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ABSTRACT This study addresses the challenge faced by individuals with upper-limb prostheses in regulat-
ing grip force and adapting movements to different object weights. Despite limited exploration, this research
pioneers the use of EEG to estimate object weight perception in the context of upper-limb prostheses.
Investigating neural correlates in this population provides valuable insights and aids the development of
neurofeedback-based strategies for weight perception. Our objective is to identify EEG features predicting
the weight perception of held objects. Employing Fourier-based synchrosqueezing transform (FSST) and
regularized Common Spatial Patterns (CSP) features, we classify motor imagery waves representing three
weight categories (light, medium, heavy). Subjects perform actual motor tasks before imagery sessions, and
our approach integrates EEG features of both movements to train subject-specific machine learning models.
Results reveal that FSST- singular value decomposition (SVD) features for medium and heavy objects are
most distinctive. Achieving up to 90% accuracy, spatial features demonstrate effective classification of
motor imagery for different weights. Unlike weight prediction studies, our focus is on visual perception
and imagination of object weights, enhancing prosthetic hand system preconditioning. Binary classification
surpasses 70% accuracy in predicting object weights, uniquely utilizing actual movement data for CSP
algorithm regularization coefficient estimation.

INDEX TERMS Brain computer interfaces, common spatial pattern (CSP), EEG signal processing, Fourier-
based synchrosqueezing transform (FSST), weight perception.

I. INTRODUCTION
Accurate perception of the weight of objects is crucial for
the individuals utilizing upper-limb prostheses to interact
with their environment effectively. The prostheses used espe-
cially for the upper extremity differ according to the level of
amputation, just as the methods used to move the prosthesis.

The associate editor coordinating the review of this manuscript and

approving it for publication was Gyorgy Eigner .

In some prosthesis types, only cosmetic use is prominent,
whereas in others, the prosthetic hand is opened and closed by
the individual’s own movements, e.g., moving the shoulder.
As for the myoelectric prosthesis, arm and hand movements
are performed with the muscle signals received from the elec-
tromyography (EMG) electrodes placed in the appropriate
places (on the skin) of the amputated limb [1], [2].

Alternatively, integration of electroencephalography
(EEG) signal analysis for the control of the prosthesis is

52978

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-1698-3705
https://orcid.org/0000-0003-2954-1217
https://orcid.org/0000-0001-8038-2210


N. Karakullukcu et al.: Object Weight Perception in Motor Imagery Using FSST and Regularized CSP

possible. Numerous studies have demonstrated the potential
of EEG in decoding various aspects of motor control and
perception, including studies on motor imagery [3], [4], [5],
[6], [7], [8], emotion recognition [9], sleep stage classifi-
cation [10], tactile perception [11], attention training [12]
and brain-computer interface (BCI) game development [13],
[14], [15]. In fact, efforts have been made to use elec-
troencephalography (EEG) signals for controlling the upper
extremity prosthesis [16], [17], [18], [19]. In [20], they inves-
tigate the utilization of EEG for controlling a prosthetic hand
for enhancing the quality of life for individuals with physical
or motor. They employ the EEGNet, a convolutional neu-
ral network, for feature extraction and signal classification
across five motor-imagery hand tasks performed by users.
In [21], 3-finger anatomical robot hand model is developed
for handicapped people. Eight channel motor imagery EEG
data from primary motor cortex is used to control (flexion
and extension) the robot hand. Frequency domain features
of EEG are used for operating the prosthetic arm in [22].
In another attempt, the natural resting-state functional con-
nectivity in the brain is investigated to predict how well an
individual could adapt their right (dominant) upper limb’s
motor skills when faced with a robot-controlled force field
during reaching tasks [23]. Recently, in [24], the possibility of
using EEG to detect both the motion and the varying weights
that a person is lifting is studied. They collected EEG data
while performing biceps flexion-extension movements under
various weight conditions, including lifting with no weight
(empty), medium weight, and heavy weight.

Even though prosthetic devices offer remarkable function-
ality, they often lack the ability to provide real-time feedback
on the weight of the grasped objects. Consequently, indi-
viduals with upper-limb prostheses may struggle to regulate
their grip force and adequately adapt their movements to
different object weights [25]. The use of EEG to estimate
the weight of objects to be carried specifically in the context
of upper-limb prostheses remains largely unexplored. Inves-
tigating the neural correlates of weight perception in indi-
viduals that use prosthetic limbs can offer valuable insights
into the underlying mechanisms and help the development of
neurofeedback-based strategies for weight perception. There-
fore, the objective of this study is to seek distinctive features
of EEG signals to predict the weight perception of the objects
held by the individuals. The research methodology is visual-
ized in Fig. 1, which depicts the sequential steps involved in
utilizing EEG signals for predicting weight perception of an
object in individuals with upper-limb prostheses.

We find research groups in the literature that work on
their unique datasets focused on weight prediction. In [26],
researchers designed a study to determine the brain’s per-
ception of weight based on 4-channel EEG signals obtained
when participants applied pressure corresponding to different
weight levels to their hands (as a type of haptic application).
They used the relative power values of the alpha and beta sub-
bands of EEG signals for the classification of weight-bearing
and resting states. In another study, 32-channel EEG signals

FIGURE 1. Flowchart illustrating the process of EEG-based weight
perception prediction.

and EMG signals from five arm and hand muscles are col-
lected from participants [27]. Subjects randomly grasped and
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lifted a series of lightweight or heavy objects and guessed
the weights. They reported the effect of the bias in weight
perception based on previous lifting experience and its rela-
tionship with force scaling. In [28], a comprehensive study
for using brain signals during the execution of grasping and
lifting functions by a robot arm is studied (using the hand
of a small Nao robot). In [29], the motor imagery signals
are obtained from 129-channel EEG data during the grasping
and lifting of a glass of water by 28 participants [29]. Three-
class classification problem is posed as grasping, lifting, and
grasping+lifting. They used band power values of 8-14 Hz
subband from 500 ms epochs and reported 95% classification
accuracy. However, they also reported that the classification
accuracy significantly decreased in continuous prediction.

Here we briefly introduce methods that are found a broad
use from the signal processing community for analyzing
EEG signals. The reader is referred to related studies for the
detailed explanation of the discussed methodologies since it
is beyond the scope of this study. The simplest statistical fea-
tures of EEG signals such as mean, variance, skewness etc.,
provide discriminative information about sleeping and resting
state of the person [30]. Hjorth parameters are the variance
of derivatives of EEG signals – mobility, activity, complexity
– widely used features to describe characteristics of EEG
signals [31], [32]. Shannon’s entropy, fractal dimensions,
topological data analysis and Hurst and Lyapunov exponents
are mainly known as nonlinear features. In EEG analysis
such features are estimated by embedding EEG signals to an
attractor [33], [34]. Frequency-domain features e.g., power
spectral density (PSD), frequency bands (delta 0.5-4 Hz, theta
4-7 Hz, alpha 8-13 Hz, beta 13-30 Hz) and ratios of frequency
bands extensively used features of EEG signals [35].

Various methods for extracting features from EEG signals
to distinguish between different cognitive states have been
explored extensively. In this context, one of the methods
employed is the short-time Fourier transform (STFT). STFT
is commonly used in the EEG signal processing community.
STFT method divides EEG signals into segments/windows
to analyze them as if they were stationary signals. In [36],
two deep learning pipelines utilizing Convolutional Neural
Networks (CNN) and Long Short-TermMemory (LSTM) are
used for the classification of motor imagery tasks. Frequency
domain representations from EEG signals are extracted with
STFT and fed into pipelines for training the models. Feature
selection from STFT covariances are proposed to extract
spatial, time and frequency features concurrently in [37].
Since EEG signals inherently exhibit non-stationary charac-
teristics, synchrosqueezing transform (SST) provides a better
time-frequency representation for the feature extraction as
compared to STFT [38], [39], [40], [41], [42]. SST is suitable
for generating a localized time-frequency (TF) representa-
tion of nonstationary signals. In [41], a novel approach is
introduced for emotion classification using EEG signals. This
approach incorporates singular value decomposition (SVD)
and multivariate SST. In another study, emotion recogni-
tion methodology that relies on multivariate SST analysis

on multichannel EEG data [43]. Precise TF localization of
SST is also convenient for the epileptic seizure detection
as reported in [42]. In EEG based BCI framework, time-
frequency coherence using STFT and SSTmethods are found
between electrophysiological signals.

Another methodology employed in the context of motor
imagery based BCIs is common spatial pattern (CSP) fil-
tering [44], [45]. CSP filters maximize the variance of one
class, whereas minimize the variance of the other class.
CSP filtering is one of the state-of-the-art methods for
feature extraction from EEG signals, especially when the
binary-class motor imagery problem is posed. CSP aims
to enhance the discriminative power of EEG signals by
transforming them into spatial patterns that highlight the
differences between different cognitive states or tasks. CSP
filters are highly sensitive to noise and tend to overfit the
training set. Thus, it results in poor decoding performance
when tested on cross session/subject data. To address this
limitation, alternative CSP algorithms have been suggested.
Subband common spatial pattern (SBCSP) performs CSP on
the subbands of EEG data [46], filter bank common spa-
tial pattern (FBCSP) selects features from various frequency
subbands according to the maximal mutual information crite-
rion [47]. Additionally, CSP filter regularization approaches
are proposed in the literature for improving the cross ses-
sion/subject performance [48], [49]. In [50], the weighted
sum of covariance matrices of other sessions/subject are used
for regularization of the spatial filters. In [51], two step regu-
larization is applied to spatial filters for reducing training set
bias especially when small set of training trials are available.

Here in this study, we use features of time domain, fre-
quency domain, time-frequency domain and CSP methods to
create feature vectors [36], [39], [44], [45], [46], [47], [52],
[53], [54], [55]. The rest of this paper is organized as follows.
The experimental paradigm and structure of the custom-built
EEG dataset and the methods used to extract features are
presented in Section II. Experimental results are given in
Section III. The discussion of the results is given in Sec. IV.

II. MATERIALS AND METHODS
A. EXPERIMENTAL SETUP AND DATASET
Experiments are conducted in Biomedical Image and Signal
Analysis (BISA) Laboratory of Abdullah Gul University,
Kayseri, Turkey. In total, 31 volunteers joined the exper-
iments (mean age: 22 years, age range: 19-35). Subjects
reported no history of neurological diseases. The experiments
are approved by the Erciyes University Ethics Committee
(January 9, 2019, 2019/32), Kayseri, Turkey. Gold alloy dry
electrodes (g.Sahara) and the wireless EEG signal amplifi-
cation system (g.Nautilus) are used in the experiments. EEG
records are taken from 16 channels located at Cz, FP2, F3,
Fz, F4, T7, C3, FP1, C4, T8, P3, Pz, P4, PO7, PO8, and
Oz electrode positions according to the 10-20 international
system [56]. The reference electrodes are attached to left
and right antitragus (behind the ear). The sampling rate is
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set to 500 Hz and the records are filtered using an analog
bandpass filter (2-200 Hz) and an analog notch (50 Hz)
filter.

Experiment setup consists of two sessions, actual move-
ment and imagery movement. There are five phases in
the actual movement session: resting phase, holding phase,
lifting-up phase, putting-down phase, and relaxation phase.
In the rest phase, a red circle is presented in the middle of
the plus sign for 2.5 s. The subjects fix their eyes on the
circle during this phase. In the holding phase, one of the
three visual cues each representing one of three bottle each
with a different weight (light, medium, heavy) is showed
for 0.5 s to the subjects. Next, subjects reach and grasp the
cued bottle without lifting it up. One second is allocated
for subjects to reach and grasp the bottle. In the lifting-up
phase, an upside arrow is shown on the screen for 2 seconds.
Subjects lift up the bottle approximately 20 cm above the
desk level and keep holding the bottle in this position until
the next cue. When a down-arrow cue is given, subjects
put down the bottle to its initial position. Then subjects
rest for 2 seconds before the new trial begins. Subjects per-
form 30 trials (10 for each bottle) in the actual movement
session.

The second session -imagery movement- subjects asked
to perform imagination of the lifting up and putting down
of the bottles. In this session, trials consist of four phases:
resting, visual cue, imagination, and relaxation. The resting
and visual cue phases are the same as the former session
apart from duration of the cue appearance. Unlike the actual
movement session, subsequently after the cue subjects start
imagining the lifting up and putting down movements of the
given cue. After 3 seconds of imagination phase, relaxation
phase of 2 seconds ends one trial of imagination. Subjects
perform 30 imagination trials (10 for each bottle).

The actual movement session was designed and imple-
mented to facilitate participants’ imagery of movement
during the imagery movement session. Initially, participants
engaged in actual movements and experienced the weight
of objects, with the aim of enabling them to comfortably
imagine the movements during the subsequent session.

The experimental paradigm of both sessions is shown in
Fig. 2. In both sessions, each of the cues is given in random
order. Between two sessions, a minimum 15-min break is
given to subjects in order to minimize fatigue. Bottle weights
are 25 gr, 523 gr, and 1037 gr for light, medium, and heavy
respectively. There are 924 trials for actual movement session
and 924 trials for motor imagery session in total.

B. PREPROCESSING
We preprocessed the recordings using EEGLAB (v2021.0)
tools in MATLAB (R2019a) in order to remove blink arte-
facts. Independent component analysis (ICA) is applied to
each session and eye blink related components are manually
removed from the data. After the blink removal, 5th order
digital Butterworth band-pass filter (8-30 Hz) is applied to
data.

FIGURE 2. The experimental paradigm. (a) Actual movement session.
(b) Imagery session.

C. FEATURE EXTRACTION / SELECTION
We use time domain, frequency domain, time-frequency
domain and regularized CSP methods for feature extraction
in MATLAB (2019a).

In this study, we first conducted feature extraction to the
signals from 2.5 s - 5.5 s (visual cue and imagination phase)
of imagery session. Afterwards, to explore the effect of actual
movement session on the predicting of the weight perception,
we employed a newmethod that includes the data from the 4 s
– 6 s (lifting phase) of the actual movement session.

1) STATISTICAL AND TIME DOMAIN FEATURES
In order to investigate the feasibility of statistical methods,
skewness, log energy entropy, Shannon entropy, kurtosis, and
energy were used.

Skewness is a measure of the asymmetry of the corre-
sponding probability distribution [56], [57]. In the context
of analyzing EEG (Electroencephalogram) signals, skewness
can be used as a feature to describe the shape of the signal’s
amplitude distribution [57].

Entropy is about how much information a signal carries.
Entropy can be used to describe the complexity or irregularity
of the brain activity [58]. The study conducted two different
types of entropy measures: Shannon entropy (ShanEn) and
log energy entropy (LogEn). Shannon entropy measures the
uncertainty or information content in a dataset, whereas log
energy entropymeasures the distribution of energy across dif-
ferent frequency bands. The formulas for ShanEn and LogEn
can be introduced with equation (1) and (2), respectively [59].

ShanEn(x) = −

N−1∑
i=0

(pi (x))2 (log2 (pi(x)))2 (1)

LogEn (x) = −

N−1∑
1=0

(log2 (pi(x)))2 (2)
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where pi represents the probability distribution function, and
i indicates one of the discrete states.
Kurtosis is a measure of the difference between the highest

value of the probability distribution and the highest value of
the normal distribution of a random variable with real values,
and it can be used to describe the ‘‘fatness’’ of the tails found
in probability distribution of amplitudes in analyzing EEG
signals [60].

In the context of EEG signal processing, energy is often
computed to measure the total energy or power in a specific
frequency band or across the entire signal. The formula for
calculating energy in an EEG signal depends on the specific
context and the desired frequency range. In a time-domain
EEG signal to calculate the total energy, each data point in the
EEG signal is squared and then all squared values are summed
up [61].

AR modelling is adapted to EEG data as a time domain
feature, and the means of the AR coefficients from each
channel are extracted as features. In this approach, the best
AR order, 4, is selected by trial and error [62].

All the features are calculated with MATLAB built-in
functions. We applied these features separately for each of
the 16 channels. Therefore, 6 features were extracted from
each channel as statistical and time domain features.

2) FREQUENCY DOMAIN FEATURES
Another feature extraction method used for MI-based BCI is
the power spectral density (PSD) in which the Welch method
with a Hamming window is employed. The window is used to
obtain eight segments of input signal with 50% overlapping
between samples, and all segments are averaged to obtain a
smoothed estimation. Additionally, this method is preferred
to estimate the power at chosen frequency bands, the range
between 8-12.5 Hz (mu band) and 13-30 Hz (beta band).
We used the mu band power and the beta band power as
features. Moreover, the band power ratios of the mu and beta
activity, which is called relative band power, served as the
additional feature. The methods were applied to each channel
separately, and 4 features were extracted from each channel
as frequency domain features.

3) TIME-FREQUENCY DOMAIN FEATURES
Different EEG signal frequency bands contain different infor-
mation about the MI. In order to decompose a signal in
multiresolution frequency and time, discrete wavelet trans-
form (DWT) and Fourier-based synchrosqueezing transform
(FSST) is used in this study. In DWT, Daubechies 4 is
the wavelet function, and the wavelet decomposition level
is determined automatically using MATLAB. The mean of
the absolute values of detail coefficients corresponding to
frequencies ranging from 7.8 Hz to 15 Hz are utilized as a fea-
ture obtained from the Discrete Wavelet Transform (DWT).
We refer statistical, time domain, and frequency domain fea-
ture extraction methods explained so far as ‘‘S-T-F-TF’’ in
the reminder of the article.

TABLE 1. The algorithm to calculate the FSST coefficients with the SVD as
a dimension reduction method.

EEG is a non-stationary signal whose spectral charac-
teristics change with time. The short-time Fourier trans-
form (STFT) and continuous wavelet transforms (CWT)
have a deficiency in linear projection for non-stationary
signals [40]. On the other hand, FSST is effective for
a sharpened time-frequency representation. We previously
demonstrated the contribution of FSST in the detection
of motor intention [38]. We recommend consulting Ref-
erences [63] and [64] for the fundamental principles and
theoretical aspects of FSST. Additionally, the singular value
decomposition (SVD) algorithm was performed after apply-
ing FSST to reduce the dimensionality of the output of FSST
and to extract significant features from the FSST coeffi-
cients [41]. The process is also summarized in the algorithm
provided in Table 1. According to the algorithm, FSST was
applied to individual EEG channels, generating complex
number coefficients. To compute these coefficients, a Kaiser
window of 256 units in length was employed to ensure accu-
rate frequency resolution, resulting in a 128 × 500 matrix
for each channel. After that, since the frequency range of
interest was 8-30 Hz, the size of the matrix obtained from
the FSST, which represents 128 frequencies, was reduced to
11 × 500 by selecting only the frequencies within the range
of interest. Then, the absolute values of the coefficients for
each channel were calculated and then these values were
normalized.

Next, to reduce dimensionality of features extracted from
the FSST coefficients, we use singular value decomposition
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(SVD) method as follows,

A = U × S× V
′
. (3)

In (3) A represents the coefficient matrix m x n, U signifies
the m x m complex matrix, V denotes the n x n complex
unitary matrix, and S takes the form of a diagonal matrix
with singular vectors in a m x n configuration. In our study,
we removed additional rows of zeros from S to achieve a
more efficient decomposition, resulting in singular vectors
arranged in an 11 × 11 configuration. We then considered
the diagonal values of S as features (totaling 11), generating
a 1 × 176 matrix for each of the 16 channels during a single
trial of a subject.

4) REGULARIZED CSP FEATURES
Let l ∈ {1, . . . ,L be the index of trials and let k ∈ {1, . . . ,K
be the index of classes. Then, we represent each trial asXlc ∈

RNxT , with N and T channels are the number of channels and
the number of time samples, respectively. Then, we calculate
sample covariance matrix of each class

Ck =
1
L

∑
l∈L

XlkXT
lk . (4)

Note that EEG signals are bandpass filtered, and they are
zero mean. As formally known, CSP uses spatial filters w
to maximize variance of one class, whereas w minimizes the
variance of the other class following [65]

JCSP (w) =
wTC1w
wTC2w

. (5)

Following the methodology described in [48], we use regu-
larization coefficients for estimating generalized covariance
matrices. Regularization is completed in two steps; regular-
ization of the sample covariance matrices and regularization
of the CSP function JCSP (w). Equations (5) and (6) show reg-
ularization of the initial spatial covariance matrices estimated
for a given class according to [48].

Ĉk = (1 − β) sCk+βG (6)

C̃k = (1 − γ ) Ĉk + γ I (7)

The two regularization coefficients β and γ can take values
between 0 and 1 (β, γ ∈ [0, 1]). The matrix Ck is initial
spatial covariance matrix of k-th class, Ck is regularized
estimate, I is the identity matrix andG is a generic covariance
matrix estimated using other subjects. Based on [48], [49],
[50], and [51], whereas regularization coefficient β approxi-
mates Ck to generic matrix, other coefficient γ approximates
to I. Apart from that, CSP function itself is regularized by
adding a penalty term to prior condition as follows

JCSP (w) =
wTC1w

wTC2w + αP(w)
. (8)

In this equation, P(w) is the penalty function and the coef-
ficient α represents its weight to the objective function.
We refer readers to [48] for further details of CSP regular-
ization.

Here in this study, we use Composite CSP (CCSP) and
Regularized CSP with Generic Learning (GLRCSP) meth-
ods [50], [51]. We perform transfer learning by using
regularized covariance matrices taken from other subjects.
CCSP algorithm uses only β parameter and assigns α = γ =

0. This means that it only uses generic matrix for regulariza-
tion [50]. GLRCSP method uses both β and γ terms for the
regularization [51].
Our dataset is comprised of actual and imagery lifting

up and down motion for three weight classes. This gives
us two options for regularizing the CSP filters: session-to-
session transfer learning by using actual movement session
on imagery session and subject-to-subject transfer learning
by using imagery sessions of source subjects on the target
subject.

Spatial filters are estimated using all trials of actual move-
ment session and 80% of the motor imagery trials. Note that
actual movement trials are used as if they are the source
domain and motor imagery data as a target domain. The
remaining 20% of the motor imagery trials are used for
testing. We repeat this process for each fold and calculate
the average classification accuracy for each subject. We train
LDA machine learning model with the extracted spatial fea-
tures from regularized CSP filters. Hence, session-to-session
transfer learning is completed with regularized CSP, in which
information of actual movement is transferred for the estima-
tion of CSP filters for motor imagery data.

Alternatively, we perform subject-to-subject transfer learn-
ing between motor imagery sessions of all the subjects.
For each subject, the remaining subjects are used as source
domains. Next, we take 80% of the target subject’s motor
imagery trials to estimate CSP filters. We train LDAmachine
learning model with the training data and test the model on
the remaining 20% trials.

D. CLASSIFICATION
The aim was to predict weight perception from EEG. After
computing the features for S-T-F-TF, FSST-SVD, and RCSP,
matrices of dimensions (31 subjects x 30 trials x 11 features x
16 trials) were obtained for S-T-F-TF, (31 subjects x 30 trials
x 11 features x 16 trials) for FSST-SVD, and (31 subjects
x 30 trials x 10 features x 16 trials) for RCSP. The feature
sets provided to the classifier were resized to (31× 30×176)
for S-T-F-TF and FSST-SVD, and (31× 30×160) for RCSP.
We used a two-session paradigm which allows decoding
weight perception from both actual movement and imagery
sessions.

First, we used only imagination phase signals of imagery
session for the interested signal area. We split our data into
subsets using a subject-based approach, ‘‘leave-one-subject-
out’’. Imagination phase trials from one subject were used as
the test set and the remaining trials recorded from 30 subjects
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were employed as the training set. We repeat this process
5 times, that is, each repetition we train a machine learning
model from scratch with the training set created for that
repetition and test with only the test set of that repetition.
We report the average classification accuracy of 5 repetitions
as final prediction score.

On the other hand, we proposed a new method that origi-
nally constructs the training dataset and test dataset of each
subject to investigate the effect of the actual movement on
the evaluation of the classification performance in the weight
perception problem. For this purpose, the trials obtained from
the imagery session of a single individual were divided into
five folds, with one-fold used as the test data. Additionally, all
signals from the individual’s actual movement session were
used in the training set. This process repeated until each fold
has been used as the test data once, ensuring that the model’s
performance is evaluated across different subsets of the data.
This procedure was repeated for each subject.

MATLAB (2019a) was used for classification. We inves-
tigated k-nearest neighbors (k-NN, k=10, distance metric
was Euclidean), linear discriminant analysis (LDA), fine tree
(maximum number of splits = 100, split criterion was based
on Gini’s diversity index), Naive Bayes (kernel type was
Gaussian), and the support vector machines (SVM) with fine
Gaussian kernel and quadratic kernel [66].

1) PERFORMANCE METRICS
In this study, the performance of the classificationmethodolo-
gies was presented using accuracy and f-measure metrics. For
evaluating classification models, accuracy has the meaning
of the percentage of correct prediction [66], [67]. For binary
classification, it is computed using (9).

Accuracy =
Number of correct predictions
Total number of predictions

(9)

Counting the number of positive class predictions that
belongs to the positive class is precision and it is computed
using (10). On the other hand, recall (as known as sensitivity)
is a metric that the number of positive predictions out of the
examples that should have been predicted as positive and
computed with (11). Additionally, using the precision and
recall, f-measure is calculated (12) [68].

Precision =
TP

TP + FP
(10)

Recall =
TP

TP+ FN
(11)

f − measure = 2 ×
precision× recall
precision+ recall

(12)

III. RESULTS
The performance of machine learning approaches was exam-
ined on S-T-F-TF, FSST-SVD, and RCSP features. The
classification performance was assessed using six different
machine learning algorithms: SVM with Gaussian kernel,

SVM with quadratic kernel, KNN, LDA, Fine Tree, and
Naive Bayes. Accuracy and f-measure values were calculated
as performance metrics. The features utilized, FSST-SVD
and S-T-F-TF, were presented for comparison. Three binary
classification scenarios were considered: light vs. heavy, light
vs. medium, and heavy vs. medium.

Table 2 illustrates the classification performances of sig-
nals obtained during the Imaginary phase. According to
feature comparison, the highest accuracy, reaching 70%,
was achieved in distinguishing the light and medium weight
classes using features obtained with FSST-SVD. In the clas-
sification comparison, the Fine Tree classifier yielded the
highest accuracy, particularly in distinguishing between light
and medium weights, as well as heavy and medium weights.
However, the binary classification for light vs. heavy weight
did not surpass the chance level (0.5).

From the results, we can clearly observe that the classifi-
cation performance remains low. To overcome this problem,
using the actual movement session in training data has a
valuable advantage in comparison with using only the signals
corresponding to imagination of lifting the object. In Table 3,
we present the classification results of the proposed method
in detail, using accuracy and f-measure metrics. As demon-
strated in Table 2, we got the highest accuracy with the level
of 80% using FSST-SVD as a feature and SVM quadratic as a
classifier to discriminate medium weight and heavy objects.
The proposed method has been observed to achieve a 20%
increase in accuracy in distinguishing between the light and
heavy weight classes and separating the heavy and medium
weight classes.

1) CSP RESULTS
Here, we test classification performance of CCSP and
GLRCSP. First, we train an LDA machine learning model
to classify resting and imagination periods. We use fea-
tures extracted from the first 5 spatial filters to create a
feature vector of each trial. In Table 3 we show the classi-
fication accuracies of the top five subjects and the average
classification accuracy of all subjects. We reach 78% classi-
fication performance on average with CCSPmethod, whereas
GLRCSP reaches 72% accuracy. Classification performance
varies across subjects and reaches as high as 92% accuracy.

We perform one-versus-one classification of the three
classes (light, medium, heavy weights) on motor imagery
data.We train an LDAmachine learningmodel with extracted
spatial features from each trial. We use all subjects except
the target subject for the estimation of regularization param-
eters of the spatial filters. In Table 4 we show classification
accuracy of the five highest subjects for each class pair (light-
heavy, light-medium, medium-heavy). We also show average
classification accuracy of all subjects. The results in Table 4
show that classification performance is at the chance level of
50%.

Next, we show the results of the session-to-session transfer
learning approach. We use actual motor movement data from
the subject to estimate regularization parameters. Then we
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TABLE 2. Classification performance of the imagery session.

TABLE 3. Classification performance of the proposed method (imagery session + actual movement session).

estimate regularized CSP filters on training set of motor
imagery data. We train an LDA machine learning model
with the extracted spatial features and test the model on the

test set from the same subject. We show the classification
accuracies of the best five subjects with this approach in
Table 5. With this approach, we are able to classify motor
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TABLE 4. Resting vs imagery classification accuracies (%) of top five subjects.

TABLE 5. One-versus-one light, medium and heavy weight classification accuracies (%) of top five subjects.

imagery of different weights up to 95% accuracy. Besides,
average classification performance of at least 70% accuracy
is reached for each class pair.

IV. DISCUSSION
In this research paper, our primary objective was to identify
distinctive features of the weight perception of the objects
using EEG signals. In case of successful weight perception
classification, prosthetic limb technology will take a step
forward on providing natural feeling for the imputed people.
Different from the studies focused on weight predic-

tion [26], [27], [28], [29], we focused on visual perception
and imagination of the objects’ weights, that is, the main
emphasis of our study.We designed our experiment paradigm
to discern and characterizemotor imagerywaves of the differ-
ent weights (light, medium, heavy) by having two sessions;
subjects performed the actual motor task movements (lifting
up and putting down of the bottles) in the first session,
whereas subjects only imagined the motor task of the first
session in the second session.

We used FSST (Fourier-based synchrosqueezing trans-
form) and regularized CSP (Common Spatial Patterns)

methods to extract features from EEG signals. The results
indicated that the FSST-SVD features representing medium
and heavy objects exhibited the most distinctive characteris-
tics as compared to the other pairwise groups. We developed
a unique approach for the estimation of regularization param-
eters of CSP filters by employing actual motor movement
trials. When binary classification problem is posed, our
approach exceeded 70% classification accuracy on the pre-
diction of objects’ weights. We reached the average of
76.39%, 73.22% and 72.83% classification accuracy on light-
heavy, light-medium, and medium-heavy weight class pairs
respectively. We should note that for the best performing
subjects, classification accuracy of our approach exceeded
90% accuracy.

Our findings shed light on a relatively unexplored area
of research, as the neural correlates of weight perception
have not been extensively investigated previously. Our results
suggest that EEG signals indeed contain valuable infor-
mation pertaining to weight perception, highlighting the
potential of EEG-based approaches in the development of
novel assistive technologies for individuals with upper-limb
prostheses.
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The integration of EEG-based weight perception estima-
tion into prosthetic limb control systems could facilitate
more seamless and intuitive interaction between the user and
their device. By using neural signals, people with prosthetic
limbs can feel more in tune with their movements and have
better control over them. This could lead to better results
in how well the limbs work and how satisfied users are
with them.

On the other hand, the study also has certain limita-
tions. One notable limitation is the relatively small sample
size, the sample size was relatively small, which may affect
the generalizability of the findings. Additionally, while the
classification performance achieved in our study was promis-
ing, it may not be sufficient for practical applications in
all cases. Furthermore, participants may encounter difficul-
ties in performing the tasks required by the experimental
paradigms, potentially affecting the quality of the EEG data
collected. Environmental factors can also significantly affect
EEG data quality and interpretation. External noise, such as
electromagnetic interference or participant movement, can
distort EEG signals, leading to inaccurate results. More-
over, variations in experimental conditions, such as lighting,
temperature, or participant comfort, may introduce incon-
sistencies across data collection sessions. Thus, EEG signal
processing can be complex. Future studies with larger and
more diverse subjects, along with improved methodologies,
could help address these limitations. Additionally, collabo-
rating with industry partners or practitioners can facilitate
the translation of research findings into practical applications.
Engaging in co-design processes, usability testing, and itera-
tive refinement can ensure that EEG-based technologies meet
end-users’ needs and preferences.

In future studies, we aim to improve utilize transfer
learning approaches to further improve classification accu-
racy [69], [70]. We plan to adapt this approach to prosthetic
design and test it first in healthy individuals and then in
individuals with disabilities. Our preliminary studies demon-
strate the potential of the method to be effective in such
applications.
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