of the central
nervous system (CNS), and its function is readily accessible
through the ERG, several studies have investigated changes
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in the ERG waveform in conditions affecting the CNS in
human and animal studies [2]. For example, the analysis of
the ERG waveform to identify potential biomarkers has also
been proposed for the early detection of Attention Deficit
Hyperactivity Disorder (ADHD) [3], bipolar disorder [4] and
using a mouse model for Parkinson’s disease [5].

The shape of the ERG waveform depends on the state
of retinal adaptation with the DA- and LA-ERG responses
dominated by rod and cone pathways, respectively [1],
[6]. The main excitatory neurotransmitter of the retina is
glutamate, which contributes to the main positive b-wave
generated by the bipolar cells [7]. The preceding negative
a-wave is formed by hyperpolarization of the photoreceptor
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outer segments [8] that reduces glutamate release into
the post rececptoral synapse with bipolar and horizontal
cells [9]. The horizontal cells provide inhibition to cone
photoreceptors using gamma-aminobutyric acid (GABA)
signaling that modulates the a-wave’s amplitude [10].
Dopamine-driven responses from the amacrine cells also
contribute to the high-frequency oscillatory potentials visible
as small ripples on the ascending limb of the b-wave [11].
Given the contributions of these key neurotransmitters
and their role in CNS disorders, changes in the ERG
waveform have been associated with alterations in these
neurotransmitters [2], [12]. For example, reduced dopamine
in early Parkinson’s disease results in a reduced b-wave
and oscillatory potentials [13]. In autism spectrum disorder
(ASD) and ADHD, differences in the balance between
glutamate may be responsible for the elevated b-waves
in ADHD compared to the reduced b-wave amplitudes
reported in ASD [14]. In schizophrenia, the reduced a- and
b-wave wave amplitudes are thought to be due to increased
GABAergic inhibition by the horizontal cells [15] and may
help to distinguish schizophrenia from bipolar disorder [16].
Developing methods for the classification of ASD and
potentially other conditions affecting the CNS through the
analysis of the ERG could provide improved earlier diagnosis
and management of these conditions to improve patient
outcomes [17].

With respect to ASD, the search for a biomarker to detect
this condition has been extensive, with currently no clinical
diagnostic test able to reliably identify a child with ASD [18].
The ERG may be a potential new test that, with more exten-
sive clinical trials, could provide a novel biomarker for ASD.
Early studies have identified reduced DA- and LA-ERG
responses in children with ASD [19], [20]. However, in adult
populations, the results have been mixed [21], [22] with
respect to the LA-ERG changes. There is some evidence in
small study populations that the ERG changes may differ
between ADHD and ASD groups [14], [23]. Still, these
early findings require more extensive studies to replicate in
younger clinical populations. Whilst developments in this
field continue with the use of signal analysis of the ERG using
variable frequency complex demodulation [24] showing
potential to not only classify ASD but also to differentiate
between ASD and ADHD [25], [26]. Other methods using
aspects of Functional Data Analysis of the b-wave have
also recently been reported [27] that may provide additional
features that may contribute to the classification of retinal
disorders [28].

B. APPLICATION OF ARTIFICIAL INTELLIGENCE
TECHNIQUES AT THE ERG SIGNALS
The studies described in Table 1 have incorporated machine
learning (ML) to enhance the diagnosis of ophthalmic
or neurological conditions through the analysis of ERG
recordings. Yapici et al. [29] explored obesity’s correlation
with ocular health, and achieved 94.1% and 92.9%

classification accuracy for obesity with an artificial neural
network based on discrete wavelet transform analysis
of the LA- and DA-ERG waveforms in 47 subjects.
Lopez et al. [30] investigated multiple sclerosis, using
support vector machines (SVMs) to identify multifocal ERG
(mfERG) feature differences based on continuous wavelet
transform of the signal in 15 subjects. Zhdanov et al. [31]
applied ML for the classification of adults compared to
pediatric DA- and LA-ERGs with and without retinal disease
based on wavelet transforms to improve the classification
of the groups using classical time-domain and novel time-
frequency features. Glinton et al. [32] using DA- and LA-
ERGs time-domain features recorded from 597 cases with
ABCA4 retinopathy and with regression models developed
genotype-phenotype models to not only predict disease
progression but also classify the phenotypes into three
groups with up to 91.8% accuracy. Gajendran et al. [33]
addressed early-stage glaucoma diagnosis in a mouse model
based on analysis of advanced features from the DA- and
LA-ERGs distributions using ML to identify early ganglion
cell loss. Manjur et al. [34] explored ERG-based ASD
detection, achieving 86% accuracy, and emphasized the
potential for earlier diagnosis using decomposition of the
LA-ERGs. Kulyabin et al. [35] determined optimal
wavelet-DL model combinations for pediatric ERG signal
analysis, providing insights into selecting appropriate
mother wavelets. Posada-Quintero et al. [24] compared
signal analytical methods, including time-domain and time-
frequency domain features derived from the distributions for
ASD classification, supporting the ERG waveform derived
from a single flash strength in the right eye as a potential
practical clinical biomarker for ASD. Manjur et al. [25]
applied variable frequency complex demodulation and ML
for ASD and ADHD classification, achieving 0.84 accuracy
with gradient boosting. and more recently achieved a 70%
overall accuracy for differentiating between ASD, ADHD
and controsl [26]. Further studies may explore sensitivity
and specificity with controls meeting both ASD and ADHD
classifications [25]. Taken together, these studies using
different features of the ERG signal based on full field and
mfERG in human andmouse studies suggest thatML coupled
with ERG features and clinical parameters will improve
earlier diagnosis, prognosis, and management of conditions
affecting the CNS.

Studies incorporating ML methods with the ERG wave-
form are increasing but still relatively uncommon, with
neural networks encountered in only three publications
relating to ASD and the ERG [24], [25], [35], signifying
an interest in adopting ML techniques [36], [37]. These
observations emphasize the substantial untapped potential
offered by ML methods for the comprehensive analysis of
the ERG waveform signal to improve classification between
groups and potentially earlier identification of retinal disease
processes [24], [25], [34], [38]. The wider adoption of ML
methods may further improve the clinical utility of the
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TABLE 1. Comparative Table of publications on the application of machine learning and artificial intelligence techniques for ERG.

ERG [39], [40] and with further technological advances
such as smartphone-based devices could become more
accessible [41].

Additionally, applying Deep Learning (DL) approaches
could potentially improve the accuracy of ERG signal
classification of retinal and CNS-based disorders, thereby
enhancing not only the quality of ASD detection in the early
stages and improving long-term outcomes for individuals
with ASD [42] but also related disorders where the ERG is
atypical [2], [39].

Moreover, in order to realize the full potential of the
ERG in the classification or earlier detection of CNS
disorders, the application of signal analysis using wavelets
and variable frequency complex demodulation has been
applied recently in studies involving individuals with ASD
andADHD [23], [25]. These preliminary studies in childhood
have identified the potential for identifying features extracted
from signal analysis to improve ML classification models.
However, one limitation in such studies is the heterogeneity
of the ASD population despite standardization of clinical
assessments such as the Autism Diagnostic Observational
schedule (ADOS) [43]. Heterogeneity in ASD may manifest
in the severity and co-occurrence of additional conditions
such as ADHDwith phenotypic overlap [44]. ML approaches
may help to classify neurodevelopmental disorders based on
a combination of phenotypic and biological markers [45],
[46]. In addition, the ERG findings in ASD have not been
replicated in older age groups, suggesting that the findings
may not be fully generalizable to all age groups [22].
Our previous studies [35], [47] have shown the supe-

riority of Transformer over classical architectures in the
time-frequency domain with respect to ERG with the
condition that Transformer training requires a large dataset,
which is challenging to obtain due to field specificity in
many cases. One solution to this problem would be to
apply an alternative structure to a Transformer with less
trainable parameters and more efficiency for a reasonably
shorter signal. Thus, we propose using the Gated Multilayer
Perceptron (gMLP) [48] for ERG signal classification. In this
study, we apply for the first time using ERG waveform

FIGURE 1. Light-adapted ERG waveform of a control individual. There are
two prominent peaks in the waveform. The a-wave is the first negative
deflection is mainly due to hyperpolarization of the photoreceptors, and
the following positive b-wave is shaped by bipolar, amacrine, and glial
cell currents. Small peaks are observed on the ascending limb of the
b-wave, which are termed the oscillatory potentials that have their origins
in the amacrine cells. Time domain features are indicated as Ta, Tb, Va,
and Vb, corresponding to the time to peak and amplitudes of the a- and
b-waves, respectively.

time-series analysis, the gMLP architecture, and compare the
performance of gMLP with other architectures in the time-
series domain. In contrast to the works mentioned above, the
critical point of our study is the classification of ERG signals
in the time-series domain. Thereby, models can potentially
learn to identify and prioritize the most relevant features for
a given task automatically and train on complex temporal
relationships and patterns, not only on classical features used
by medical researchers.

II. DATA
Fig.1 shows an LA-ERG signal waveform of a control subject
used in this study. By analyzing the parameters of the ERG
waveform, such as the amplitude of the a- and b-waves (Va,
Vb) and their respective time to peaks (Ta, Tb), clinicians
can identify abnormalities that help diagnose a range of
retinal disorders [1]. Fig.2 illustrates a further series of
representative LA-ERG waveforms at four flash strengths: -
0.367, 0.114, 0.799, and 1.204 (logcd .s.m−2), for anASD and
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FIGURE 2. Examples of ERG waveforms recorded from a control (a) and ASD (b) individual to flash strengths -0.367, 0.144 0.799, and
1.204 (log cd .s.m−2). The prominent b-wave positive peak is reduced in the ASD waveforms, with less noticeable oscillatory potentials visible on
the ascending limb of the b-wave. Note the amplitude of the b-wave is maximal at the intermediate flash strength of 0.799 (log cd .s.m−2) and
reduces as flash strength increases with the 1.204 (log cd .s.m−2) strength.

FIGURE 3. Recordings were performed with the RETeval from each eye using a skin electrode with nine randomized flash strengths. 30 to 60 averages of
the ERG were recorded to generate a signal average that was then used for classification of groups using Deep Learning methods.

control participant. The amplitude of the b-wave increases
with flash strength reaching a peak before falling and forming
a plateau phase that is described as the photopic hill [49].
Fig.2 shows this with the b-wave amplitude being smaller
at the highest flash strength of 1.204 (log cd .s.m−2) and
maximal at a lower flash strength of 0.799 (logcd .s.m−2) that
forms the ‘‘peak’’ of the photopic hill in this instance.

Comparing the ASD and control waveforms, it is apparent
that the amplitude of the b-wave is reduced in the ASD
subject. Notable also is the absence of prominent oscillatory
potentials in the ASD waveforms. The oscillatory potentials
derive from amacrine cells [11] and are usually visible as
small ‘‘ripples’’ or peaks on the ascending limb of the b-wave
before the main peak and contribute to the high-frequency
components of the ERG. These differences have may be due
to a difference in the regulation of glutamate and/or dopamine
that contribute to the amplitude of the b-wave and oscillatory
potentials as described in Lee at al [14].

In this work, we re-analyzed the LA-ERG waveform
recordings from previously reported studies [14], [20], [23].
This dataset contained signals from 20 control and 30 ASD
individuals collected in two different locations: London (UK)
and Adelaide (Australia). Full-field LA-ERG recordings
were performed on each eye (always right first), following the
guidelines of the ISCEV ERG standard [6]. A series of brief
flashes of different strengths were applied to the eyes on a
40 (cd .m−2) white background. Recordings were performed
with the RETeval (LKC Technologies, Gaithersburg, MD,
USA) with a custom nine-step randomized Troland-based
protocol with skin electrodes placed 2-3 mm below the

TABLE 2. Dataset distribution.

lower eyelid. Flashes delivered at 2 Hz were averaged from
30-60 waveform traces per eye to generate the reported
average waveform signal that was used in the analysis.
Waveforms with artifacts such as blinks were automatically
rejected from the average if they fell within the upper or
lower quartile of the overall average. Two recordings were
typically made in each eye and included in the dataset
for analysis. Fig.3 shows the signal processing method.
The dataset distribution of included ERG waveform signals
recorded from the participants in each group and at each flash
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strength is shown in Table 2. Signals from one individual
appear only in one subset (fold) for the cross-validation steps.

III. GATED MULTILAYER PERCEPTRON
The gMLP is a neural network architecture that aims to
process sequential data using a novel design centered around
Multi-Layer Perceptrons (MLPs) with gating mechanisms.
Unlike Transformer-based models, which rely heavily on
self-attention mechanisms, gMLP explores an alternative
approach for sequence modeling: it simply consists of
channel projections and spatial projections with static param-
eterization. It demonstrates high performance on time-series
domain tasks and uses fewer trainable parameters than
Transformer models in general. The main components of the
structure are the gMLP main block and the Spatial Gating
Unit (SGU), which are described below.

A. GMLP BLOCK
The MLP is a basic form of a neural network, consisting
of a simple series of fully-connected layers or perceptrons.
The overview of the gMLP model is shown in Fig.4 [48].
It consists of a stack of L blocks, each with identical size and
structure. Each block L is defined as:

Z = σ (XU ), Z̃ = s(Z ), Y = Z̃V (1)

where X ∈ Rn×d is a token with sequence length n
and dimension d , and σ is an Activation function. U ∈

Rd×dffn and V ∈ Rdffn×d define linear projections along
the channel dimension, Z ∈ Rn×dffn , and s(·) is a layer
that captures spatial interactions and is defined as a spatial
depth-wise convolution. Unlike Transformers, gMLP does
not require position embeddings because s(·) already contains
this information [48].

B. SPATIAL GATING UNIT
Layer s(·) should contain a contraction operation over the
spatial dimension to enable cross-token interactions that
could be performed with linear projection:

fW ,b(Z ) = WZ + b (2)

where W ∈ Rn×n is independent of the input representations
matrix for which the size is the same as the sequence length n,
and b refers to token-specific biases. Layer s(·) is the output
of the linear gating:

s(Z ) = Z ⊙ fW ,b(Z ) (3)

where s(⊙) is an element-wise multiplication. For trainingW
is initialized as near-zero value and b as ones, consequently
fW ,b(Z ) ≈ 1 and s(Z ) ≈ Z . For effectiveness, Z is split into
two independent parts Z1,Z2 along the channel dimension for
the gating function and for the multiplicative bypass:

s(Z ) = Z1 ⊙ fW ,b(Z2) (4)

For improvement of the stability of large models, the input is
normalized to fW ,b. This unit was referred to the SGU.

FIGURE 4. Overview of the gMLP architecture. The model consists of a
stack of L blocks with identical structure and size. Each block consists of
channel projections before and after the Spatial Gating Unit (SGU).
Together with the activation function (GELU), they act as feedforward
layers.

Algorithm 1Work of the gMLP Block

gMLP Block(X,d,dffn)
Shortcut = X
X← Norm(X, axis = Channel)
U← Proj(X,dffn, axis = Channel)
Z← GELU (XU)
Z̃← Spatial Gating Unit(Z)
V← Proj(Z̃, d, axis = Channel)
return Z̃V + Shortcut

Spatial Gating Unit(Z)
Z1,Z2← Split(Z, axis = Channel)
Z2← Norm(Z2, axis = Channel)
n← Get Dimension(Z2, axis = Spatial)
Z2← Proj(Z2,n, axis = Spatial, init_bias = 1)
return Z1 ⊙ Z2

The Algorithm 1 appears similar to the attention mecha-
nism in Transformers [48]. However, it is not identical. Here,
the weights stay the same during the inference, independent
of the input. Meanwhile, in the attention mechanism, the
weights change depending on the input, which can lead to
better performance during inference. On the other hand, this
makes transformers more challenging to train.

IV. EVALUATION
In this work, we compared multiple time-series DL models,
allowing for a systematic assessment of their respective
performance characteristics and facilitating the selection of
the most accurate model for the classification problem in
the domain while advancing scientific understanding of their
applicability and limitations.
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FIGURE 5. Evaluation pipeline. To perform the subject-wise
cross-validation, all individuals from the dataset were randomly divided
into five groups (folds). On each iteration four folds (40 ASD/Control
individuals) were in the training subset, and one fold (10 ASD/Control
individuals) was in the test subset. Each cross-validation step was
repeated five times on the five folds. On each occasion within the training
subset, oversampling was applied to avoid unbalancing. In this way, all
models were trained, and classification metrics compared.

Bidirectional Long Short-Term Memory (BiLSTM) [50]
is a type of Recurrent Neural Network (RNN) that can
capture temporal dependencies in data. They are well-suited
for sequential data with long-range dependencies. Residual
Network (ResNet) [51] is a deep convolutional neural
network designed for image data, but it can also be adapted
for time series tasks. It uses skip connections to mitigate the
vanishing gradient problem [52] and allows for the training
of very deep networks. InceptionTime [53] is a time series
model inspired by Google’s Inception architecture. It uses
multiple parallel convolutional layers with different kernel
sizes to capture various temporal patterns at different scales.
OmniScale [54] is a model designed to handle a wide range of
time series tasks, from short to very long time series. It uses a
combination of dilated causal convolutions and self-attention
mechanisms to capture temporal dependencies efficiently.
A Time Series Transformer (TST) [55] is a transformer-based
architecture adapted for time series data. It utilizes self-
attention mechanisms to capture temporal dependencies and
global patterns effectively. Time Series in Transformers
(TSiT) [56] is another transformer-based model explicitly
designed for time series tasks. It incorporates additional
components like recurrence and autoregressive attention to
capture sequential patterns. PatchTST [56] combines the
concepts of patch-based processing with time series data.
It divides the time series into smaller patches and applies
transformer-based models to each patch.

A. TRAINING
We performed a five-fold subject-wise cross-validation to
evaluate each model: we randomly divided all 50 subjects
on five folds, Fig.5. There were at least nine signals from
both eyes per subject. This separation was necessary to avoid
having signals from the same subject in different folds, as this
would have falsely increased the accuracy of the prediction.
Every time, four folds were used for training, and the last fold
was used for testing. The models were trained using the entire

dataset without dividing the ERG signals into flash strength
classes, as it would have resulted in a reduced training subset,
which is not suited for training computationally intensive
models. To solve the unbalanced problem on the training
subset, we applied oversampling by individual class and class
weights. Oversampling was performed as upsampling of the
data related to the minority class (control).

For all of the models, we used the CrossEntropyLossFlat
loss function so that we could pass in a weight parameter.
We used Adam as an optimizer with learning rates [0.0001,
0.001]. The validation metric was Accuracy.

Since the objective was to reduce the number of parameters
and efficiency, in the current work, we used a comparable
TST gMLP ‘‘Tiny’’ version from the original study [48]: the
model dimension (dmodel) equaled 128, and the feed-forward
dimension (dffn) was 768. The depth of the model was set
to 12. To reduce the number of training parameters but still
compete with TST, we reduced the model parameters to:
dmodel equal to 64, dffn equal to 512, and depth equal to 6
(‘‘Nano’’). We used GELU as an activation function. The
models were trained until convergence with a maximum
learning rate of 0.0001 with a batch size of 32.

B. METRICS
For a complete understanding of the model performance,
several metrics were computed: Precision (P), Recall (R), and
F1 Score:

Precision =
TP

TP+ FP
, (5)

Recall (Sensitivity) =
TP

TP+ FN
, (6)

F1 Score =
2× Precision× Recall
Precision+ Recall

, (7)

where
• TP = True Positive,
• TN = True Negative,
• FP = False Positive,
• FN = False Negative.
As the test subsets were not balanced, we considered the

Balanced Accuracy (BA):

Balanced Accuracy =
Sensitivity+ Specificity

2
, (8)

where

Specificity =
TN

TN + FP
. (9)

C. RESULTS
The metrics presented in Table 3 demonstrate the high
performance of the gMLP and transformer-based architecture
models compared with other models for classification on
this dataset. Fig.6a also shows the Receiver Operating
Characteristic curves (ROC) with corresponding Areas
Under the Curves (AUC) for the models tested. Notably,
‘‘Tiny’’ gMLP demonstrated better performance within our
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TABLE 3. Evaluation metrics of different DL models.

constrained dataset than Transformers across most metrics.
Furthermore, the shorted version ‘‘Nano’’ also outperformed
TST and secured the second position across most metrics
despite having significantly fewer trainable parameters. For
comparison, Fig.6b shows the ROC curves of gMLP and TST
models. Specificity and Sensitivity, defined by the formulas 6
and 9, were used to construct the ROC curves with the
following indicators: FPTST = 7, FNTST = 18; FPgMLPTiny =
7, FNgMLPTiny = 12; FPgMLPNano = 11, FNgMLPNano = 10.
Table 3 shows the number of trainable parameters of

each tested model. TSiT has 86 million trainable parameters,
which is impractical for training on ERG signals. TST has
1.5 million parameters compared to 5.9 million for the
‘‘Tiny’’ gMLP. However, the shortened version ‘‘Nano’’ has
only 930 thousand and is the leader in terms of the ratio with
the other metrics.

The reason for these outcomes could be attributed to
various factors. For instance, gMLP has better parameter
efficiency compared to Transformers. Transformers typically
require a large amount of data to train their numerous
parameters, including attention mechanisms and positional
encodings. On the other hand, gMLP relies mainly on
MLP layers, which generally have fewer parameters, making
them less dependent on large datasets for practical training.
Additionally, transformers may be susceptible to overfitting
when dealing with smaller datasets due to excessive learning.
In contrast, gMLP’s architecture, which relies on MLP layers
supported by gating mechanisms, helps mitigate overfitting
due to its simple structure.

When the amplitude of the b-wave is plotted against
flash strength, the function is termed the ‘‘photopic hill’’
with the peak dominated by OFF-retinal pathways and
the later plateau phase the ON-retinal pathways [57]. The
metrics were compared by performing an ablation analysis
where triplets of strength were used with gMLP Nano to
evaluate any differences in the range of flash strengths
to the classification model. We applied the same training
procedure independently for the three flash strength ranges.
The test and training subsets were consequently reduced by a
factor of three. However, in this way, we could compare the
relative contribution of each triplet of strengths to the overall
classification. Table 4 shows the overall performance of the
gMLP Nano using the three triplet flash strengths ranges that

FIGURE 6. Receiver operating characteristic curves (ROC) for binary
classification of ERG signals with corresponding areas under curves (AUC)
for all tested models (a) and for the best three models with highest AUC
(b): gMLP ‘‘Tiny’’, gMLP ‘‘Nano’’, TST.

TABLE 4. Evaluation metrics of gMLP Nano with three flash strength
ranges.

corresponded to the early (−0.367 to 0.114), mid (0.398 to
0.799), and later (0.949 to 1.204) portions of the photopic hill.

V. DISCUSSION
In this work, we have built on previous studies that have
used combinations of ML with ERG signal analysis [24],
[25], [26], [34] or time domain parameters of the DA- and
LA-ERG waveform [14], [20], [21], Here we investigated
the complete time series of the ERG waveform signal that
provides some advantages over previous studies by using DL
models that can automatically learn relevant features from
the raw time-series dataset. Time-series data of the ERG
waveform can contain complex and hierarchical patterns that
may not be evident through manual feature engineering.
Analyzing the entire signal allows these models to uncover
complex temporal relationships that may be missed when
relying on waveform peak parameters such as amplitude and
time or time-frequency analytical solutions.

There is interest in expanding the clinical potential of the
ERG as a biomarker for disorders affecting the CNS [3],
[58]. The application of ML to identify phenotype-genotype
correlations has been demonstrated in retinal disease [32],
and this may also be beneficial in complex disorders where
genotypic risk factors can be linked to a phenotype in other
inherited retinal diseases [59]. While previous studies have
utilized signal analysis of the ERG signal to extract salient
features for classification [34], this subsequent analysis relied
on features identified from the raw time series that may offer
an alternative and additional method in the quest for the
classification and identification of retinal and CNS disorders
based on retinal functional biomarkers [3], [15], [16], [32],
[60].
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Previous studies using parameters from a Gaussian and
logistic growth function to model the photopic hill as defined
by Hamilton et al. [61] indicated a more likely loss of
the ON-pathway associated with the higher flash strengths.
In the ablation analysis, we found equivalent contributions
of the three selected triplet flash strength ranges - although
the higher flash strength series had a slightly superior overall
balanced accuracy in keeping with previous suggestions that
there is a more significant ON-pathway loss in ASD [19],
[20], [21]. The use of regions of the photopic hill has
been applied to discriminating schizophrenia from bipolar
and control groups previously [16] and in this analysis,
selecting a range of three strengths in the higher range
provides similar performance to all strengths (three high
strengths AUC = 0.965 compared with all strengths AUC =
0.955 and slightly lower BA = 0.856 compared with BA =
0.887) using gMLP Nano. This may help select the minimal
number of flash strengths required in a test to classify ASD
subjects accurately in future studies and support the potential
application of ERG analysis in classifyingASD in this subject
group.

For the analysis of the ERG signal to be validated,
further studies will need to be performed in which sex and
developmental age are matched between groups to minimize
heterogeneity between study populations [62]. Additional
DL models using feature engineering techniques, such as
distributional analysis of features, may also be advanta-
geous in the future with larger and more complex clinical
datasets to support more robust classification models [63],
[64]. The ERG may form part of the classification of
biotypes [65] or transdiagnostic endophenotypes [66] that
could provide improved stratification of neurodevelopmental
conditions [46] in conjunction with genotypic and phenotypic
data [67].

The use of gMLP provides a powerful method to explore
further and refine the diagnostic potential of the ERG signal
in CNS disorders such as ASD. This may help with improved
earlier interventions and better outcomes for individuals
with a diagnosis of ASD [17], [42]. However, the current
limitations with respect to ASD diagnosis, based on ERG
recordings, is that, typically, children will be diagnosed
before the age of 5 years with early indications of language
delay, lack of declarative gestures, and eye contact commonly
observed before a formal diagnosis [62]. In addition, ASD
may present in combination with co-occurring developmental
conditions such as ADHD, and as such, the specificity
of the classification would need to be further evaluated
in children with ASD plus an additional co-occurring
neurodevelopmental condition(s) [68]. Reducing the cost
and increasing the accessibility to recording the ERG in
clinical populations may also be improved in the future with
technological developments, including smartphone-based
devices that can record and perform sophisticated analyses
of the waveform [41]. Thus, further studies are required in
younger cohorts with awide spectrum of neurodevelopmental
conditions to establish the LA-ERG as a specific biomarker

for ASD. However, these early findings further support the
use ofML in the potential classification of neurodevelopmen-
tal conditions [36], [37] and with larger datasets in clinical
populations, there is the potential for the ERG to assist with
triaging children that may require further clinical assessments
or to monitor therapeutic interventions targeting the CNS in
neurodevelopmental disorders.

VI. ETHICS
Clinical recordings were approved by local institutional
ethics committees and were in accordance with the Decla-
ration of Helsinki.

VII. CONCLUSION
gMLP is a novel architecture with the strengths of traditional
MLP and challenges some aspects of Transformers. Our
findings have demonstrated comparability to Transformers in
the ERG time-series domain. gMLP has a reasonably simple
structure while offering the ability to process long-range
dependencies in sequential data: gMLP ‘‘Tiny’’ showed
the highest balanced accuracy of 0.89 on the dataset and
performed better than or equivalent to other time-series
models. The next best was the ‘‘Nano’’ version, with far fewer
parameters with the training process requiring a manageable
number of signals. Therefore, its application to the ERG
waveform is promising where clinical populations may be
rare, such as in inherited retinal diseases and heterogeneic
neurodevelopmental disorders.

Some limitations of the study outcomes are a comparison
with individuals that may meet diagnostic criteria for ASD
and ADHD or older ASD participants where the ERG find-
ings are mixed [21], [22]. Future directions may address these
areas and explore other indices to support classification and
reduce the number of flash strengths required to obtain a high
classification. Including screening tool scores, such as the
Autism Quotient in the models, or other biological signals,
such as the pupil light response or oculomotor control, may
enhance the classification model’s strength. Nonetheless,
we report that the ERG waveform has the potential to be a
functional retinal biomarker and, in conjunction with gMLP,
could further improve the accuracy of ASD detection. The
application of gMLP may also contribute to related fields
of ERG analysis in human and animal studies [2] and,
as illustrated in this study, able to provide a robust method
for detecting ASD within this clinical population.
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