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ABSTRACT YOLO (You Only Look Once) is an extensively utilized object detection algorithm that
has found applications in various medical object detection tasks. This has been accompanied by the
emergence of numerous novel variants in recent years, such as YOLOv7 and YOLOv8. This study
encompasses a systematic exploration of the PubMed database to identify peer-reviewed articles published
between 2018 and 2023. The search procedure found 124 relevant studies that employed YOLO for
diverse tasks including lesion detection, skin lesion classification, retinal abnormality identification, cardiac
abnormality detection, brain tumor segmentation, and personal protective equipment detection. The findings
demonstrated the effectiveness of YOLO in outperforming alternative existing methods for these tasks.
However, the review also unveiled certain limitations, such as well-balanced and annotated datasets, and the
high computational demands. To conclude, the review highlights the identified research gaps and proposes
future directions for leveraging the potential of YOLO for medical object detection.

INDEX TERMS YOLO, healthcare applications, artificial intelligence, medical object detection, medical
imaging, systematic review.

I. INTRODUCTION
Object detection is an essential task in computer vision, with
numerous applications in various domains, including medical
imaging [1], [2], surgical procedures [3], and personal protec-
tive equipment detection [4]. It plays a crucial role in medical
imaging by enabling the identification and localization of
abnormalities or objects of interest withinmedical images [5],
[6].Medical diagnosis relies heavily on the accurate detection
and localization of abnormalities in medical images. The
traditional approach to object detection in medical imaging
involves manual annotation and segmentation of the regions
of interest, which is a time-consuming and error-prone
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process [7]. In recent years, artificial intelligence methods
have shown great promise for healthcare applications [8],
[9], [10], [11], [12]. Deep learning-based object detection
algorithms have shown exceptional performance in real time
object detection and localization [13], [14], [15]. Accurate
and efficient object detection algorithms are essential for
assisting healthcare professionals in diagnosing and treating
various medical conditions [16], [17], [18]. One such object
detection algorithm is You Only Look Once (YOLO) [19],
[20], [21], [22], which has gained significant attention.

YOLO is a state-of-the-art, real time, end-to-end object
detection algorithm that has gained significant attention in
the computer vision community [23]. YOLO is a single-stage
detector, which means that it can detect all the objects in an
image in a single forward pass through a convolutional neural

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 57815

https://orcid.org/0000-0001-5226-4962
https://orcid.org/0000-0003-0038-3702
https://orcid.org/0000-0002-7157-3020
https://orcid.org/0000-0002-3001-1224
https://orcid.org/0000-0002-2829-0842
https://orcid.org/0000-0002-0039-982X
https://orcid.org/0009-0000-2742-213X
https://orcid.org/0000-0003-3947-269X
https://orcid.org/0000-0002-0662-6181


M. G. Ragab et al.: Comprehensive Systematic Review of YOLO for Medical Object Detection

network (CNN). It uses a single neural network to predict the
bounding boxes and class probabilities of the objects present
in an image [24]. This makes YOLO very fast, and it can
achieve real time speeds on even a modest GPU [25].

The application of YOLO in the medical domain has gar-
nered interest due to its ability to detect and localize anatom-
ical structures [26], [27], lesions [28], [29], tumors [30],
[31], [32], and other clinically relevant medical objects [33],
[34]. It can detect and localize abnormalities in medical
images, which can aid in the early detection and diagnosis
of various diseases, including breast cancer, lung cancer,
narrowing of blood vessels [35], brain atrophy [36], and
abnormal protein deposits [37], cardiovascular diseases [38],
and neurological disorders [39]. The adoption of YOLO
in medical applications has the potential to improve the
accuracy and efficiency of medical diagnosis, which can have
a significant impact on patient outcomes.

The real time performance of YOLO makes it particu-
larly appealing for time-sensitive medical procedures and
clinical decision-making [40]. By accurately and efficiently
identifying objects of interest, YOLO can potentially aid in
early disease detection, treatment planning, and monitoring
of disease progression. However, as the adoption of YOLO
in medical imaging increases, it is essential to evaluate its
performance, strengths, limitations, and the specific medical
domains in which it has been applied [41]. Therefore, a sys-
tematic literature review (SLR)may provide a comprehensive
and rigorous approach to analyze the existing literature on
YOLO in medical applications. By systematically collecting,
evaluating, and synthesizing the available evidence, this
review aims to identify the strengths, limitations, and
potential of YOLO in medical applications. The findings of
this review will assist researchers, healthcare professionals,
and developers in understanding the performance of YOLO
and its suitability for different medical object detection tasks.
Survey Motivation: There are already existing review

articles on YOLO, such as algorithmic developments in
YOLO [25], challenges and architectural developments for
object detection using YOLO in [23], and a review on object
detection techniques in [42]. A survey on object detection for
medical images using deep learning techniqueswas published
in [43] and a comprehensive analysis of applying object
detection methods for medical image analysis in [44]. In this
paper, we focused on the YOLO architecture, its evolution,
and applications for three key medical applications; medical
images, personal protective equipment detection, and surgical
procedures. To the best of our knowledge, it is the first article
to discuss three key medical applications using the YOLO
series architecture.

The main contributions of this paper are:
• Identify and select relevant peer-reviewed articles
published between 2018 and 2023 that focus on the
application of YOLO in medical imaging.

• Analyze and summarize the characteristics of the
selected studies, including the medical domains,
datasets, evaluation metrics, and findings.

• Evaluate the performance of YOLO in medical applica-
tions by synthesizing its accuracy, precision, recall, and
other relevant metrics as reported in the selected studies.

• Identify common challenges, limitations, and gaps in
the existing literature on the use of YOLO in medical
imaging.

• Provide insights and recommendations for future
research directions, improvements, and potential appli-
cations of YOLO in the medical domain.

The rest of this section contains the following sub-sections:
You Only Look Once (I-A), YOLO algorithm and architec-
ture (I-B), YOLO in action (I-C), image annotation (I-D),
how YOLO operates (I-E), and advantages and drawbacks of
YOLO (I-F).

A. YOU ONLY LOOK ONCE (YOLO)
This sub-section provides a brief description of YOLO,
its versions, structure, and how it works. YOLO, proposed
by Redmon et al. [45], is an object detection algorithm
that uses convolutional neural networks (CNN) [46], [47]
to detect objects in real time [25]. It is a single-stage
method that can achieve real time performance on a standard
GPU [48]. It divides the image into a grid of cells, and
each cell is responsible for detecting objects within a certain
area [49], which allows for faster object detection compared
to traditional two-stage methods and is particularly useful for
real time applications. It has evolved over multiple versions,
each offering improvements in speed, detection accuracy, and
capability to detect objects of varying sizes [50].

YOLO exhibits a high level of generalizability, making
it less prone to failure when applied to novel domains
or unexpected situations [23]. Unlike previous approaches
that repurpose classifiers for detection, YOLO is a versatile
detector that learns to detect various objects. It acquires
generalized representations of objects, enabling it to surpass
leading detection methods like Deformable Parts Model
(DPM) [51] and Region-based Convolutional Neural Net-
work (R-CNN) [52], [53] by a good margin. However, YOLO
has some problems with detecting small objects and will
do worse with scenes with many overlapping objects. The
main advantage of YOLO lies in its real time object detection
capability, which is crucial in time-sensitive applications.

The YOLO architecture has evolved significantly from
its inception in v1 to the cutting-edge advancements in
v8 as shown in Figure 1. With v1, the initial foundation
was laid, introducing a groundbreaking concept of real time
object detection through a single network pass in 2015.
YOLOv2 (2016): Improves YOLOv5 by using a larger
input size, more anchor boxes, and a new loss function.
YOLOv3 (2018): Introduces a new network architecture
called Darknet-53, which is deeper and more accurate than
the previous architectures used in YOLO.

YOLOv4 (2019): Improves upon YOLOv3 by using a
new training method calledMosaic data augmentation, which
helps to improve the model’s robustness to different object
scales and orientations. YOLOv5 (2020): Introduces a new
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FIGURE 1. Timeline of YOLO versions.

network architecture called CSPDarknet, which is more
efficient than Darknet-53. YOLOv6 (2021): Improves upon
YOLOv5 by using a new loss function called GIoU, which
helps to improve the model’s accuracy. YOLOv7 (2022):
Introduces a new network architecture called Panoptic
YOLO, which can detect both objects and semantic segments
in an image.

YOLOv8 (2023): The latest version of YOLO, which
introduces a number of new features, including a new network
architecture called BiFPN, a new loss function called CIoU,
and a new training method called Cross-GPU training.

B. YOLO ALGORITHM AND ARCHITECTURE
The YOLO architecture consists of three main components:
(i) the backbone; (ii) the neck; (iii) the head [23], [48], [50],
[54]. The architecture of the backbone, neck, and head can
vary between different versions of YOLO, and improvements
in these components have led to significant improvements in
the overall accuracy and speed of the YOLO network [25],
[55]. The choice of backbone, neck, and head can affect the
speed and accuracy of the YOLO model and depends on
the specific application and the desired trade-off [49]. More
recent versions of YOLO have introduced improvements in
all three components to achieve better performance. Figure 2
represents YOLO Architecture.

❐ Backbone: The primary role of the backbone is to
extract valuable characteristics from the initial image.
Usually, a convolutional neural network is employed
as the backbone, which has been trained on extensive
datasets like ImageNet. The backbone functions as the
network responsible for extracting features and gener-
ating feature maps from the input images. In YOLO,
some commonly utilized backbones include VGG16,
ResNet50, CSPDarknet53, and EfficientRep.

❐ Neck: The neck serves as the intermediary between the
backbone and the head in the architecture. It consists
of two main components, namely the spatial pyramid

pooling (SPP) module and the path aggregation network
(PAN). The neck’s function is to combine the feature
maps from various layers of the backbone network and
forward them to the head. In YOLO, popular neck
options include Spatial Pyramid Pooling (SPP), Feature
Pyramid Network (FPN), NAS-FPN, and Rep-PAN.

❐ Head: The head component is responsible for handling
the combined features and making predictions regarding
bounding boxes, objectness scores, and classification
scores. In YOLO, a one-stage object detection approach,
like YOLOv3, is employed as the detection head. The
head’s primary role is to generate the ultimate output of
the network, which includes predicted bounding boxes
and class labels. YOLO utilizes various popular heads,
such as Efficient decoupled, Multi-scale, and Anchor-
based detection heads.

The YOLOv1 architecture, Figure 3, is inspired by
GoogLeNet and it replaces inception modules with 1× 1 and
3×3 convolutional layers. This architecture utilizes two fully
connected layers on the convoluted feature map, outputting a
final prediction grid of size S x S x (5B + K) [48].
This initial YOLO model prioritized speed by utilizing

a single CNN [58] to directly predict object locations and
classes in real time. However, this approach led to decreased
accuracy, particularly for small objects or those with overlap-
ping bounding boxes [59]. The detection architecture of the
original YOLO model performed a single pass on the image
to predict object locations and class labels [60]. Subsequent
versions of YOLO introduced improvements to address these
limitations.
YOLOv2, for instance, introduced batch normalization,

anchor boxes, and passthrough layers to enhance object
localization. Additionally, it incorporated multiscale training
and achieved a processing speed of 40-90 frames per
Second (FPS) [50]. These refinements aimed to enhance
both accuracy and speed in object detection tasks. The
performance of YOLOv3 was improved by incorporating a
multi-scale feature extraction architecture. New backbone
network, feature pyramid network, and more anchor boxes.
It allowed a tradeoff between speed and accuracy [25].
YOLOv4 and YOLOv5 introduced new network back-

bones, improved data augmentation, and optimized training
strategies. This enhanced accuracy without severely impact-
ing real time performance [61], [62]. YOLO framework
for object detection consistently evolved to balance speed
and accuracy in detection tasks. PP-YOLO [63], developed
by Alibaba Group, provided further improvements with a
new backbone network, spatial attention module, and path
aggregation network, making it faster and more accurate than
YOLOv5 [64].
YOLOv6 implemented a variant of the EfficientNet archi-

tecture named EfficientNet-L2, surpassing the EfficientDet
architecture used in YOLOv5 in terms of efficiency. It also
introduced a design called EfficientRep Backbone and Rep-
PAN Neck, leading to faster and more accurate results. The
head of the network was decoupled, adding layers, and
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FIGURE 2. The architecture of YOLO consists of a backbone, neck, and head. The backbone, neck, and head
vary in different versions of YOLO. For backbone, normally Darknet, VGG16, or Resnet are used; for neck
feature pyramid network (FPN) [56], and for neck Densenet [57] or sparsenet are used.

FIGURE 3. YOLOv1 network architecture [48].

separating these features from the final head, which improved
performance [65].

YOLOv7 improved accuracy without raising inference
costs, reducing parameters and computation by 40% and
50% respectively, compared to other leading real time object
detectors [66]. It had a faster, stronger network architecture,
more accurate detection performance, a more robust loss
function, and enhanced label assignment and model training
efficiency. It also required cheaper computing hardware and
could be trained faster on small datasets without pre-trained
weights [50], [67].

YOLOv8 [68], the most advanced model at the time
of writing, had better feature aggregation and a mish
activation function that improved detection accuracy and
processing speed. It is an anchor-free model, predicting
object centers directly without known anchor boxes. YOLO-
NAS [69], created by Deci AI, outperformed its predecessors
(especially YOLOv6 and YOLOv8) by achieving higher
mAP values on the COCO dataset while maintaining
lower latency. It also performed best on the Roboflow
100 dataset benchmark, indicating its ease of fine-tuning
on custom datasets. Thus, the YOLO family of object
detection models has consistently evolved to optimize both
speed and accuracy, providing a variety of models to
cater to diverse applications and hardware requirements.
Table 1 summarizes the key features of each version
of YOLO.

C. YOLO IN ACTION
YOLO revolutionized the process of object detection by
simultaneously detecting all bounding boxes within an S × S
region using grids. It predicts B bounding boxes for each
class, accompanied by confidence scores for C different
classes per grid element [48]. Each bounding box prediction
comprises of five values: Pc, bx , by, bh, bw. Here, Pc repre-
sents the confidence score, reflecting the model’s confidence
in the presence and accuracy of the object within the box. The
coordinates bx and by denote the box center relative to the
grid cell, while bh and bw indicate the box height and width
relative to the entire image. The output of YOLO is a tensor of
size S×S× (B×5+C), which may undergo non-maximum
suppression (NMS) to eliminate duplicate detections. These
grid cells facilitate operations related to bounding box
estimation and class probabilities [50]. Consequently, YOLO
estimates the likelihood of the detection element’s bounding
box center being located within the grid cell, as formulated
by Equation 2.

C(P) = Prob(p) × IoU (prediction, target) (1)

where: C(P) is the confidence of prediction P, Prob(p) is
the probability of presence of object p, and IoU (prediction,
target) is the Intersection over Union between the predicted
and target bounding boxes.

IoU =

∣∣∣∣B ∩ Bgt

B ∪ Bgt

∣∣∣∣ (2)
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TABLE 1. Key features of each version of YOLO.

TABLE 2. YOLO included studies categorized in the Oncology domain.

In the context of the YOLO algorithm, the target box is
denoted as Bgt , while the predicted box is represented as
B. The probability (p) signifies whether the object exists
within the detected bounding box. The IoU metric, defined
by Equation 2, calculates the intersection area between the
ground truth and predicted bounding boxes. It determines
an acceptable area for each detected object in the input
image and makes decisions based on it. To obtain the most
suitable bounding box, the confidence value is applied after
the estimation. The process of computation of the IoU can be
illustrated as shown in Figure 4.

D. IMAGE ANNOTATION
Image annotation [70] is a vital process in computer vision
and machine learning. It is the process of labeling or marking
specific objects or regions of interest within an image [71].
It involves adding metadata or annotations to images to
provide additional information about the objects or features
present in the image. The purpose of image annotation
is to create a labeled dataset that serves as training data
for learning algorithms, particularly for tasks like object
detection, object recognition, and image segmentation [72].
By annotating images, human annotators or data scientists
manually outline or mark the objects of interest within
the image, often by drawing bounding boxes, polygons,

FIGURE 4. Computing the Intersection over Union: (a) poor detection
performance, (b) good detection performance, (c) excellent detection
performance.

or semantic segmentations around those objects. Accurate
annotations are crucial for training models to accurately
detect, recognize, and segment objects. They provide ground
truth data, enable object localization, ensure model accuracy
and performance, and facilitate diverse and domain-specific
datasets. Annotations also aid in model evaluation and serve
as a valuable resource for transfer learning. In summary,
image annotation is a fundamental step that underpins
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TABLE 3. YOLO included studies categorized in the Pathology domain.

the development of reliable and effective computer vision
systems in various industries and applications [41].
There are several popular tools available for annotating

images. The choice of tool often depends on personal
preference, project requirements, and the specific desired fea-
tures. Commonly used tools include Visual Object Tagging
Tool (VoTT) [73], VGG Image Annotator (VIA) [74], and
Roboflow [75] which is a popular platform for managing,
preprocessing, and annotating datasets for computer vision
tasks. It provides a comprehensive end-to-end solution for
dataset management, annotation, and preprocessing, offering
a range of features that can help streamline your object
detection workflow. When it comes to annotating datasets for
YOLO, there are a few commonly used annotation formats
that work well with YOLO-based object detection models.
The most popular annotation format for YOLO datasets is
the Darknet format, which is the native format used by the
Darknet framework, the original implementation of YOLO.

ci x y w h
ci x y w h
· · · · · · · · · · · · · · ·

ci x y w h
ci x y w h

 (3)

In the above matrix, each line represents a single object
annotation where c represents the class or label of the
object being annotated. It is usually represented by an
integer index corresponding to the class label defined in the
YOLO configurations. x and y represents the normalized x, y
coordinate of the bounding box’s center point. The value
is relative to the width of the image, ranging from 0 to 1.
w and h represent the normalized width and height of the
bounding box. The value is relative to the width of the image,
ranging from 0 to 1. Each annotation line corresponds to one
annotated object in the image. Multiple lines can be present
in the annotation file, each representing a different object.

E. HOW YOLO OPERATES
During the process of predicting bounding boxes, YOLO
employs ‘‘dynamic anchor boxes’’ utilizing a clustering
algorithm. This algorithm groups the ground truth bounding
boxes into clusters and utilizes the centroids of these clusters
as anchor boxes [76]. By doing so, the anchor boxes become
better aligned with the size and shape of the detected objects.
However, the primary source of error in YOLO arises from
localization. This is due to the fact that the bounding box
ratios are entirely learned from the data, causing YOLO to
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TABLE 4. YOLO included studies categorized in the Radiology domain.
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TABLE 4. (Continued.) YOLO included studies categorized in the Radiology domain.

TABLE 5. YOLO included studies categorized in the Surgical Procedures domain.

struggle with atypical ratio bounding boxes [77].

bx = σ (tx) + cx
by = σ

(
ty
)
+ cy

bw = (pw) ∗ etw (4)

bh = Ph ∗ eth

In the YOLO framework, the bounding box coordinates are
denoted as bx , by, bw, and bh, while the center coordinates
are represented by x, y, and the width and height are
given by bw and ph respectively. Each bounding box has
estimated coordinates tx , ty, tw, and th. The values cx and
cy correspond to the upper-left coordinates of the grid cell.

YOLO defines a threshold value for the confidence score,
where predictions below this threshold are discarded. Non-
maximum suppression is then applied to generate the final
positions for the detected bounding boxes. Finally, a loss
function is computed for the detected bounding boxes in the
last stage. Figure 5 provides a clear understanding of the work
of YOLO.

F. ADVANTAGES AND DRAWBACKS OF YOLO FOR
MEDICAL OBJECT DETECTION
YOLO is also highly generalized and can recognize a wide
range of objects. However, it is important to be aware of the
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TABLE 6. YOLO included studies categorized in the Personal Protective Equipment Detection domain.

FIGURE 5. YOLO works by dividing the input image into a grid of cells.
Each cell predicts a bounding box, a confidence score, and the class
probabilities for the objects in that cell. The bounding box is a rectangle
that is used to surround the object. A confidence score, between 0 and 1,
indicates how confident the model is that the object is present in the cell.
The class probabilities are the probabilities that the object in the cell
belongs to each of the possible classes.

advantages and disadvantages of YOLO before using it for a
specific application.

1) ADVANTAGES OF YOLO FOR MEDICAL OBJECT
DETECTION

• Real-Time Detection: YOLO’s inherent ability to
detect objects in a single pass enables real time
processing of medical images, which is crucial in
time-sensitive medical scenarios such as surgeries or
emergency diagnostics.

• Efficiency: YOLO’s single-pass architecture is com-
putationally efficient, allowing for faster processing
speeds and reduced computational requirements, which
is especially important for medical applications that
demand rapid results.

• Accuracy: YOLO’s holistic approach to object detec-
tion considers contextual information, leading to accu-
rate localization and classification of medical objects

within complex medical images, supporting precise
diagnoses.

• Multi-medical Object Detection: YOLO excels in
detecting multiple objects simultaneously, making it
valuable for identifying various medical anomalies,
tumors, lesions, pathologies factors, or abnormalities
within a single image.

• Adaptability: The YOLO architecture is versatile and
can be fine-tuned for specific medical domains, such
as surgical procedures, personal protective detection
equipment, and medical images.

• Minimal False Positives: YOLO’s ability to incorporate
global context reduces the likelihood of false positive
detections, enhancing the reliability of medical diag-
noses.

2) DRAWBACKS OF YOLO FOR MEDICAL OBJECT
DETECTION
There are some drawbacks of YOLO such as:

• Large Dataset Requirement: One of the primary
drawbacks of YOLO is its need for a substantial dataset
of images for training. The collection of these images
can be both time-consuming and expensive.

• Sensitivity to Object Scale: YOLO’s performance can
be significantly affected by the scale of objects in
the input image, leading to potential false positives or
negatives.

• Difficulty with Small Objects: YOLO often struggles
to detect smaller objects as efficiently as it does larger
ones. The system divides the image into a grid of cells,
and small objects might not be large enough to occupy
an entire cell, affecting detection accuracy.

• Issues with Occluded Objects: YOLO tends to falter
when tasked with detecting objects obscured by others.
As it predicts the bounding box of each object,
an obscured or partially visible object might not
have a well-defined bounding box, limiting detection
performance.

• Limited Object Diversity: The system often struggles
with a diverse set of object classes. As YOLO is trained
on a finite dataset of images, it may find it challenging
to generalize its detection capabilities to unfamiliar
objects.

The rest of this research work is structured as follows.
Section II provides the methodology for conducting this
study. Section III highlights the results of the literature’s
applicable studies and responds to the previously stated
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research questions using synthesized data from the included
research. Finally, section IV concludes this paper.

II. METHODS
This paper seeks to assemble a comprehensive compilation of
relevant studies focusing on YOLO in the medical domain,
covering the period from 2018 to 2023. The aims are to
explore YOLO’s potential capabilities in medical applica-
tions, diagnosis, and treatment planning. This paper was
conducted using the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) statement [78].
The rest of this section has been thoroughly organized
into two subsections. The first subsection (II-A) highlights
the evidence acquisition, which explains the aim (II-A1),
search strategy (II-A2), and study selection criteria (II-A3).
Meanwhile, evidence synthesis of this SLR is presented in
the second subsection (II-B).

A. EVIDENCE ACQUISITION
Evidence acquisition in PRISMA involves systematically
searching and selecting relevant studies from databases.
Medical applications with YOLO capabilities can aid in
automating the identification and extraction of relevant
evidence from medical images. This integration streamlines
the evidence acquisition process, improving efficiency and
accuracy in SLRs.

1) AIM
The primary goal of this systematic review is to compre-
hensively analyze and evaluate the application of YOLO
in medical imaging with a focus on assessing its accu-
racy, efficiency, and effectiveness in medical applications.
Additionally, the review aims to identify medical areas
where YOLO has been successfully utilized, examining
the literature to determine its strengths and potential for
significant advancements. Moreover, it provides practical
implications for integrating YOLO into medical applications,
considering how its utilization can enhance efficiency,
accuracy, and automation in medical image and diagnosis.
To this end, the following questions were established as our
SLR research focus:

RQ1: What are the key medical domains in which
YOLO has been applied for medical object detection?
RQ2:What are the performancemetrics used to evaluate
the effectiveness of YOLO in medical applications,
and how does YOLO perform in terms of accuracy,
precision, recall, and other relevant metrics?
RQ3: What are the specific tasks and objects of
interest within the medical domain where YOLO has
demonstrated strong performance?
RQ4: What are the limitations and challenges encoun-
tered when using YOLO in medical applications,
such as imbalanced datasets, small sample sizes, and
computational requirements?

RQ5: How does YOLO compare to other existing
object detection algorithms in terms of performance,
efficiency, and applicability to medical imaging?

2) SEARCH STRATEGY
A systematic search of the literature was conducted using
the National Library of Medicine’s PubMed database
(https://pubmed.ncbi.nlm.nih.gov, accessed and last searched
on 26 January 2024 ) to identify relevant papers published
between 01/01/2018 and 31/12/2023). The search strategy
employed a combination of keywords, specifically (YOLO
AND ((medical application) OR (medical image))), and
adhered to the PRISMA guidelines [78]. The inclusion
criteria focused on original research articles, while review
papers, abstracts, and reports from meetings were excluded.
Each identified article underwent a thorough evaluation to
determine its eligibility for inclusion in this SLR. Figure 6
illustrates the PRISMA flowchart conducted in this study.

3) STUDY SELECTION CRITERIA
The selection criteria were carefully designed to ensure the
identification of research articles that best align with the
objectives of the systematic reviewwhile excluding those that
are not relevant. The following inclusion criteria were applied
to identify the studies to be included in this review:
1) Inclusion Criteria:

❐ Peer-reviewed articles published between 2018 and
2023 that focus on the application of YOLO in the
medical domain.

❐ Studies that report original research findings.
❐ Studies that primarily focus on medical applications

of YOLO.
❐ Studies published in English language.

2) Exclusion Criteria:
❐ Studies published before 1 January 2018.
❐ Review papers, abstracts, and reports from meetings

or conferences.
❐ Studies that do not involve the YOLO algorithm or its

application in the medical domain.
❐ Studies with insufficient information or incomplete

methodology.
❐ Studies that primarily focus on non-medical applica-

tions of YOLO.
❐ Studies published in languages other than English.

B. EVIDENCE SYNTHESIS
Initially, 124 articles were obtained from the database search,
and 48 were included in this study. The quality assessment
guidelines employed in this systematic review are designed to
reduce bias, enhance transparency, and ensure repeatability.
These guidelines focus on the YOLO medical applications
utilizing medical datasets. The following criteria were
considered during the assessment process: alignment of the
selected studies with the primary objective of the systematic
review, evaluation of the utilization of performance metrics,
scrutiny of the soundness of the conclusions drawn in the
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FIGURE 6. PRISMA flowchart.

FIGURE 7. Trend of publications on the YOLO applications in medical
imaging.

selected studies, and verification of the use of valid and
reliable datasets.

Figure 7 displays the years and the corresponding counts of
identified and included publications. A clear upward trend is

observable in the graph of the identified publications, starting
with a modest count of 3 identified publications in 2018. This
number remains relatively stable in 2019, suggesting a period
of early academic interest. The subsequent years illustrate
a notable increase in research activity. The year 2020 sees
the number double to 6 identified publications, indicating
a growing recognition of YOLO’s relevance in medical
research. This momentum is maintained and amplified in the
following years, with a steady rise to 18 papers in 2021 and a
sharper ascent to 33 in 2022. The most striking leap occurs
in 2023, where the count of identified publications surges
to 58. This substantial growth over five years signifies a
robust and accelerating interest in the application of YOLO
within medical imaging. It is worth mentioning that, the
observed decrease in the number of included studies in
2023 is attributable to the implementation of more strict
inclusion and exclusion criteria, ensuring that only the most
pertinent and high-quality research is selected for review.

Figure 8 illustrates the distribution of the main versions of
YOLO detected from the 48 included studies. The pie chart
indicates that YOLOv3 is the most frequently encountered
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FIGURE 8. Distribution of YOLO versions in medical imaging.

version in the literature, with 21 instances, followed by
YOLOv5 in 9 instances, and YOLOv4 in 8 instances. This
could suggest that these versions have reached a level of
maturity and performance that makes them popular among
researchers and practitioners. YOLOv7 and YOLOv8 are
represented as well with 2 instances each, indicating their
emerging presence in the field and suggesting that more
research papers on these versions could be yet to be
published.

III. RESULTS
This section highlights the results of the literature’s appli-
cable studies and responds to the previously stated research
questions (Sub-section II-A1) using synthesized data from
the included research.

The key medical domains and applications where YOLO
has been applied for medical object detection, along with
their performance metrics used to evaluate the YOLO’s
effectiveness in these applications, with a focus on accuracy,
precision, recall, and other relevant metrics, are categorized
from the 48 included studies into three main domains as
shown in Figure 9: I) Medical Imaging (III-A), II) Surgi-
cal Procedures (III-B), and Personal Protective Equipment
Detection (III-C).

A. MEDICAL IMAGING
YOLO has exhibited strong performance in various tasks
and objects of interest within medical imaging [5], including
lesion detection [28], [79], anomaly detection [80], organ
segmentation [31], [81], and instrument tracking [82], [83],
[84]. These applications highlight YOLO’s potential to
enhance diagnostic accuracy, improve workflow efficiency,
and ultimately advance patient care in the field of med-
ical imaging. One of the primary applications of YOLO
in medical imaging is the detection and localization of
lesions [85]. Lesions can include tumors, nodules, masses,
or any abnormality that may indicate disease [29]. YOLO has
demonstrated strong performance in detecting lung nodules

FIGURE 9. Three major domains of YOLO in healthcare; Medical Imaging,
Surgical Procedures, and Personal Protective Equipment Detection.

in chest X-rays, breast masses in mammograms, and brain
tumors in MRI scans [17], [30], [86], [87]. Its ability to
identify these objects of interest accurately and efficiently
enables earlier detection, leading to timely intervention and
improved patient outcomes. In Figure 10, different medical
image applications clearly explain the advancement of YOLO
in the field.

Moreover, YOLO has shown promise in detecting anoma-
lies in medical images. Anomalies can encompass a wide
range of abnormalities, such as fractures, hemorrhages,
or foreign objects. YOLO’s real time performance makes
it well-suited for tasks such as identifying fractures in X-
rays, detecting bleeds in brain CT scans, or identifying
foreign bodies in radiographic images [87], [88]. By rapidly
flagging anomalies, YOLO assists radiologists and clinicians
in prioritizing critical cases and expediting appropriate
treatment.

In addition, YOLO has been applied successfully in
segmenting organs such as the heart, liver, kidney, and brain
in different imaging modalities, including MRI and CT
scans [32], [81]. Accurate identification and delineation of
organs are crucial for surgical planning, radiation therapy,
and monitoring disease progression [31]. Its high accuracy
and efficiency streamline the segmentation process and
contribute to more precise diagnoses and treatment plans.
In surgical settings, YOLO has shown promise in detecting
and tracking surgical instruments during procedures [83],
[84]. By analyzing live video feeds, YOLO can identify
instruments, surgical tools, and other objects of interest in
real time, providing valuable assistance to surgeons and
improving surgical safety. Its ability to handle fast-paced
environments and track objects accurately makes it a valuable
tool in computer-assisted interventions and robotic surgeries.

Also, YOLO has shown tremendous success in the detec-
tion and classification of breast masses in mammograms [19],
[79], [89], [90], [91]. Its use in such applications has proven
to significantly reduce the time, cost, and potential for
human error inherent in traditional methods of mammogram
evaluation. The YOLO system preprocesses the mammo-
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FIGURE 10. YOLO in different medical images applications: (a) periodontitis bone loss diagnosis, (b) glomerular
detection, (c) breast cancer detection (d) lung normal and abnormal detection, (e) brain tumor detection, (f) white and
red blood cells detections.

grams and then detects masses in them, distinguishing
between malignant and benign lesions without any human
intervention [80], [92].

The included studies in themedical imagining domain have
been further classified into three sub-domains: Oncology
(Table 2), Pathology (Table 3), and Radiology (Table 4).

However, while the applications of YOLO in healthcare
have been fruitful, there are challenges, including the need for
large, diverse, and high-quality datasets for model training.
The algorithm’s sensitivity to the scale of objects in images
is another aspect that needs further improvement. Despite
these challenges, with continuous research and refinement,
YOLO’s application in medical imaging holds significant
promise for advancing healthcare diagnostics. One of the
most promising areas of application for YOLO is medical
imaging. YOLO has shown promising results in various fields
such as radiology, oncology, and pathology [19]. For instance,
in tumor detection, YOLO can identify and locate abnormal
growths in medical images, assisting healthcare professionals
in early disease diagnosis and treatment planning [30], [31],
[32]. In the context of COVID-19, YOLO has demonstrated
its value in detecting and quantifying infection patterns in
lung CT scans, contributing to rapid and effective patient
management [21].

As healthcare moves towards a more digitized environ-
ment, the volume of medical imaging data is growing. This
data can be effectively analyzed using AI and machine
learning tools like YOLO to extract valuable insights that
can aid in diagnosis and treatment planning. For instance,
YOLO has been used to detect and classify breast masses
in mammograms [19], [79], [89], [90], [91]. The traditional

evaluation process of screening mammograms is a laborious
task, requiring significant time, cost, and human resources,
and is prone to errors due to fatigue and the inherent subjec-
tivity of human evaluation. However, with the introduction
of YOLO into this process, an end-to-end computer-aided
diagnosis system has been proposed and implemented [122].
The described system performs preprocessing on DICOM-
format mammograms to convert them into images while
preserving all the data. It is capable of detecting masses
in full-field digital mammograms and can differentiate
between malignant and benign lesions automatically, without
requiring any human intervention, significantly reducing the
potential for human error and streamlining the entire process.

B. SURGICAL PROCEDURES
YOLO could also be applied in surgical procedures. It offers
great potential for surgical procedures, particularly in the
context of computer-assisted and robotic surgery. The
algorithm’s ability to detect, classify, and locate objects in
real time can be of significant value in the surgical environ-
ment [82], [83], [84]. For instance, YOLO can be utilized
to identify and locate specific surgical instruments within
the operating field, helping to streamline instrument tracking
and potentially reducing surgical errors. Additionally, it could
play a role in enhancing the safety and precision of robotic
surgical systems by improving their ability to recognize
and interact with various surgical elements in real time.
Figure 11 demonstrates the usage of YOLO in surgical
procedures.

The study by Wang et al. [83] developed an AI model
based on YOLOv3 to identify parathyroid glands during
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FIGURE 11. YOLO surgical procedures applications of (a)surgical tool detection in open surgery videos, (b) surgical instruments, (c) real
time instance segmentation of surgical instruments.

endoscopic thyroid surgery. Using 1,700 images from thy-
roidectomy videos, the model outperformed junior surgeons
and was comparable to senior surgeons in identification
rates. Amiri Tehrani Zade et al. [84] developed a CNN-
based method to enhance needle tracking in ultrasound for
medical procedures. Using advanced motion estimation and
the YOLOv3 framework, it accurately locates needles in
real time ultrasound, outperforming current methods, and
promising better ultrasound-guided interventions. Table 5
shows YOLO included studies categorized in the surgical
procedures domain.

Surgeons often rely on various imaging technologies, such
as MRI or CT scans, to guide their procedures. However,
interpreting these images and applying their insights to the
surgical process can be challenging. With the use of YOLO,
these images could be analyzed in real time, providing
surgeons with immediate feedback and guidance during
the procedure [82]. This could potentially lead to more
precise surgeries, fewer complications, and better patient
outcomes. Furthermore, YOLO could be integrated with
surgical navigation systems to improve real time imaging,
enabling surgeons to better visualize the surgical field and
carry out complex procedures with higher precision. This is
particularly relevant for minimally invasive surgeries where
real time imaging plays a crucial role. Despite these potential
applications, integrating YOLO into surgical procedures also
brings challenges. These include ensuring the algorithm’s
robustness and reliability in a highly variable and complex
surgical environment, and addressing concerns related to
patient safety and data privacy. Nevertheless, with continued
research and technological refinement, YOLO’s application
in surgical procedures promises to enhance surgical precision
and patient outcomes [84].

C. PERSONAL PROTECTIVE EQUIPMENT DETECTION
YOLO has demonstrated significant potential in the field
of patient monitoring as shown in Figure 12. Real-time
patient monitoring is a critical component of healthcare,
providing valuable insights into a patient’s condition and
enabling timely interventions. Continuous patient monitoring
is crucial in many healthcare scenarios, from intensive care
units to home-based care. The ability of YOLO to detect
and recognize objects in real time can be adapted to monitor
various aspects of patient care. Traditionally, this monitoring
has been done through a combination of manual observations

by healthcare professionals and the use of various medical
devices. However, these traditional methods can be time-
consuming, costly, and subject to human error.

For instance, YOLO could be deployed to monitor
patient activity and movements in an in-patient setting,
identifying potential falls or other hazardous events before
they occur [21]. This real time alert system could greatly
enhance patient safety and improve healthcare outcomes.
Similarly, for patients with chronic conditions, YOLO could
potentially be utilized to monitor medication intake or
adherence to certain therapeutic exercises, promoting better
disease management. YOLO could provide valuable support,
identifying significant health events from recorded or live
video feeds. Despite the promising prospects, integrating
YOLO into patient monitoring systems presents challenges,
including ensuring patient privacy and dealing with diverse
and complex real-world scenarios. However, with ongoing
research and development, YOLO’s application in patient
monitoring can revolutionize care delivery, enhancing patient
safety and health outcomes.

Moreover, YOLO has been applied in face mask detec-
tion. Han et al [21] developed an enhanced, lightweight
YOLOv4-tiny-based detector for real time mask status
detection, offering improved precision and speed with
fewer parameters, suitable for public health applications.
Loey et al. [4] proposed a deep learning model combining
ResNet-50 and YOLOv2 to detect medical face masks in
images, achieving 81% precision and outperforming related
models in accuracy. Table 6 shows YOLO-included studies
categorized in the personal protective equipment detection
domain.

With the applications of YOLO, it is possible to build
automated patient monitoring systems that can continuously
monitor patients’ vital signs and behavior and alert healthcare
professionals to any abnormal patterns or signs of distress.
Such systems could potentially lead to faster response times
in emergency situations, more effective use of healthcare
resources, and better overall patient outcomes.

Finally, Table 7 shows the data sources of all the 48
included studies. From those studies reviewed, no common
datasets were identified across the medical applications,
except for a few instances:

• In lung nodule detection: the Lung Nodule Analysis
2016 (LUNA16) dataset was used in 2 papers [86]
and [87].
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FIGURE 12. Medical personal protective equipment categories: (a) suit, (b) face shield;(c) goggles, (d) mask, and
(e) glove.

• In breast cancer detection: three public benchmark
datasets were utilized.
– INbreast was used in 4 papers [17], [79], [89],

and [90].
– Digital Database for Screening Mammography

(DDSM) was used in 2 papers [17] and [91].
– An enhanced version of DDSM, the Curated Breast
Imaging Subset of Digital Database for Screen-
ing Mammography (CBIS-DDSM) was used once
by [90].

• In brain tumor detection: the Tumor Cancer Imaging
Archive (TCIA) dataset was utilized by [32] and [81].

On the other hand, themajority of the included studies have
used different datasets, with many not publicly accessible
due to patient privacy concerns. Legal and ethical guidelines
require tight data-sharing controls to protect patient confi-
dentiality, highlighting the challenge in medical research to
balance scientific progress with data privacy and protection
norms.

IV. SUMMARY
This section summarizes this SLR into four sub-sections:
the limitations of YOLO in healthcare (IV-A), future
directions (IV-B), ethical considerations (IV-C), and the final
conclusion (IV-D).

A. LIMITATIONS OF YOLO IN HEALTHCARE
While YOLO has made notable strides in object detection,
it has inherent limitations [123]. The system leverages a one-
stage algorithm that directly predicts object bounding boxes
and class probabilities from images, significantly improv-
ing detection speed. YOLO backbones network structure
excludes pooling and fully connected layers, instead accom-
plishing image convolutional transformations by modifying
the step size of the convolutional core [124]. While this
technique augments the network’s depth and ability to extract

features, it simultaneously escalates the model’s complexity
and the computational resources needed.

Though promising, the adoption of YOLO in healthcare
brings with it an array of challenges and limitations that
must be acknowledged. However, a prominent drawback
is its comparative need for more accuracy in detecting
small targets, a shortfall with potential ramifications in areas
such as pill recognition or the identification of tiny lesions
in medical imaging where the identification of minuscule
objects is crucial [125]. It utilizes a deep network structure
for feature extraction, enhancing accuracy at the cost of
considerable computational power. This requirement can be
a limiting factor in healthcare settings where resources are
constrained [126], [127].
Despite these limitations, YOLO is a robust object

detection algorithm used in various applications. As the
algorithm develops, its accuracy and performance will likely
improve Chaudhary et al. 2023, [128]. The best alternative
to YOLO will depend on the specific application. If speed
is essential, then YOLO may be the best choice [23]. Faster
R-CNN or RetinaNet may be the best choice if accuracy is
critical. It is also essential to consider the size of the objects
that need to be detected. YOLO is not as good at detecting
small objects as more significant objects [50]. If small objects
must be detected, Faster R-CNN or RetinaNet may be better
choices. Finally, it is essential to consider the diversity of the
objects that need to be detected [129].

B. FUTURE DIRECTIONS
Developing YOLO variants specifically designed for health-
care applications is another promising research direction.
Such customized systems could cater to the unique demands
of healthcare, resulting in more effective and efficient tools.
Integrating YOLO with other AI techniques, such as rein-
forcement learning and transfer learning, could significantly
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TABLE 7. Data Sources of the selected studies.
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TABLE 7. (Continued.) Data Sources of the selected studies.

enhance its performance. Reinforcement learning could
enable the system to learn from its errors, thereby continually
improving, while transfer learning would allow the applica-
tion of knowledge acquired from one task to related tasks,
potentially boosting accuracy and efficiency [130].Moreover,
it will be interesting to see the potential applications of large
language models [131] in YOLO or object detection tasks.
Given YOLO’s success in medical imaging, future studies

are likely to concentrate on enhancing its accuracy for
small target detection and extending its application to other
healthcare areas, such as patient activity monitoring, real time
anomaly detection during surgical procedures, or disease pro-
gression prediction based on image data. Moreover, there is
a growing interest in integrating YOLO more effectively into
clinical workflows. This could involve developing interfaces
for seamless interaction between healthcare professionals
and the system or devising protocols to ensure appropriate
communication and utilization of the system’s outputs in
clinical decision-making. This rapidly evolving field will
continue to reveal novel applications, benefits, and limitations
of this technology.

1) DEVELOPING NEW DATASETS FOR MEDICAL OBJECT
DETECTION
Developing new datasets for medical object detection using
YOLO models can be challenging due to several reasons:

• Data Privacy and Ethics:Medical data is sensitive and
protected by strict privacy regulations.

• Annotating Medical Images: Medical images often
require precise and detailed annotations. Expert knowl-
edge is needed to accurately label abnormalities, making
annotation time-consuming and labor-intensive. The
cost of annotating a large dataset can be significant.

• Limited Data Availability: Unlike general object
detection, medical datasets are smaller due to the
limited availability of medical images, especially for
rare conditions. This scarcity can affect the model’s
performance and generalization.

• Class Imbalance: Medical conditions are often rare,
leading to a class imbalance where certain classes have
very few instances. This can lead to biased models that
perform poorly on underrepresented classes.

• Complexity and Variability: Medical images can
exhibit variations due to factors like lighting, equip-
ment, patient demographics, and disease progression.
Capturing this variability in the dataset is crucial for
robust model performance.

• Clinical Relevance: The dataset needs to be clinically
relevant and accurately represent the challenges that
medical professionals face in real-world scenarios.

Addressing these challenges requires collaboration
between medical professionals, data annotators, and machine
learning experts. Rigorous quality control, careful dataset
curation, and domain-specific adaptations of YOLO models
are essential for successful medical object detection.

2) TRANSFER LEARNING FOR MEDICAL OBJECT DETECTION
Transfer learning is a valuable technique that can signif-
icantly benefit the application of YOLO in the medical
imaging domain. Here is how transfer learning can be
leveraged to improve YOLO’s performance:

• Pre-Trained Models: Begin by training YOLO on a
large dataset from a related domain, such as natural
images. This pre-training imparts general object recog-
nition capabilities to YOLO, capturing low-level fea-
tures that can be valuable for medical object detection.

• Fine-Tuning: After pre-training, fine-tune the YOLO
model using a smaller but domain-specific medical
image dataset. This step adapts the model’s learned
features to the specific characteristics of medical
images, enhancing its ability to detect medical objects.

• Transfer of Knowledge: Transfer learning facilitates
the transfer of knowledge from the pre-trained model
to the medical domain. This approach jumpstarts the
training process and reduces the amount of labeled
medical data required, a critical advantage in medical
imaging where labeled data is often limited.

• Improved Convergence: Transfer learning allows the
YOLO model to converge faster during fine-tuning,
leading to quicker deployment and reducing the risk
of overfitting, especially when working with smaller
medical datasets.

• Enhanced Feature Extraction: The pre-trained fea-
tures capture valuable information about edges, textures,
and basic shapes. These features can be particularly
beneficial in medical image analysis, aiding in the
detection of various anomalies.

C. ETHICAL CONSIDERATIONS
AsYOLO and similar technologies becomemore prevalent in
healthcare, it is important to consider the ethical implications.
Implementing YOLO in healthcare elicits various ethical
and legal quandaries. Issues such as data privacy, informed
consent, and the potential for bias in AI algorithms will need
to be addressed. Future research will need to not only focus
on improving the technical aspects of these systems but also
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ensure that they are used in a way that respects patient rights
and upholds the principles of medical ethics.

D. CONCLUSION
To conclude, this SLR offers a comprehensive analysis of
the utilization of YOLO in various medical applications,
encompassing tumor detection, blood transfusion medicine,
COVID-19, colorectal cancer, radiology, laryngeal cancer,
parathyroid surgery, and dorsal hand veins recognition,
among others. The review incorporated a significant body
of literature, aggregating insights from 124 papers published
between 2018 and 2023. The findings reveal the pivotal role
YOLO plays in enhancing the efficiency and accuracy of
medical diagnoses and procedures.

The study also has a few limitations. In this study,
we only focused on the Pubmed database, other databases
may have relevant articles as well. However, in the medical
domain, Pubmed is considered as a gold standard. Another
limitation is that we considered object detection tasks only in
medical images, personal protective equipment, and surgical
procedures. Further medical instruments are not considered
as medical objects.

By rapidly identifying and localizing ailments ranging
from tumors to various cancers, YOLO has significantly
improved patient outcomes while reducing diagnosis and
treatment times. However, despite the remarkable successes
of YOLO, its deployment is not without challenges. These
include its sensitivity to object scale, difficulty in detecting
small or occluded objects, and considerable computational
resource requirements. To harness the full potential of YOLO,
these issues need to be addressed by ongoing and future
research.

Also, ethical considerations like data privacy and algorith-
mic bias need to be considered in the development of YOLO-
based systems, particularly in healthcare. In summary, the
integration of YOLO into healthcare applications represents
a significant stride towards a future where AI not only
enhances the accuracy and speed of medical processes but
also democratizes access to quality healthcare. Nevertheless,
continued research and development are essential for further
improvements and for the optimal integration of YOLO into
healthcare settings.
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