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ABSTRACT Unmanned Aerial Vehicles (UAVs) are advanced technologies that are initially utilized for
military apps like border monitoring and reconnaissance in opposed territories. Internet of Things (IoTs)
assisted UAV networks suggest the combination of IoT technology with UAVs to generate a networked
system that improves the abilities and utility of UAVs for several apps. UAVs’ inherent features namely
quick deployment, high dynamicity, low deployment and operational costs, and line of sight commu-
nication motivated researchers in the IoT field to assume UAV’s combination into IoT systems near
the concept of UAV-assisted IoT systems. However, security concerns with UAVs are evolving as UAV
nodes are suitable attractive targets for cyber threats because of extremely developing volumes and poor
and weak inbuilt security. Therefore, this paper presents a Modified Marine Predators Algorithm with
a Deep Learning-Driven intrusion detection (MMPADL-ID) approach for IoT Assisted UAV Networks.
The presented MMPADL-ID technique proposes to identify and classify the presence of intrusions in
accomplishing security in IoT-assisted UAV networks. In the MMPADL-ID technique, the feature selection
process is performed by the design of MMPA. In addition, the MMPADL-ID technique incorporates the
Elman neural network (ENN) model for the recognition and classification of the intrusions. Furthermore,
the honey badger algorithm (HBA) can be applied for the hyperparameter tuning of the ENN model and
results in improved performance. The simulation value of the MMPADL-ID technique can be tested on
benchmark datasets. An extensive comparative outcome reported the better solution of the MMPADL-ID
algorithm with existing approaches for various aspects.

INDEX TERMS Intrusion detection system, unmanned aerial vehicles, Internet of Things, security, deep
learning.

I. INTRODUCTION
As UAVs become most popular in smart cities, safety and
privacy issues are increased accordingly [1]. The IoTs are
employed by drones to offer inter-location services for nav-
igation. IoT-based UAV networks are different and com-
prised of environmental monitoring, precision agriculture,
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infrastructure assessment, search and rescue, disaster
response, etc. These networks can have the ability to revo-
lutionize industries by offering real-time data and insights,
which were earlier challenging or expensive to attain [2]. The
application of UAVs increases the problems of unauthorized
access and safety breaches for sensitive data. As UAVs collect
and transfer an enormous quantity of data, privacy issues,
and intrusion detection and avoidance must be important [3].
An extensive incorporation of UAVs in smart cities could
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be presented as a new measurement of public safety and
urban management. These multipurpose aircraft provide real-
time data-gathering capacity through different fields in traffic
monitoring to disaster response [4]. However, this devel-
opment raises a major problem: ensuring the security and
confidentiality of gathered and transferred information [5].
The major problem is the vulnerability of UAV networks to

intrusions that have serious effects on data integrity and pub-
lic security [6]. Since, UAVs become essential for core appli-
cations, protecting their functions against possible attacks has
become preeminent. Moreover, the sensitive type of data con-
trol requires robust privacy-maintaining processes. A UAV-
based intrusion detection system (UAV-IDS) is established
for identifying anomalous behavior or illegitimate actions in
a network by automatically evaluating the activities or behav-
iors depending on certain strategies and hypotheses that have
been directed by the security guidelines of the specified net-
work [7]. The UAV-IDS monitors the network transmission,
data files, and system configuration for analyzing if occur
the attacks. Current security protection is often reduced to
overcome the particular difficulties caused byUAVutilization
in smart cities [8]. This space in present solutions highlights
the requirement for a specific architecture precisely devel-
oped for this condition. In addition, the existing landscape
of UAV privacy and security measures shortages a tailored
and wide-ranging algorithm for smart cities [9]. Numerous
present techniques consider conventional network security
methods, managing the complexities of UAV functions. Also,
privacy-maintaining approaches are not commonly consid-
ered for the dynamic type of UAV networks, resulting in
suboptimum security [10].
This study presents a Modified Marine Predators

Algorithm with a Deep Learning-Driven intrusion detection
(MMPADL-ID) approach for IoT Assisted UAV Networks.
In the MMPADL-ID technique, the feature selection (FS)
process is performed by the design of MMPA. In addition,
the MMPADL-ID technique incorporates the Elman neural
network (ENN) model for the recognition and classification
of the intrusions. Furthermore, the honey badger algorithm
(HBA) can be applied for the hyperparameter tuning of
the ENN model and results in improved performance. The
simulation value of theMMPADL-ID technique can be tested
on benchmark datasets.

II. RELATED WORKS
Ntizikira et al. [11] presented the Security and Privacy-
Preserving Intrusion Detection and Prevention for UAVS
(SP-IoUAV) method. Significant to this method was the
incorporation of DNNs such as the CNN-LSTM network.
Additionally, multi-factor authentication (MFA) improves
access security. In [12], this study deployed a novel functional
encryption (FE) algorithm. Securing the data transmission
amongst FE, UE, MBS, and UAV methods is performed in
the network in 2-stages: the primary stage is among MBS
and UE whereas the secondary stage is among UE and MBS

using UAV. In the execution, the Dolev-Yao attack framework
has been examined that intruders are capable of intercepting
or varying the UE data. He et al. [13] developed a condi-
tional GAN (CGAN)-based collective IDS with blockchain
(BC)-authorized distributed federated learning. This anal-
ysis presented LSTM in the CGAN training. The aggre-
gated data with CGAN is employed as augmented data. This
technique permits combined training of the CGAN model.
Wang et al. [14] designed an ID attack-defense game for
IoT systems. This consideration makes an analytical struc-
ture. In [15], a Federated Continuous Learning model with
a Stacked Broad Learning System (FCL-SBLS) relying on
a Digital Twin Network (DTN) was developed. An asyn-
chronous federated learning model has been utilized and
a Deep Deterministic Policy Gradient (DDPG)-based UAV
chosen technique helped by DTN was developed.

Fotohi et al. [16] implemented a technique named SID-
UAV. The SID-UAV approach employs a self-matching
model, which comprises different stages namely the path
detection and analysis, destructive UAV response, decision-
making, and registration of the information database.
Cheema et al. [17] employed a BC-assisted registration and
authentication technique. This method considered several
communication-related features namely the large count of
connections a drone can support, backhaul limitations, and
available bandwidth. In [18], a fog computing-based smart
agricultural model was introduced. This technique accepts
the notion of a charging token then, accomplishing a trip,
UAVs obtain tokens from the fog node. IDS was utilized
at the fog nodes, which could be implemented in ML tech-
niques for classifying UAV behavior as normal or malicious.
Gao et al. [19] developed an enhancedmulti-objective genetic
technique, which integrates a natural chromosome encoding
format and specially constructed genetic operators. An effec-
tual unlocking approach is also built. In [20], a combined
mathematical model implementing a novel bi-level iteration
optimization technique is introduced, addressing the deploy-
ment coordination, sortie, and maintenance for carrier-based
aircraft in maritime distributed operations.

III. THE PROPOSED MODEL
In this study, we have developed and designed an automated
intrusion detection, named MMPADL-ID technique on the
IoT-assisted UAV networks. The presented MMPADL-ID
technique’s purpose is to identify and classify the presence
of intrusions in accomplishing security in IoT-assisted UAV
networks. In the MMPADL-ID system, the 3 main proce-
dures are contained such as MMPA-based FS, ENN-based
classification, and HBA-based hyperparameter tuning. Fig. 1
represents the entire flow of the MMPADL-ID approach.

A. FEATURE SELECTION USING MMPA
In this work, the MMPA is applied to choose the features
from the network data. MPA is a metaheuristic algorithm and
is further modified with an entropy algorithm named Reyni
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Entropy [21]. MPA is stimulated by the behaviors of marine
predators while foraging the prey where the predator uses
Levy’s and Brownian strategies as their optimum foraging
mechanism. The velocity ratio v of prey towards the predator
creates a trade-off between Brownian and Levy’s movements.
If v is smaller or equivalent to 0.1, the optimum approach
for the predator to move in the L’evy step (exploration stage)
irrespective of once the prey moves in Levy’s or Brownian
strategy. But if v is equivalent to 1 after the optimum tech-
nique for the predator moves in Brownian step once the prey
moves in Levy’s step. Lastly, if > 10v, the predator does not
move, irrespective of whether the prey moves in Levy’s or
Brownian because it comes in itself (exploitation stage). The
MPA algorithm can be mathematically modeled as follows:

Initialization: the primary outcome can distribute uni-
formly with the searching region utilizing the subsequent
equation, whereas A∈ Fusion (k).

x⃗ = Amin + i⃗⊗ (Amax − Amin) (1)

In Eq. (1), Amin and Amax signify the vectors with low
and up boundaries. i→ represents a random vector and the
component-wise multiplication is ⊗.
Elite and Prey matrix construction: According to the sur-

vival of fitness model, the top predator is optimum at hunting.
Therefore, the topmost predator constructs a matrix named
Elite.

Elite =

 A11,1 A11,2 . . . . . . A11,d
A12,1 A12,1 . . . . . . A12,d
A1N ,1 A1N ,2 . . . . . . A1N ,d

 (2)

In Eq. (2), the top predator vector is A1→and simulated N
times to build up the elite matrix and the number of dimen-
sions is d . N is the number of individuals. If the top predator
is updated, this matrix is updated at the iteration end. Another
matrix, p, is Prey and has a similar dimension as Elite and is
used by the predator for updating the position:

P⃗

 A11,1 A11,2 . . . . . . A11,d
A12,1 A12,1 . . . . . . A12,d
A1N ,1 A1N ,2 . . . . . . A1N ,d

 (3)

In Eq. (3), the nth dimensional of d Prey is AN ,d . The
optimization technique comprises three stages, low-velocity
ratio, high-velocity ratio, and unit-velocity ratio. The prey
quickly finds the food during the high-velocity ratio, and it
is defined mathematically:

if t <
1
3
tmax (4)

V⃗i = R⃗x ⊗

(
El⃗itei − R⃗x ⊗ P⃗i

)
(5)

P⃗i = P⃗i + F .N⃗⊗V⃗i (6)

Here, the numerical vector is represented by R⃗x , the
component-wise multiplication is indicated as ⊗, the set
numerical value that is 0.4 denotes F , the numerically gen-
erated random vector is N⃗ , t and tmax are current and max-
imum iterations, correspondingly. Next, the unit velocity

FIGURE 1. The overall flow of the MMPADL-ID approach.

ratio-based transition stage is given as follows:

if
1
3
tmax < t <

2
3
tmax (7)

Initially, the population is evaluated by Eq. (8):

V⃗i = R⃗x ⊗

(
El⃗itei − R⃗L ⊗ P⃗i

)
(8)

P⃗i = P⃗i + F .N⃗⊗V⃗i (9)

Next, the population is estimated using the following
equations:

V⃗i = R⃗B ⊗

(
R⃗B ⊗ El⃗itei − P⃗i

)
(10)

P⃗i = P⃗i + F .AP⊗V⃗i (11)

where adaptive parameter AP can be utilized for the calcula-
tion of step size:

AP =

(
1 −

t
tmax

)(2 t
tmax )

(12)
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At last, a low-velocity ratio is determined. FAD is calculated
for the last selection of prey:

P⃗i =


P⃗i + AP

[
xmin + R⃗⊗ (xmax − xmin)

]
⊗B⃗

if r< 0.4
P⃗i+[0.4(1−r) + r](P⃗r1 − P⃗r1)
if r ≥ 0.4

(13)

In Eq. (13), the binary vector of value one or zero is B⃗. The
Reyni entropy has been calculated to eliminate the ambigu-
ity between P⃗i elected prey and calculate the fitness. Prey
satisfies the entropy function and can pass for the fitness
assessment.

Ent
(
P⃗i

)
=

1
1 − α

log
n∑
i=1

P⃗i
α
, α> 1 and ̸= 1 (14)

In Eq. (14), the entropy value of all the rows of chosen ith prey
is Ent . For the final selection, we use these values as follows:

Fnc =

{
S⃗el(k) for P⃗i≥Ent
ignore, Elsewhere

(15)

Finally, the elected vector S⃗el(k) can exploited for the fitness
computation. This procedure is repeated till the maximum
iterations are reached.

During this MMPA algorithm, the purposes are combined
as a single objective equation such that an existing weight
classifies all the objective significance [22]. During this case,
it can be executed a FF that incorporates both purposes of FS
as expressed in Eq. (16).

Fitness (X) = α · E (X) + β ∗

(
1 −

|R|

|N |

)
(16)

whereas, Fitness(X ) signifies the fitness value of subdivision
X ,E(X ) denotes the classifier rate of errors by deploying the
selected features from the X subset, |R| and |N | signify the
elected feature counts, and the count of novel features from
the database, α and β are the weighted of classifier errors and
decrease ratio, α ∈ [0, 1] and β= (1−α).

B. INTRUSION DETECTION USING THE ENN MODEL
At this stage, the ENNmodel can be used for the classification
and recognition of the intrusions. ENN is a multiple-layer
dynamic NN [23]. Due to its dynamic recursive design,
it takes an optimum approximation capability to a non-linear
function. ENN has been separated into 4 layers namely input,
context, output, and hidden layer (HL). The linking of input,
HL, and output layers is the same as that of FFNNs. But the
alteration is that the context layer has along with storing the
resultant value of neurons of the HL at the earlier moment.
The spatial formula of a layer of ENN at k moment is:

z (k) = g(ωj,q · h (k))
h (k) = f

(
ωj,m·c (k) + ωi,j·u (k − 1)

)
c (k) = h (k − 1)

(17)

whereas, u(k−1) implies the input layer vector at the moment
k − 1; h(k),g(·) and f denotes the transfer purposes of out-
put and HLs correspondingly; c(k), and z(k) signifies the
resultant vectors of the HL, context, and output layers at the
moment k; ωi,j, ωj,m, and ωj,q stands for connection weighted
among input and HLs, context and HLs, HL and output layers
correspondingly. Fig. 2 represents the infrastructure of ENN.

FIGURE 2. Structure of ENN.

The weight of the Elman network can be changed by
reducing MSE, the minimal MSE is executed for adjusting
the weights of the Elman network.

MSE =
1
N

N∑
k=1

[z (k) − zt (k)]2 (18)

In which, z(k) denotes the actual value at time k, zt (k) repre-
sents the predictive value at time k.

C. HYPERPARAMETER SELECTION USING HBA
Finally, the HBA adjusts the parameters related to the ENN
model. HBA stimulates the feeding behavior of honey bad-
gers [24]. Honey Badger has two different ways to get their
food while foraging. First, they use smell concentration to
approach and find the honey. This phenomenon is named
‘‘digging mode’’. The next phenomenon is named ‘‘honey
mode,’’ where they find honey by emulating honeyguide
birds. The mathematical modeling of HBA simulates the
hunting behaviors of honey badgers. While the HBA takes
exploitation and exploration stages, it can be considered a
global optimizer approach. Consider that the HBA approach
optimizer N D-dimensional solutions defined by the popula-
tion of solution candidates:

N =


x11 x12 x13 · · · x1D
x21 x22 x23 . . . x2D
. . . . . . . . . · · · . . .

xn1 xn2 xn3 . . . xnD

 (19)

In Eq. (19), the count of agents is n, and the location of ith

agents are xi= [x1i , x
2
i , . . . ,x

D
i ], and ubi and lbi are the up and

low boundaries, correspondingly.
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The initial position of the agent is expressed by Eq. (20):

xi = lbi + r × (ubi − lbi) (20)

Now r is a randomly generated value within [0, 1].
Parameter I. The intensity Ii defines ith prey’s degree of

concentration and the separation between them and the honey
badgers:

Ii = r1 ×
S

4πd2i
(21)

In Eq. (21), the random integer within [0 1] is r1. The source
strength is expressed as S:

S=(xi − xi−1)2 (22)

The distance between ith honey badgers and prey is di:

di = xprey − xi (23)

In Eq. (23), the location of prey recognized as the optimum
solution is xprey.
Define the α variable. To enable the progressive shift from

exploration to exploitation, α is a parameter with iteration and
is represented by:

α = C×e
−t
tmax (24)

In Eq. (24), C is a constant and the maximum iteration count
is tmax .

Once the honey badger upgrades its location, there exist
2 methods. Through iteration in the digging process, (25)
defines the new position of a honey badger.

xnew = xprey + F × β×I × xprey
+ F × r2 × α × di × |cos (2πr3) × [1−cos (2πr4)]|

(25)

In Eq. (25), F is a flag which alters the search direction:

F =

{
1 i f r5≤ 0.5
−1 else

(26)

In Eq. (26), r2, r3, r4, and r5 are randomly generated values
within [1, 0], correspondingly. β is a constant that represents
the capability of honey badger to attain food. During the
digging model, the behavioral pattern of honey badgers is
similar to the structure of the cardioid shape.

During the honey method, a novel location of a honey
badger by iteration can be defined by:

xnew = xprey + F×r6 × α×di (27)

In Eq. (27), the random number between 0 and 1 is r6. Flag F
allows an agent to alter the searching direction to increase the
probability of escaping from the local optimum and explore
the search range. The fitness optimum is a vital aspect of
the HBA methodology. An encoded performance has been
deployed to establish the better efficiency of candidate per-
formances. Presently, the accuracy value is a major condition
deployed to design an FF.

Fitness = max (P) (28)

P =
TP

TP+ FP
(29)

Here, FP and TP denote the false and true positive values.

IV. RESULTS AND DISCUSSION
In this study, the attack detection analysis of the
MMPADL-ID technique can be tested employing the bench-
mark database, comprising 125973 samples with 5 classes
as represented in Table 1. The MMPADL-ID technique has
chosen 26 features from the available 42 features.

The suggested technique is simulated by using the Python
3.6.5 tool on PC i5-8600k, 250GB SSD, GeForce 1050Ti
4GB, 16GBRAM, and 1TBHDD. The parameter settings are
given as learning rate: 0.01, activation: ReLU, epoch count:
50, dropout: 0.5, and size of batch: 5.

TABLE 1. Details on database.

Fig. 3 shows the confusion matrices achieved by the
MMPADL-ID approach under 80:20 and 70:30 of the TR
phase/TS phase. The simulated values indicate the effective
recognition with all five classes.

FIGURE 3. Confusion matrices of (a-c) TR phase of 80% and 70% and
(b-d) TS phase of 20% and 30%.
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The recognition results of the MMPADL-ID technique
with 80:20 of TR Phase/TS Phase are exposed in Table 2 and
Fig. 4. The outcome depicted that the MMPADL-ID method
reaches successful recognition on each 5 class. With 80% of
the TR Phase, the MMPADL-ID system provides an average
accuy of 99.61%, precn of 89.16%, recal of 79.82%, Fscore
of 80.15%, and AUCscore of 89.77%. Additionally, based on
20% of the TS Phase, the MMPADL-ID model gives an
average accuy of 99.63%, precn of 95.19%, recal of 79.87%,
Fscore of 80.07%, and AUCscore of 89.80% respectively.

TABLE 2. Recognition outcome of MMPADL-ID technique with 80:20 of
TR Phase/TS Phase.

FIGURE 4. Average of MMPADL-ID technique with 80:20 of TR Phase/TS
Phase.

The recognition analysis of the MMPADL-ID method
with 70:30 of TR Phase/TS Phase is described in Table 3
and Fig. 5. The simulated values pointed out that the
MMPADL-ID system attains efficacious recognition on each
five classes. According to 70% of the TR Phase, the
MMPADL-ID technique offers an average accuy of 99.41%,
precn of 88.66%, recal of 76.44%, Fscore of 77.38%, and

AUCscore of 87.98%. Also, with 30% of the TS Phase, the
MMPADL-ID model gives an average accuy of 99.46%,
precn of 75.89%, recal of 75.58%, Fscore of 75.73%, and
AUCscore of 87.57% correspondingly.

TABLE 3. Recognition outcome of MMPADL-ID technique with 70:30 of
TR Phase/TS Phase.

Fig. 6 illustrates the classifier analysis of theMMPADL-ID
technique in various aspects. Figs. 6a-6c shows the accuy
analysis of the MMPADL-ID method with 80:20 and
70:30. The figure indicates that the MMPADL-ID system
achieves rising values over improving epochs. Addition-
ally, the improving validation with training reveals that
the MMPADL-ID approach gains effectively on the test
dataset. Lastly, Figs. 6b-6d represents the loss analysis of
the MMPADL-ID methodology at 80:20 and 70:30. The
simulated values show that the MMPADL-ID algorithm gets
nearer outcomes of training and validation loss. It is noticed
that the MMPADL-ID model attains proficiency on the test
database.

Fig. 7 shows the classifier performance of the MMPADL-
ID system at 80:20 and 70:30. Figs. 7a-7c exhibits the
PR analysis of the MMPADL-ID technique with 80:20
and 70:30. The simulated outcomes reported that the
MMPADL-IDmodel led to raised values of PR. Furthermore,
the MMPADL-ID algorithm can attain greater PR values on
all 5 classes. Then, Figs. 7b-7d denotes the ROC analysis
of the MMPADL-ID methodology at 80:20 and 70:30. The
figure exhibited that the MMPADL-ID method resulted in
enhanced ROC values. Also, the MMPADL-ID system has
attained higher ROC values on all five classes.

In Table 4, a comprehensive result of the MMPADL-ID
technique is provided [25]. Fig. 8 examines a comparative
accuy and precn results of theMMPADL-ID system. The out-
come points out that theMMPADL-IDmethod gains effectual
performance. Based on accuy, the MMPADL-ID methodol-
ogy gains an increased accuy of 99.63% but the DRL-BWO,
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FIGURE 5. Average of MMPADL-ID technique with 70:30 of TR Phase/TS
Phase.

FIGURE 6. Accuy curve of (a-c) 80:20 and 70:30 (b-d) Loss curve of 80:20
and 70:30.

TABLE 4. Comparative outcome of MMPADL-ID algorithm with other
methods.

IDBN, T-SID, DL, DPC-DBN, and AK-NN approach gains
decreased accuy values of 98.70%, 95.32%, 94.38%, 91.80%,
94.39%, and 91.78%, individually. Additionally, with precn,
the MMPADL-ID approach obtains improved precn of
95.19% but, the DRL-BWO, IDBN, T-SID, DL, DPC-
DBN, and AK-NN methods acquire reduced accuy values

FIGURE 7. PR curve of (a-c) 80:20 and 70:30 (b-d) ROC curve of 80:20 and
70:30.

FIGURE 8. Accuy and precn outcome of MMPADL-ID algorithm with other
methods.

of 94.95%, 91.06%, 94.22%, 93.83%, 94.70%, and 92.64%,
respectively.

Fig. 9 shows a comparative recal and Fscore outcomes
of the MMPADL-ID model. The simulated values pointed
out that the MMPADL-ID system achieves excellent per-
formance. Moreover, based on recal , the MMPADL-ID
algorithm gets raised recal of 79.87% whereas the DRL-
BWO, IDBN, T-SID, DL, DPC-DBN, and AK-NN algo-
rithms get diminished recal values of 75.00%, 74.03%,
79.50%, 75.47%, 78.12%, and 79.77%, correspondingly.
Besides, on Fscore, the MMPADL-ID model gets raised Fscore
of 80.07%whereas the DRL-BWO, IDBN, T-SID, DL, DPC-
DBN, and AK-NN methodologies get lower recal values of
74.20%, 72.11%, 72.89%, 73.56%, 73.59%, and 74.25%,
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FIGURE 9. Recal and Fscore outcome of MMPADL-ID algorithm with other
methods.

respectively. These performances highlighted the better out-
come of the MMPADL-ID technique.

V. CONCLUSION
In this study, an automated intrusion detection, called
MMPADL-ID system is designed and developed on the
IoT-assisted UAV networks. The presented MMPADL-ID
technique proposes to detect and classify intrusions in accom-
plishing security in IoT-assisted UAV networks. In the
MMPADL-ID system, the 3 main utilized processes are
MMPA-based FS, ENN-based classification, and HBA-based
hyperparameter tuning. In this work, the FS process is per-
formed by the design of MMPA, and the HBA is employed
for the hyperparameter tuning of the ENN approach result-
ing in improved performance. The simulation value of
the MMPADL-ID technique can be tested on benchmark
datasets. An extensive comparative outcome exhibited the
improved performance of the MMPADL-ID methodology
with existing approaches for various measures. Thus, the
MMPADL-ID methodology is executed for automated and
accurate intrusion detection in the IoT-assisted UAV network.
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