
Received 20 February 2024, accepted 3 April 2024, date of publication 9 April 2024, date of current version 16 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3386751

An Annotation Assisted Smart Contracts
Generation Method
YONG CHEN , DEFENG HU , CHAO XU, AND NANNAN CHEN
School of Computer Science, Nanjing Audit University, Nanjing, Jiangsu 211815, China

Corresponding authors: Defeng Hu (17751771036@163.com), Yong Chen (chenyong@nau.edu.cn), and Chao Xu (xuchao@nau.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 71972102, Grant 71972102, and Grant
61902189; in part by the Universities Natural Science Research Project of Jiangsu Province under Grant 20KJB520026 and Grant
20KJA520002; and in part by the Foundation for Young Teachers of Nanjing Audit University under Grant 19QNPY018.

ABSTRACT Smart contracts are rapidly applied in many fields, with their varied types and increasing
complexity. A sharp increase in the method development demands seems to be certain. However, this type
of development has its unique programming language and security requirements, making it difficult for
regular software personnel to adapt quickly. It is important to realize that the development efficiency is
application-specific and that getting this application issue solved is critical for its further development. To this
end, we propose a new, automatic, and intelligent contract-generation method, based on code annotation.
First of all, combined with the semantic annotation information of smart contract code association,
a clustering analysis model is built to realize fast and accurate clustering with functions similar to smart
contracts. Then, based on the Char-RNN network, a multi-level and automatic generation method of
intelligent contract knowledge base is built to realize the automatic generation at different levels, such
as the contract layer, function layer, and interface layer. Finally, by using text matching technology and
by calculating the semantic similarity of the user text demands as well as the smart contract knowledge
base annotation, the relevant contract code is automatically extracted for users to choose, with the aims of
improving the method efficiency and to meet the needs of different users. To test the effectiveness of the
method, with the aid of bilingual quality assessment BLEU and Mythril, VaaS, and other code security tools
for evaluation are used and results are comparedwith the existingmethod. The generated code BLEU average
score was increased by 27% and the average accuracy was increased by 11.5%. Therefore, the smart contract
generated by our method is relatively accurate and reliable.

INDEX TERMS Smart contract, annotation, char-RNN, multi-level code generation.

I. INTRODUCTION
Smart contracts play a crucial role in blockchain technology,
as they allow for transactions to be completed without relying
on intermediaries. This break from traditional transaction
modes has wide-ranging applications in various fields,
including education, voting, real estate, entertainment, the
Internet of Things, supply chain management, healthcare,
and more [35]. According to [29] and [35], smart contracts
are executable programs deployed on a blockchain to
facilitate, validate, and execute transactions. In essence,
a blockchain is a distributed database that records transactions

The associate editor coordinating the review of this manuscript and
approving it for publication was Chuan Li.

of smart contract fragments, which can be interacted with
by untrusted nodes. The application scenarios of blockchain
platforms significantly extended by separating transactions
from external trusted institutions. Currently, more and
more blockchain platforms support smart contracts, such
as Ethereum, Hyperledger Fabric, and VNT Chain, all of
which provide programming languages for smart contract
development. Among these, Solidity is the most popular
programming language used on the Ethereum platform [29].

In the past decade, smart contracts have shown great
potential for a wide range of applications. However, their
security remains a crucial issue hindering their development
and causing substantial financial losses [30]. Some of the
most notable incidents include the DAO security breach

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 51485

https://orcid.org/0000-0002-5550-9408
https://orcid.org/0009-0005-2856-8946

Y. Chen et al.: Annotation Assisted Smart Contracts Generation Method

in June 2016, which resulted in a loss of $50 million,
the Parity multi-signature wallet security breach in July
2017, which resulted in a loss of almost $200 million, and
the BEC token theft in April 2018, which resulted in a
loss of $900 million due to a single line of code. These
security incidents have caught the attention of numerous
researchers. Scholars such as [10] and [22] have highlighted
that smart contract security mainly involves contract security
and privacy security issues. Contract security primarily
pertains to the design, deployment, maintenance, and testing
stages of smart contracts. It necessitates the development
of smart contracts without code vulnerabilities or design
defects, and the enhancement of smart contract vulnerability
detection tools. Additionally, the immutability of smart
contracts contributes to their credibility, as they cannot
be modified once deployed online. However, if there are
loopholes, correcting them can be difficult, and unreliable
smart contracts can severely compromise the privacy of the
contract code and related data.

With the rapid expansion of smart contracts, their appli-
cations are becoming increasingly diverse. In addition to
ensuring the security of the contracts themselves, designing
smart contracts requires knowledge and skills in the relevant
application areas. Consequently, there is often a disconnect
between contract developers and designers in the smart
contract field. While contract developers may be skilled in
smart contract programming languages, they may lack an
understanding of contract logic. Conversely, designers may
be familiar with business rules but lack a comprehension
of smart contracts. This results in lower efficiency of smart
contract development and hinders the pace of their progress.
Furthermore, a survey cited in [27] reveals that as of October
2022, the number of smart contracts deployed and released
in Ethereum has reached 51 million, and the market size is
expected to grow at an annual rate of 32%, involving billions
of dollars. Due to the enormous market size, the efficiency
and security requirements for smart contract development
have become more stringent. Therefore, developing accurate
and secure smart contracts rapidly is imperative to meet the
evolving needs of diverse users.

User-friendliness refers to the design and development of
smart contracts, taking into account the needs, capabilities,
and habits of many smart contract developers and the
reusability of a large number of codes, to provide a simple,
intuitive, and easy-to-operate interface, to promote the
efficiency of developers’ code development and reduce the
difficulty of development. At present, most smart contract
researches mainly focus on security detection, while ignoring
the development efficiency and user-friendliness of smart
contract programming. The interaction mode of the smart
contract development environment is still based on pure
code writing, and there is a lack of additional auxiliary
information to assist developers in code design. Therefore,
the professional requirements for users to master relevant
programming languages are relatively high. This tends to
reduce the friendliness and efficiency of the developer’s

interaction with the code to some extent. On the one hand,
non-friendliness is mainly reflected in the following two
problems: First, many non-professional developers (such as
in the education field) do not know much about the language
of the smart contract field, and it is often difficult to develop
target contracts according to their needs. Secondly, with the
rapid development of smart contracts, a large number of
basic contract code is often reused in the development of
a high frequency, and developers are still completing my
writing, which undoubtedly greatly increases the redundancy
of development code. On the other hand, although large
models such as ChatGPT have very good code generation
capabilities, the development work for smart contracts still
has problems such as poor quality and inaccurate code
generation, lack of semantic information, and can only
generate basic contract code. The limitations of the current
work provide a certain motivation for this study. We conduct
cluster analysis through a large number of smart contract data
and extract smart contract code with a high usage rate as
the data set for model training, to reduce the extra cost of
basic code development for developers and design relevant
development interfaces for developers to use. Using code
comment information to help developers match and generate
code, and improve User-friendliness and efficiency. Although
some research [16] to improve the efficiency of the smart
development contract, but still need to improve the ability
of developers to quickly understand intelligent contract code,
can be further optimized code development efficiency and
accuracy. Therefore, we propose an automatic smart contract
generation method based on annotation assistance. The main
contributions of this paper are as follows:

1) Designed a smart contract similarity assessment based
on annotation-assisted cluster analysis. The smart
contracts obtained by the crawler programwere prepro-
cessed and divided into code hierarchies. Annotation
information and code were given different weights
to perform clustering analysis on the source code of
smart contracts at various levels, resulting in obtaining
hierarchical smart contract source code documentswith
similar features and ensuring the accuracy of the smart
contract generation model.

2) A multi-level smart contract code auto-generation
model based on deep learning was constructed. Build-
ing upon the Char-runmodel in deep learning and using
a bidirectional GRU (directional GRU) [14], [24] as the
hidden layer to replace the basic RNNmodel, themodel
takes the smart contract source code at various levels
as input to generate unified, semantically hierarchical
code.

3) An annotation-assisted method for adaptive matching
of smart contracts was designed. Deep learning sim-
ilarity algorithms were employed, with the Jaccard
coefficient serving as the calculation index. Addition-
ally, a user-friendly interactive interface was created.
By calculating the similarity between the user’s
input requirements and the corresponding annotation

51486 VOLUME 12, 2024

Y. Chen et al.: Annotation Assisted Smart Contracts Generation Method

information of the code, adaptive matching of smart
contract code with the assistance of annotation infor-
mation was achieved.

II. RELATED WORK
Currently, research on smart contract security issues mainly
focuses on the detection of smart contract code vulnerabil-
ities, which is a highly concerning issue in the blockchain
field. References [20], [22], and [27] analyzed smart contract
vulnerabilities from three perspectives: the Solidity code
layer, the EVM execution layer, and the blockchain system
layer, where the Solidity code layer includes over ten vul-
nerabilities such as re-entry vulnerabilities (The Dao attack)
and integer overflow vulnerabilities, the EVMexecution layer
involves vulnerabilities such as short address vulnerabilities
and ether loss vulnerabilities, and the blockchain system
layer mainly include three vulnerabilities such as timestamp
dependence vulnerabilities. Smart contract security vulner-
abilities not only harm users’ interests but also undermine
the credibility system of the blockchain system. To prevent
vulnerabilities from being exploited by criminals, researchers
have begun to try various methods to prevent the occurrence
of vulnerabilities. In recent years, the detection methods for
smart contract vulnerabilities [20] mainly include formal
verification, symbolic execution, fuzz testing, intermediate
representation, and deep learning methods. Therefore, tools
such as VaaS, Oyente [16], Mythril [16] and SmartCheck
[8] have been widely used in the detection of smart contract
vulnerabilities, and the security issues of smart contracts
have been effectively improved. In addition, in terms of
friendly interaction between smart contracts and develop-
ers, [8], [16] proposed a method for generating specific
domain smart contracts automatically. They constructed a
smart contract automatic generation model based on long
short-term memory recurrent neural networks (LSTM) in
deep learning, used SmartCheck to detect generated code,
and obtained good experimental results. Finally, by designing
a well-designed interactive interface, the friendliness and
efficiency of programming were improved.

Code annotations [21] as auxiliary information of source
code, mark the implementation content and purpose of
the code, which helps developers understand, develop, and
maintain source code. In recent years, researchers have
paid more and more attention to various aspects of code
annotations, mainly in the direction of code annotation
generation and quality evaluation. Reference [5] conducted
specific research on automatic code annotation generation,
which is currently mainly divided into template-based
generation methods, information retrieval-based generation
methods, and deep learning-based generation methods. The
core ideas of these three methods were analyzed in-depth, and
experimental results were compared and analyzed, indicating
that code annotation generation has rich research value and
application prospects. In addition, code annotation quality
evaluation [5], [9], [21], [23] is one of its research focuses,
and high-quality code annotations effectively reduce the

cost of developers’ understanding of the code. Especially
when developers face a large workload of code, due to
lack of experience, lack of professional domain knowledge,
or careless mistakes, code errors or omissions often occur,
and reasonable code annotations can greatly alleviate this
problem. In view of the current research on code anno-
tations, they play a crucial role in the semanticization of
code and in enhancing developers’ understanding of the
code.

In research on code generation using deep learning [3],
[11] pointed out that recursive neural networks (RNN),
convolutional neural networks (CNN), and generative adver-
sarial networks (GAN) are the main research directions.
The idea is to use various neural network structures to
build code generation models and generate corresponding
code by training the models with large amounts of data.
Unlike traditional methods, long short-term memory recur-
sive networks (LSTM) [13], gated recurrent units [13] are
applied to various basic neural network models, and selective
retention of sequence information effectively improves the
accuracy and flexibility of code. In recent years, with the
continuous development of deep learning, numerous studies
on code generation are being continuously optimized, thus
code generation techniques based on deep learning have good
prospects for application.

The fairness and decentralization of smart contracts greatly
promote the wide application of smart contracts in various
fields, and many researchers have also realized the research
on the application of smart contracts. Reference [31] and
other experts have integrated smart contract and blockchain
technology into the Internet of Things, and thus innovatively
proposed an access control system based on smart contract
tokens. The system has added the smart contract system to
supervise and manage all kinds of access control events,
greatly improving security and scalability. Decentralized
applications are a common scenario for smart contracts,
and [4] proposes an effective penetration framework to
address the security concerns of such scenarios. In addition,
smart contracts also have important applications in other
fields. For example, [1] and others combined smart contracts
with a college education to create an intelligent, safe, and
fair learning environment for students. [25] Siddiqui et al.
have applied smart contracts in various fields such as
smart city management and real estate development. Smart
contracts, as the contract layer in the blockchain, greatly
change and simplify the way many business and social
interactions, driving the development of the digital economy
and decentralized applications.

We have summarized and summarized the research results
in related work, and drawn relevant tables to show them,
as shown in Table 1.In summary, based on existing research
and relevant content, the proposed smart contract generation
technology based on code comments and deep learning
techniques in this paper has good feasibility and rationality.
Moreover, the paper has certain innovations because the
research on code generation often focuses only on the

VOLUME 12, 2024 51487

Y. Chen et al.: Annotation Assisted Smart Contracts Generation Method

code itself, and neglects the importance of code comment
information.

III. SMART CONTRACT AUTOMATIC GENERATION AND
MATCHING METHOD ASSISTED BY ANNOTATION
INFORMATION
A. THE OVERALL FRAMEWORK OF THE APPROACH
The research framework of this article can be divided into
three parts: first, using a web crawler program to crawl the
source code of smart contracts from Ethereum, dividing them
into levels based on their code and annotation documents, and
establishing a corresponding mapping relationship through
file numbers. In the annotation-assisted smart contract source
code clustering stage, we preprocess the clustered code and
annotation documents separately as input, calculate their
cosine distance values from two dimensions of annotations
and code, and use the K-means algorithm to generate clusters
of code in each level, thereby extracting hierarchical code
with high similarity. Secondly, in the smart contract code
generation part, to ensure the accuracy of code generations,
we preprocess the hierarchical code after clustering twice
and use a recurrent neural model as the smart contract code
auto-generation model to generate unified basic code. The
generated code and annotations are stored in the database,
and developers can match the code in the database by
inputting their own demand information. Finally, we designed
a convenient human-computer interaction interface, which
calculates the text similarity between the demand information
entered by the user in the smart contract interaction interface
and the corresponding annotation content of the code,
thus achieving annotation-assisted adaptive matching of
smart contracts. The specific overall frame diagram is
Fig 1:

B. ANNOTATION-GUIDED SMART CONTRACT CLUSTERING
In terms of the research content of code analysis, most
studies are limited to the code content itself, while often
ignoring the information brought by annotations for the
corresponding code. Therefore, in addition to the basic
dimension of the code itself, annotations are another focus
of this research. We will use clustering in two dimensions
of annotation text and code to extract similar hierarchical
smart contract code. The specific steps of clustering are as
follows:

1) THE SELECTION OF THE OPTIMAL CLUSTERING CENTER
POINT K
Before the K-means clustering algorithm is carried out, the
value of the number of cluster centers k must be determined
first. The number of smart contracts used in this paper is
large and the real number of clusters cannot be determined.
Secondly, smart contract samples can be regarded as data in
the form of a simple text structure. The elbow method is a
method to determine the optimal cluster number by observing
the relationship between the Sum of Squared Errors (SSE)

within the cluster and the cluster number K. In the Kmeans
clustering algorithm, SSE is an index that measures the sum
of squares of the distance between data points in a cluster and
its cluster center. In the clustering process, with the increase
of cluster number k, sample division will be more refined,
and the degree of aggregation of each cluster will gradually
increase, so the square error and SSE will naturally become
smaller. When k is less than the real cluster number,SSE
will decrease greatly because the increase of k will greatly
increase the degree of aggregation of each cluster. However,
when k reaches the real cluster number, the return on the
degree of aggregation obtained by increasing k will rapidly
decrease, so SSE will decrease sharply, and then tend to
be flat with the continuous increase of k value. That is
to say, the relationship between SSE and k is the shape
of an elbow, and the corresponding k value of this elbow
is the real cluster number of data. The elbow method is
an unsupervised simple and intuitive method that can help
estimate the optimal cluster number K when there is no prior
knowledge about the true number of clusters in the data. In the
case of relatively simple data structures and cluster shapes,
the elbow method is often effective in finding elbows and
providing reasonable clustering number recommendations.
Based on the experimental data in this paper, we use the elbow
method to obtain the K value.

2) CLUSTERING OF SMART CONTRACTS BASED ON
ANNOTATION GUIDANCE
The annotation contains more source code description
information, which can help developers quickly understand
and read the source code of smart contracts. In order to
improve the accuracy of the research, we must ensure
that the clustered smart contract documents have more
annotation content for the acquired smart contract source
code documents. Smart contract files with a large amount
of text contain rich annotation information, so we reserve
smart contract files with a file size between 50KB and 80KB
as clustering data sets. Secondly, the smart contract source
program document contains many JSON format texts, binary
code texts, and smart contract texts without annotations, and
these texts should be preprocessed.

The smart contract source code is generally composed of
four levels of code bodies: ‘‘function’’, ‘‘contract’’, ‘‘inter-
face’’, and ‘‘library’’. For the clustered data sets, we have
carried out the above-mentioned hierarchical division, which
can help developers quickly generate and manage object
code. Secondly, annotation is the information description of
the code, and the annotation and source code are separated
and stored to effectively avoid the interference of invalid
words and messy information in the clustering process of
these two types of samples. Then establish the link between
the code body and the corresponding annotation document
through the document serial number. For example, a function
in the ‘‘function’’ layer code is stored in the function1 file, and
the corresponding annotation document is correspondingly
stored in the function1_note file. The smart contract code

51488 VOLUME 12, 2024

Y. Chen et al.: Annotation Assisted Smart Contracts Generation Method

TABLE 1. Research summary of related work.

samples and annotation information samples that establish
the serial number mapping relationship are the experimental
data sets of this research.

K-means is a clustering algorithm based on distance
division, which considers that the closer the two targets are,
the greater the similarity is. In this study, we have chosen this
algorithm as the clustering method and used Cosine Distance
as the calculation basis. We calculated the Cosine Distance
values of the content of each layer of the smart contract
code and the corresponding annotation content separately.
Finally, we gave a certain weight to the two cosine values
and added them to obtain the final judgment distance of
the sample. And by measuring the distance between each
sample, we achieved clustering. To improve the accuracy of
clustering, preprocessing of the smart contract dataset should
be performed before clustering. Firstly, some words in the
smart contract code appear many times but cannot reflect
their importance in the code, such as ‘‘public’’, ‘‘return’’,
‘‘internal’’, etc., which cannot be used as feature terms.
Therefore, we set these words, such as ‘‘public’’, as stop
words. Similarly, stop words such as ‘‘//’’ and ‘‘/**/’’ should
be set in the annotation document clustering. Secondly, due to
the characteristics of the Solidity language, many identifiers
contain upper and lower case letters, such as ‘‘Contract’’ and
variable names. Therefore, we treat upper and lower case
letters as consistent.

During the clustering process, each document needs to be
vectorized to calculate the distance. We use the spatial vector
model (VSM) to consider the code and annotation documents
as vectors composed of multiple groups of different feature

items and corresponding weights. The formula is as follows:

Di = Di (t1,w1; t2,w2; · · · ; tn,wn) (1)

Gi = Gi (t1,w1; t2,w2; · · · ; tn,wn) (2)

Then Di and Gi represent the ith code and comment
document, tn is each of these identifiers or keywords, wn
is the corresponding word frequency. In the experiment,
multiple cluster centers were selected to calculate the cosine
distance value between the smart contract code and the
central document at each level. At the same time, the cosine
distance between the corresponding annotated document and
the central document was calculated, and the weight was
given and the proportion is λ: (1)-λ). After the weighted
calculation, the formula is as formula 3, shown at the bottom
of page 7. The clustering procedure is shown in Algorithm 1,
specifically as follows:

1) First, remove invalid documents from the smart con-
tract dataset to avoid interference from non-contract
structural code. Additionally, perform stop-word pro-
cessing on both code and comment documents
separately.

2) We vectorize each document using the VSM, randomly
select K cluster center points, set the loop starting flag
of Algorithm 1 to TRUE, and calculate the cosine dis-
tance between all code and corresponding annotation
documents and center points using formula 3. Then,
we assign them to the center document that is closest
in distance (lines 5-13 in Algorithm 1).

3) After the previous step is completed, the average
distance of each document in K clusters is recalculated

VOLUME 12, 2024 51489

Y. Chen et al.: Annotation Assisted Smart Contracts Generation Method

FIGURE 1. Overall framework.

51490 VOLUME 12, 2024

Y. Chen et al.: Annotation Assisted Smart Contracts Generation Method

Algorithm 1 Smart Contract Kmeans Clustering Algorithm
Based on Annotation Guidance
Require: Hierarchical smart contract source code collection

E(1,2,. . . ,i,..,N) and annotation document collection
G(1,2,. . . ,i,..,N), and the number of cluster centers K

Ensure: Clusters of smart contract documents after cluster-
ing

1: Randomly initialize K cluster centers K (center1,
center2,. . . , cnterK), 0<cnterK<N+1;

2: Flag ⇐ TRUE
3: while Flag ̸= FALSE do
4: Initialize the data, the number of smart contract

source code documents and annotation documents is N,
and s ⇐ 0

5: while s < N do
6: cosdistance ⇐ cos(i,K (centerK)
7: for i ⇐ 0 to K do
8: if cosdis < cosdistance then
9: cosdistance ⇐ cosdis

10: else
11: continue
12: end if
13: end for
14: s ⇐ s+ 1
15: end while
16: Calculate the center point between each document in

the cluster after clustering and select the centroid as the
new cluster center point F (center1, center2,. . . , centerK),
0<centerK<N+1;

17: for j ⇐ 0 to K do
18: K ⇐ F
19: end for
20: flagcosdis ⇐ cos(K (centerK),F(centerK))
21: if flagcosdis = Min then
22: Flag ⇐ FALSE
23: else
24: continue
25: end if
26: end while
27: Return result

and F new cluster center points are selected(lines 15-17
in Algorithm 1).

4) Calculate the cosine distance of the new and old cluster
centers, if the distance is close and the center point does
not change, complete the clustering, otherwise return to
the fifth line in algorithm 1 and repeat the above steps
until the cluster center does not change, the end sign is
Flag = FALSE (lines 18-23 in Algorithm 1).

C. MULTI-LEVEL INTELLIGENT CONTRACT AUTOMATIC
GENERATION METHOD BASED ON DEEP LEARNING
Character-level Recurrent Neural Network (Char-RNN) [10],
[22] is a model that operates on the character level, taking
a large amount of character text as input, predicting the
next character based on the previous one through RNN
algorithm, and finally generating code text similar to the
original text. However, this model suffers from problems such
as gradient disappearance. To address this issue, this paper
uses Bidirectional GRU (Bidirectional GRU) as the hidden
layer to replace the basic RNN model. This model not only
solves the problems that exist in the basic RNNmodel but also
has a simpler structure and calculation than LSTM. It requires
less computing power and improves efficiency.

The smart contract auto-generation model is shown in
Figure 2. In this model, we train on word-level units, which
is more effective in dimensionality reduction compared to
character-level. The input layer uses word embedding instead
of one-hot encoding, which enhances semantic accuracy
and optimizes memory usage. Then, we use two layers of
bidirectional GRU as the neural network layer, which can
better utilize information from both forward and backward
sequences. Finally, the output layer is a fully connected layer,
where softmax learns the information from the bidirectional
hidden layers of the GRU and outputs the probability of
all word groups, achieving the output information of the
output layer. Before generating the code, in order to improve
the accuracy of the experiment, we conducted secondary
preprocessing of the clustered smart contract and deleted the
incomplete and incorrect codes in the code. In view of the
nature of Solidity language features, identifiers, variables,
and so on in the code are divided by space, so we divide words
through space and establish a dictionary. We will encode
the subsequent word input to the input layer in the way of
word embedding. In this paper, the input of Embedding is a
2-dimensional tensor (sentence number, sequence length), the
sequence length is set to 30, the output layer is 3000 words,
and the forward GRU layer dimension and backward GRU
layer dimension are 256 and 128 respectively.

In the above-mentioned automatic generation of deep
learning code, the samples for training the model are all smart
contract code samples, and the input is part of the samples.
Through the input prediction of the model, the unified basic
smart contract code is output. For example, the training
sample is all the code samples similar to ‘‘function1’’ in the
function layer cluster, the input is partly a code sample similar
to ‘‘function1’’, and the output is a unified ‘‘function1’’
smart contract code. Similarly, we can generate multiple
‘‘function’’, ‘‘contract’’ and other hierarchical codes through
this model.

cos(i, center) =

∑n
i=1 (Ei × Ecenter)√∑n

i=1 (Ei)2 ×
∑n

i=1 (Ecenter)2
× λ +

∑n
i=1 (Ni × Ncenter)√∑n

i=1 (Ni)2 ×
∑n

i=1 (Ncenter)2
× (1 − λ) (3)

VOLUME 12, 2024 51491

Y. Chen et al.: Annotation Assisted Smart Contracts Generation Method

FIGURE 2. Smart contract automatic generation model.

D. ANNOTATION-GUIDED SMART CONTRACT MATCHING
Text similarity is to calculate the specific quantitative value
between multiple texts through a certain metric standard,
so as to measure their similarity. It is the link between
basic research such as text modeling and representation
and upper-level research on text potential information. The
annotation covers a lot of code description information, based
onwhich the similarity between the content of the annotations
and the user’s demand information is calculated, and finally,
the smart contract code with the highest similarity is matched
to the user. Jaccard [12] is a common way of similarity
calculation, which is characterized by simple principles and
suitable for short text calculation. In the process of generating
smart contract code using a deep learningmodel, we stratified
the smart contract code data set, so the corresponding number
of individual annotation matching characters is relatively
small, which can be considered as the type of short text, that is
exactly in line with the computing characteristics of Jaccard.
On the other hand, Jaccard is a commonly used similarity
calculation method. Compared with other algorithms, the
calculation amount and efficiency are better. In the adaptive
matching process of smart contracts, the development time
is better reduced and the requirements of the development
environment are more friendly. So this paper adopts Jaccard
as ameasure, design-friendly interactive interface, developers
through the interface input their requirements, through
the calculation of various level generated code annotation
information and the requirements of developers information

similarity, call similar results optimal smart contract to
developers, realize the function of adaptive matching smart
contract code.

In formula 4,U is the code set,ui is the ith code, andN is the
number of codes. In formula 5, C is the demand information
set of user.The similarity value is the ratio of the size of the
intersection U of C and to the size of the union of U and C .

U = {ui, i ∈ N } (4)

C = {c} (5)

Max
{
J (ui,C) =

|ui ∩ c|
|ui ∪ c|

=
|ui ∩ c|

|ui| + |c| − |ui ∩ c|
, i ≤ N

}
(6)

In formula 6, ui represents any code in the database.
We calculate the developer’s demand information and code
similarity, and finally find the largest similar code as the
target code to interact with the developer. The specific logic
is shown in Figure 3.

IV. EXPERIMENTS AND RESULTS ANALYSIS
A. EXPERIMENTAL ENVIRONMENT AND THE DATASETS
The experiments in this paper were conducted on a 64-bit
Windows 10 operating system with an AMD Ryzen5-4500U
with Radeon Graphics 2.38 GHz processor, 16.00GB of
RAM, and Python 3.10 as the programming and running
environment. The dataset used in this article was obtained
through a self-write crawler program, selecting 10,437 smart

51492 VOLUME 12, 2024

Y. Chen et al.: Annotation Assisted Smart Contracts Generation Method

FIGURE 3. Smart contract adaptive matching.

contract source codes from the Ethereum platform,with smart
contract document sizes ranging from 1 to 211KB. We per-
formed preliminary data preprocessing, removing some smart
contracts in JSON and ABI formats and retaining 1,737 smart
contract documents with sizes ranging from 50KB to 80KB as
the dataset for this article’s experiments. Finally, we divided
the smart contract source code in the dataset into ‘‘function,’’
‘‘contract,’’ ‘‘interface,’’ and ‘‘library’’ levels and divided
the annotations and corresponding code bodies. We also
defined the stop word document required for clustering
analysis.

The primary step in this article is to obtain a dataset
of clustered smart contracts. Ethereum is currently the
most widely used blockchain interaction platform, and it
has released numerous open-source licensed smart contract
source codes. We obtained the latest smart contracts from the
Ethereum platform as an experimental dataset by writing a
smart contract source code crawler program. The flowchart of
the smart contract acquisition process in this article is shown
in Figure 4, and the specific operation process is as follows:
download the smart contract address file from the Ethereum
platform, open the Ethereum browser through an automated
program, read the addresses in the file and construct the smart
contract source code page URL, start from the first page,
update the URL content in a loop, and obtain each page of
smart contract source code and store it in a local file, until the
smart contract address file is completely read.

As a widely used database, Mysql can not only help us map
between smart contract code body and annotation content but
also store long text type (long text) data. Therefore, establish
the corresponding ‘‘function’’, ‘‘contract’’, ‘‘library’’, and
‘‘interface’’ table, each record in the table stores the code
body and notes, establish a good mapping relationship, at the
same time, through the code body and annotation field name,

FIGURE 4. Smart contract crawl.

which greatly improves the convenience of code content
management. Based on this we use the Python built-in Tkinter
designed developers and smart contract code interactive
interface, developers select the code level in the interface and
input their demand information. Then, the Jaccard distance is
calculated one by one based on the user demand information
and the annotations corresponding to the smart contract codes
at all levels stored in the database, and finally, the smart
contract code with the best calculation result is selected and
presented to the developer from the interface.

B. RESULTS AND ANALYSIS
In the clustering experiment, the index used by the elbow
method is SSE , which is an index to measure the sum of
squares of the distance between the data point in the cluster
and the cluster center. The specific formula is shown as
follows:

SSE =

k∑
i=1

∑
p∈Mi

|p− mi| (7)

whereMi is each cluster, p is the sample point inMi,mi is the
central sample point inMi, and SSE is the clustering error of
all samples. The elbow method was carried out according to
the above indicators, and k was finally obtained as 618, and
the visualization results were shown in Figure 5:
After completing the clustering experiment, we obtained

618 clusters of smart contract codes as the dataset for the
smart contract auto-generation model. Each code cluster
contains many similar smart contract codes. Based on the
model built in this paper, each code cluster generates a unique
basic smart contract code with rich descriptive comments.
As shown in Table 3, the generated hierarchical code includes

VOLUME 12, 2024 51493

Y. Chen et al.: Annotation Assisted Smart Contracts Generation Method

FIGURE 5. Optimal k value.

basic function code, basic contract code, basic interface code,
and basic library contract code.

To ensure the validity of the generated code, we evaluated
it using the BLEU metrics. The BLEU [18] indicator is a
mechanism widely used in evaluation for machine translation
tasks. Here we measure the quality of the generated code by
the number (n-grams) between the generated code text and the
reference text. In n elements, the value of n is 1 to 4, and the
BLEU score ranges from 0 to 1. If the two sentences match
perfectly, the BLEU is 1.0, otherwise, if the two sentences do
not match perfectly, the BLEU is 0.0. The BLEU mechanism
scoring formula is as formula 8:

BLEU = BP∗ exp

(
N∑

n=1

wn log pn

)
(8)

For the generated code text, in order to avoid the influence
of symbols on the evaluation scores, we replaced symbols
such as ‘‘+’’ and ‘‘−’’ with spaces. Furthermore, according to
the characteristics of the Solidity language, we tokenized the
word using spaces and obtained BLEU scores. We evaluated
the generated code separately for each level using the BLEU
mechanism. The experimental BLEU scores are shown in
Table 2. The last row of the table shows the scores of existing
experiments. From the data, it can be seen that the code
generated by the above method has good quality. Compared
with past experiments, average BLEU1-4 scores increased by
22.5%, 23.7%, 24.9%, and 37.2% respectively.

In addition, smart contract security checking is extremely
important. In order to improve the security of the generated
smart contracts, this paper uses formal verification and
symbolic execution methods to detect the generated code,
using the VaaS and Mythril tools respectively. In this
experiment, unfinished generated code, duplicated code, and
code that does not pass the detection are all considered
incorrect smart contract codes. Table 4 shows the accuracy
of each tool after detection, and the accuracy of existing
experiments is 68.27%. Compared with this experiment, the

TABLE 2. The BLEU experimental score for generating the smart contract
code.

TABLE 3. Smart contracts automatically generate results.

TABLE 4. Generate the smart contract code detection results.

detection tool in this paper is more comprehensive and the
average accuracy rate is increased by 11.5%.

This paper designs a friendly interactive interface,
as shown in Figure 6. Developers input their requirements
information in this interface and realize the generation of
adaptive code matching by matching the smart contract with
the greatest similarity from the database and delivering it
to the developers. Here we take the example by generating
a ‘‘myToken’’ case, where ‘‘myToken’’ is a token contract
based on the ERC20 standard.

In order to verify the feasibility of the proposed scheme,
we compare the experiment with the latest technology in
the field of natural language processing. The excellent
text-processing capability of the large model has attracted
the attention of many scholars around the world. Chat-
GPT, as the most outstanding general class large model at
present, plays a very strong prospect in the aspects of text
classification, human-machine dialogue, etc. The model is
much better than other models in all aspects and has a very
good reference value. Second, CodelLama is currently a
relatively excellent open-source code generation large model
in addition to GPT, and its effect is also at the top of the list
of foreign large models and opens its weight for researchers
to learn from. In addition, CodeGeex and Starcoder, as a
new generation of large code generation models, also show a
relatively good performance in code completion, generation,
and other capabilities. As the hottest and most advanced
technology at present, large models can better help this
paper to evaluate and compare the experimental effect, and
this paper conducts experimental comparison with the above
four large models. This paper designs a friendly interactive

51494 VOLUME 12, 2024

Y. Chen et al.: Annotation Assisted Smart Contracts Generation Method

FIGURE 6. Automatically generate the ‘‘ERC20’’ token contract.

interface, as shown in Figure 6. Developers input their own
requirements information in the interface and realize the
generation of adaptive code matching by matching the most
similar smart contract from the database and delivering it to
the developer.

In order to ensure the fairness of the experiment, the same
instructions were input into the system designed in this paper,
and Chatt-GPT, CodelLama, CodeGeex, and Starcoder, and
tested 30 times respectively (that is, 30 instructions were
used to let the model help generate the corresponding smart
contract code). Here we take the example of generating
‘‘myToken’’, where ‘‘myToken’’ is a token contract based
on the ERC20 standard. As shown in Figure 6, the user
enters ‘‘Please help me generate an ERC 20 token contract’’
in the ‘‘Please enter search information’’ input box of the
smart contract generation interface. After clicking the ‘‘Add

code’’ button, the smart contract code generated in the text
box on the right side of the interface is the object code that
adaptively matches the user’s demand information. As can be
seen from the code generated in the figure, this paper not only
realizes the generation of ERC20 code and other required
contract code but also interacts with the corresponding
annotation content with the interface, thus improving the
user’s programming friendliness. Finally, by clicking the
‘‘Save’’ button in the interface, we name the file ‘‘myToken’’
and store it in the computer using the. sol file format. Here,
the ERC 20 token contract is generated in ChatGPT with the
same password, as shown in Figure 7.

After testing the 30 instructions, in order to verify the
validity of the generated smart contract, the source code is
used as the standard code in BLEU, and the smart contract
code generated in this paper is compared and tested with the

VOLUME 12, 2024 51495

Y. Chen et al.: Annotation Assisted Smart Contracts Generation Method

FIGURE 7. ChatGPT generate the ‘‘ERC20’’ token contract.

code generated by Chate-GPT, CodelLama, CodeGeex, and
Starcoder respectively. First, we generate code in each model
with the same password. Next, we calculated and compared
the average BLEU score between the generated code and the
source code for each model, as shown in Table 5. Table 5
shows the experimental schematics of this paper compared
with Chat-GPT, CodelLama, CodeGeex, and Starcoder. From
the table’s score, the average score of BLEU 1-4 is very
close to that of ChatGPT and CodelLama. The generated
code is closer to the source code, and the effect is better.
Compared with CodeGeex and Starcoder, the score of the
scheme in this paper is significantly improved. This shows
that the large model that ranks top in the current large model
list has a very good performance in code generation, and this
scheme has better capability than the general large model of
code generation. Secondly, the code generated in this paper

TABLE 5. The experimental results of this scheme are compared with
those of large model.

contains the relevant interface code and library contract code.
The code generated by the large model is currently limited
to a single contract layer code, and the structure is relatively
simple, which can not meet the various needs of current smart
contract development. On the other hand, the code generated
in this article provides a lot of annotation information, which
is one of the focuses of this article. Comment information can
help developers quickly and efficiently understand code and
improve development efficiency.

C. COMPUTATIONAL COMPLEXITY
The computational complexity involved in this paper includes
three parts, the first part is the time complexity and space
complexity of the Kmeans algorithm; The second part is the
complexity of GRU model training (loss change) and the
time complexity and space complexity of the GRU model.
The third part is the time complexity and space complexity
used in the similarity calculation algorithm. Time complexity
is a function that qualitatively describes the running time of
the algorithm, which is defined as the number of repeated
executions of basic statements in the algorithm is a function
f (n) of the problem size n, and the time measurement of the
algorithm is denoted as:

T (n) = O(f (n)) (9)

It indicates that with the increase of problem size n, the
growth rate of algorithm execution time is the same as that
of f (n), which is called the asymptotic time complexity of
the algorithm, referred to as time complexity. As for the
storage space requirement of the algorithm, similar to the time
Complexity of the algorithm, we use the asymptotic Space
Complexity as a measure of the storage space required by the
algorithm, referred to as the space complexity, which is also
a function of the problem size n, denoted as:

S(n) = O(f (n)) (10)

According to the analysis of the Kmeans algorithm in this
paper, the maximum number of layers of cyclic iteration in
the algorithm is 3 layers. If the problem scale of each layer
is n, then the maximum time complexity of the algorithm
is T (n) = O

(
n3
)
. The space used is 2 sets of sample

points. Suppose the problem size of each set is n, then the
maximum space complexity of the algorithm is S(n) =

O(n) + O(n) ≈ O(n). According to the above analysis,
the computational complexity in the clustering algorithm
includes time complexity and space complexity, which are
cubic order O

(
n3
)
and linear order O

(
n2
)
respectively.

51496 VOLUME 12, 2024

Y. Chen et al.: Annotation Assisted Smart Contracts Generation Method

FIGURE 8. Model training complexity.

In the code generation model, this paper adopts bidi-
rectional GRU as the training model, and ‘‘loss’’ is an
indicator used to measure the difference between the model
prediction and the actual target. The smaller the loss, the
closer the predicted result of the model is to the actual target,
while the larger the loss, the greater the difference between
the predicted result and the actual target. Therefore, loss
shows the complexity of GRU model training in this paper.
The model loss transformation of this scheme is shown in
Figure 8:

According to the change of loss in the figure, when the
loss value approaches 0.13, the loss will basically no longer
decline. Therefore, we believe that when the loss=0.13, the
model will be trained to the best, otherwise there will be
problems of overfitting and underfitting. In addition, the
bidirectional GRU is used as the model for code generation,
and the complexity of the model includes time complexity
and space complexity.When calculating the time complexity,
the main concern is the computation cost per moment.
Assuming that the sequence length is T , the hidden layer
size is N , the input dimension is M , and the model receives
input characters size is n, then the time complexity of
each GRU unit is O(N · M + N 2). Since the model is
bidirectional, the maximum time complexity of the model
is T (n) = 2O

(
n · N ·M + n · N 2

)
≈ O

(
n3
)
. When

calculating the space complexity, we mainly focus on the
number of parameters and the storage of the intermediate
state. Suppose that the number of parameters of each GRU
unit is O(N · M + N 2), and the space complexity of the
intermediate state is O(T · N). Since the model is bi-
directional, the maximum space complexity of the model
is S(n) = 2O

(
n · N ·M + n · N 2

)
+ 2O(T · N · n) =

O
(
n3
)
.To sum up, the complexity of model training in this

paper is loss=0.13, and the time complexity and space
complexity of the model is cubic order O

(
n3
)
and O

(
n3
)

respectively.
The final computational complexity is the time complexity

and space complexity of the similarity calculation algorithm.

In Part III-D of the paper, the process of similarity calculation
is explained in detail. When each user’s demand instruction is
issued, the smart contract code in the library will be matched
successively until the code with the greatest similarity is
obtained. Assuming that the size of the code in the library is n,
then each time the code is generated, n similarity calculations
will be performed, so the maximum time complexity is O(n).
The problem size of the samples in one of the sample sets
is considered as n, then the maximum space complexity is
O(n). To sum up, in the process of similarity calculation,
the computational complexity includes time complexity and
space complexity, which are divided into specific linear order
O(n) and linear order O(n).

V. THE DEFICIENCY OF THIS ARTICLE
This paper proposes that the automatic generation scheme
of smart contracts based on code annotations shows better
efficiency and User-friendliness in writing smart contracts.
Although it has a good application prospect and value in
the development of smart contracts in finance, education,
and other fields, there are still some limitations. Firstly,
annotations are added to both the clustering algorithm
and similarity calculation in the scheme proposed in this
paper, and the quality of annotations will directly affect
the effect of this scheme. When the obtained annotation
content is of low quality or wrong, the accuracy of the
clustering algorithm and similarity calculation will be greatly
reduced, thus resulting in inaccuracies and errors in matching
smart contracts to users. Secondly, this topic focuses on
the research of general-purpose smart contract codes. The
model we designed can better generate smart contract code
commonly used in most fields, but when faced with more
detailed problems in a certain field, the generated code
may not be able to meet the needs of users. Therefore,
the requirements for smart contract code in different fields
will be more subtle differences, and the system designed
in this paper can not meet the specific code requirements
in a single domain. To sum up, in the face of the above
situation, the effectiveness of this study is reduced to a
certain extent, and it is only applicable to the condition
that annotations ensure high quality and the development
needs of general-purpose smart contract code. The scheme
proposed in this paper can effectively provide users in various
fields with safe, reliable, and commonly used smart contract
code.

VI. CONCLUSION AND FUTURE ENHANCEMENT
This article proposes an intelligent contract automatic genera-
tion solution based on code annotations. The solution obtains
smart contract source code data by crawling Ethereum and
divides it into hierarchical levels and code annotation seg-
ments. In the clustering analysis, similar code is effectively
extracted from each hierarchical level from the perspectives
of comments and code bodies. Meanwhile, a deep learning
model based on character-level recurrent neural networks
(Char-RNN) is used, which replaces the hidden layer with

VOLUME 12, 2024 51497

Y. Chen et al.: Annotation Assisted Smart Contracts Generation Method

bidirectional gated recurrent units (bi-directional GRU) and
constructs a smart contract automatic generation model to
generate unified code for each hierarchical level. Regarding
smart contract security, the BLEU scoring mechanism and
smart contract detection tools are used to evaluate the quality
and security of the generated code, and a convenient and
fast visualization interface is designed for developers to use.
The experimental results show that the quality and security
indicators of the smart contract code generated by this
solution are good, and compared with previous experiments,
there is a significant improvement.

The scheme in this paper can be effectively applied
to the application scenario of smart contract development,
which has certain research significance for the efficiency
and security of smart contract development. However, there
are certain deficiencies in the work of this paper. First of
all, this paper does not conduct research on smart contracts
in specific fields. At present, it is limited to contract codes
commonly used in various fields and lacks research on
codes in specific fields. Secondly, although the experimental
results of the smart contract automatic generation model
used in this paper have been significantly improved, the
construction of the model can still be optimized in follow-
up research, and there is still much room for improvement
in its accuracy and security. Further exploration and research
based on the above issues will be considered in the
future.

REFERENCES

[1] A. Meri and M. Alzahrani, ‘‘Utilization of block chain technology and
smart contracts in the education procedure of universities,’’ Int. J. Intell.
Syst. Appl. Eng., vol. 12, no. 12s, pp. 652–661, 2024.

[2] S. Bag, S. K. Kumar, and M. K. Tiwari, ‘‘An efficient recommendation
generation using relevant Jaccard similarity,’’ Inf. Sci., vol. 483, pp. 53–64,
May 2019.

[3] A. Bas, M. O. Topal, Ç. Duman, and I. van Heerden, ‘‘A brief history of
deep learning-based text generation,’’ in Proc. Int. Conf. Comput. Appl.
(ICCA), Dec. 2022, pp. 1–4.

[4] A. Bhardwaj, S. B. H. Shah, A. Shankar, M. Alazab, M. Kumar,
and T. R. Gadekallu, ‘‘Penetration testing framework for smart contract
blockchain,’’ Peer Peer Netw. Appl., vol. 14, no. 5, pp. 2635–2650,
Sep. 2021.

[5] C. Zhanqi,M.G.W. Zan, C. Xiang, andY.Guang, ‘‘Summary of automated
generation methods for code annotation,’’ J. Softw., vol. 32, no. 7, p. 24,
2021.

[6] L. Corallo, G. Li, K. Reagan, A. Saxena, and A. S. Varde, and B. Wilde,
‘‘A framework for german-english machine translation with GRU RNN,’’
in Proc. EDBT/ICDT Workshops, 2022, pp. 1–8.

[7] Y. Dong, X. Jiang, Z. Jin, and G. Li, ‘‘Self-collaboration code generation
via ChatGPT,’’ Tech. Rep., 2023.

[8] Z. Zhao, G. Yichen, and Z. Bin, ‘‘Research and implementation of the
automatic smart contract generation method for Ethereum,’’ J. East China
Normal Univ. Natural Sci. Ed., vol. 2020, no. 5, p. 21, 2020.

[9] M. Geng, S. Wang, D. Dong, S. Gu, F. Peng, W. Ruan, and X. Liao, ‘‘Fine-
grained code-comment semantic interaction analysis,’’ inProc. IEEE/ACM
30th Int. Conf. Program Comprehension (ICPC), May 2022, pp. 585–596.

[10] L. Bixin, B. Yihao, H. Tianyuan, and L. Zecheng, ‘‘Summary of contract
security and privacy security research on smart contract,’’ J. Comput. Sci.,
vol. 12, p. 44, Jan. 2021.

[11] T. Iqbal and S. Qureshi, ‘‘The survey: Text generation models in
deep learning,’’ J. King Saud Univ. Comput. Inf. Sci., vol. 34, no. 6,
pp. 2515–2528, Jun. 2022.

[12] F. J. Ming, ‘‘Jaccard application of the improved algorithm in the detection
of user entity behavior analysis,’’ Comput. Appl. Softw., vol. 39, no. 2, p. 5,
2022.

[13] S. Xiaohong J. Yuan, and M. Chenguang, ‘‘Safety defect reporting
identification by combining noise filtering and deep learning,’’ J. Comput.
Sci., vol. 8, p. 45, Jun. 2022.

[14] G. Khodabandelou, H. Moon, Y. Amirat, and S. Mohammed, ‘‘A
fuzzy convolutional attention-based GRU network for human activity
recognition,’’ Eng. Appl. Artif. Intell., vol. 118, Feb. 2023, Art. no. 105702.

[15] Y. Li, Q. Wang, T. Xiao, T. Liu, and J. Zhu, ‘‘Neural machine translation
with joint representation,’’ in Proc. AAAI Conf. Artif. Intell., vol. 34, 2020,
pp. 8285–8292.

[16] D. Mao, F. Wang, Y. Wang, and Z. Hao, ‘‘Visual and user-defined smart
contract designing system based on automatic coding,’’ IEEE Access,
vol. 7, pp. 73131–73143, 2019.

[17] A. Mirzal, ‘‘Statistical analysis of microarray data clustering using NMF,
spectral clustering, kmeans, and GMM,’’ IEEE/ACM Trans. Comput. Biol.
Bioinf., vol. 19, no. 2, pp. 1173–1192, Mar. 2022.

[18] M. M. Misgar, F. Mushtaq, S. S. Khurana, and M. Kumar, ‘‘Recognition
of offline handwritten Urdu characters using RNN and LSTM models,’’
Multimedia Tools Appl., vol. 82, no. 2, pp. 2053–2076, Jan. 2023.

[19] L. Yong, W. Y. P. Bin, and L. Zheng, ‘‘Automated generation method of
code annotation based on the convolutional neural network,’’Comput. Sci.,
vol. 48, no. 12, p. 8, 2021.

[20] H. Qinming, H. Butian, T. Zhengzheng, W. Xun, Q. Peng, and L.
Zhenguang, ‘‘Research review on smart contract security vulnerability
detection technology,’’ J. Softw., vol. 8, p. 33, Jan. 2022.

[21] P. Rani, M. Birrer, S. Panichella, M. Ghafari, and O. Nierstrasz, ‘‘What do
developers discuss about code comments?’’ in Proc. IEEE 21st Int. Work.
Conf. Source Code Anal. Manipulation (SCAM), Sep. 2021, pp. 153–164.

[22] C. Sendner, H. Chen, H. Fereidooni, L. Petzi, J. König, J. Stang,
A. Dmitrienko, A.-R. Sadeghi, and F. Koushanfar, ‘‘Smarter contracts:
Detecting vulnerabilities in smart contracts with deep transfer learning,’’
in Proc. Netw. Distrib. Syst. Secur. Symp., 2023, pp. 1–18.

[23] R. Sharma, F. Chen, and F. Fard, ‘‘LAMNER: Code comment generation
using character language model and named entity recognition,’’ in Proc.
IEEE/ACM 30th Int. Conf. Program Comprehension (ICPC), New York,
NY, USA, May 2022, pp. 48–59.

[24] H. Shi and D. Zhao, ‘‘License plate recognition system based on improved
YOLOv5 and GRU,’’ IEEE Access, vol. 11, pp. 10429–10439, 2023.

[25] S. Siddiqui, S. Hameed, S. A. Shah, A. K. Khan, and A. Aneiba, ‘‘Smart
contract-based security architecture for collaborative services in municipal
smart cities,’’ J. Syst. Archit., vol. 135, Feb. 2023, Art. no. 102802.

[26] X. Su, Y. Hu,W. Liu, Z. Jiang, C. Qiu, J. Xiong, and J. Sun, ‘‘A blockchain-
based smart contract model for secured energy trading management in
smart microgrids,’’ Secur. Privacy, vol. 7, no. 1, p. e341, 2024.

[27] P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, and Z. Li, ‘‘A survey of smart contract
formal specification and verification,’’ ACM Comput. Surv., vol. 54, no. 7,
pp. 1–38, Sep. 2022.

[28] F. Ullah and F. Al-Turjman, ‘‘A conceptual framework for blockchain
smart contract adoption to manage real estate deals in smart cities,’’Neural
Comput. Appl., vol. 35, no. 7, pp. 5033–5054, Mar. 2023.

[29] Á. J. Varela-Vaca and A. M. R. Quintero, ‘‘Smart contract languages: A
multivocal mapping study,’’ ACM Comput. Surv., vol. 54, no. 1, pp. 1–38,
Jan. 2022.

[30] Z. Wan, X. Xia, D. Lo, J. Chen, X. Luo, and X. Yang, ‘‘Smart contract
security: A Practitioners’ perspective,’’ in Proc. IEEE/ACM 43rd Int. Conf.
Softw. Eng. (ICSE), May 2021, pp. 1410–1422.

[31] W. Wang, H. Huang, Z. Yin, T. R. Gadekallu, M. Alazab, and C. Su,
‘‘Smart contract token-based privacy-preserving access control system
for industrial Internet of Things,’’ Digit. Commun. Netw., vol. 9, no. 2,
pp. 337–346, Apr. 2023.

[32] F. Zhenyuan, W. Qian, and W. Cheng, ‘‘Review of k-means clustering
algorithm studies,’’ Electron. Des. Eng., vol. 20, no. 7, p. 4, 2012.

[33] M. Xia, H. Shao, X. Ma, and C. W. de Silva, ‘‘A stacked GRU-RNN-
based approach for predicting renewable energy and electricity load
for smart grid operation,’’ IEEE Trans. Ind. Informat., vol. 17, no. 10,
pp. 7050–7059, Oct. 2021.

[34] Q. Zhu, Z. Sun, Y.-A. Xiao, W. Zhang, K. Yuan, Y. Xiong, and
L. Zhang, ‘‘A syntax-guided edit decoder for neural program repair,’’ 2021,
arXiv:2106.08253.

[35] W. Zou, D. Lo, P. S. Kochhar, X. D. Le, X. Xia, Y. Feng, Z. Chen,
and B. Xu, ‘‘Smart contract development: Challenges and opportunities,’’
IEEE Trans. Softw. Eng., vol. 47, no. 10, pp. 2084–2106, Oct. 2021.

51498 VOLUME 12, 2024

Y. Chen et al.: Annotation Assisted Smart Contracts Generation Method

YONG CHEN was born in Lengshuijiang, Hunan,
in 1986. He received the Ph.D. degree in computer
software and theory from Wuhan University,
in 2013.

He was a Senior Engineer. Notably, he was
a Research Assistant with the City University
of Hong Kong, from June to December 2012.
His academic and research expertise encompass
several key domains, including big data auditing,
blockchain, software reliability, compilation opti-

mization, and embedded systems. He has offered courses in ‘‘Big Data
Processing Techniques,’’ ‘‘Fundamentals of Computer Systems,’’ ‘‘Big Data
Auditing,’’ and ‘‘C Language Program Design.‘‘ Among his noteworthy
achievements, he has taken the helm in leading various research projects,
including Jiangsu Provincial High Education Natural Science Research
Project, from 2020 to 2022. He has authored a significant academic work
titled ‘‘Research on Green Compilation Theory and Methods for Embedded
Systems,’’ which he serves as the second author, published by the Science
Press in May 2014. His research contributions are evident through his
numerous publications in respected journals, including International Journal
of Electronics andAudit Research. Notably, his work in International Journal
of Electronics has been acknowledged with an article on software defect
prediction. Furthermore, he holds two granted invention patents, one for a
method of automatically generating audit questions based on compliance
issues and another for a high-reliability knowledge base construction
method for querying and tracing extensive unstructured data content.
Additionally, he boasts two software copyrights, one for data dependency
analysis software based on LLVM IR and another for an Audit Big Data
Thematic Knowledge Base System. His academic and research achievements
underscore his commitment to advancing the fields of computer science and
audit technology.

DEFENG HU was born in March 1998. He is
currently pursuing the master’s degree with the
School of Computer Science, Nanjing Audit
University.

He hasmade notable contributions to the field of
computer science with publications in prominent
journals. Furthermore, he is currently actively
engaged as an Intern in the field of natural
language processing with Yunwen Network Tech-
nology Company, Nanjing. His primary research

interests include natural language processing, with a specific focus on code
generation and the domain of big data auditing. He is committed to advancing
knowledge in these areas and contributing to the academic community.

CHAO XU received the Ph.D. degree.
He is currently a Distinguished Scholar. He is a

Professor who also serves as a Ph.D. Supervisor.
He has earned recognition as a Teaching Master
in Jiangsu. He has extended his expertise to
the international arena as a Visiting Scholar
with Columbia University, USA. He is a Trusted
Consultant in the realm of big data with the
Ministry of Public Security. His influence also
extends to academic leadership, where he holds a

position as the Director of the National Association of Computer Education
in Higher Education and Jiangsu Provincial Computer Society. Additionally,
he is a Dedicated Supervisor with Jiangsu Provincial Cryptography Society.
At present, he holds the prestigious position of the Dean of the School
of Computer Science/Intelligent Audit, Nanjing Audit University. His
remarkable contributions to the field are further exemplified by his role as
an Expert with the Big Data Working Group, International Organization
of Supreme Audit Institutions (INTOSAI). He also assumes the role of
the Executive Dean of the Institute of Audit Science and Technology.
Furthermore, he concurrently serves as the Dean of the Greater Bay Area
Audit Research Institute. Furthermore, they have been sought after as a
consultant in the field of audit information technology, providing expertise,
and guidance to various governmental bodies, including the Ministry of
Public Security, the National Audit Office, the State Administration of
Taxation, the National Immigration Administration, and government audit
agencies at all levels.

NANNAN CHEN was born in December 2000.
She is currently pursuing the master’s degree
with the School of Computer Science, Nanjing
Audit University. She has demonstrated a strong
commitment to academic excellence, with her
research primarily focused on Human–Computer
Interaction and Interpersonal Trust. Her dedication
to these fields is underscored by her publications in
prominent computer science journals, contributing
to the ongoing advancement of knowledge in these
areas.

VOLUME 12, 2024 51499

