IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 10 February 2024, accepted 28 March 2024, date of publication 9 April 2024, date of current version 1 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3386634

== RESEARCH ARTICLE

DFPT-CNN: A Dual Feature Extraction and
Pretrained CNN Synergy for Minimal
Computational Overhead and Enhanced Accuracy
in Multi-Class Medical Image Classification

DINAH ANN VARUGHESE~ AND SRIADIBHATLA SRIDEVI“, (Senior Member, IEEE)

Vellore Institute of Technology, Vellore 632014, India

Corresponding author: Sriadibhatla Sridevi (sridevi@vit.ac.in)

This work was supported by the Vellore Institute of Technology.

ABSTRACT In the advanced computer vision era, Convolutional Neural Network (CNN) plays a pivotal
role in image processing, as they excel at automatically extracting important patterns, and structures, for
accurate analysis across diverse domains. However, achieving higher accuracy often leads to intensifying
computational and timing demands. To address the challenge, this research introduces a novel dual feature
extraction methodology. This approach is implemented using two distinct feature extraction modules,
employed at different stages of the model: 1) Edge Gradient-Dimensionality Reduction (EGDR) module
which encapsulates the extraction of pixel edge gradient features from the raw input frame, leading to a
dimensionality reduction by a factor of 0.5; 2) Subtle Local Feature Extraction (SLFE) pooling algorithm
module, prioritizes the extraction of local and subtle features over maximum or average feature content.
The combination of these two stages proves particularly effective in enhancing classification accuracy while
minimizing computational overhead and training duration. Subsequently, comprehensive training, validation,
and testing were conducted on a selected multi-class chest computed tomography medical image dataset
using various state-of-the-art CNN architectures such as VGG-16, InceptionV3, ResNet50 to identify the
most suitable model for further experimentation with the proposed method. The proposed CNN-SLFE
framework with EGDR module achieved a significant reduction of 17.94% in computational time compared
to non-EGDR module, and concurrently enhanced the classification accuracy with an improvement factor
of 1.17 compared to existing CNN frameworks with EGDR module.

INDEX TERMS Classification accuracy, computation acceleration, convolutional neural network, feature
extraction, medical images, pooling algorithm.

I. INTRODUCTION

Artificial Intelligence (AI) and Machine Learning (ML), are
dedicated fields to the creation of intelligent systems capable
of learning and acting independently. Deep Learning (DL)
being a subset of ML, employs artificial neural networks
to learn from data. Convolutional Neural Network (CNN),
a type of DL algorithm, has proven effective for image
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processing [1], [2], [3] in particular. The ability of CNN
to capture spatial information from images makes it an
ideal tool for the analysis of medical images [4], [5],
[6], including tasks such as segmentation of tissues and
anatomical structures, classification of disorders, detection
and classification of lesions and tumours [7], [8], [9],
prediction of survival rates, diagnosis of various types of
cancer [10], [11]. These images often contain subtle details
that can be challenging for medical experts to identify. This
wide range of applications have the potential to revolutionize
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healthcare by enhancing the accuracy and efficiency of
diagnostic processes [12], [13], [14].

CNNss are primarily designed to work with two-dimensional
image data, but they can also be adapted for one-dimensional
and three-dimensional data [2]. The fundamental component
of CNN is convolutional layer. A convolution involves
applying a filter to the input, resulting in an activation.
When the same filter is repeatedly applied to the input,
it produces a feature map. This map indicates the locations
and strength of a detected feature in an input, such as an
image, results in highly specific feature extraction. After the
Convolution layer, Rectified Leaky Unit (ReLU) commonly
used activation function will be applied to each of the
feature maps, which introduces a non-linearity function
and allows the network to learn complex functions rather
than linear functions. ReL.U creates sparsity in the network
by setting all negative activations to zero as shown in
Fig.1.

RelLU

FIGURE 1. RelU activation function.

In addition to convolutional layers, CNN architecture
contains pooling layers and fully connected (FC) layers. The
pooling layer down-samples the feature map dimensionality
for reducing the computational complexity. Thus, by reducing
the resolution of the feature maps, pooling helps to prevent
the over-fitting issue. Then, the FC layer makes the final
prediction. The network learns to optimize these filters
through back-propagation and gradient descent. This process
allows CNN to effectively analyse complex image data and
make accurate predictions. Max and average (AVG) pooling
are the two widely used techniques in image classification.
Max pooling focuses solely on the highest value in each
pooling area, which may lead to significant data being
overlooked. On the other hand, AVG pooling can blur
sensitive image details by averaging all pixel values in
the pooling area, making it challenging for CNN to learn
classification features [15].

Prior to feeding of input images into CNN layers,
data preparation is an essential step. Preprocessing helps
to minimize noise and superfluous data, and mitigate
over-fitting which is a common issue in deep learning.
Some of the widely used image preprocessing techniques
include: Normalisation, which normalises the image pixel
values to a range of [0, 1] or [—1, 1]; Resizing which
scales the image to a specified resolution and reduce
the computational cost of CNN training; Cropping which
removes unwanted parts of the image, allowing the CNN
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to concentrate on the most significant portion of the image.
Another preprocessing technique called Data Augmentation,
creates new images by flipping, rotating, and cropping
the original images and thereby increases the size of the
dataset [16], [17].

Traditional methods of image preprocessing and pooling
have certain limitations. For instance, they may not fully
capture the complexity and variability inherent in image
data. Noise reduction techniques might inadvertently remove
important details, while pooling methods could lead to loss
of spatial information. To address these challenges, this work
proposes a novel dual feature extraction method. This method
is designed to be implemented at two distinct stages of
the model - one at the preprocessing stage and the other
at the pooling layer of the CNN framework. In the initial
stage, an Edge Gradient Dimensionality Reduction (EGDR)
is employed using a two-fold approach which results in a
more refined and accurate representation of the underlying
structures and patterns and reduced noise sensitivity. The
resulting image representation is characterized by a reduced
pixel count and a halved frame size. The latter stage,
used an innovative Subtle Local Feature Extraction (SLFE)
pooling algorithm, to capture more generalized features
across different images. As the CNN plays well in image
classification tasks, and to validate the efficacy of the two
proposed approach, a multi-class chest computed tomogra-
phy (CT) medical image classification dataset of lung cancer
is considered. The primary contributions of this paper are as
follows:

o« The EGDR module streamlines refined data repre-
sentation, which is not only memory efficient but
also facilitates faster processing and accurate analysis.
This makes it well-suited for applications with limited
computational resources or real-time requirements.

o In the scenarios where images may have varying
lighting conditions or contrast levels, the SLFE mod-
ule can normalize these variations. This allows the
CNN to concentrate on the underlying features more
effectively, enhancing the depth of feature extrac-
tion and improving the overall performance of the
model.

o The proposed dual feature extraction method effec-
tively handles images with varying qualities and
characteristics, making it a versatile tool for image
classification tasks. This adaptability can extend the
applicability of the method to diverse datasets and
domains.

« By integrating the EGDR and SLFE modules into the
CNN framework, the method significantly improves
the classification accuracy. It effectively captures both
subtle and local features in the images, leading to a more
comprehensive understanding of the image content.
This results in improved performance in distinguishing
between different classes in the dataset, thereby enhanc-
ing the overall classification performance.
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TABLE 1. Comparison of medical image classification using various CNN

TL approaches.
Reference Method/Model Inference(%)
[18] CNN-VGG16 Accuracy-87
Xception Accuracy-82
[19] TL-CNN Accuracy-90.7
[21] TL-CNN Accuracy-84.15
[22] CNN-Boosting Architecture Accuracy-86.7,
for FP reduction Sensitivity-74.4
[23] Dense CNN+ADABOOST classifier Accuracy-90.85
[24] CNN+CapsNet classifier Accuracy-94,
Sensitivity- 94.5,
Specificity- 95
[25] Hybrid CNN+SVM classifier Accuracy-97
[26] Hybrid Deep CNN and Accuracy-81.87
MAX-GAP pooling layer
[9] Data Augmentation+CNN Accuracy-92.8
[27] Streamlined Sequential CNN Accuracy-89.89
[28] CNN-Hybrid parallelization+ Accuracy-98
NNLU activation function
[29] CNN+MAX Pooling+ Accuracy-96.5%
Batch Normalization
[30] Data pre-processing, Accuracy-79.3
ROI feature extraction to CNN
[31] ROI feature extraction+ Accuracy-88.55%
feature processing+ Sensitivity-86.81%
MLP Specificity-86.95%
[32] Texture feature extraction, Accuracy-93
Haralick features on VGG16
[33] Transformer module+ Accuracy-96.35

CNN model+Feature fusion branch

The rest of this article is structured as follows: Section II
reviews related works, Section III describes the proposed
methodologies, Section IV presents the implementation and
results, and Section V concludes with final observations.

Il. REVIEW OF RELATED WORKS
The advent of DL techniques, particularly through TL
approach, has shown its effectiveness in several research
works [18], [19], [20].CNNs, in particular, have brought
about a revolution in medical field with their ability to
provide fast interpretation with high accuracy, and became
an invaluable tool in the medical imaging. This synergy
between deep learning and CNNs has reshaped the landscape
of medical diagnostics and imaging technologies. A com-
prehensive review on this synergy was conducted, with key
findings systematically documented and tabulated on Table 1,
underscoring the potential of these techniques in enhancing
the accuracy and efficiency of medical image analysis.

The work in [34], demonstrated the effectiveness of TL
CNN frameworks on chest CT images for early detection of
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lung cancer, especially in reducing the model False Positive
rate (FPR) to 1.97 per scan, which signifies instances of
incorrect classification of negative classes as positive. The
study in [21] employed three types of neural networks,
namely CNN, Deep Neural Network (DNN), and Stacked
Auto-Encoders (SAE), and evaluated their performance on
the Lung Image Database Consortium, LIDC-IDRI database,
which contains annotated images of benign and malignant
nodules. The CNN network achieved the highest accuracy
of 84.15%, sensitivity of 83.96%, and specificity of 84.32%
among the three networks. Furthermore, a novel automated
R-CNN framework for pulmonary nodule detection and a
CNN based boosting architecture for the reduction of FPR
was proposed in [22], achieved sensitivity of 86.7% on the
LUNAI16 dataset. The work in [23] focused on the early
detection of lung cancer using CT images. It utilized a densely
connected CNN along with an adaptive boosting algorithm
(ADABOOQOST) at the classification layer. The study aimed to
classify lung images as normal or malignant, and achieved an
accuracy of 90.85%.

Another study [24] presented LCD-CapsNet, a novel
DL framework that combined a CNN and a Capsule
Neural Network (CapsNet) for lung cancer detection and
classification. This model was trained and tested on the
LIDC dataset, consisting of 4335 images. LCD-CapsNet
outperformed CapsNet, achieving an average precision of
95%, recall of 94.5%, F1-Score 94.5%, specificity 99.07%,
and accuracy of 94% for benign and malignant data. The
study [25] introduced a TL method that classified lung CT
images into normal, benign, and malignant categories using
a hybrid model of AlexNet, VGG, and GoogleNet, along
with a multi-class SVM classifier. The model achieved an
impressive accuracy of 97%, whereas the work in [26] used a
hybrid deep CNN consisting of 22 convolutional layers with
the inclusion of MAX and GAP pooling layers achieving a
maximum accuracy of 81.87% for non-augmented dataset.
Another study [9] presented a CNN-based medical image
classification method which included a Max pooling layer for
disease diagnosis and leveraged TL and data augmentation
to enhance the CNN model’s performance on a small CXR
dataset. This resulted in an impressive accuracy of 99.5% on
the training dataset and 92.8% on the test dataset. However,
the data augmentation process, which generates additional
training samples by applying various transformations to the
original dataset, requires extra computational resources for
processing during training and extends the duration of the
training epochs, thereby prolonging the overall training time
of the model.

In [27], a streamlined sequential CNN architecture was
proposed and compared with two pre-trained CNN models
(VGG-16 and InceptionV3) for diagnosing diseases from
chest X-ray images, achieving a peak accuracy of 89.89%.
In the work conducted by [28], a hybrid parallelization
strategy, incorporating both model and data parallelism, was
applied to CNN to speed up its operation, with a normalized
non-linearity activation function (NNLU) and replacing
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FC layers with Global Average Pooling (GAP) layers.
These changes significantly improved accuracy and increased
computation speed by 3.62 times with a batch size of
(512,128), achieving a validation accuracy of approximately
98%. The authors in [29] used 1000 chest CT scans, trained
CNN model with a batch size of 32, a 3 x 3 max pooling
size, 0.25 drop out, batch normalization, and early stopping
to achieve a binary classification accuracy of 96.5%.

Authors in [31] proposed a method to identify and
categorize lung nodules in CT scans. It involves three image
processing steps followed by the extraction of features from
regions of interest (ROI). These features are then analyzed
using various machine learning algorithms. The study found
that a multi-layer perceptron classifier achieved the best
results, with an accuracy of 88.55%, a sensitivity of 86.81%,
and a specificity of 86.95%. The study in [30] focussed
on extracting ROI features from the raw images using a
computer vision model. A modified Inception v3 model was
trained with these features, achieving a binary classification
accuracy of 79.3%. Furthermore, [32] proposed a texture
feature extraction method using Haralick features to identify
abnormal features from images. These features were then
used to train certain pre-trained models, such as VGG-16,
ResNet50, and Inception V3, for the detection of COVID-19
from chest X-ray and CT scan images. Among the evaluated
TL models, VGG-16 achieved the highest accuracy of 93%,
sensitivity of 90%, and specificity of 91%, demonstrating
the significant application of CNN in lung nodule detection
and classification. A classification framework integrating
transformer module to extract the spectral information, CNN
model for the spatial feature extraction and a feature fusion
branch in parallel, named as Fusion Transformer (FUST), was
proposed in [33] for image classification tasks, achieved an
overall accuracy of 96.35%.

In the context of medical image classification using various
TL CNN approaches, the introduction of fast convolution
algorithms has become an emerging trend on recent research
works. The authors in [35] and [36] adopted certain fast
convolution algorithms on various layers of CNN architecture
to enhance the speed on hardware platforms, thereby enabling
real-time computation. The overall CNN performance has
improved to 2479.6 Giga Operations/second compared to
prior works discussed in [35]. The study in [37], carried out
one dimensional CNN for anomaly detection of bearing faults
and the model weights were trained using one bit with the
knowledge distillation and binarization algorithm, achieved
an accuracy of 98.5%. Another study [38] applied a data
quantization technique named as Equal distance Quantization
(ENQ) to a VGG16 model, achieving 86.25% accuracy with
lower computational cost. Furthermore, the research in [39],
adopted light weight CNN with strong lego filters for the
feature extraction, helps to reduce the memory as well as
computational cost of the model, achieved an accuracy of
91.40%. This advancement plays a crucial role in optimizing
the efficiency of CNNs, making them more practical and
effective for tasks such as medical image analysis. This
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development is a significant stride towards achieving efficient
accuracy coupled with reduced computation time in the realm
of medical image analysis. Thus, the synergy between TL,
CNNs, and fast convolution algorithms is paving the way for
emerging advancements in medical diagnostics and imaging
technologies.

lll. METHODOLOGY

In this work, the proposed Dual Feature Extraction Pretrained
CNN (DFPT-CNN) model is aimed at optimizing feature
extraction and refining classification processes in two
stages. Firstly, an EGDR approach utilizes the Winograd
convolution algorithm, a fast convolution method to reduce
the dimensionality of raw frames by 0.5 times, and Sobel edge
detection filter to extract the relevant features, highlighting
the significant edges and gradients within the images; in
the next stage, these refined features are applied to a
modified CNN model with the proposed SLFE module
prioritizing the extraction of subtle and local features. This
dual feature extraction approach, achieved a balance between
computational efficiency and classification accuracy, ulti-
mately enhancing the efficacy of image classification tasks,
especially in domains requiring real-time processing and high
accuracy. The DFPT-CNN model is illustrated in Fig.2.

The proposed model undergoes a training process for sev-
eral epochs. Once the training phase is completed, the model
is then applied in an inference procedure using new datasets.
This inference stage involves the estimation of a variety of
performance metrics to evaluate the model’s effectiveness.
The metrics used for this assessment include sensitivity,
specificity, precision, recall, F1 score, and accuracy level. The
details of these metrics are provided in Table 2, where TP, TN,
FP, FN indicates True Positive, True Negative, False Positive
and False Negative respectively. These measures provide a
comprehensive understanding of the model’s performance
across different aspects.

A. EDGE GRADIENT DIMENSIONALITY REDUCTION
(EGDR) MODULE

The visual representation of the EGDR module is shown
in Fig.3. In this module, the raw image frame is divided
into several 4 x 4 non-overlapping tiles and each 4 x 4 tile
along with 3 x 3 kernel is transformed to Winograd domain
using precomputed set of matrices, facilitating efficient
matrix multiplications. After this, the intermediate output
is transformed back to original domain to obtain the final
convolution output. Finally, all the intermediate outputs are
appended to form a new framework with reduced dimensions.
In this work, Sobel edge detector is chosen as 3 x 3 kernel.
It is a widely employed tool in image processing for edge
detection tasks [40]. It consists of two 3 x 3 convolution
kernels, one focussing on detecting vertical edges and the
other on horizontal edges. These kernels are designed in such
a way that they highlight the regions in an image where
there is a significant change in pixel intensity, indicative
of an edge or boundary. Thus, the integration of Winograd
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FIGURE 2. Proposed DFPT-CNN model.

TABLE 2. Performance metrics definition and its equations.

Performance Metric Definition Equation
Sensitivity Number of positive cases that are correctly predicted by the model (TP )/(TP+FN)
Specificity Number of negative cases that are correctly predicted by the model (TN)/(TN+FP)
Precision Number of positive cases that are true (TP)/(TP+FP)
Recall Number of positive cases that are predicted by the model (TP)/(TP+FN)
F1Score Harmonic mean of Precision and Recall (2*Precision*Recall)/(Precision+Recall)
Accuracy Number of all cases that are correctly identified by the model (TP+TN)/(TP+TN+FP+FN)

Inversing Domain Representation
4x4 Input Tile

/-————-.

)
I
I
I
I I
I
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4x4

3x3 Sobel Edge

Filter \ /

S Refined Feature map
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FIGURE 3. EGDR module.

feature extractor algorithm in conjunction with the Sobel edge data, reducing memory requirements and improving cache
detector in the EGDR module, constitutes a powerful synergy utilization. The final output, O can be computed as (1)
in image processing.
As the module works on small, non-overlapping tiles of
the input data, allows for efficient processing of smaller 0=2"Ez (1)
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TABLE 3. Precomputed values of X,W and Z.

X W zZ
10 0 0 1 0 0 1 0
o 1 -1 1 {05 05 051 0
-1 1 1 0105 05 051 -1
0O 0 0 -l 0 0 1 -1 0

where, E is calculated by taking the dot product between 1
and F as shown in (2).

E=Ix%F )
I=XTU)X,F=w @)W’ (3)

I and F represent the Winograd domain representation of an
input tile of size 4 x 4, I; and Sobel filter 3 x 3, S respectively,
as (3). The X, W, and Z are precomputed values and they are
given in Table 3 [41], [42].

Hence, the overall equation for a small tile WinSobel-FEA,
0> > can be written as (4):

022 =121, [(XT x), (W WT)M} Zura)
)

B. PROPOSED SUBTLE LOCAL FEATURE EXTRACTION
(SLFE) POOLING ALGORITHM

In the realm of feature extraction in CNN, pooling plays a
pivotal role in reducing the spatial dimensions while retaining
critical information.

The proposed SLFE module, shown in algorithm 1, aims
to enhance the performance and robustness of image classi-
fication models. The SLFE algorithm for image processing
is a novel global-to-local anomaly detector that uses a
Gaussian mixture model to learn a probabilistic model of
normal images. This model can then be used to detect
anomalies in new images by identifying pixels that have
a low probability of occurrence under the model. The
proposed pooling methodology begins with the computation
of the global average of the convolved feature map (GLA),
capturing the overall intensity distribution. The parameter
N indicates the convolved feature map dimensionality, i
and j are used to indicate the row and column elements
respectively. x; ; points to each element in the feature map.
Subsequently, a defined pooling window is applied to group
pixels for pooling operations and the parameter W represents
the group count. For each window, a critical decision is
made: the maximum pixel intensity value within the window,
M, is compared with the previously computed GLA. If the
M is lower than the GLA, then the pooled value for that
window is set to GLA, signifying that the local features do
not deviate significantly from the overall information. On the
other hand, if the maximum value exceeds the GLA, a more
intricate approach is employed. Here, the absolute deviation
of each pixel intensity from the GLA within the window
is calculated as Pooled Value, emphasizing local variations
from the established GLA.
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Algorithm 1 Proposed SLFE

Read: Convolved feature map, NXN
Step 1: Calculate GLA = (1/(N *N)) % >_ > x;j
Step 2: Non-overlapped input tile creation of size 2X2
Step 3: Assign W < (N xN)/4
Step 4: Initialisation: k = 1
Step 5:
if M > GLA then
‘ PooledValue < Z;:O }:0 |x;j — GLA|
else
L PooledValue < GLA
Step6:k =k +1,
Step 7: Repeat Steps 5 to 6, till k = W

SLFE pooling functionality incorporates a combination of
global average pooling and a conditional pooling strategy
based on pixel intensity comparisons. It is aimed to achieve
a balance between preserving the global information and
capturing the local deviations from the average. By imple-
menting this, we aim to extract important features from the
convolved feature map, considering both global and local
characteristics. This approach will be useful in scenarios
where capturing local deviations from the average are
essential for accurate representation of features in the data.

Moreover, SLFE estimation can also contribute to reducing
over-fitting. Over-fitting occurs when a model learns to
perform very well on the training data but fails to generalize
to the unseen data. By focusing on generalized features rather
than specific pixel values, GLAD can help create models that
are more robust and perform better on new, unseen images.
Thus, their ability to extract meaningful and generalized
features from images are enhanced, thereby improving their
performance and robustness.

IV. IMPLEMENTATION AND RESULTS

To evaluate the effectiveness of the proposed model, a dataset
of medical images was utilized. Specifically, images of lung
cancer epithelial cells from chest CT, which were sourced
from the publicly available database. The implementation of
this methodology involves four set of experiments:

« In the initial set of experiments, a multi-class medical
image classification dataset related to lung cancer is
carefully chosen and divided for training, validation,
and testing. It is then fed into three different pretrained
CNN frameworks such as VGG16, InceptionV3, and
ResNet50, all of which are designed for classification
tasks. The model that uses fewer parameters and exhibits
notable accuracy is subsequently employed for further
experimentation. Since the inference is conducted on
an unseen dataset without additional feature processing,
the threshold for testing accuracy is set to exceed
75% of the training accuracy. This ensures that the
model generalizes well to unseen data and maintains a
satisfactory level of performance.
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TABLE 4. Results of pretrained CNN models on custom dataset.

Model VGG-16 ResNet50 InceptionV3
Number of layers 16 50 48
Number of Parameters 14,815,044 22 23,989,124 22,327,076
Training Accuracy 99.45 75.53 99.86
Validation Accuracy 89.62 81.97 87.43
Inference Accuracy 78.95 73.68 86.84
Time Elapsed (Sec) 433 448 575

o In the second phase, the SLFE pooling module is
incorporated into the chosen CNN model to validate
the efficacy with other existing pooling methodologies.
During this phase, it is imperative to ensure that the
testing accuracy, sensitivity, and specificity thresholds
are set at over 90% to achieve precise detection of image
labels.

o The third set deals with the application of the EGDR
module to the raw input frames. This involves the
combined potency of Winograd convolution algorithm
and Sobel edge detection filter to extract the refined
features from the raw image frames for further training,
validation and testing of the proposed model.

o Finally, it involves a performance analysis of the
proposed CNN-SLFE framework with and without the
EGDR module, on the selected dataset. The analysis
is conducted in terms of computation time and various
performance metrics such as accuracy, sensitivity, speci-
ficity, precision, recall and F1 score. The integration
of the EGDR module aims to improve computation
speed through frame size reduction while ensuring that
the model maintains a minimum threshold level of
85% across all evaluation metrics. This is crucial for
maintaining lower false positive rate and false negative
rate values.

A. DATASET

For the proposed work, a dataset composed of 921 chest
CT images were utilized. This dataset is categorized into
four distinct classes: three are confirmed cancer cases -
adenocarcinoma (class 0), large cell carcinoma (class 1),
and squamous cell carcinoma (class 3), and the fourth class
consists of normal images (class 2) without any signs of
the disease as shown in Fig.4. Out of the total 921 images,
a majority (738 images) were allocated for training purposes.
These training images were distributed across all four classes.
The remaining 183 images were set aside for the testing
process. To ensure a balanced and effective model training,
we followed a specific distribution strategy for the images
in each class. The dataset was structured in such a way that
80 percentage of the images from each class were used for
training the model, while the remaining 20 percentage were
used for testing its performance. After the training phase, a set
of 76 images from the training data was used for validation
process. This approach allowed the researcher to train the
model on a diverse set of data and provided a robust set for
evaluating its accuracy and effectiveness.
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B. TRAINING AND INFERENCE PROCEDURES AND ITS
RESULTS
1) SELECTION OF APPROPRIATE PRETRAINED MODEL
Given the limited size of the medical dataset, pretrained
models were leveraged to achieve higher accuracy with
the dataset, shown in Fig.5. Three distinct pretrained CNN
models: VGG-16, ResNet50, and InceptionV3 were trained
on cancerous image inputs to identify the most suitable
model for classifying the given image classes. This training
phase was conducted over several epochs to ensure that the
model learnt and adapted to the nuances of the data. Python
was utilized as the programming language of choice and a
Generic Processing Unit (GPU) was relied on for backend
computation. This combination allowed the researchers to
efficiently handle the computational demands of training.
Upon completion of the training phase, the trained
parameters were saved onto a .h5 file. This file serves as a
record of the model’s learned parameters and can be used
for future inference without needing to retrain the model.
The next phase involved model prediction, where new dataset
comprising four classes were used. The .h5 file containing
the trained parameters was used to classify these new images.
During this phase, the accuracy of each model is determined
and the total number of parameters used by each was tallied.
As per the results from Table 4, it is evident that the
InceptionV3 model stands out due to its high inference
accuracy. However, the count of parameters and time elapsed
are significantly higher when compared to the VGG-16
model. To address this issue, when the VGG-16 model is
trained for 100 epochs, the results generated were promising,
with training, validation, and inference accuracy of 99.86%,
91.80%, and 88.15% respectively. This experiment showed
that by increasing the number of training epochs, model’s
accuracy can be enhanced while keeping the number
of parameters constant. Encouraged by these results, the
researchers decided to use the VGG-16 model for further
studies.

2) CNN MODELING USING SLFE POOLING MODULE AND
OTHER EXISTING POOLING METHODOLOGIES

In this second phase of work, the selected VGG model is
considered for the training, validation and testing to find the
effectiveness of the proposed SLFE pooling module in a CNN
framework. The placement of SLFE module is depicted in the
Fig.6.

The model underwent training over 40 epochs with Adam
Optimizer and was tested on 183 images using a GPU Tesla
T4 taking about 1 second or approximately 5 milliseconds per
image. As the model advanced through its training epochs,
its performance was carefully monitored. The resulting
accuracy curve depicted in Fig.7 provides a clear picture
of how each pooling method’s effectiveness evolved over
time. During the initial training, all methods showed low
accuracy. By epoch 5, all methods improved, with AVG and
SLFE pooling showing slightly higher accuracy. By epoch
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FIGURE 4. Multi-class chest CT lung cancer image dataset: (a)adenocarcinoma (b)large cell carcinoma (c)normal (d)squamous cell carcinoma.

TABLE 5. Evaluation metrics of raw images with different pooling approaches.

Different Pooling Approaches

Image Nature Evaluation Metrics MAX AVG AAD  SLFE*

Raw Images ~ Computation Time (Sec) 343 447 512 379%

Accuracy 93.44 93.44 95.08  96.72%

Sensitivity 91.74 91.74 95.00  95.64%*

Specificity 97.66 97.75 98.30  98.30%*

Precision 94.95 94.27 9522 97.10*

Recall 91.73 91.73 94.99  95.64%*

F1 Score 92.75 92.49 94.88  96.29*
MulliClass o ability to adapt and improve its classification accuracy
Chest CT g — Sesher over time. Encouraged by these positive results, the more

Pre-Trained
Models
- VGG16
- RESNET 50
- INCEPTION V3

Test Images

FIGURE 5. Workflow using pretrained models.

15, MAX and AVG pooling reached same accuracy level,
while SLFE pooling remained competitive. At epoch 30,
SLFE led in accuracy, demonstrating its strength in learning
from the training data. Finally, by epoch 40, AAD and
SLFE maintained peak performance while all other methods
converged towards high accuracy values. Among AAD
and SLFE, SLFE demonstrated superior accuracy levels.
Therefore, the proposed SLFE pooling has an exceptional
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extensive evaluation of the model’s performance using a wide
range of performance metrics was conducted. The obtained
performance metrics values are highlighted in Table 5.

The performance metrics of several works along with the
proposed SLFE pooling method, are tabulated in Table 6.
It is clearly evident that the proposed pooling approach
outperforms the performance metrics of [26], [29], [30],
and [15] in all aspects. This indicates that the SLFE pooling
method can significantly influence the performance of the
model. But, the proposed method exhibits a minor trade-off
in sensitivity when compared to [32]. Despite this, the SLFE
pooling method contributes a good balance of accuracy,
sensitivity, specificity, and precision values; enabling the
model to generalize better across various unseen datasets.
It’s often challenging to optimize all performance metrics
simultaneously, and improving one metric may lead to a
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TABLE 6. Comparative classification accuracy analysis of SLFE pooling with existing pooling approaches for medical images.

Ref [26] Ref [30] Ref[32] Ref[29] Ref[15] Proposed SLFE*
Method MAX, GAP MAX MAX MAX AAD SLFE*
Accuracy 81.87 79.3 93.8 96.5 87.95 96.72%*
Sensitivity 83.01 83 99.73 57.36 86.92 95.64*
Specificity 82.0 67 90 45.27 86.41 98.30%*
Precision 91.6 55 93 51 85.05 97.10%*

decrease in another. However, the overall performance of a
model is usually considered more important than individual
metrics. Hence, the proposed balanced model is suggested as
a promising approach for future studies.

3) FEATURE EXTRACTION USING EGDR MODULE: CREATION
OF SYNTHESIZED IMAGE

EGDR module is designed to extract relevant features
from the input image, which are then used for model
training. The effectiveness of a feature extractor can vary
depending on the specific characteristics of the dataset and
the complexity of the features being extracted [43], [44]. The
visual representation of the synthesized image of each class
is shown in Fig.8. Step-by-step breakdown of the process:

« Image Preprocessing: The raw image, which is typically
in a three-dimensional format, is first converted to
a grayscale representation. This grayscale image is
then resized to match the target CNN model size of
224 x 224 pixels.

« Tile Division: The resized image is divided into several
4 x 4 tiles. The division is done in such a way that no
two tiles overlap with each other.

o Feature Extraction: Each tile undergoes feature extrac-
tion using the Winograd algorithm combined with
the vertical Sobel edge detector value. This process
generates a 2 x 2 output tile for each input tile.

« Image Synthesis: The output tiles are appended to create
a synthesized image of size 112 x 112 pixels as shown
in Fig. 8. This size reduction is achieved because each
4 x 4 input tile is transformed into a 2 x 2 output tile.
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4) CNN MODELING USING EGDR MODULE AND DIFFERENT
POOLING APPROACHES

In the final phase of the work, the model proposed in Fig.2
undergoes an evaluation process to quantitatively determine
the extent to which the proposed methodology meets the
defined objective. The synthesized image from the EGDR
module is fed into the CNN-SLFE framework training and
validation process in which several epochs are carried out and
later used for model prediction. Thus, the performance of the
synthesized image on the proposed framework testing process
is calculated.

Also, a comprehensive comparative analysis was con-
ducted for four different VGG CNN models with MAX,
AVG and AAD along with the proposed SLFE pooling.
This approach facilitated a detailed understanding of how
each method influences feature aggregation within the model.
Upon completion of the training, the model was then utilized
in an inference procedure with unseen datasets.

From Table 7, it is clearly proven that the proposed SLFE
pooling method, when combined with the feature extractor,
EGDR module has demonstrated excellent performance met-
rics in chest CT analysis. Achieving an accuracy of 89.62%,
sensitivity of 89.42%, specificity of 96.13%, precision of
92.66%, recall of 89.42% and an F1 score of 90.35%, the
proposed methodology outperforms conventional pooling
techniques by a significant margin. The proposed DFPT-CNN
model led to commendable 17.94% reduction in computation
time, while still maintaining a better accuracy. The FPR
and FNR for each class has been computed across various
EGDR-CNN frameworks. As observed from Table8 and
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FIGURE 7. Accuracy representation of different pooling methods.

TABLE 7. Evaluation metrics of proposed DFPT-CNN model with different pooling approaches.

Different Pooling Approaches

Image Nature Evaluation Metrics MAX AVG AAD  SLFE*
Proposed EGDR module Feature Extracted Images =~ Computation Time (Sec) 310 330 424 311*
Accuracy 76.50 81.97 83.61  89.62*
Sensitivity 74.99 83.36 84.92  89.42%
Specificity 91.09 93.90 9450  96.13*
Precision 87.51 85.83 86.69  92.66*
Recall 74.98 83.36 84.92  89.42%
F1 Score 76.23 83.06 82.83  90.35%

TABLE 8. Comparison of False Positive Rate (FPR) of proposed DFPT-CNN model with other CNN frameworks.

Different Pooling Approaches

Class Label EGDR-CNN-MAX  EGDR-CNN-AVG EGDR-CNN-AAD Proposed Model*
AdenoCarcinoma 0.3416 0.0166 0.1083 0.1333*
Large cell Carcinoma 0 0.0065 0.1118 0.0065%*
Normal 0 0.0419 0 0*
Squamous cell Carcinoma 0.0149 0.1791 0 0.0149*
Average 0.0891 0.0610 0.0550 0.0386*

Table9, the proposed DFPT-CNN model demonstrates a and positive classes as negative respectively. Thus, the
lower FPR and FNR, suggesting a reduced likelihood adaptability of the SLFE pooling method, based on pixel
of incorrectly classifying the negative classes as positive intensity comparisons with the global average value of the
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TABLE 9. Comparison of False Negative Rate (FNR) of proposed DFPT-CNN model with other CNN frameworks.

Different Pooling Approaches

Class Label EGDR-CNN-MAX  EGDR-CNN-AVG EGDR-CNN-AAD Proposed Model*
AdenoCarcinoma 0 0.3333 0.0476 0.0158%*
Large cell Carcinoma 0.3225 0.2258 0 0.0967*
Normal 0.025 0.025 0.025 0.025*
Squamous cell Carcinoma 0.6530 0.0816 0.5306 0.2857*
Average 0.2501 0.1664 0.1508 0.1058*

TABLE 10. Comparison of SLFE and EGDR modules with different pretrained models.

Feature Extraction Modules Different Pretrained Models ~ Accuracy(%)  Precision(%) Recall(%) F1Score(%)
Raw Images with predefined pool VGG16 93.44 94.95 91.73 92.75
VGG19 94.53 95.65 93.64 94.41
ResNet50 68.85 79.51 69.73 69.18
InceptionV3 90.16 91.96 88.85 90.00
EfficientNet 26.77 6.73 25 10.60
Raw Images with SLFE VGG16 96.72 97.10 95.64 96.29
VGG19 95.62 95.23 95.84 95.43
ResNet50 81.42 82.45 80.78 80.80
InceptionV3 92.89 94.44 92.47 93.19
EfficientNet 34.42 8.60 25 12.80
EGDR with Predefined pool VGG16 76.50 87.51 74.98 76.23
VGG19 68.85 75.52 68.26 63.51
ResNet50 46.99 42.94 55.54 42.10
InceptionV3 76.50 84.89 73.77 76.21
EfficientNet 16.93 4.23 25 7.24
Proposed EGDR with SLFE VGG16 89.6* 92.66 89.42 90.35
VGG19 86.88 86.90 88.04 86.98
ResNet50 56.28 36.01 50 40.29
InceptionV3 79.78 85.19 77.95 79.99
EfficientNet 26.77 6.69 25 10.56

Raw Synthesized

. mage . Image
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FIGURE 8. EGDR module: Feature extraction representation.

feature maps, has shown a remarkable ability to detect both
global trends and subtle local variations in chest CT data.
Moreover, integrating the Winograd convolution algorithm
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with the Sobel vertical edge detector has markedly enhanced
the feature extraction process. By focusing on vertical edges,
this approach effectively emphasizes important anatomi-
cal structures, which are vital in medical imaging. This
combination of innovative techniques not only optimizes
computational resources but also refines the detection of
key patterns within CT images. These results highlight the
importance of this work and suggest potential advancements
in chest CT analysis.

In addition to the above, a comprehensive comparison of
dual feature extraction approach on five different pretrained
models was conducted. Each of these models was trained and
tested independently under four different feature extraction
modules and the results are tabulated in Table 10, providing
a clear overview of the accuracy, precision, recall, and
F1 score values for each model. The analysis revealed
that the model incorporating the SLFE pooling method
consistently outperformed those using predefined pooling
methods. This superior performance can be attributed to the
SLFE unique approach of comparing pixel intensities with
the global average value of the feature maps, allowing it
to effectively capture both global trends and subtle local
variations in the chest CT data. Among the evaluated models,
VGG16 demonstrated superior performance compared to the
other models, namely VGG19, ResNet50, InceptionV3, and
EfficientNet. This suggests that VGG16, when combined
with the SLFE pooling method and EGDR module, provides
a highly effective solution for chest CT data analysis. This
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finding underscores the importance of choosing the right
model and configuration for specific tasks and datasets.
Despite the impressive performance demonstrated by
the proposed SLFE pooling method combined with the
feature extractor EGDR module in chest CT analysis, there
are certain limitations to acknowledge. While achieving
commendable accuracy, sensitivity, specificity, precision,
recall, and F1 score, it’s essential to consider that without
the EGDR module, all performance metrics were initially
above 90%. With the introduction of frame size reduction,
these metrics dropped below the 90% threshold, though still
maintained above 85%. This suggests a trade-off between
computational speed and performance metrics, where the
model sacrifices some accuracy for faster computation.
Nevertheless, the adaptability of the proposed methodology
across various datasets offer promising avenues for further
exploration and improvement in prediction analysis.

V. CONCLUSION

To ensure optimal classification accuracy while minimizing
computational overhead and timing demands, this research
implemented a unique dual feature extraction approach. Four
experiments were conducted on a multi-class lung cancer
classification dataset to validate the efficacy of the proposed
methodology. Firstly, three pretrained CNN architectures
such as VGG16, ResNet50, and InceptionV3 were evaluated
to identify the optimal model in terms of parameters and
classification accuracy and the results showed that VGG16
was the most suitable choice. In the second experiment,
the model underwent training, validating, and testing with
four different pooling methods-MAX, AVG, AAD, and the
proposed SLFE to assess the ability of the proposed pooling
algorithm for feature extraction. The classification accuracy
values obtained from the four pooling methods confirmed that
the proposed pooling approach yielded a noteworthy increase
in accuracy, outperforming the MAX and AAD pooling
methods by 3.5% and 1.72%, respectively. Subsequently,
efforts focused on reducing computation overhead and
training time by adopting the Edge Gradient-Dimensionality
Reduction (EGDR) approach during preprocessing. In the
final experiment, the features extracted from the EGDR
approach was fed to the proposed CNN model with SLFE
module for training, validation, and testing. The testing
process was conducted using an unseen dataset. The com-
parative performance analysis of the proposed model with
other EGDR-CNN frameworks, demonstrated noteworthy
results. The proposed model achieved the classification
accuracy of approximately 1.172 times greater to that of
the CNN-MAX framework. The computational time of the
proposed CNN-SLFE framework is reduced by 17.94% when
compared to other CNN frameworks. This underscores the
effectiveness of the proposed methodology in achieving
higher classification accuracy with reduced computational
demands. This research presents a promising framework for
classification tasks especially in the medical domain, offering
substantial contributions to the field’s advancement.
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