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ABSTRACT A federated learning-based intrusion detection system (FL-IDS) is introduced to enhance the
security of vehicular networks in the context of IoT edge device implementations. The FL-IDS system
protects data privacy by using local learning, in which devices share only model updates with an aggregation
server. The server then generates an enhanced detection model. The FL-IDS system also incorporates a
detection model (LR-IDS, PCC-CNN) based on machine learning (ML) and deep learning (DL) classifiers,
namely logistic regression (LR) and convolution neural networks (CNN), to prevent attacks in transportation
IoT environments. The proposed FL-IDS model uses embedded devices (such as Raspberry Pi for the client
and Jetson Xavier for the server model). The real-time performance of the proposed IDS was evaluated using
two different datasets, NSL-KDD and Car-Hacking. We deployed our IDS model on different architectures,
testbed 1 (with 2 clients) and testbed 2 (with 4 clients). The model evaluation has been evaluated based on the
accuracy, and loss parameters. The results show that the FL-IDS system outperforms traditional centralized
learning with machine learning and deep learning approaches regarding accuracy (achieved overall 94% and
99%) and loss (achieved overall 0.28 and 0.009). These findings contribute to transportation IoT systems
security by proposing a robust framework for enhancing the security and privacy of CAVs against cyber
threats.

INDEX TERMS Federated learning, deep learning, machine learning, transportation systems, CAV, IDS,
edge computing.

I. INTRODUCTION
The development of the Internet of Things (IoT) has
significantly increased over the last few years, resulting in the
rapid development of wireless transmission and processing.
A series of edge devices, such as smartphones, smart cars,
and smart applications, have emerged on IoT networks
(see Figure 1). One of the most demanding applications is
transportation, specifically in Connected and Autonomous
Vehicles (CAV). CAVs are designed to make traffic safer
while lowering risks and accidents [1]. Moreover, transporta-
tion IoT devices are mainly concentrated on self-driving
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cars. According to the Boston Consulting Group Report,
the market size of autonomous driving will reach 42 billion
dollars by 2025 [2]. But, the major challenge in these
devices is to make the vehicles reliable and secure [3]. The
CAVs communicate via internal and external communication
networks to achieve their goals, which include reducing
human errors on the road, traffic accidents, and the number
of fatalities and utilizing the resources currently available to
achieve full autonomy. The connected vehicles are equipped
with a series of electronic control units (ECU), sensors,
and internal and external communication systems [4].
Consequently, the network systems have several security vul-
nerabilities due to increased network complexity. Therefore,
developing an accurate Intrusion Detection System (IDS) is
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constantly needed to efficiently mitigate different types of
attacks [5], [6]. Along with guaranteeing security and privacy
against unauthorized access, transportation IoT networks are
cognitively demanding, time-efficient, and constantly require
computing resources, which is another significant barrier.

FIGURE 1. Applications of FL-IoT.

Due to the increasing usage of digital technology and
awareness of individuals, people started to think about
personal data security even more [7]. According to the
National Science Foundation (NSF), cyber-physical systems
(CPS) are the foundation of all infrastructure in smart
cities because ‘‘cyber-physical systems integrate sensing,
computation, control, and networks into physical objects
and infrastructure, linking them to the Internet and into to
each other.’’ Connected vehicles are one of the areas of
cyber-physical systems that have grown rapidly in recent
years [8], [9]. Connected and autonomous vehicles (CAVs)
can collect and process their surroundings by extracting
information from sensors and sharing it with other CAVs via
wireless networks, which has raised extensive research [10].

CAV uses Vehicular Ad-hoc Networks (VANETs) with
the Internet of Things (IoT) communications and architec-
ture capabilities. VANETs provide several communication
schemes see Figure 2 known as Vehicle-to-everything (V2X)
communications, Vehicle-to-Infrastructure (V2I), Vehicle-to-
Roadside Units (V2R), Vehicle-to-Cloud (V2C), Vehicle-
to-Vehicle (V2V), and Vehicle-to-Device (V2D) commu-
nications [11]. V2X communications can be divided into
two main categories: In-vehicle and Inter-vehicle networks.
The in-vehicle network is a Vehicle-to-Sensors (V2S)
communication schema performed by collecting embedded
sensors located in the vehicle and mainly interacting via
CAN-Bus, Ethernet, or WiFi standards [12]. Inter-vehicle
networks cover communication between the vehicle and
the different components of the transportation system. V2X

communications are mainly used for external communication
of CAVs. With these networks, drivers can exchange
information such as control data, emergency messages about
braking, accidents, and emergencies [13] and that leads to an
increase in cyber attacks such as Denial of Service attacks,
spoofing, Sybil attacks, black holes, and many more [14].

FIGURE 2. Vehicle to everything (V2X) Communication.

Federated Learning: FL is a distributed learning approach
to machine learning that enables collaborative learning on
large datasets without sharing the raw data with a central
server or other participants [15]. Instead, the training process
occurs locally on individual devices or edge nodes, with
only the model updates shared with a central server or
coordinator. FL is particularly valuable when data privacy and
security are critical, ensuring that sensitive user data remains
decentralized and protected [16].

FL has gained significant attention in applications involv-
ing distributed data sources, including Internet of Things
(IoT) networks, healthcare systems, mobile devices, and,
specifically, in the context of autonomous vehicles [17].
In vehicular environments, timely decision-making based on
sensor data is essential. Vehicles are equipped with various
sensors such as cameras, radar, Lidar, and GPS, which gather
valuable information about the vehicle’s surroundings and
its status [18]. Real-time processing and analysis of this
sensor data enable vehicles to make informed decisions to
enhance safety, efficiency, and the overall driving experience.
Advanced driver assistance systems (ADAS) rely on sensor
data for various functionalities. For instance, ADAS heavily
relies on sensor data to detect and react to potential hazards.
This includes actions like applying emergency braking
when an obstacle is detected. In the case of autonomous
vehicles, sensor data plays a critical role in navigation,
route planning, and collision avoidance. These vehicles rely
on the continuous flow of sensor data to operate safely
and effectively. Furthermore, timely decision-making in
vehicular environments extends beyond individual vehicles.
It encompasses vehicle-to-everything (V2X) communication,
where vehicles exchange information with other vehicles,
nearby objects, the cloud/network, and the surrounding
infrastructure. This facilitates collaborative decision-making,
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such as coordinating lane changes, merging, and optimizing
network traffic flow. V2X communication enables vehicles
to share relevant data and cooperate, enhancing overall traffic
efficiency and safety [19].

The FL framework for IoT devices, as depicted in
Figure 3, highlights the decentralized nature of FL, which
aligns well with the distributed and sensor-rich nature
of autonomous vehicles. By leveraging FL, autonomous
vehicles can perform local model training on their respective
sensor data while preserving data privacy and security.
This approach enables vehicles to collectively learn from
diverse datasets without compromising individual privacy
or sharing sensitive information. The ability to process and
interpret sensor data in vehicular environments is essential
for ensuring safe and efficient transportation. It enables
vehicles to respond promptly to changing conditions, avoid
potential hazards, and facilitate intelligent and connected
transportation systems. However, two critical considerations
arise in vehicular environments related to decision-making
and data processing [20]:

1) Bandwidth and Delay: Transmitting data from dis-
tributed agents, such as vehicles, to a centralized
cloud for processing and decision-making requires
high bandwidth and incurs significant delays. Vehicular
environments generate large volumes of data from
various sensors, and real-time data transmission to
the cloud can be challenging. Limited bandwidth and
potential network congestion can impede the timely
transfer of data, affecting the efficiency of decision-
making processes.

2) Local versus Global Information: Distributed agents,
like vehicles, can process data based on local informa-
tion and knowledge. They can make decisions based on
immediate surroundings and local scenarios. However,
relying solely on local information may not provide
a comprehensive view of the entire system. Global
information from a centralized cloud or shared among
vehicles encompasses a broader perspective and can
lead to more accurate and comprehensive decision-
making. Striking a balance between utilizing local
and global information is crucial to ensuring optimal
decision-making in vehicular environments.

Addressing these considerations requires innovative
approaches that can tackle the challenges associated with
bandwidth, delay, and the balance between local and global
information. To address these challenges, Google [21]
proposed Federated Learning (FL), which allows multiple
agents to collaboratively train a machine learning (ML) or
deep neural network (DNN) model, as shown in Figure 3.
The process involves the following steps:

1) Step 1 Initialization: The central server initializes the
ML or DNN model.

2) Step 2 Distribution of Model: The central server
distributes the model parameters to multiple clients or
workers.

3) Step 3 Local Training: Each client or worker performs
local training using their respective data and the
distributed model.

4) Step 4Model Updates: After local training, each client
or worker returns their model updates to the central
server [22].

5) Step 5 Aggregation: The central server aggregates the
model updates received from the clients to create a
global model [23].

6) Step 6 Iterative Process: Steps 2 to 5 are repeated
iteratively until the model converges or reaches the
desired performance level.

By adopting the FL framework, vehicular environments
can leverage the collaborative training of models while
mitigating privacy risks. This approach enables distributed
agents to contribute their local knowledge and data for
model training without compromising data privacy and
security.

The contributions of this paper, therefore, are as follows:
1) Our proposed model introduces a resilient federated

learning architecture.
2) The inference framework proposed is versatile, inde-

pendent of specific network choices, and modular,
making it applicable to various vehicular networks and
adaptable to diverse IoT environments.

3) To thoroughly validate the developed intrusion detec-
tion models, comprehensive experiments were con-
ducted using two benchmarking datasets, evaluating
the performance and runtime efficiency.

In contrast to existing intrusion detection methods, our
framework offers the following advantages:

• Easy development: Our architecture is naturally well
suited for iterative development and testing by leverag-
ing the existing state-of-the-art networks.

• Privacy: Our framework allows the collaborative train-
ing of models on distributed data without the need for
data sharing, preserving the privacy of individual clients’
sensitive information.

• Security: as the training process occurs locally on client
devices, minimizing the exposure of sensitive data,
hence providing secure communication.

• low overhead: Our model minimizes the communica-
tion and computational burden on individual clients,
reducing network traffic and resource usage.

Therefore, the proposed Federated Learning (FL) frame-
work exhibits flexibility, scalability, and compatibility with
multiple networks, enhancing detection accuracy while
maintaining minimal runtime overhead.

The remainder of the paper is organized as follows.
Section III presents the proposed FL-IDS with machine
learning (LR-IDS) and deep learning (CNN-IDS). Section IV
demonstrates the experimental results for implementing
different Testbed models, their detection performance,
and analysis. Finally, Section V provides the concluding
remarks.
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FIGURE 3. Federated learning architecture.

II. RELATED WORK
This sectionwill briefly introduce existing intrusion detection
methods and the current FL scenario in CAV.

Numerous intrusion detection systems (IDS) studies have
acknowledged the benefits of incorporating artificial intelli-
gence techniques, particularly machine learning algorithms,
in external and in-vehicle networks [24]. Given the nature
of Vehicle-to-Everything (V2X) networks in the CAV,
unreliable infrastructure support has significantly increased
security risks [25]. The lack of centralized supervision
and the inherent characteristics of mobile ad hoc networks
further exacerbate these risks [26]. Additionally, the growing
complexity of intelligent connected vehicle systems and the
proliferation of external interfaces make vehicle networks
more susceptible to cyberattacks [27]. Currently, security
threats in the IoV can be categorized as follows: 1) vehicle
security threats, 2) communication security threats, 3) cloud
platform security threats, and 4) mobile smart terminal
security threats.

To explore potential vulnerabilities in the CAV, researchers
have conducted simulations of various attack scenarios in
the past. Based on the surveys [28], [29], [30], [31], Table 1
provides an overview of the most common types of attacks
and their corresponding descriptions.

To overcome such security threats, it is required to have
a mechanism that can detect this anomalous behavior ahead
of time in real-time to secure the autonomous vehicle. To do
so, nowadays, IDS has shown promising results [32], [33],
[34], [35]. He et al. [36] proposed a cybersecurity framework
for Connected Autonomous Vehicles (CAVs) that includes
the creation of a new communication dataset called CAV-
KDD. This dataset, which considers the existing KDD
dataset as a benchmark, classifies vulnerabilities in CAV
systems and addresses potential attacks. The framework also

TABLE 1. CAV security attacks.

incorporates a UML-based CAV framework inspired by the
UK CAV cybersecurity framework to analyze attack threats
and provide solutions for secure CAV systems and data
transfer. In a separate study [37], the authors successfully
utilized the IoT-23 dataset and employed various machine
learning algorithms, including Random Forest (RF), Naïve
Bayes (NB), Multi-layer Perception (MLP), Support Vector
Machine (SVM), and AdaBoost (ADA). The evaluation
revealed that the Random Forest algorithm achieved the
highest accuracy of 99.5% compared to the other algorithms.

Aloqaily et al. [38] developed a dataset by capturing
real-time data from a simulated LAN US Air Force LAN
over nine weeks, encompassing multiple attack types. This
highly trained dataset was captured based on the KDD99 cup.
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The datasets generated by these two articles effectively
overcome the limitations of attack types, allowing for the
injection of various attack types using these frameworks.
Thakkar and Lohiya [39] conducted a comprehensive survey
focusing on machine learning and deep learning methods
employed in intrusion detection systems for the Internet of
Things (IoT). In one of our previous papers [40], we focused
on the importance of IDS in CAVs. Using benchmarking
datasets, we build the IDS using 5 different Machine learning
(ML) techniques. The comparable analysis used performance
evaluation metrics such as Precision, recall, F1-score, and
False alarm rate. The results show a good detection accuracy
of 99% in Binary and multiclass classification. However,
we also state the time complexity for detecting such threats
in real time for a heterogeneous network. Thapa et al. [41]
introduced a novel deep learning model for a Network
Intrusion Detection System (NIDS) by comparing various
machine and deep learning models. The paper emphasizes
the need for a dynamic security system to identify unknown
attacks on the network, highlighting the limitations of
currently available static signal-based network intrusion
systems. Based on the previous results, the paper proposes an
efficient model combining ML and DL techniques to achieve
high performance. Furthermore, the proposed model was
benchmarked against the CIC-IDS2017 dataset, allowing for
comparison with other models. The selection of models was
based on the desired performance metrics and cost functions,
considering factors such as training time. Comparisons were
made with previous work, and it was observed that using
CNN + embedding and LSTM + embedding improved
accuracy.

A similar study [42] presents a highly effective approach
to address attacks on the CAN bus protocol by developing
an Instruction Detection System using a Deep Neural
Network (DNN). By leveraging neural networks, which
can identify simple patterns within the dataset, they aim
to mitigate the impact of these attacks. Furthermore, they
comprehensively analyze the results obtained from our
proposed solutions. Their results show a higher efficiency
of 98%. However, their research also provides the future
direction for generating lightweight IDS with less time
complexity. In 2020, Vu et al. [43] introduced a novel Deep
Transfer Learning (DTL) approach that enabled learning
from multiple IoT device data, even when not all data were
labeled. The approach relied on two Autoencoders (AEs),
where AE1 was trained in a supervised mode using tagged
information from source datasets. At the same time, AE2
was introduced unsupervised on target datasets without any
label information. Samy et al. [44] proposed a robust and
distributed attack detection framework that achieved a high
detection rate for various IoT cyber-attacks utilizing Deep
Learning (DL). The attack detector was implemented on fog
nodes due to their proximity to edge devices, significant
computational capacity, and distributed nature. In another
study by Roopak et al. [45], a multiple optimization-oriented

Feature Selection (FS) technique was developed for detect-
ing Distributed Denial of Service (DDoS) attacks in an
IoT network. The FS technique effectively reduced the
dimensionality of data and enhanced the performance of
Intrusion Detection Systems (IDS) in detecting DDoS
attacks.

In our previous study [46], the anomaly-based IDS was
been proposed using the PCC-CNN model. The model
was implemented with three benchmarking network traffic
datasets. The model has outperformed the traditional ML
methods by achieving 99% classification accuracy. The
author also states the applicability of the proposed PCC-CNN
model in any IoT device. To overcome the limitation of
the dynamic architecture of IDS in our previous deep
learning-based solution, this paper focused on the federated
learning-based solution to provide better safety and security
for autonomous vehicles. Moreover, The review study
presented in [47] and [48] highlighted the future research
directions focused on designing and implementing Intrusion
Detection Systems (IDS) for Mobile Ad hoc Networks
(MANETs) & Vehicular Ad hoc Networks (VANETs) while
emphasizing the importance of preserving the security
aspects of the Internet of Things (IoT) devices.

FL has gained significant attention as a viable approach
for intrusion detection systems (IDS) in autonomous vehi-
cles, providing enhanced privacy and scalability. Plenty of
surveys [49], [49], [50] have provided insight into the current
usage of Federated learning in the field of the transportation
system. A novel detection mechanism has been developed
by [51] that utilizes the capabilities of deep auto-encoder
methods to identify attacks based solely on the benign
network traffic pattern. The proposed system demonstrates
a high detection rate while effectively reducing the false
positive rate and detection delay through comprehensive
experiments conducted on a recent network traffic dataset.
Another study [52] proposed a deep CNN-LSTM archi-
tecture for CAV threat intelligence; Their model achieved
better results by tuning the hyper-parameters on the CAV-
KDD dataset. However, the author certifies the challenges,
such as poor model generalization due to an imbalanced
dataset. Taslimasa et al. [53] introduced a practical and
privacy-preserving distributed solution called ImageFed &
FedCNN. ImageFed is explicitly designed for the CAN bus
environment. FedCNN uses the Deep neural network; they
compared the results of the two models and stated that
ImageFed provides better robustness. However, their model
is only suitable for IID datasets.

Based on the previous reviews, Our proposed model’s
applicability to both autonomous vehicles and other IoT
devices showcases its versatility and adaptability, making it
dynamic and robust across different heterogeneous network
domains. Additionally, the decentralized learning approach
ensures the privacy of vehicle owners by eliminating the
risk of sensitive information leakage, further enhancing its
security measures.
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III. METHODOLOGY
In this section, we propose an FL-based IDS architecture
for intrusion detection. The Proposed FL-IDS architecture
as shown in Fig. 4 is a motivation from [54]. The proposed
framework has two methods for detecting anomalies via
LR-IDS and CNN-IDS techniques. We utilized the Flower
framework to implement the FL environment in our study.
Flower [55] is a Federated Learning framework that enables
the development and deployment of full FL models. It offers
various aggregation algorithms and customization options
for real-edge devices. The framework demonstrates strengths
in both simulation and real-world device scenarios [55].
The architecture of the Flower framework consists of two
main building blocks: the global model and the local model.
Individual training is conducted on the local clients, and the
model parameters are used for updating the global model.
The global model performs client selection, parameter aggre-
gation, configuration, and distributed or centralized model
evaluation through strategy abstraction. Popular algorithms
like FedAvg [23] and FedYogi [56] are used for this purpose.

FIGURE 4. The proposed FL-IDS framework: An initial model is fed into
the client’s model and the updated model is sent to the global model
simultaneously. The output of the global model with updated parameters
is fed back to the client’s model for intrusion detection. Then the
respective server model will predict the malicious activity whether it is a
normal or abnormal behaviour.

The six-step approach of the Flower framework involves:
initializing the global model, sending the model to client
nodes, training the model locally on each client node,
returning model updates to the server, aggregating the model
updates into a new global model using algorithms such as
FedAvg [57], and repeating the process until the model

converges. This iterative process ensures that each client node
is trained on all the data and contributes to developing a fully
trained model that performs well across all client nodes. With
the Flower Framework, we created 3 files, namely client,
server, and utils python files. The client file indicates the local
training on individual clients. At the same time, the server
file is associated with the global model, which takes all the
parameter updates from the different clients. Lastly, the utils
file is used for data massaging and distributing the data across
the local clients. To implement the Framework, we used a
testbed architecture explained as follows:
Testbed Setup: We deployed two different architectures

to assess the performance of FL implementations. The
implementation involved several components: a server model
Python file, a utils Python file for data preprocessing, and
individual client model Python files specific to the testbed
setup. Depending on the particular configuration, the testbed
setup utilized NVIDIA Jetson Xavier and Raspberry Pi 4 as
servers and clients respectively. The specifications of the edge
devices used are shown in Table 2.

TABLE 2. Specification of evaluation environment.

These embedded devices are well-suited for lightweight
FL operations. The deployment of FL on these devices was
facilitated by the Flower framework, which in addition to its
previously mentioned advantages, offers compatibility and
efficient utilization of resources on such lightweight devices.

1) Testbed 1: At the initial stage of our implementation,
we configured a testbed with two clients, as illustrated
in Figure 5. The testbed setup consisted of one
Jetson Xavier device serving as the server and two
clients of Raspberry Pi 4. Each client was designed to
function as an independent IDS for CAVs. To perform
decentralized machine learning, we employed two
algorithms, namely Logistic Regression and PCC-
CNN, on the NSL-KDD and Car-Hacking datasets.
These algorithms were executed separately on each
client, enabling them to autonomously analyze and
detect intrusions based on their local datasets.

2) Testbed 2: To expand our implementation, we intro-
duced federated learning (FL) with four clients,
as depicted in Figure 6. The testbed setup involved
using one Jetson Xavier device as the server, equipped
with a GPU, and four Raspberry Pi devices serving
as clients. Each client was configured as an indi-
vidual IDS-based CAV, capable of performing intru-
sion detection using the NSL-KDD and Car-Hacking
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FIGURE 5. FL Testbed1 with 2 clients.

FIGURE 6. FL Testbed2 with 4 clients.

datasets. All four clients utilized the NSL-KDD
and Car-Hacking datasets in the first implementation
for training and evaluation. However, in the second
implementation, we aimed for a more realistic scenario
by employing four different versions of the NSL-KDD
dataset, with each version assigned to an individual
client.We used the PCC-CNNmodel from our previous
paper [46], then modified the PCC-CNN model to
overcome memory limitations. These modifications
were necessary to ensure the efficient execution of the
model on the resource-constrained devices, particularly
in terms of memory usage.

A. LOGISTIC REGRESSION (LR)- INTRUSION DETECTION
SYSTEM (IDS)
Logistic Regression is a statistical model used for binary clas-
sification tasks, where the goal is to predict the probability of
an event occurring. It is a type of generalized linear model

that uses a logistic function to map the input features to the
output probabilities. In LR, the input features are linearly
combined with weights, and the resulting value is passed
through a logistic function (also known as a sigmoid function)
to produce the predicted probability. The logistic function
transforms the linear combination into a value between
0 and 1, representing the probability of the positive class.

The LR model assumes that the relationship between
the input features and the output probability is linear,
but it can capture non-linear relationships by including
interactions or polynomial terms of the input features.
During training, the LR model is fitted to the training data
using maximum likelihood estimation, where the parameters
(weights) are adjusted to maximize the likelihood of the
observed outcomes. The LR is deployed with the tuned
parameters. At the initial stage, we set the initial parameters,
which are explained as follows:

B. CONVOLUTION NEURAL NETWORK (CNN) -
INTRUSION DETECTION SYSTEM (IDS)
A Convolutional Neural Network (CNN) is a type of deep
learning model commonly used for analyzing visual data,
such as images and videos. CNNs are specifically designed
to automatically learn and extract hierarchical representations
of patterns and features from input data. CNNs comprise
multiple layers, including convolutional, pooling, and fully
connected layers. Each layer performs specific operations to
extract and process information from the input data. Here is
a brief overview of the main components of a CNN:

1) Convolutional layers: These layers apply convolution
operations to the input data. Convolution involves slid-
ing a small filter (also known as a kernel) over the input
data and performing element-wise multiplications and
summations. This operation captures local patterns and
spatial relationships in the data.

2) Pooling layers: Pooling layers downsample the feature
maps obtained from the convolutional layers. They
reduce the spatial dimensions of the data while retain-
ing the most important features. Common pooling
operations include max pooling, average pooling, and
sum pooling.

3) Activation functions: Activation functions introduce
non-linearities into the network, allowing it to model
complex relationships in the data. Popular activation
functions used in CNNs include ReLU (Rectified
Linear Unit), sigmoid, and tanh.

4) Fully connected layers: These layers make predictions
based on the learned features. They connect every
neuron from the previous layer to every neuron in the
current layer, forming a fully connected network. The
output of the fully connected layers is often fed into a
softmax layer for multi-class classification or a sigmoid
layer for binary classification.

5) Training with backpropagation: CNNs are trained
using the backpropagation algorithm, which com-
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putes gradients and updates the network’s parameters
(weights and biases) based on the error between the
predicted and actual outputs. Optimization techniques
like stochastic gradient descent (SGD) and its variants
are commonly used to iteratively update the network’s
parameters during training.

CNNs have shown remarkable performance in various
computer vision tasks, including image classification, object
detection, and image segmentation. They can automatically
learn and extract meaningful features from raw visual data,
making them well-suited for tasks that require understanding
and analyzing complex visual patterns. Our PCC-CNN
model combines PCC (Pearson correlation Coefficient)
and Convolution neural network (CNN). Firstly, important
features have been extracted via PCC from the preprocessed
data. Then the optimal features are used for the prediction of
anomaly behavior.

Our modified PCC-CNN model has the following
configurations:

1) A convolutional 1D layer of size (91 × 64) &
(10 × 64) using RELU activation function.

2) A Maxpooling 1D layer
3) A flattening layer
4) A dense layer of size 128 using the RELU activation

function.
5) A dropout layer
6) A dense layer of size 2 using the Softmax activation

function
7) An output layer of 2 classes using the Adam optimizer
The modified CNN model shown in Fig. 7 is constructed

sequentially, consisting of six layers. The first layer is a
convolutional layer with a size of 91 × 64 and utilizes the
rectified linear unit (ReLU) activation function. This layer
performs convolutions on the input data to extract relevant
features. Following the convolutional layer, a MaxPooling1D
layer is employed to reduce the length of the input tensor
while retaining important features. A dropout layer with a
rate of 30% is added to prevent overfitting. Dropout randomly
disables some neurons during training, forcing the network
to learn more robust representations. After the dropout layer,
the flattened layer reshapes the output from the previous
layer into a one-dimensional format. Dense layers, which
are capable of analyzing values in a nonlinear manner, are
then utilized. These layers extract higher-level features from

FIGURE 7. Modified PCC-CNN model.

the flattened input. Finally, the model employs the Adam
optimizer to adjust the parameter values in the final layer.
The number of class parameters is set to 2 for binary
classification, indicating the expected outcome categories.
During the training process, the model is trained for five
epochs, which refers to the number of times the entire dataset
is passed through the network for learning and adjusting
the model’s parameters. This process allows the model to
refine its predictions and improve its performance in binary
classification tasks.

IV. EXPERIMENTAL RESULTS
The proposed FL-IDS framework with LR and PCC-CNN
models was evaluated on Testbed 1 and Testbed 2. The actual
implementation looks like Figure 8, where 2 or 4 Raspberry
Pis are used as clients depending upon the Testbed, and Jetson
Xavier is used as a Server. For communication between
clients and servers, we used a wireless Local Area Network
(LAN). The server and client device specifications are given
in Table 2. NVIDIA Jetson Xavier is used as a server and the
clients are all Raspberry Pi 4 boards.

The Python programming language was utilized to imple-
ment the models, along with the Keras and PyTorch libraries
as the frontend and the TensorFlow library as the backend.
These libraries provided the necessary tools for training,
testing, and benchmarking the models. Additionally, the
Flower framework [55] was employed to build the FL
architecture. Different versions of Python and associated
libraries were utilized to implement the FL framework on
the Raspberry Pi devices. To measure the performance of
our model, we measured the starting centralized accuracy
and loss of the test model along with the finished federated
learning accuracy and model loss with total execution time
taken.

FIGURE 8. Actual implementation.

A. DATASETS AND TRAINING
For evaluation purposes, we use the NSL-KDD dataset [58],
a benchmarking network traffic dataset collected by UNB,
as they were not recorded from the same probability, making
them realistic. It mainly focuses on the DDoS (Distributed
Denial of Service) attack. The NSL-KDD dataset contains
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two.csv files named KDD_Train and KDD_Test file. The
NSL-KDD dataset consists of five different classes, which
are:

1) DoS (Denial of Service): This class includes attacks
aimed at overloading the targeted server or network
with an excessive quest, causing it to become unavail-
able or unresponsive. Examples of DoS attacks include
Smurf, Neptune, and Teardrop attacks.

2) Probe: In this class, the attacker scans the network
to identify vulnerabilities that can be exploited. The
goal is to gather information about the target system or
network for future attacks. Examples of probe attacks
include Satan, ipsweep, and Nmap attacks.

3) R2L (Remote to Local): Attacks in this class involve
attempts by the attacker to gain unauthorized access
to the victim’s machine or network by sending
packets from a remote location. The goal is to
exploit vulnerabilities and gain local access to sensitive
information. Examples of R2L attacks include ejection,
load module, and Perl attacks.

4) U2R (User to Root): This class involves attacks where
attackers gain escalated privileges on the target system
by exploiting vulnerabilities. The attacker starts with
a regular user account and then attempts to gain root
or administrative access. Examples of U2R attacks
include FTP write, guess the password, and IMAP
attacks.

5) Normal: The normal traffic behavior.
The attack instances of NSL-KDD are shown in Table 3.

TABLE 3. NSL-KDD attack samples.

To include the realistic scenario of CAV, we use the
Car-Hacking [59]dataset, a collection of data specifically
designed for studying and analyzing security vulnerabilities
and potential attacks in automotive systems. It aims to provide
researchers and practitioners in the field of automotive cyber-
security with a comprehensive dataset that simulates real-
world car-hacking scenarios. The dataset consists of various
types of data captured from automotive systems, including
network communications, sensor readings, vehicle control
commands, and potential attack vectors. It encompasses a
wide range of information relevant to the functioning and
operation of a vehicle, allowing researchers to analyze and
understand the security risks and challenges associated with
modern automobiles.

The Car-Hacking dataset was explicitly collected for the
‘‘Car Hacking: Attack & Defense Challenge’’ competition
held in 2020 [60]. Its primary purpose was to enhance

the techniques for attacking and detecting vulnerabilities in
the Controller Area Network (CAN) [61], a widely used
standard for in-vehicle networks. The dataset was generated
by capturing CAN traffic from vehicles through the OBD-II
port while conducting message injection attacks. Each attack
lasted 3 to 5 seconds, and the overall dataset spanned
approximately 30 to 40 minutes of collected data.

The Car-Hacking dataset consists of five different classes,
which are:

1) Normal: This class represents the normal behavior and
legitimate communication within the CAN network of
the vehicle.

2) DoS (Denial of Service): This class involves attacks
aimed at disrupting or disabling the normal functioning
of the CAN network.

3) Spoofing the Drive Gear: This class relates to attacks
where the attacker manipulates or falsifies data related
to the vehicle’s drive gear.

4) Spoofing the RPM Gauge: This class encompasses
attacks that involve tampering with or forging data
related to the vehicle’s RPM (revolutions per minute)
gauge.

5) Fuzzy: This class represents attacks that introduce
noise or fuzziness into the CAN network, potentially
causing confusion or disruptions.

The attack instances of Car-Hacking are shown in Table 4.

TABLE 4. Car-hacking attack samples.

B. RESULTS OF LR-IDS
A machine learning-based solution, LR-IDS, employs a
simple Logistic Regression model. The centralized model
runtime efficiency for the NSL-KDD dataset was 97% with
a training time was 42.08 sec. Similarly, runtime efficiency
for the Car-Hacking dataset was 93% with a training time
was 83.28 sec. The classification accuracy results in Table 5
for binary classification using two different datasets, NSL-
KDD and Car-Hacking, were compared. With the NSL-
KDD dataset, the average accuracy achieved was 96.82%,
with a loss of 0.127. This indicates that the machine
learning-based intrusion detection system (IDS) using PCC
feature extraction and Logistic Regression performed well
in accurately classifying instances from the NSL-KDD
dataset. The processing time for measuring this accuracy was
10 seconds. However, when using the Car-Hacking dataset,
the accuracy achieved was 93.56%, with a higher loss value
of 0.28. This suggests that the IDS encountered challenges
in accurately classifying instances from the Car-Hacking
dataset compared to the NSL-KDD dataset. Furthermore, the
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TABLE 5. Anomaly detection on testbed 1 & 2 on LR-IDS.

processing time for measuring this accuracy was significantly
longer, taking 306 seconds. The longer processing time may
indicate that the Car-Hacking dataset is more complex or
larger, requiring more computational resources and time to
process. It’s important to note that the Car-Hacking dataset
did not perform as well as the NSL-KDD dataset with the
given machine learning-based IDS. The reasons for this
discrepancy could be attributed to various factors, such as
differences in the characteristics and distribution of the two
datasets, the presence of unique challenges or complexities in
the Car-Hacking dataset, or the need for further optimization
or tuning of the IDS for that specific domain.

In summary, the LR-based IDS using PCC feature
extraction and Logistic Regression achieved high accuracy
with the NSL-KDD dataset but encountered challenges with
the Car-Hacking dataset, resulting in lower accuracy despite
a longer processing time. Further analysis and improvements
may be necessary to enhance the performance of the IDS on
the Car-Hacking dataset.

C. RESULTS OF CNN-IDS
In the Deep learning-based solution, a simple Convolutional
Neural Network (CNN) called PCC-CNN was employed.
The centralized model runtime efficiency for the NSL-KDD
dataset was 96%with a training timewas 75.98 sec. Similarly,
runtime efficiency for the Car-Hacking dataset was 99% with
a training time was 557.65 sec. The classification accuracy
results for binary classification tasks using the NSL-KDD
and Car-Hacking datasets for Testbed 1 and Testbed 2 are
shown in Table 6. In Testbed 1 with two clients, the average
accuracy achieved for anomaly classifications was 97% for
the NSL-KDD dataset and an impressive 99.93% for the Car-
Hacking dataset. This indicates that the PCC-CNN model
performed well in accurately classifying instances from
both datasets, with the Car-Hacking dataset exhibiting even
higher accuracy. The model loss is also comparably lower
at 0.12 and 0.005 for both datasets. The model was trained
for 3 epochs with the NSL-KDD dataset and 3 epochs with
the Car-Hacking dataset. However, we find challenges for the
computational time, which is higher than the LR-IDS, but
the reason behind that is the large number of attack instances
and utilization of the small capacity of Raspberry Pi. These
findings suggest that the deep learning-based IDS using PCC-
CNN outperformed the machine learning-based IDS with
Logistic Regression regarding accuracy. Both the NSL-KDD
and Car-Hacking datasets achieved high accuracy with the
PCC-CNN model. The Car-Hacking dataset, in particular,
demonstrated exceptional performance, even with more

TABLE 6. Anomaly detection on testbed 1 & 2 on CNN-IDS.

clients. However, our model requires longer training time on
the car-hacking dataset. Further analysis is needed to improve
the runtime of the model.

The deep learning-based IDS approach using the
PCC-CNN model demonstrated promising results in terms
of computational time, indicating its practical efficiency. The
PCC-CNNmodel’s ability to performwell on various datasets
highlights its versatility and adaptability. By achieving high
accuracy and low loss values, the model showcased its
effectiveness in accurately classifying instances and detecting
anomalies.

V. CONCLUSION
We addressed dynamic FL-IDS by using ML and DL
techniques. Our method detects intrusions by the FedAvg
algorithm on the server side, which is the average of
parameters from different clients. Results showed that our
proposed method outperformed individual networks in terms
of detection accuracy and also achieved a competitive loss.
Our modified PCC-CNNmodel outperforms better compared
to the LR-IDS model. Our method achieved a low runtime
overhead by running and fusing the PCC and CNN in parallel.
We proposed a novel, modular, scalable, and maintainable
FL framework that uses ML and DL techniques that detect
network anomalies for CAVs without disrupting the privacy
and security of the end user. The key idea is to introduce a
computationally efficient FL-IDSmethod to Provide data pri-
vacy for individual clients. We demonstrated that a real-time
and accurate intrusion detection system could be developed
by running decentralized learning and deep learning models
in parallel. We thoroughly investigated the proposed FL-
IDS framework’s performance by multiple clients using
Raspberry Pi and the Jetson Xavier combination. We also
used a new Car-Hacking dataset which was specifically
created for autonomous car communication architecture. This
dataset allowed us to evaluate the generalizability of our
proposed models. The results exhibited that PCC-CNN and
LR-IDS models outperform current state-of-the-art anomaly
detection in terms of (lower) loss and (higher) average
detection accuracy values. Further optimization and tuning of
themodel are required to improve its performance. As the car-
hacking dataset has imbalanced feature types, it is good to use
specific methods to address the class imbalance. Future work
includes developing the dataset specifically designed for
CAVs. In addition, the developed framework with enhanced
intrusion detection performance paves the way for tracking
attacks in run-time for more informed decision-making by
autonomous cars. Also, the adversarial attack implementation
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on top of FL-IDS to measure the robustness of the proposed
Framework.
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