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ABSTRACT Although Faster R-CNN has undergone a lot of improvements, it still exists a significant
gap in the performance between the detection of small and large objects, mainly because the low-level
network lacks semantic information and small objects are only involved in a few images. To mitigate the
above issues, we propose an object detection model based on Multi-Scale Feature fusion Cross Stage Partial
Network (MSF-CSPNet) in this paper. The proposedMSF-CSPNet focuses on the fusion of concrete features
and abstract features from multi-scale feature by learning shallow features at the shallow level and deep
features at the deep level. Meanwhile, the data augmentation is performed by using random horizontal flip.
On the basis, the improved Faster-RCNN model with Automatic Mixed Precision, Group Batch Sampler
and MSF-CSPNet was formed. The proposed algorithm is valuated on the Microsoft Common Objects in
Context (MS COCO) 2017 and obtained leading performance with 5.4% improvement in APcoco, 5.9%
improvement in AP50, 6.9% improvement in AP75, 5.8% improvement in APS , 6.1% improvement in APM ,
5.8% improvement in APL compare to Faster R-CNN based on ResNet-50 with Feature Pyramid Network
(FPN) backbone, and also outperformed previous reports on state-of-art Faster R-CNN series using other
backbone networks, especially for small object detection. This research shows that the combination of a
backbone with stronger learning ability and FPN is helpful to detect the expression of objects. Faster R-CNN
based on MSF-CSPNet has high efficiency and better balance between accuracy and speed.

INDEX TERMS Convolutional neural network, cross stage partial network, faster R-CNN, object detection.

I. INTRODUCTION
Object detection [1], as a longstanding, fundamental and
challenging problem in computer vision [2], has been an
active field of research for several decades [3], [4]. The task
of object detection is to identify object categories and predict
the location of each object in an image by a bounding box,
and there are many real world applications [5] based on this
task, such as face detection and pedestrian detection [6].
Since deep learning [7] entered the object detection field, the
milestone approaches primarily divided into two categories:
one-stage detectors, like SSD [8], RetinaNet [9], You
Only Look Once (YOLO) series, including YOLOv1 [10],
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YOLOv2 [11], YOLOv3 [12], YOLOv4 [13], YOLOv5 [14],
YOLOv6 [15], YOLOv7 [16] and YOLOv8 [17], and two-
stage detectors, such as Region-based Convolutional Neural
Network (R-CNN) series, including R-CNN [18], Fast R-
CNN [19], Faster R-CNN [20], R-FCN [21], FPN [22].
The main difference between the two categories is that
two-stage detectors need to first generate proposals, and
then perform fine-grain object detection, however, one-stage
detectors directly extract features from network to predict
object classification and position. Compared with the one-
stage detectors, two-stage detectors usually have a relatively
great performance, but are much slower and more unsuitable
for real-time object detection applications.

Faster R-CNN [23], as a milestone of R-CNN serials
detectors, was able to make predictions at a frame rate of
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5fps on a GPU by using a novel proposal generator (Region
Proposal Network) and achieved state-of-the-art results on
many public benchmark datasets, such as Pascal Visual
Object Classes (Pascal VOC) 2007, 2012 and MS COCO.
Subsequently, some more efforts have made to strengthen
Faster R-CNN by bringing more computations into network.
Region-base Fully Convolutional Networks (R-FCN) [21]
generated a position sensitive score map which encoded
relative position information of different classes, and used
a Position Sensitive ROI Pooling layer (PSROI Pooling)
to extract spatial-aware region features by encoding each
relative position of the target regions so as to share the
computation cost in the region classification step, which
speed up inference when many proposals are used. while
Multi Scale (MS) CNN [24] and FPN [22] construct feature
pyramids by employing inherent multi-scale, pyramidal
hierarchy to alleviate the scale mismatch between the RPN
receptive fields and actual object size. TheMask R-CNN [25]
was proposed by Kaiming He et al. to tackle pixel-wise
object instance segmentation using a Region of Interest
(RoI) align layer by extending Faster R-CNN. Then Zhang
et al. [26] proposed Mask-Refined R-CNN to solve the
problem that the difference in spatial information between
receptive fields of different sizes was ignored in Mask
R-CNN. A-Fast-R-CNN [27] proposed an adversarial net-
work that generates examples with occlusions and defor-
mations to improve image classification in semi-supervised
setting. Cascade R-CNN [28] was proposed to address
the problem of over-fitting due to exponentially vanishing
positive samples during training, as well as the problem of
inference-time mismatch between the IoUs for which the
detectors is optimal and those of the input hypotheses. Light-
Head R-CNN [29] was proposed to address the shortcoming
of an intensive computation after or before RoI warping. The
Genetic AlgorithmGabor Faster R-CNN (Faster GGR-CNN)
[30] by embedding Gabor kernels into Faster R-CNN was
proposed to address the texture interference problem of fabric
detect detection.

Although Faster R-CNN has undergone a lot of improve-
ments, but also has weakness of (relatively) slow speed
and very low accuracy compare to recently emerged YOLO
version. Among them, the network structures of YOLOv1
to YOLOv8 not only have relatively large changes, but
also explore different backbone networks, for example,
GoogleNet in YOLOv1, DarkNet19 in YOLOv2, DarkNet53
in YOLOv3, CSPDarkNet53 in YOLOv4, YOLOv5-S,
YOLOv5-M, YOLOv5-L, YOLOv5-X in YOLOv5 and
so on. Obviously, the YOLO series continuously breaks
records in accuracy and speed cannot be separated from the
network structures changing and a well-designed backbone.
However, some researcher made attempt to explore different
backbone networks in Faster R-CNN, such as VGG [31],
ResNet [32], MobileNet [33], HyperNet [34], Performance
Vs Accuracy Net (PVANet) [35], Inception Net [36] and
DetNet [37], but have not achieved better results than
YOLOv4.

Cross Stage Partial Network was proposed by Wang et al.
[38], which reduced computations by 20% with equivalent
or even superior accuracy on the ImageNet dataset and
significantly outperformed the state-of-the-art methods in
terms of AP50 on the MS COCO object detection dataset,
but still underperformed with small objects. This paper first
proposed to apply CSPNet into Faster R-CNN to get better
performance. FPN mechanism was introduced into CSPNet,
named MSF-CSPNet. Different from CSPNet in YOLOv4,
we made small modification that added a branch of FPN
into stage 2 of CSPNet, so the proposed MSF-CSPNet was
able to focus on the fusion of concrete features and abstract
features by learning shallow features at the shallow level
and deep features at the deep level. Compared to the Faster
R-CNN model based on ResNet50 backbone with FPN, the
final Faster R-CNN model improves the APcoco from 37.1%
to 42.5%, the AP50 from 58.0% to 63.9%, the AP75 from
39.9% to 46.5%, the APS from 21.5% to 27.3%, the APM
from 40.7% to 46.8%, the APL from 47.5% to 53.3%.

II. METHODOLOGY
A. MOTIVATION
No matter what it is one stage detectors or two stage
detectors, they usually depend on a backbone network that is
pretrained on the ImageNet classification dataset. Different
from the task of ImageNet classification, the task of object
detection is discovering ‘‘where’’ and ‘‘what’’ each object
instance is when give an image by using bounding-box.
Therefore, the design that the spatial resolution of the
feature maps is gradually decreased for the standard image
classification networks will harmful for localization task.
In order to alleviate the above issue, many techniques like
FPN and dilation technology are proposed and applied to
these networks to maintain the spatial resolution. However,
there also exists the following three challenges when trained
with these backbone networks.

1) STRENGTHENING LEARNING ABILITY OF TRADITIONAL
BACKBONE
The accuracy of existing CNN is greatly degraded after
lightweightening, so how to strengthen CNN’s learning abil-
ity to maintain sufficient accuracy while being lightweight-
ening has become extremely critical.

2) STRENGTHENING FUSION ABILITY OF ConvNet’s
PYRAMIDAL FEATURE HIERARCHY
As we know, different layer of ConvNet’s pyramidal feature
hierarchy has different semantics. We need to design an
architecture that can combine low-resolution, semantically
strong features with high-resolution, semantically weak
features.

3) INVISIBILITY OF SMALL OBJECTS
Despite object detection has made impressive progress, there
is also a major gap in the performance between the detection
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of small and large objects. Large stride of backbone network
will result into decreasing the spatial resolution of the feature
maps and integrating the large context, which are easily
weaken the information from the small objects. FPN adopting
bottom-up pathway can combine low semantic information
from shallow layers that predict small object with context
cues of high-representations from deeper layers that are
sufficient to recognize the category of the object instances.
However, these context cues will lose simultaneously when
the small objects cannot be found in deeper layers.

MSF-CSPNet is proposed to address these problems,
which has the several advantages compared with traditional
backbone networks like ResNet for object detection. First,
CSPNet with equivalent or even superior accuracy on the
ImageNet dataset can reduce computations by 20%. Second,
benefited by bottom-up pathway of FPN, MSF-CSPNet is
more potent in locating and recognizing the small objects.

B. CROSS STAGE PARTIAL MODEL BASED ON FPN
Based on the backbone network Darknet-53 in YOLOv3,
the CSPDarknet-53 was proposed by referring to CSPNet,
which contains five Cross Stage Partial blocks. Next, We will
introduce the detail architecture ofMulti-Scale feature Fusion
Cross Stage Partial Network (MSF-CSPNet).

1) STRUCTURE OF CONVOLUTION BATCH-NORMALIZATION
MISH BLOCK
The convolution batch-normalization mish (CBM) block is
a basic component unit in CSPDarknet-53, which contains
convolution layer, batch-normalization layer and mish func-
tion. The structure of CBM is shown in figure 1. Batch
normalization is the normalization of each batch data of
convolution layer, which includes 4 steps. Firstly, the mean
of each batch of training data can be calculated by using (1).
xi, m means the input of each batch of images {x1, x2, . . . ,
xn} and the number of the data in (1), respectively.

µB =
1
m

m∑
i=1

xi. (1)

FIGURE 1. The architecture diagram of Convolution Batch-Normalization
Mish (CBM) block. Standard CBM block usually contains convolution layer
with batch-normalization layer and mish activate layer. k,s means kernel
size and stride of Conv2d layer, respectively.

Then, the variance of each batch of training data can be
found by employing (2).

σ 2
B =

1
m

m∑
i=1

(xi − µB)
2 . (2)

Next, xi is subtracted from the mean µB and then divided
by the variance σB according to the obtained results, which
is shown in (3). Therefore, the obtained data will exhibit a
normal distribution, where ξ is a very small value in order to
avoid zero variance.

x̂i =
xi − µi√
σ 2
B

+ ξ
. (3)

Finally, the yi is obtained by multiplying x̂i by γ and
added β, where γ is the scaling factor, and β is offset. The
values of both γ and β are iteratively updated when the
network is trained.

yi = γ x̂i + β. (4)

Activation functions enable neural networks to effectively
address complex problems by introducing non-linearity to
the linear transformed input in a layer of a neural network.
Compared to the performance of Swish, ReLu, and Leaky
ReLU across different tasks in different in computer vision,
Mish function as a novel self regularized non-monotonic acti-
vation functionwas proposed byMisra [39] and demonstrated
better performance and stability, which is mathematically
defined as:

f (x) = x ∗ tanh
(
ln

(
1 + ex

))
. (5)

2) STRUCTURE OF CROSS STAGE PARTIAL BLOCK
A stage of Cross Stage Partial Networks (CSPNet) usually
contains several CBM blocks and a Res unit, whose
architecture is shown in figure 2. The feature maps of the
first CBM block in a stage are divided into two parts though
channel x0 = [x′

0, x
′′

0]. Between x′

0 and x′′

0 , the former passes
though a CBM block and link to the end of the stage, and the
latter will go though CBM block, Res unit and CBM block,
respectively. Finally, the two part are concatenated by a CBM
block and undergo another CBM block, and then generate
output. The × n means in each stage of CSPNet the number
of repeated Res units.

3) STRUCTURE OF CROSS STAGE PARTIAL MODEL WITH FPN
By improving the basic structure of CSPNet, Multi-Scale
Feature fusion Cross Stage Partial Network (MSF-CSPNet)
is constructed. The top-down pathway and lateral connections
were added into the feature activation output by the last layer
of all CSP blocks except for CSP block1, and create the
final set of feature maps P2, P3, P4, P5 that are respectively
of the same spatial sizes. On the basis of P5 feature map,
the P6 are generated by a down-sampling of stride = 2.
The MSF-CSPNet structure is shown in Figure 1. The FPN
starts from the second CSPNet stage to the last CSPNet stage
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FIGURE 2. The architecture diagram of cross stage partial block. CBM
means convolution layer with batch-normalization and mish, the two
numbers in the CBM block represent the kernel and stride of Conv2d,
respectively. ×n res unit means residual block are internally stacked n
times in one CSP block, Concat means two branches of a CPS block are
concatenated by using a CBM block with convolution kernel of 1.

can achieve multi-scale feature fusion from low-resolution,
semantically strong features to high-resolution, semantically
weak features. By creating P2 and P6 output, MSF-CSPNet
is able to extract shallow layer characteristic information
and deep layer characteristic information better than the
BottleneckCSP structure. MSF-CSPNet has better feature
extraction ability, which can be applied to a lot of object
detection tasks as a basic module with minor modifies.
The CSPDarknet-53 is adopted as the representation of the
CSPNet in this paper. The assignment strategy of RoI of
different scales in FPN follows the (6).

k = [k0 + log2
√
wh/224] (6)

Here w, h is the width and height of RoI in Pk level
feature pyramid, respectively. 224 is the canonical Image pre-
training size, and k0 means the target level on which an RoI
with w×h = 224 should be mapped into. Different from the
FPN-based Faster R-CNN system that set k0 to 4, we set k0
to 5. The mainly purpose of this design is that CSPNet has
5 stage CSP blocks.

There are two limitations to make an effective and efficient
backbone for Faster RCNN detector. On one hand, heavy
inference computations for deep neutral network greatly
relies on costly computation resources. On the other hand,
reducing the down-sampling factor of FPN need to remain
the same as reducing the valid receptive filed of every
stage of CSPDarkNet-53, which will be harmful for image
classification in object detection.

MSF-CSPNet is carefully designed to overcome the two
limitations. Specifically, the MSF-CSPNet follows the same
setting as CSPDarkNet-53 in YOLOv4 from the first Cross
Stage Partial block to the fifth Cross Stage Partial block, the
differences lies in the second CSP block and the extra stage,
e.g.P6, and an overview ofMSF-CSPNet backbone for Faster
RCNN can be shown in Figure 3.

C. FASTER-RCNN OBJECT DETECTION MODEL BASED ON
MSF-CSPNET FEATURE EXTRACTOR
How to effectively detect objects of different sizes in
images remains a major challenge in object detection.
A few techniques, such as FPN and dilation, are considering
as a standard solution for detecting objects of different
scales. By adding MSF-CSPNet feature pyramid before
Region Proposal Network (RPN) to extract image features at
different levels, the Faster RCNN detector can better detect
objects of different scales. Figure 4 displays the structure of
Faster-RCNN network based on MSF-CSPNet.

The object detection process of Faster-RCNN is as follow-
ing: First, the shorter edge of the image is resized to 800 pixels
and the longer edge of the image is limited to 1333 pixels
in order to avoid too much memory cost. The images within
mini-batch were padded to the same size by filling zeros into
the right-bottom of the image. Then each batch of images
goes though the MSF-CSPNet performing feature extraction.
The feature layers of P2, P3, P4, P5, P6 will be created
via MSF-CSPNet. We adopt Region Proposal Network
(RPN) by replacing the single-scale feature map with FPN.
A head of the same design (3×3 convolutional and two
sibling 1×1 convolutional layers for box regression and box
classification, respectively.) was attached to each level on the
feature pyramid of FPN. The head slides densely over all the
locations in all pyramid levels, therefore, it is not necessary
to have multi-scale anchors on a specific level. Anchors with
areas of 162, 322, 642, 1282, 2562 pixels are allocated to
P2, P3, P4, P5, P6 respectively. Anchors of multiple aspect
ratios 1:2, 1:1, 2:1 at each level is used in our experiments,
which is the same as in [22]. In total there are 15 anchors
over the pyramid and 256 anchors per image. The proposals
generated by RPN and the output features of FPN are fed
into the Region of Interest (RoI) pooling layer followed by
Two Multi-Layer Perceptron (MLP) Head whose function is
to convert the number of input channels into the number of
output channels (In general, the number of output channels is
1024). Fast RCNNpredictor included two sibling 1×1 convo-
lutional layers used to predict a class and class-specific box
refinement for each proposal. The results from Fast RCNN
predict are post-processed by Non-Maximum Suppression
(NMS) in order to filter low scores object, then mapped
predicted bounding box back to original image.

III. EXPERIMENTS, RESULTS, AND ANALYSIS
A. HARDWARE AND SOFTWARE
The experiments was performed on an integrated devel-
opment environment called Pycharm installed in a local
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FIGURE 3. The architecture diagram of our proposed backbone network. The pyramidal
feature hierarchy are built by last layer output of each stage of the CSPDarknet53 as
shown on the left side of Figure 3. FPN is indicated by the dark blue on the right side of
figure 3.

Dell Precision 7920 workstation having a NVIDIA GeForce
RTX 3090 GPU with RAM capacity of 24 GB. The Pycharm
is preconfigured with leading deep learning libraries on
Ubuntu 20.04 64-bit, such as PyTorch, Numpy, as well as
Matplotlib. The frameworks of all deep learning models in
this paper are developed and run in Python, by employing
Pytorch library, making use of automated differentiation on
graphs of varying computations.

B. DATASET
The experiments are performed on the MS COCO Detection
dataset. TheMSCOCO2017Detection dataset contains 164k
images, including 118,287 images for training, 5000 images
for validation, and 40670 test images, and 860k objects
annotated with ground-truth bounding boxes from 80 cat-
egories. There are 41.43% small objects, 34.4% medium
objects and 24.2% large objects among all the objects of the
training dataset. Although the number of the small objects are
large, their distribution in the training images is extremely
nonuniform. In other words, only about half of the training
images contain any small objects, while 70.07% and 82.28%
of the training images include medium and large objects,
respectively. We use the train dataset for training and report
the performance on the validation dataset.

In general, meanAverage Precision (mAP) is a crucial met-
ric for evaluating object detection models, measuring their
performance and accuracy. For VOC2007, VOC2012 and

ImageNet, Intersection over Union (IoU) threshold of mAP is
set to 0.5. Instead of using a fixed IoU threshold, MS COCO
has six evaluation scores which demonstrates different
capability of detection algorithms, including performance on
different IoU thresholds and on different scale objects. For
example, APcoco (averaged precision over ten intersection-
over-union thresholds from 0.5 to 0.95 with interval of 0.05),
AP50, AP75 (AP at different IoU thresholds), and APS (AP
for area of objects smaller than 322), APM (AP for area of
objects between 322 and 962), APL (AP for area of objects
bigger than 962).

C. NETWORK PARAMETER SETTING
The detection effect of Faster-RCNN is greatly influenced by
the detection parameters, the default hyper-parameters are set
as follows: the training epochs is 43; The experiments use a
stochastic gradient descent optimizer. The momentum value
is 0.9, and the weight-decay coefficient is set as 1e-4. The
step decay learning rate scheduling strategy is adopted with
initial learning rate 0.005 and multiply with a factor 0.1 at
the 12 epochs and 22 epochs, respectively; All architectures
use a single GPU to execute multi-scale training with the
batch size of 8 while the batch size is set as 1 in the
validation data-loader due to the GPU memory limitation.
Automatically Mixed Precision (AMP) is used in our training
experiment in order to alleviate the shortage of GPUmemory.
For all the experiments in this paper, we only use a Nvidia
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FIGURE 4. The architecture diagram of faster RCNN based on our proposed backbone network.

RTX 3090 GPU for training, so techniques such as sync-BN
that optimizes multiply GPUs are not used.

D. EXPERIMENTAL RESULTS AND ANALYSIS
1) GRADIENT-WEIGHTED CLASS ACTIVATION MAPPING
(GRAD-CAM) EXPERIMENT
Grad-CAM can produce ‘visual explanations’ for a large
class of Convolution Neural Network (CNN) models in a
coarse heat-map of the same size as the convolution feature
maps. We used the Grad-CAM to explain the reason why
we adopted the CSPDarkNet53 as our backbone network.
The results of different layers of both network are shown
in Figure 5. We can see from figure 5 that the low shallow
network in ResNet50 pay little attention to the cat, while the
low shallow network in CSPDarkNet53 has started to pay
attention to edge detection information of the cat.Meanwhile,
the deep network in ResNet50 makes attention to the neck of
the cat, however, the deep network in CSPDarkNet53 make
attention to the face and legs of the cat. The shallow network
has small receptive field and high resolution, and the deep
network has large receptive field and low resolution. If the
convolution neural network is able to achieve better semantic
information and edge detection information in the shallow
network, and obtain rich semantic information in deep
network, the CNN is more suitable as the backbone in object
detection network framework. Through the comparison of

Grad-CAM: ResNet50 and CSPDarkNet53, we can draw
the conclusion that CSPDarkNet53 is more suitable as the
backbone than ResNet50.

2) ABLATION EXPERIMENTS
The research results of ablation experiments are presented
in Table 1. First, we run Faster R-CNN with single-scale
map of CSPDarkNet-53 (stage5) on a single GPU, and
obtain 37.1% APcoco, 58.0% AP50, 39.9% AP75, 21.5%
APS , 40.7% APM , 47.5% APL . The overall performance is
significantly improved (from 37.1% to 39.8% in APcoco,
from 58.0% to 62.0% in AP50, from 39.9% to 43.5% in
AP75, from 21.5% to 24.1% APS , from 40.7% to 43.4%
APM , from 47.5% to 51.7 in % APL) by the three-scale
feature fusion (stage3, stage4 and stage5). When we fuse
four-scale feature layers (stage2, stage3, stage4 and stage5),
compared to three-scale feature fusion, the APcoco, AP50,
AP75, APS , APM , APL increases by 2.7%, 1.9%, 3.0%, 3.2%,
3.4%, 1.6%, respectively. To ensure fair comparison, they
are using the same hyper-parameters in addition to varying
the number of fused feature layers. Meanwhile, We are still
conducting the same experiments on 4 GPUs in order to
study the effect of Cross-GPU Batch Normalization (Sync-
BN) on the performance of Faster R-CNN. We observe from
Table 1 that the influence of Sync-BN on the performance of
Faster R-CNN gradually decreases with the increase of fusing
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FIGURE 5. (a) Original image with a cat and dog. (b-e) Support for the cat category
according to various layers of ResNet50. (f-j) Support for the cat category
according to various stages of CSPDarkNet53. Note that in (b-j), red regions
corresponds to high score for class.

feature layers. For example, theAPcoco of Faster R-CNNwith
three-scale feature fusion of CSPDarkNet-53 backbone has
been improved by 2.9%, and the APcoco of Faster R-CNN
with single-scale map and four-scale feature fusion has been
improved by 2.4% and 0.2%, respectively. The AP50 of Faster
R-CNN with single-scale map has been improved by 3.1%,
and the AP50 of Faster R-CNNwith three-scale feature fusion
and four-scale feature fusion has been improved by 1.5% and
0.1%, respectively. The experiment results demonstrate the
performance of Faster-RCNN has been gradually improved
with the number of fused feature layers increasing, which
explains the reasons that we select four stages as the input
of the FPN.

TABLE 1. Results of different maps based on FPN. Meanwhile, we also
train the backbone with different scale maps on four GPUs combining
with sync-BN technology.

3) MAIN RESULTS
We first download the pre-training weights of both
CSPDarkNet-53 and ResNet-50 on ImageNet classification
from git-hub website. CSPDarkNet-53 has 76.5% the top-1

TABLE 2. Results of different backbones based on FPN. The standard
Top-1 error on the ImageNet classification is inversely proportional to
accuracy on the ImageNet classification (the lower error is, the better
accuracy is in classification). The computation complexity of algorithm is
denoted as FLOPs. The COCO evaluation metrics is utilized to study
effectiveness of these backbone for faster RCNN.

accuracy at the cost of 4.71G FLOPs, however, ResNet-50
has 75.9% the top-1 accuracy at the cost of 4.1G FLOPs. Then
we start to train FPN with CSPDarkNet-53, and compare it
with ResNet-50 based FPN. All the results obtained by both
methods are shown in Figure 6. From Figure 6 we can see
CSPDarkNet-53 has superior performance than ResNet-50.

We use FPN with ResNet-50 as our baseline because
this method has achieved state-of-the-art results on the
COCO detection benchmark, surpassing all the R-CNN
series at that time. In order to validate the effectiveness of
the CSPDarkNet-53 with FPN, an additional output which
involves the second stage of CSPDarkNet-53 was added
into FPN compared with CSPDarkNet-53 in YOLOv4. More
design details are introduced in Section III. Then ResNet-50
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FIGURE 6. Comparisons of the accuracy faster RCNN with different backbone
(CSPDarknet53 vs ResNet50) on the MS COCO dataset. AP_c oc o, AP_50, AP_75 has the
same meaning as APc oc o, AP50, AP75, respectively; s, m, l, a means small, mediate,
large and all objects, respectively.

TABLE 3. Performance comparison of object detectors results between our method and state-of-the-art on MS COCO2017 dataset. Based on our simple
and effective backbone CSPDarkNet53 with FPN, our model performance has achieved equivalent or even superior average precision compare with all
previous state-of-the-art.

backbone is substituted by CSPDarkNet-53 while keep the
same architecture as original FPN.

Since CPSDarkNet-53 has more parameters than
ResNet-50, a natural hypothesis is that the improvement
in performance owing to more parameters. In order to
validate our hypothesis, we have access to a large number
of documents and found that FPN with ResNet-101 which
has 7.6G FLOPs complexity still has inferior performance
than our method. Even if DetNet-59 has the same top-
1 accuracy and FLOPs as the CSPDarkNet-53, its overall
performance is still inferior than our method. The comparison
of all results obtained by the two methods are displayed in
Table 2. These results further demonstrate that CSPDarkNet-
53 is more suitable for Faster R-CNN than both ResNet and
DetNet.

E. COMPARISON TO STATE-OF-THE-ART
There is a tradition to show the State-of-the-Art comparing
in order to validate the effectiveness of MSF-CSPNet, the
prime results of comparison are displayed in Table 3. The
performance of Faster R-CNN with MSF-CSPDarkNet53
backbone is compared with other state-of-the-art object
detectors on MS COCO objection dataset. Faster R-CNN
with the proposed backbone obtains 42.7 % APcoco, 63.9%
AP50 and 46.5% AP75, outperforming Faster R-CNN with
different backbones, including ResNet-101 [40], ResNet-
101 with FPN [22], Inception-ResNet-v2 [41], DetNet-59
[37] and MA-ResNet [42], and its variants [28], also
outperforming one-stage object detectors, such as FCOS [43],
YOLOv5 [14], YOLOv7-tiny [16] and MSFYOLO [44]. The
APS of the proposed method reaches 27.3%, which is higher
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than the best results (26.7%) of YOLOv4 [13] (over 0.6 points
gains in APS ). Faster R-CNN with the proposed backbone
achieves the state-of-the-art results in APM (46.8%) and
APL (53.6%), which is also better than APM (46.7%) and
APL (53.3%) of YOLOv4. However, our proposed method
performs slightly more inferior than YOLOv4 in APcoco,
AP50 and AP75. It is worth noting that CSPDarkNet-53
has only 4.7G FLOPs complexity while is lower than other
backbones except for MA-ResNet. The reasons for the
above phenomenon can be summarized as follows. On one
hand, YOLOv4’s success is attributed to the use of many
training tricks, such as Cross mini-Batch Normalization
(CmBN), self-adversarial-training (SAT), Mish activation,
Mosaic data augmentation, DropBlock regularization, CIoU
loss, we only use horizontal flipping for data augmentation
in this paper. On the other hand, the main reason why our
method can improve in APS is the fusion of shallow layer of
CSPDarknet53 in order to find missing small objects, which
yields 0.6 points gain (27.3 vs 26.7) in APS for small object.

IV. CONCLUSION
This paper improves CSPNet to raise the ability of object
feature extraction and the accuracy of different scale object
detection on MS COCO dataset. A novel backbone network,
called MSF-CSPNet, is constructed by introducing FPN
mechanism into CSPNet. Then, the new backbone is used
in Faster R-CNN to improve the object detection ability of
Faster R-CNN. By performing experiments and analysis of
Grad-CAM, model complexity and identification ability, the
following conclusions are finally obtained:

(1) CSPNet has better network performance and classifi-
cation accuracy than ResNet, which is suitable for feature
extractor for multiple scale object detection tasks.

(2) The MSF-CSPNet through the combination of deep
network and shallow network and muti-scale prediction, not
only achieves better accuracy than competitive with the Faster
R-CNN counterpart on the COCO benchmark, but also much
faster during both training and inference.

(3) Faster R-CNN with MSF-CSPNet feature extractor can
obtain better accuracy than YOLOV4 and YOLOV7-tiny in
small object detection.

This study achieved impressive results of object detection
on the MS COCO benchmark. We hope this paper inspire
developers and researchers to develop Faster R-CNN with
better performance, and also push forward Faster R-CNN to
apply in real-world scenarios.
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