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ABSTRACT For various daunting physical world structural optimization design problems, a novel multi-
objective water strider algorithm (MOWSA) is proposed, and its non-dominated sorting (NDS) framework
is explored. This effort is inspired by the recent proposals for the Water Strider Algorithm, a population-
based mathematical paradigm focused on the lifespan of water strider insects. The crowding distance
characteristic is integrated into MOWSA to improve the exploration and exploitation trade-off behavior
during the advancement of the quest. Furthermore, the suggested a posteriori approach exercises the NDS
technique to maintain population diversity, a key issue in meta-heuristics, especially for multi-objective
optimization. Structural mass reduction and nodal deflection maximization are two diverse objectives for
the posed design problems. At the same time, stress on the components and discrete cross-sectional areas
are imposed on safety and side constraints, respectively. Eight planar and spatial truss design problems
demonstrate the utility of the proposed MOWSA approach for solving complex problems where the
performance analysis is based on ten globally accepted metrics. Moreover, MOWSA outcomes were
compared with four state-of-the-art optimization techniques to measure the viability of the suggested
algorithm. MOWSA outperforms other considered algorithms concerning computational run to achieve
optimal solutions and their qualitative behavior over Pareto fronts. The Matlab code for MOWSA can be
obtained from https://github.com/kanak02/MOWSA.

INDEX TERMS Multi-objective, truss design, computational analysis, exploitation, exploration, constraints
techniques.

I. INTRODUCTION
In many real-world challenging problems with diverse frame-
works, meta-heuristics (MHs) have been successfully imple-
mented.MHs are powerful and robust gradient-free stochastic
optimization methods for solving various numerical and
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combinatorial optimization problems. Typically, MHs are
adapted for complex functions such as discrete, multi-
modal, non-linear, noisy, and non-gradient, which cause
computation costs and consumption of a high amount of time.
Besides, occasionally, for such problems, it is impossible
to get solutions [1], [2]. Due to their unique, effective
mechanisms and tools in recent years, MHs have moved into
the limelight, making them popular techniques for solving
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various real-world intricate problems [3]. With background,
traditional mathematics methods either fail to answer these
complex design functions or consume more computational
time. They require gradient derivatives calculation, which
would make it difficult to solve significant problems.
Some competing techniques to solve these optimization
problems are exact solution methods like linear or nonlinear
programming, a branch, and a bound method, among others.
But they require quite a bit of computation time to solve
such a large problem [4], [5], and [6]. Moreover, inaccurate
gradient information can lead them to the wrong solutions.

Engineering design issues comprised of multi-objective
(MO) structure optimization are usually associated with
diverse objectives such as weight minimization and max-
imum nodal deflection [7]. To address such challenging
MO problems, MHs have demonstrated their outstanding
performance in recent years. Some of the renowned MHs
are Genetic Algorithm (GA) [8], Simulated Annealing
(SA) [9], Differential Evolution (DE) [10], Particle Swarm
Optimization (PSO) [11], Artificial Bee Colony (ABC)
[12], Ant Colony Optimization (ACO) [13], Tabu Search
(TS) [14], Heat Transfer Search Algorithm (HTS) [15],
a Cuckoo Search Algorithm [16], Non-dominated Sort-
ing Genetic Algorithm (NSGA-II) [17], Strength Pareto
Evolutionary Algorithm (SPEA2) [18], a Pareto Envelope-
based Selection Algorithm (PESA-II) [19], and a Pareto
Archive Evolution Strategy (PAES) [20]. While the outcomes
generated by MHs are regarded as approximate optimal
results, they can be accomplished in a reasonable time [21].
Gandomi and Alavi cited that MHs are more powerful
than the traditional methods typically used to address
complex issues [22]. MHs were widely enforced to various
real problems owing to their adequate performance and
convenience of implementation [23], [24]. In recent decades,
MHs have become astonishingly prevalent due to ease,
versatility, derivative-free frameworks, and local optimum
escape [2], [15], [21].

One of the most significant drawbacks of such algorithms,
like GA and SA, is that they reported a slow convergence
rate, which results in higher computational effort. Another
flaw is the possibility of the results being trapped in an
optimal local region, as seen in PSO, TS, ACO, and HS.
Another crucial aspect of an efficient optimization technique
is the potential to establish a good trade-off amid global
diversification and local intensification of search space [25].
This is critical because the former aids in quickly finding
high-quality solution locations in the quest field. At the same
time, the latter contributes to hunting regions that are either
previously exposed or may not provide better solutions in
a short amount of time [26]. To address these limitations,
several novel MHs have been developed so far, such as
Salp Swarm [27], modified symbiotic organism search [28],
Moth Flame [29], modified HTS [30], Grasshopper optimiza-
tion [31], improved HTS [32], Marine Predators [33], Grey
Wolf [31], ant lion [34], enhanced chaotic JAYA [35], and
many more.

Nevertheless, an MH algorithm cannot answer every func-
tion efficiently as per the ‘No Free Lunch’ hypothesis [36].
An MH may offer a greater outcome in a certain design
problem, but a similar approach might cause a weak outcome
in different test functions. Simply put, no MH offers the
best answer for every problem. For example, Hertz and de
Werra [37] claimed that TS in the graph coloring problem is
more excellent than SA. In contrast, SA is better than TS in
the lot-sizing problem, as per Kuik et al. [38]. However, Lee
and Kim [39] described that TS and SAwere equally efficient
in a project scheduling problem. Furthermore, Yang [40]
argued that there is no accepted method for contrasting the
performance of different MHs. Consequently, discovering
new, more powerful MHs is an active subject [41].

The primary focus of truss optimization research has
been achieving optimal single-objective truss design. This
typically involves reducing structural weight or mass while
adhering to stress, displacement, or frequency constraints.
Numerous metaheuristic approaches have been explored for
this type of design challenge. For instance, Kaveh and
Talatahari [42] applied the imperialist competitive algorithm
to optimize skeletal structures, demonstrating its effective-
ness with two space trusses and two frame structures. Kaveh
and Mahdavi [43] formulated the colliding bodies optimiza-
tion algorithm for benchmark truss structure optimization.
Mortazavi et al. [44] developed a PSO variant with a fly-back
mechanism and a weight particle concept for truss structure
sizing and layout, proving competitive with other advanced
metaheuristic algorithms. Farshchin et al. [45] introduced a
multi-class teaching–learning-based optimization for shape
and sizing optimization of truss structures, considering
multiple natural frequency constraints. Degertekin et al. [46]
utilized the parameter-free Jaya algorithm for minimizing
the weight of truss structures under natural frequency
constraints. However, these algorithms might underperform
inmulti-objective optimization scenarios due to their need for
a balanced approach to exploration and exploitation.

In contrast, multi-objective truss optimization has seen
less development, primarily due to the complexity of
conflicting objectives, nonlinear constraints, multi-modality,
and non-convex feasible regions [47]. Despite this, multi-
objective optimization is more prevalent in real-world
scenarios, offering the advantage of handling multiple
objectives for decision-making. The choice of an algorithm
in multi-objective truss optimization significantly influences
the outcomes.

A significant portion of this research is dedicated to
Pareto-based algorithms. Coello and Christiansen [48]
introduced a genetic algorithm tailored for multi-objective
truss optimization. In another study [49], a PSO variant,
dubbed FC-MOPSO, was enhanced to preserve diversity
and achieve Pareto solutions in truss optimization tasks.
The development of a modified symbiotic organism search
(MOSOS), tested on five distinct truss design problems,
is documented in [50]. Kaveh and Mahdavi [51] presented
a multi-objective colliding bodies optimization algorithm
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for structural design, demonstrating superior Pareto fronts
compared to NSGA-II andMOPSO across various structures,
including a 120-bar truss dome and a 582-bar tower truss.
Kumar et al. [2] explored the efficacy of the multi-objective
passing vehicle search (MOPVS) in structural design,
noting its proficiency in generating optimal Pareto fronts.
Tejani et al. [15] devised a multi-objective heat transfer
search algorithm (MOHTS) for structural design, validated
through five truss optimization scenarios. Subsequently,
a modified version of this algorithm was also developed
for structural design challenges [30]. Premkumar et al. [52]
proposed a multi-objective gradient-based optimizer
(MOGBO) showing promising results in various truss
optimization problems, including those involving 10 to
942 bars. Further advancements in this field include inno-
vative MOPVS [53], multiobjective forensic-based inves-
tigation algorithms [54], multiobjective thermal exchange
optimization algorithms [55], and decomposition-based
multi-objective heat transfer search [56]. Although these
algorithms generally yield satisfactory Pareto solutions,
stability in different measure indices like hypervolume and
inverted generational distance can vary.

Beyond these developments, research has also delved
into differential evolution variants for multi-objective truss
optimization. Vargas et al. [57] examined generalized
differential evolution (GDE) and its variations for truss
optimization with dual objectives of total weight and
structural displacement, achieving impressive Pareto fronts.
Carvalho et al. [58] assessed different differential evolution
algorithms for three-objective truss optimization, affirming
their applicability in complex scenarios. Lemonge et al. [3]
innovated the third evolution phase of GDE (GDE3) with
an adaptive penalty method for frequency-constrained truss
optimization. Anosri et al. [59] proposed iSHAMODE,
a SHAMODE variation, to address truss optimization with
dual objectives of total weight and reliability index, surpass-
ing other algorithms in hypervolume statistical values.

Recently, Kaveh and Eslamlou [60] proposed a new
nature-based MH called the water strider algorithm (WSA)
that mimics the water strider insect life cycle behavior.
These insects’ territorial behavior, mating way, ripple
communication, foraging, and succession characteristics
are converted into a simplified mathematical framework.
The authors investigated the exploitative, exploratory, local
trap escaping, convergence behavior of WSA through its
applications in various design problems and found it efficient
and straightforward. However, the authors suggested further
improvement and investigation forMO large-scale real-world
problems.

This study introduces a novel Non-Dominated Sorting
(NDS)-based Multi-Objective Water Strider Algorithm
(MOWSA), innovatively combining the NDS frame-
work [17], [61] with the fundamental principles of the
Water Strider Algorithm (WSA). The proposed MOWSA
model showcases several key contributions to the field of
optimization:

• The study presents a unique approach by integrating
Non-Dominated Sorting (NDS) with the Water Strider
Algorithm (WSA), enhancing its capability to address
complex multi-objective optimization problems.

• MOWSA employs a crowding distance mechanism,
crucial for maintaining diversity in solutions. This
feature prevents solution clustering and promotes com-
prehensive search space exploration while focusing on
high-quality, non-dominated solutions.

• The algorithm is designed to balance exploration
and exploitation, which is crucial for effective opti-
mization. In its early iterations, MOWSA emphasizes
discovering new solutions (exploration), while in later
stages, it focuses on refining and converging towards
optimal solutions (exploitation), guided by continuous
assessment through NDS.

• The efficacy of MOWSA is thoroughly tested across
a range of structural design problems, including eight
(10-, 25-, 37-, 60-, 72-, 120-, 200-, and 942-bar) diverse
truss bar and (LSMOP1-LSMOP9) benchmark prob-
lems [62], demonstrating its versatility and robustness.

• MOWSA’s performance is rigorously assessed both
quantitatively and qualitatively, in comparison with
other notable multi-objective optimization algorithms
such as MO Heat Transfer Search (MOHTS) [15], NDS
Grey Wolf Optimizer (NSGWO) [61], MO Colliding
Bodies Optimization (MOCBO) [51], NSGA-II, and
MO Multi-Verse Optimizer (MOMVO) [63].

The rest of the paper is structured as follows: Section II eluci-
dates the underlying principles of the basic WSA optimizer.
Section III delineates the proposed NDS-based MOWSA
algorithm and its operational mechanics. Section IV dis-
cusses the multi-objective design optimization mathematical
framework. Section V delves into a detailed analysis of
performance and results from the truss bar problem evalua-
tions. Finally, Section VI presents conclusions from the study,
future research prospects, and potential applications.

II. FUNDAMENTAL WATER STRIDER ALGORITHM
Kaveh and Eslamlou proposed a new population-based
meta-heuristic algorithm called a Water Strider Algorithm
(WSA) [60]. The WSA algorithm has five pivotal stages:
inception, territorial formation, mating, feeding, and death.
The algorithm conceptualizes the search space as a lake,
where diverse territories represent potential solutions, and
the objective function is metaphorically akin to food sources.
The optimization challenges addressed here are framed as
minimization problems, implying that a lower objective value
equals a more favorable solution. All significant steps for the
WSA are outlined below.
Step 1 (Birth Inception):
The genesis of water striders (WSs) is modeled as the

hatching of eggs scattered across the lake, formulated as
Eq. 1.

WS0i = Ub+ rand × (Ub− Lb), i = 1, 2, . . . nws (1)
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FIGURE 1. Visual representation of creating groups and territory
establishment.

Here,WS0i signifies the initial locale of the i
th water strider.

Ub and Lb represent the upper and lower limits, indicating
the maximum and minimum permissible values; rand is a
random value between 0 and 1; nws denotes the total count
of WSs. The preliminary positions of the WSs are evaluated
via an objective function to ascertain their fitness within the
lake.
Step 2 (Territorial Formation):
Building on the concepts introduced in Step 1, As illus-

trated in Fig. 1,WSs establish territories for dwelling, mating,
and foraging. To form (nt) territories, the WSs are organized
based on their fitness and divided into orderly groups of
(nws/nt). Each group’s jth member is allocated to the jth

territory (j = 1, 2, . . . , nt), ensuring an equal distribution
of WSs in each territory. As highlighted in Step 4, the
females typically occupy the most advantageous positions
(optimal foraging habitats) within each territory, denoted by
the highest and lowest fitness locations as female (optimal)
and male (keystone) positions, respectively.
Step 3 (Mating Process):
Mating is a pivotal aspect of the lifecycle of water striders.

As previously mentioned, the males initiate courtship with
ripples, eliciting responses from females in the form of
attractive or repulsive signals. The likelihood of an attractive
response is set at p, leaving a (1-p) chance for a repulsive
response. For simplification, p is assumed to be 50%. If a
female responds positively, they converge and mate. This is
depicted in Fig. 2.a, with the post-mating position illustrated
in Fig. 2.b. Conversely, as described in Step 3, a female’s
rejection leads to a series of interactions depicted in Fig. 2.c.
Following these interactions, the new position of the keystone
is determined by Eq. (2a):


WS t+1

i = WS ti + R.rand
if mating happensprobability (pm)(p < pm = 0.5),
WS t+1

i = WS ti + R.(1 + rand)
otherwise

(2a)

FIGURE 2. Depiction of water striders’ mating rituals and their
subsequent location shifts.

FIGURE 3. Illustration of the foraging activities undertaken by water
striders when insufficient food is located at a new site post-mating.

The position WS ti represents the ith WS’s locale in the
t th cycle, with rand and R retaining their previously defined
meanings. The selection of the female WS is based on
a fitness proportionate mechanism, such as roulette wheel
selection. The length of R equates to the Euclidean distance
between the male (WS t−1

i ) and female WSs (WS t−1
F ),

as shown in Eq. (2b) and Fig. 2.

R = WS t−1
F −WS t−1

i (2b)

Step 4 (Feeding):
Following mating, regardless of its outcome, WSs expend

significant energy. Hence, they forage for sustenance in
their new positions. The objective function’s value gauges
food availability. If the new value surpasses the previous,
it indicates successful foraging. Otherwise, the WS moves
towards the territory with the highest fitness, guided by
Equation 3 to a locale near the best WS of the lake (WS tBL),
as illustrated in Fig. 3.

WS t+1
i = WS ti + 2 × rand × (WS tBL −WS ti ) (3)

It should be mentioned that the inability to improve the
previous cost value is interpreted as a metaphor for the
condition 2 ∗ rand used.
Step 5 (Death and Succession):
The outcome of the foraging effort is assessed by

comparing the new fitness value with the previous. If the
new value is lower, it signifies the WS’s demise due
to unsuccessful foraging and increased territorial conflict
risk. In this scenario, a newly matured larva assumes the
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FIGURE 4. Flowchart of the WSA.

deceased’s role as the keystone. The successor’s position is
randomly initialized within the territory as per Eq. 4.

WS t+1
i = Lbtj + 2 × rand × (Ubtj − Lbtj ) (4)

where Ubtj and Lb
t
j define the territorial boundaries of the

deceased WS.
Step 6 (WSA Termination):
Suppose the termination criteria do not return the MH loop

to the mating step. In this case, the termination condition is
the maximum iteration count (MaxIter). WSA flowchart is
shown in Fig. 4.

III. MULTI-OBJECTIVE WATER STRIDER ALGORITHM
The proposed multi-objective water strider algorithm
(MOWSA) optimizer employs an elitist non-dominated
sorting (NDS) approach and the crowding distance (CD)
mechanism to maintain diversity [63]. This process begins
with an elitist, non-dominated sorting to differentiate between
various non-domination levels. Then it utilizes the crowding
distance method to ensure diversity within the optimal
solution set.

Initially, every solution obtained from the basic WSA
search or a randomly generated initial population Po is
evaluated against all objectives in the objective function
values and non-dominated solutions (NDS) being found.
Additionally, a domination count np (indicating the number
of solutions that dominate a particular solution p) and a set
of solutions Sp dominated by p are determined. In the next
step, all solutions p are assigned a domination count of zero
and classified into the first non-dominated level, the Pareto
Front (PF), with their non-domination rank (NDRp) set to 1.
Then, for each solution p with a non-zero domination count,
the domination count of each member q in Sp its dominated

Algorithm 1 Pseudocode for MOWSA
Step 1: Initially generate population (P0) randomly in
solution space (S).
Step 2: Evaluate objective space (F) for the generated
population (P0).
Step 3: Sort based on the elitist non-dominated sort method
and find the non-dominated rank (NDR) and fronts.
Step 4: Compute crowding distance (CD) for each front.
Step 5: Update solutions (Pj)
Step 6: Merge P0 and Pj to create Pi = P0 ∪ Pj.
Step 7: For Pi perform Step 2.
Step 8: Based on NDR and CD sort Pi.
Step 9: Replace P0 with Pi for Np first members of Pi.

set nq is decreased by one. If a solution q count drops to
zero, it’s placed in the second non-domination level NDRq
and assigned a rank of 2. This process is repeated for each
member of the second non-domination level to form the third
level, and so on, until the entire population is sorted into
different non-domination levels. Then, theWSA reproduction
with Eqs. 2a - 4 is employed to generate the new positions of
the striders where WS is selected from those non-dominated
solutions. The survivors of the next generation are those
sorted from the combination of the old and new positions
of the striders, who apply the crowding distance mechanism.
In the crowding distance approach, the population is first
sorted based on the value of each objective function in
ascending order. The boundary solutions (i = 1 and i = l,
where l is the total number of solutions in a particular non-
dominated set) are assigned an infinite crowding distance. For
the remaining solutions in the sorted population (i = 2 to
i = l − 1), the crowding distance for each objective j
(j = 1, 2 . . . .m) is calculated based on the difference in the
objective function j values between its neighboring solutions
(i+ 1 and i− 1).

CDij =
fobji+1

j − fobji−1
j

fobjmaxj − fobjminj

(5)

From 5 fobjmaxj and fobjminj are themaximum andminimum
values of jth objective function. After assigning crowding dis-
tances to all solutions in a non-dominated set, each solution
i is characterized by two attributes: its non-domination rank
NDRi and its crowding distance CDi. A crowded comparison
operator (≺n) is used to select between two solutions (i and
j), i ≺n j preferring the one with the lower non-domination
rank (NDRi < NDRj), or in case of a tie (NDRi = NDRj), the
one with the higher crowding distance (CDi > CDj).
Algorithm 1 shows The MOWSA algorithm’s pseudo-

code. The algorithm begins by defining the necessary
parameters, like a population size (Np), termination criteria,
and the max iterations (Maxit) to run MOWSA. Then, in the
feasible search space region S, a set of randomly generated
water striders’ positions Po is formed, and each objective
function in space vector ‘F’ for ‘P0’ is evaluated. Finally,
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Po is subjected to the elitist-based CD and NDS. Fourth,
a new Pj population is created, then combined to P0 to form a
new population Pi. This Pi has been sorted as per elitist NDS
and CD and NDR data. To create a new set of water striders’
positions for the next generation, the best Np solutions are
evaluated. Finally, until the termination criteria are met, the
procedure is repeated.

A. BEST COMPROMISE SOLUTION (BCS) AS PER FUZZY
DECISION
The BSC used to find the best compromise solution among all
solutions obtained in the Pareto front, which Fuzzy Decision
governs, is adopted to find the best fitness for each of the
objective functions as per [64], [65] and functions µji defined
as follows:

µ
j
i =


1, if f ji ≤ f jmin
f jmax − f ji
f jmax − f jmin

, if f jmin ≤ f ji ≤ f jmax

0, if f ji ≥ f jmax
(6)

µ(Normalized) =

∑Nobj
j=1 µij∑M

i=1
∑Nobj

j=1 µij

(7)

where M is the number of NDS, Nobj is the number of
the objective functions, and f jmax and f jmin are the respective
objective function’s max and min values. The value with the
highest value of compromise has the highest value of µi.

B. CONSTRAINT HANDLING APPROACH
MOWSA employs a static penalty, as shown below:

fj(X )

= fj(X ) +

p∑
i=1

pimax{gi(X ), 0} +

NC∑
i=p

pimax{|hi(X )| − δ, 0}

(8)

where fj(X ); j = 1, 2 . . . , n is the objective function, X =

x1, x2, . . . , xm are design variables, gi(X ) ≤ 0, i = 1, 2 . . . p
are inequality constraints, hi(X ) = 0; i = p+ 1, . . . ,NC and
δ are equality and tolerance inequality constraints.

C. COMPUTATION COMPLEXITY OF MOWSA
The computation complexity (CC) of MOWSA adopted
from NSGA-II, similar to the MOHTS [15], NSGWO [61],
MOCBO [51] andMOMVO [63] and [64]. The complexity=

O(dim × Np + Cost(fobj) × Np) for the first iteration. The
computational time complexity = O(dim×Np+Cost(fobj)×
Np) + (NDS + CD) × dim afterwards. The overall time
complexity Maxit to time = O(M )|M = O(dim × Maxit ×

Np + Cost(fobj) × Maxit × Np) + (NDS + CD) × Maxit ×

dim+ (NDS + CD) ×Maxit × Cost(fobj)).

IV. THE DESIGN PROBLEMS
Optimizing the design of trusses in a multi-objective context
presents a significant challenge, mainly due to the competing
nature of objectives, complex constraints, and the discrete
nature of design variables, specifically in terms of cross-
sectional areas. This study focuses on optimizing truss
structures with dual objectives: reducing the overall weight
and compliance while adhering to permissible stress limits.
Achieving an optimal balance between these divergent
objectives is inherently difficult, as optimizing one often
compromises the other. Moreover, the nonlinear constraints
imposed on stress further complicate the optimization process
by restricting the range of viable design variables. Unlike
single-objective optimization, the goal here is not to pinpoint
a singular optimal solution but to identify a set of Pareto opti-
mal solutions, each representing a different trade-off between
the objectives. The MO structural optimization problem
considers structure weight minimization and maximization
of nodal deflection as objective functions. The mathematical
model is as follows:

Find,

A = A1,A2, ..,Am (9)

to minimize the truss mass: f1(A) =
∑m

i=1 AiρiLi and
maximize nodal deflection: f2(A) = max(|δj|)
Subject to:
Behaviour constraints:
Stress constraints, g(A) = |σi| − σmaxi ≤ 0
Side constraints:
Cross-sectional area constraints Amini ≤ Ai ≤ Amaxi
where, i = 1, 2, . . . ,m; j = 1, 2, . . . , n. Ai presents a

design variable vector; ρi and Li are the weight density and
bar length, respectively;Ei and σi showYoung’sModulus and
permissible stress of ‘ith’ bar, respectively. The permissible
upper and lower limits are signified by superscripts ‘max’
and ‘min’, respectively. All variables’ details are represented
in Table 1.

V. EMPIRICAL EVALUATION
To inspect the coverage, convergence, exploration, and
exploitation of MOWSA, large 2-D and 3-D trusses were
tested and compared with other distinguished MO methods
present in the literature as the MOHTS [15], NSGWO [61],
MOCBO [51] and MOMVO [63]. The subsequent section
explains the nine large-scale multiobjective benchmark
problems (LSMOP1-LSMOP9) with 300 decision variables
and eight problems, i.e., planar 10-bar, spatial 25-bar,
60-bar ring, 72-bar, dome 120-bar, 200-bar, and tower
942-bar truss design that were measured [2], [30]. Table 1
shows design considerations and other properties assumed
to optimize eight trusses. Also, Figures 5, 8, 11, 14, 17,
20, 23, and 26 illustrate load directions, constraints, and
dimensions.
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TABLE 1. Design considerations of the truss problems.

A. PERFORMANCE EVALUATION
In this paper, all MHs are performed 30 times independently
for all problems. Population size and maximum iteration
numbers are 40 and 500, respectively [65].

• The Hypervolume (HV) and Inverted-Generational
Difference (IGD) are taken to test the uniformity, con-
vergence simultaneously, and spread of NDS obtained
from the computation test. The higher HV, the better
the Pareto front, whereas the lower IGD, the better the
Pareto front.

• To test the search efficiency and reliability of theMHs as
quicker convergence rate Generational Distance (GD),
Spread (SD), Coverage (CVG), and Coverage over
Pareto Front (CPF) are taken [66] and [67].

• To test the computational complexity, Runtime (RT)
metric and for combined diversity-spread, spacing (SP),
Diversity (DM), and Pure Diversity (PD) metrics are
performed [65], [66], and [67]. The lower (i.e. GD,
CVG, SP, SD, IGD, and RT) and higher (i.e. CPF,
DM, PD, and HV) indicators result represent the better
optimal front.

• The mean and standard deviation (STD) values of
the metrics are observed as the statistical performer
yardstick [2] and [3].

• Friedman’s rank test (FNRT) is considered as a statistical
test of all MHs [15] and [24].

GD =

√∑no
i=1 d

2
i

n
(10)

FIGURE 5. The 10-bar truss.

IGD =

√∑nt
i=1(d

′
i )
2

n
(11)

SP ≜

√√√√ 1
n− 1

n∑
i=1

(d − di)2 (12)

SD =

√√√√ 0∑
i=1

max(d(ai, bi)) (13)

PD =

∑
H (i,j,...)̸=0m(h(i, j, . . .))∑
H (i,j,...)̸=0m(H (i, j, . . .))

(14)

HV = 3

( ⋃
s∈PF

{s′|s ≺ s′ ≺ snadir }
)

(15)
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FIGURE 6. Best pareto fronts of considered algorithms for 10-bar truss.

DM =
df + dl +

∑N−1
i=1 |di − d |

df + dl + (N − 1)d
(16)

CVG =

∑n
i=1 ψi

N
,

ψi =

 1, if Pi ∈ PF .andαi−1 ≤ tan
f1(x)
f2(x)

≤ αn

0,Otherwise

(17)

CPF =

∑n
i=1 PFi
N

(18)

RT =

∑n
i=1 T
n

. (19)

where ‘no’ is the True Pareto solution (PS) number, ’nt’ is
the true Pareto optimal solutions number, o is the number
of the objectives, d is the mean of all di, di, and d ′

i specifies
the Euclidean distance, n is PS number, di = minj(|f i1(x⃗) −

f j1(x⃗)| + |f i2(x⃗) − f j2(x⃗)| for all i, j = 1, 2, . . . , n., ai and
bi is the max and min value in the ith objective. We get
the approximated true Pareto fronts using all algorithm PF
solutions combined in one solution to compute all metric
results.

B. RESULTS AND DISCUSSION
The performance metrics statistical results accomplished
through the application of MOWSA, MOHTS, MOCBO,
NSGWO, and MOMVO optimizers for eight truss test
examples are elucidated in Tables 2-11.

1) 10-BAR 2DTRUSS BENCHMARK
According to Table 2, the best fmean result of HV metric
is realized by proposed MOWSA among all that exhibit
an 8.26% increase from MOMVO value at minimum
fstd. . MOWSA accomplished the highest FNRT value of
500, followed by MOHTS and MOCBO, thus represent-
ing its superior solution density in the propinquity of
the Pareto Front. For GD indicator based on Table 3
MOWSA fmean value illustrates a significant 61.10% and

FIGURE 7. Box plots of considered algorithms for 10-bar truss.

FIGURE 8. The 25-bar spatial truss.

36.83% decrease from MOMVO and MOHTS. Similarly, a
94.10%, 81.35%, 78.57%, and 66.01% decrease in fstd value
are reported by MOWSA relative to MOMVO, MOHTS,
MOCBO, and NSGWO, respectively. Moreover, MOWSA
attains the best FNRT value of 125, which shows its
enhanced convergence attribute regarding other optimizers.
Regarding CVG performance measure as per Table 4, the
MOMVO optimizer outperforms others; however, at a 95%
significance value, MOWSA displays an enhanced coverage
characteristic. Table 5 depicts the CPF metric fmean result
by the MOWSA has a significant percentage increase of
75.70% and 88.72% fromMOMVO and NSGWO at superior
fstd value. Moreover, MOWSA realizes the best FNRT
value of 475, revealing its enhanced coverage over the
Pareto Front feature. In terms of solution, diversity attribute
driven by DM metric as stated in Table 6, the suggested
MOWSA demonstrates its improved quality relatively as it
achieves the best fmean , fstd results and settled at best FNRT
values of 500 relatively. PD measure outcomes, according to
Table 7, reveal that the MOWSA has a percentage increase
of 54.03%, 14.37%, 10.64%, and 9.44% in fmean value from
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TABLE 2. Results of (HV Metric) on truss bar problems.

TABLE 3. Results of (GD Metric) on truss bar problems.

MOMVO, MOCBO, NSGWO, and MOHTS, respectively.
Also, fstd value of MOWSA reported a considerable percent
reduction of 49.83%, 27.86%, and 26.92% from MOMVO,
NSGWO, and MOCBO, respectively. MOWSA realizes the
best FNRT value of 375 and exhibits its superior pure
diversity behavior. Table 8 indicates the SP measure accord-
ingly to the MOWSA fmean the value reported a percentage
decrease of 29.18%, 12.91%, 46.63%, and 84.63% from
MOMVO, NSGWO, MOCBO, and MOHTS, respectively,

at minimum fstd results. The suggested MOWSA algorithm
realizes the best FNRT value of 125 and outperforms others in
spacing quality behavior at 95% significance value. Similarly,
MOWSA outperforms others based on SD metric results
reported in Table 9. There is a 67.86%, 69.52%, 54.76%,
and 69.92% decrease reported by fmean result of MOWSA
concerning MOMVO, MOCBO, NSGWO, and MOHTS,
respectively. MOWSA accomplished the best FNRT result
of 125 and illustrated its non-dominated solutions fair
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TABLE 4. Results of (CVG Metric) on truss bar problems.

TABLE 5. Results of (CPF Metric) on truss bar problems.

distribution. Referring to the IGD as specified in Table 10,
MOWSA realizes the best fmean value, i.e., 1043.04136,
followed by MOHTS. As per the FNRT test, MOWSA
realized the second-best value of 175 after MOHTS settled at
150 values. Thus, at a 95% significance value, MOWSA dis-
plays its enhanced convergence-spread equivalence against
all. Table 11 depicts the RT metric results according to
which MOWSA found the best fmean , fstd values, i.e.,
12.7284798, 1.9189647 amongst contrasted algorithms. Its

bestFNRT value, i.e., 125, shows its minimum computational
cost to achieve the optimal solution against other optimizers.
Table 12 reveals the BCS that satisfied each objective(
fweight , fcompliance

)
depending on the fuzzy decisionmethod.

As can be seen from the table, MOWSA has outstanding BCS
results, i.e., (3323.2601, 153080.53) of any of the algorithms
tested.

The qualitative behavior of all considered algorithms is
illustrated through their corresponding best Pareto fronts and
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TABLE 6. Results of (DM Metric) on truss bar problems.

TABLE 7. Results of (PD Metric) on truss bar problems.

combined behavior, as shown in Figure 6. As per comparative
analysis, MOWSA provides smooth, continuous, and diverse
solutions. Box plots were constructed to demonstrate the
quantitative behavior of considered algorithms in terms of
the performance measure (as shown in Figure 7), which
depict the superior behavior of MOWSA concerning other
optimizers.

2) 25-BAR 3D TRUSS BENCHMARK
Figure 8 shows a 25-bar spatial truss. The first performance
measure (i.e., HV) results are depicted in Table 2, according

to which the proposed MOWSA optimizer realizes the
best fmean value of 0.69540008, followed by MOHTS.
The FNRT results accomplished by MOWSA, MOHTS,
MOCBO, NSGWO, and MOMVO are 500,400, 200, 300,
and 100, respectively. At a 95% significance value, MOWSA
demonstrates its superior solutions density near the Pareto
Front relative to other algorithms. GD metric is the second
efficiency measure that computational results are illustrated
in Table 3 accordingly MOWSA fmean value presents
a percentage decrease of 59.98%,23.81%,59.31%, and
28.07% from MOMVO, NSGWO, MOCBO, and MOHTS,
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TABLE 8. Results of (SP Metric) on truss bar problems.

TABLE 9. Results of (SD Metric) on truss bar problems.

respectively. MOWSA realizes the best FNRT value of 100,
revealing its convergence behavior excellence amongst other
algorithms. As per Table 4, the best CVG metric fmean the
result is reported by the MOMVO algorithm, while the least
fstd value is realized by MOWSA. MOWSA displays its
enhanced coverage characteristic. Table 5 presents the CPF
metric outcomes that illustrate the MOWSA realizes the best
fmean the value that exhibits a significant increase of 61.78%
and 61.37% from MOMVO and NSGWO, respectively.

Moreover, in terms of fstd, , the MOWSA algorithm value
reported a significant decrease of 87.36%, 89.22%, 90.45%,
and 70.18% relative to MOMVO, NSGWO, MOCBO,
and MOHTS, respectively. MOWSA found the best FNRT
value of 500, followed by MOHTS, which manifests its
enhanced coverage over the Pareto Front feature. DM met-
ric computational analysis, as stated in Table 6, shows
that the best fmean value is 0.84247603 is realized by
MOWSA relatively at least 0.01401474 fstd value. The
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TABLE 10. Results of (IGD Metric) on truss bar problems.

TABLE 11. Results of (RUNTIME - RT Metric) on truss bar problems.

FNRT values gained by MOWSA, MOCBO, NSGWO,
MOMVO, and MOHTS are 500, 400, 250, 250 and 100,
respectively. At 95% significance value, MOWSA exhibits
enhanced solution diversity. The PD results are illustrated in
Table 7, whereby MOWSA fmean value shows a percentage
increase of 37.82%, 13.55%, 31.88%, and 40.14% from
MOMVO, NSGWO, MOCBO, and MOHTS, respectively.
The FNRT value accomplished by MOWSA, MOHTS,
MOCBO, NSGWO, and MOMVO is 450, 200, 250,350, and

250, respectively. At a 95% significance value, MOWSA
outperforms other compared algorithms in terms of solution
pure diversity attributes. Table 8 governs the SP metric
results that demonstrate fmean value of the MOWSA has
a percentage decrease of 65.01%, 59.81%, 61.15%, and
88.59% from MOMVO, NSGWO, MOCBO, and MOHTS,
respectively. Moreover, fstd value of MOWSA reported
a 94.24%, 65.02%, 13.91%, and 95.46% decrease from
MOMVO, NSGWO, MOCBO, and MOHTS algorithms,
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TABLE 12. The Best Compromise Solution (BCS) results of all algorithms.

FIGURE 9. Best pareto fronts of considered algorithms for 25-bar truss.

respectively. The MOWSA realizes the best FNRT value
of 100, which relatively presents its best spacing feature.
SD performance measure outcomes, as depicted in Table 9,
indicate that the best fmean value, i.e., 0.20366592, is attained
by MOWSA, is 64.27%, 76.17%, 76.46%, and 77.82%
less than MOCBO, NSGWO, MOMVO, and MOHTS,
respectively. The FNRT results of MOWSA, MOHTS,
MOCBO, NSGWO, and MOMVO are 100,450,200,350,400,
respectively. These findings manifest the well-distribution of
MOWSANDS relative to others. As per the IGDmetric com-
putational analysis that is illustrated in Table 10, the fmean
value of MOWSA exhibits a substantial percentage decrease
of 94.88%, 60.72%, 58.74%, and 19.96% from MOMVO,
NSGWO, MOCBO, and MOHTS, respectively. Addition-
ally, MOWSA realize a 98.68%, 92.57%, 78.04%, 69.83%
decrease of fstd value against MOMVO, NSGWO, MOCBO,

FIGURE 10. Box plots of considered algorithms for 25-bar truss.

FIGURE 11. The 37-bar truss.

and MOHTS optimization methodologies, respectively. Fol-
lowing FNRT inspection, the proposed MOWSA uncovers
the best result of 100, and at 95% significance value,
it relatively reveals its superior property of convergence-
spread equivalence. Table 11 indicates the RT metric results
as per the best fmean value of 32.2667082 reported by
MOWSA, which is less than other contrasted optimization
techniques. The FNRT results of MOWSA, MOHTS,
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MOCBO, NSGWO, and MOMVO are 100, 375, 200, 325,
and 500, respectively. At a 95% significance value, MOWSA
portrays its dominance in terms of the least computational
time to find the optimal solutions relatively. According to
Table 12, the proposed MOWSA realizes the fweight value of
2362.3432 and the 34997.369 value for fcompliance that is the
best BCS among all.

Figure 9 illustrates the qualitative behavior of all five
algorithms in terms of their best Pareto fronts and cor-
responding BCS results. Moreover, the figure presents
the comparative analysis through combined Pareto fronts
according to which the MOWSA solutions are well spread,
continuous, and smooth. The quantitative superiority of the
proposed MOWSA technique over the others is depicted in
Figure 10 for all examined performance metric implications.

3) 37-BAR 2D TRUSS BENCHMARK
Figure 11 shows a 37-bar truss structure. According to
Table 2, the best fmean result of the HV metric is realized
by MOCBO among all, while the least fstd result is reported
by MOHTS. According to FNRT analysis, the highest rank
is achieved by MOCBO, which governs its refined solutions
density near the Pareto Front. For GD indicator based
on Table 3 MOWSA fmean value illustrates a significant
67.70% and 63.34% decrease from MOMVO and MOCBO.
Similarly, a 92.65%, 85.27%, 84.56%, and 38.33% decrease
in fstd value is reported by MOWSA relative to MOMVO,
NSGWO, MOCBO, and MOHTS, respectively. Moreover,
MOWSA attains the best FNRT value of 100, which shows its
enhanced convergence attribute regarding other optimizers.
In terms of CVG performance measures as per Table 4, the
MOWSA optimizer outperforms others by realizing the best
fmean and FNRT results of 0.9 and 187.5, respectively. Also,
at a 95% significance value,MOWSAdisplays enhanced cov-
erage characteristics among other algorithms. Table 5 depicts
that the MOWSA CPF metric fmean result has a significant
percentage increase of 137.01% and 46.95% from MOMVO
and NSGWO at superior fstd value. Moreover, MOWSA
realizes the best FNRT value of 450, revealing its improved
coverage rate over the Pareto Front attribute. Table 6
presents theDMmetric investigationwherebyMOWSAfinds
the best fmean result that has a 62.79%, 45.40%, 17.58%,
and 8.46% increase from MOMVO, MOHTS, NSGWO,
and MOCBO, respectively. The FNRT values achieved by
MOWSA, MOHTS, MOCBO, NSGWO, and MOMVO are
500, 200, 400,300, and 100, demonstrating the MOWSA
improved solution diversity compared to other contrasted
optimizers. PD measures outcomes according to Table 7,
which reveals a better fmean and FNRT result of MOCBO
followed by MOWSA. At a 95% significance value,
MOWSA exhibits its enhanced pure diversity behavior.
Table 8 indicates the SP measure accordingly to the
MOWSA fmean the value reported a percentage decrease of
77.68%, 46.40%, and 32.66% from MOHTS, NSGWO, and
MOCBO, respectively. The suggested MOWSA algorithm
realizes the best FNRT value of 200 after MOMVO. At a 95%

FIGURE 12. Best pareto fronts of considered algorithms for 37-bar truss.

FIGURE 13. Box plots of considered algorithms for 37-bar truss.

significance value, the suggested algorithm shows a finer
spacing quality behavior. Similarly, MOWSA outperforms
others based on SD metric results reported in Table 9.
There is a 43.52%, 41.20%, 25.06%, and 41.02% decrease
reported by fmean result of MOWSA concerning MOMVO,
NSGWO, MOCBO, and MOHTS, respectively. MOWSA
accomplished the best FNRT result of 100 and illustrated its
non-dominated solutions and fair distribution against other
methodologies. Referring to the IGD as specified in Table 10,
MOWSA fmean value realizes a significant reduction of
89.91% and 26.96% concerning the MOMVO and MOHTS
algorithm. As per the FNRT test, MOWSA realizes the
second-best value of 200 after MOCBO, which settled at 150.
Thus, at a 95% significance value, MOWSA shows improved
convergence-spread equivalence against all. Table 11 depicts
the RT metric results according to which MOWSA found the
best fmean value reported a reduction of 32.66%, 10.74%,
and 9.39% concerning MOMVO, MOHTS, and NSGWO,
respectively. The MOWSA, MOHTS, MOCBO, NSGWO,
and MOMVO achieve the best FNRT values of 100, 325,
200, 375, and 500, correspondingly manifest the MOWSA
excellence in reaching the optimal solution with minimum
computational complexity against other optimizers. As can
be available from Table 12, MOWSA has the most acceptable
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FIGURE 14. The 60-bar ring truss.

BCS results, i.e., (1244.4363, 17721.946), than any other
algorithms tested.

The qualitative behavior of all considered algorithms is
illustrated through their corresponding best Pareto fronts and
combined behavior, as shown in Figure 12. Per comparative
analysis, MOWSA provides smooth, continuous, and diverse
solutions. Box plots were constructed to demonstrate the
quantitative behavior of considered algorithms in terms of
the performance measure (as shown in Figure 13), which
depicts the superior behavior of MOWSA concerning other
optimizers.

4) 60-BAR 3D TRUSS BENCHMARK
Figure 14 shows a 60-bar truss structure. The HV per-
formance is shown in Table 2, according to which the
MOHTS optimizer realizes the best fmean value followed
by NSGWO and MOWSA. The FNRT results accomplished
by MOWSA, MOHTS, MOCBO, NSGWO, and MOMVO
are 300,475,200,400, and 125, respectively. At a 95%
significance value, MOWSA demonstrates its improved
solutions density near the Pareto Front. GD metric is the
second efficiency measure that computational results are
illustrated in Table 3 accordingly MOWSA fmean value
presents a percentage decrease of 80.26%, 48.76%, and
46.69% from MOCBO, MOMVO, and NSGWO, respec-
tively. MOWSA realizes the second-best FNRT value of
175 after MOHTS, revealing its convergence behavior
excellence regarding MOCBO, MOMVO, and NSGWO
algorithms. As per Table 4, the best CVG metric fmean
the result is reported by MOWSA presents a percentage
decrease of 32.56%, 32.56%, 31.53%, and 30.83% from
MOCBO, NSGWO, MOMVO, and MOHTS. The FNRT
results accomplished by MOWSA, MOHTS, MOCBO,
NSGWO, and MOMVO are 100, 275, 412.5, 412.5, and 300,

FIGURE 15. Best pareto fronts of considered algorithms for 60-bar truss.

respectively. At a 95% significance value, MOWSA shows its
improved coverage characteristic as regards other optimiza-
tion strategies. Table 5 presents the CPF metric outcomes
that illustrate the MOWSA realizes the best fmean value
that exhibits a percentage increase of 130.70%, 26.16%, and
9.12% fromMOMVO, NSGWO, and MOCBO, respectively.
Moreover, MOWSA found the best FNRT value of 425,
followed by MOHTS, MOCBO, NSGWO, and MOMVO,
which manifests its enhanced coverage over the Pareto
Front feature, referring to others. DM metric computational
analysis, as stated in Table 6, shows that the best fmean
value is realized by NSGWO that MOCBO and MOWSA
succeed. The FNRT value gained by NSGWO, MOCBO,
MOWSA, MOHTS, and MOMVO is 425,400,375,200, and
100, respectively. At a 95% significance value, MOWSA
exhibits improved solution diversity. The PD performance
measure results are illustrated in Table 7, whereby the
best fmean and fstd value is reported by the NSGWO
technique. The FNRT values accomplished by MOWSA,
MOHTS, MOCBO, NSGWO, and MOMVO are 350, 400,
175, 425, and 150, respectively. At a 95% significance
value,MOWSAdemonstrates an improved solutionwith pure
diversity attributes. Table 8 governs the SP metric results
that demonstrate fmean value of the MOWSA has a substan-
tial percentage decrease of 87.82%, 60.05%, 58.53%, and
38.75% from MOHTS, MOMVO, MOCBO, and NSGWO,
respectively. Moreover, fstd value of MOWSA reported
a substantial reduction of 70.52%, 53.33%, 44.91%, and
94.54% from MOMVO, NSGWO, MOCBO, and MOHTS
algorithms, respectively. The MOWSA realizes the best
FNRT value of 175 and relatively presents its optimal spacing
feature. SD performance measure outcomes, as depicted in
Table 9, indicate that the best fmean value, i.e., 0.56910177,
is attained by MOWSA that shows a 44.79%, 39.64%,
37.30%, and 43.59% decrease from MOMVO, NSGWO,
MOCBO, MOHTS, respectively. The FNRT results of
MOWSA, MOHTS, MOCBO, NSGWO, and MOMVO are
100, 400, 225, 300, and 475, respectively. These findings
manifest the well-distribution of MOWSA-nondominated
solutions relative to others. As per the IGD metric
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FIGURE 16. Box plots of considered algorithms for 60-bar truss.

FIGURE 17. The 72-bar 3D truss.

computational analysis that is illustrated in Table 10,
the leading fmean and fstd results are exhibited MOWSA
succeeds that. The FNRT results of MOWSA, MOHTS,
MOCBO, NSGWO, and MOMVO are 200, 175, 425,
225, and 475, respectively, and at a 95% significance
value, MOWSA demonstrates it strengthens the property of
convergence-spread equivalence relatively. Table 11 indicates
the RT metric results as per the best fmean value of
78.3537122 reported by MOWSA, which is less than other
contrasted optimization techniques. The FNRT results of
MOWSA, MOHTS, MOCBO, NSGWO, and MOMVO are
120, 250, 200, 400, and 500, respectively. At a 95%
significance value, MOWSA portrays its dominance in terms
of the least computational time to find the optimal solutions
relatively. According to Table 12, the proposed MOWSA
realizes the fweight value of 1852.5902 and 78036.883 value
for fcompliance That is the best BCS among all.

Figure 15 illustrates the qualitative behavior of all
five algorithms in terms of their best Pareto fronts and
corresponding BCS results. Moreover, the figure presents
the comparative analysis through combined Pareto fronts
according to which the MOWSA solutions are well spread,

continuous, and smooth. The quantitative superiority of
MOWSA over the other MHs is depicted in Figure 16 for all
examined performance metric implications.

5) 72-BAR 3D TRUSS BENCHMARK
The 72-bar 3D truss is shown in Figure 17. According to
Table 2, the best fmean and fstd result of the HVmetric is real-
ized by MOHTS accompanied by NSGWO and MOWSA.
According to FNRT analysis, the proposedMOWSAmethod-
ology achieved 400 ranks, and at a 95% significance value,
it demonstrates refined solutions density near the Pareto
Front. For GD indicator based on Table 3 MOWSA fmean
value illustrates a significant 69.45%, 53.02%, 40.02%, and
24.76% decrease from MOCBO, MOMVO, NSGWO, and
MOHTS, respectively. The FNRT results of MOWSA,
MOHTS, MOCBO, NSGWO, and MOMVO are 125, 275,
450, 250, and 400, respectively. These outcomes illustrate
the MOWSA enhanced convergence attribute concerning
other optimizers. In terms of CVG performance measures,
as per Table 4, the MOWSA optimizer outperforms others
by realizing the best fmean and FNRT results of 0.8 and 150,
respectively. Also, at a 95% significance value, MOWSA
displays enhanced coverage characteristics among other
algorithms. Table 5 depicts that the MOWSA CPF metric
fmean result has a significant percentage increase of 171.69%
and 43.55% from MOMVO and NSGWO at superior fstd
value. Moreover, MOWSA realizes the best FNRT value
of 450, revealing its improved coverage over the Pareto
Front attribute. Table 6 presents the DM metric investigation
whereby MOWSA finds the best fmean the result that has
a 108.52%, 70.23%, 24.58%, and 10.53% increase from
MOMVO, MOHTS, NSGWO, and MOCBO, respectively.
The FNRT value achieved by MOWSA, MOHTS, MOCBO,
NSGWO, and MOMVO is 500, 200, 400,300, and 100,
demonstrating the MOWSA improved solution diversity
compared to other contrasted optimizers. PD measures
outcomes according to Table 7, which reveals a better fmean
of investigated.

MOWSA has a percentage increase of 84.73%, 39.64%,
22.02%, 9.30% from MOMVO, MOCBO, MOHTS, and
NSGWO, correspondingly. MOWSA finds the best FNRT
value of 450 out of all the optimization techniques, followed
by NSGWO. At a 95% significance value, MOWSA exhibits
its enhanced pure diversity behavior. Table 8 indicates
the SP measure accordingly to the MOWSA fmean the
value stated reduction of 65.26%, 51.37%, and 5.13%
from MOHTS, MOCBO, and NSGWO, respectively. The
suggested MOWSA algorithm realizes the best FNRT
value of 225 after MOMVO. At a 95% significance
value, the suggested MOWSA shows a more acceptable
spacing quality behavior. Similarly, MOWSA outperforms
others based on SD metric results reported in Table 9.
There is a 40.79%, 38.01%, 22.74%, and 36.64% decrease
reported by fmean result of MOWSA concerning MOMVO,
NSGWO, MOCBO, and MOHTS, respectively. MOWSA
accomplished the best FNRT result of 100 and illustrated

VOLUME 12, 2024 55173



K. Kalita et al.: MOWSA for Complex Structural Optimization

FIGURE 18. Best pareto fronts of considered algorithms for 72-bar truss.

FIGURE 19. Box plots of considered algorithms for 72-bar truss.

its nondominated solution’s fair distribution against other
methodologies. Referring to the IGD test as indicated in
Table 10, MOWSA fmean value realize a significant per-
centage decrease of 86.89%, 67.60%, 49.80%, and 29.68%
concerning MOMVO, MOCBO, MOHTS, and NSGWO
algorithm. As per the FNRT test, MOWSA realizes the
superior value of 150, followed by NSGWO, which set-
tled at 175 values. Thus, at a 95% significance value,
MOWSA displays its enhanced convergence-spread equiv-
alence against all. Table 11 depicts the RT metric results
according to which MOWSA found the best fmean the value
reported a percentage decrease of 17.67%, 5.16%, and 2.51%
concerning MOMVO, NSGWA, and MOHTS, respectively.
The MOWSA, MOHTS, MOCBO, NSGWA, and MOMVO
achieve the best FNRT values of 150, 275, 175, 400, and
500, correspondingly manifesting the MOWSA excellence in
reaching the optimal solution with minimum computational
complexity against other optimizers. From BCS analysis,
as can be seen in Table 12, MOWSA realizes the minimum
fweight results of 6046.4369 and maximum fcompliance value
of 72102.582 amongst the other algorithms tested.

The qualitative behavior of all considered algorithms is
illustrated through their corresponding best Pareto fronts and

FIGURE 20. The 120-bar 3D truss.

combined behavior, as shown in Figure 18. Per comparative
analysis, MOWSA provides smooth, continuous, and diverse
solutions. Box plots were constructed to demonstrate the
quantitative behavior of considered algorithms in terms of the
performance measure (as shown in Figure 19), which depict
the superior behavior of MOWSA to other optimizers.

6) 120-BAR 3D TRUSS BENCHMARK
The 120-bar 3D truss is shown in Figure 20. The HV
efficiency measurement results are shown in Table 2,
according to which the proposed MOWSA optimizer realizes
the best fmean value of 0.55412256. In contrast, the least
fstd value is achieved by NSGWO. The FNRT results
accomplished by MOWSA, MOHTS, MOCBO, NSGWO,
and MOMVO are 475, 425, 200,300, and 100, respectively.
At a 95% significance value, MOWSA displays its enhanced
solutions density near the Pareto Front. GD metric is the
second efficiency measure that computational results are
illustrated in Table 3; accordingly, MOWSA obtains the
best fmean value that has a decrease of 48.58%, 41.58%,
and 37.94% from MOMVO, MOCBO, and MOHTS,
respectively. Also, the fstd value obtained by MOWSA
presents a percentage decrease of 83.87%, 77.50%, 56.82%,
and 39.44% concerning MOMVO, MOHTS, MOCBO, and
NSGWO, respectively. MOWSA realizes the second-best
FNRT value of 175 after NSGWO, revealing its convergence
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behavior excellence at a 95% significance value regarding
other examined algorithms. As per Table 4, the best CVG
metric fmean and fstd result is reported by the MOMVO
algorithm. The FNRT results accomplished by MOWSA,
MOHTS, MOCBO, NSGWO, and MOMVO are 387.5, 250,
450, 312.5, and 100, respectively. Table 5 presents the CPF
metric outcomes that illustrate the MOWSA realizes the best
fmean the value exhibits a percentage increase of 8.87%,
84.10%, and 7.08% fromMOMVO, NSGWO, andMOCBO,
respectively. Moreover, MOWSA found the best FNRT value
of 475, followed by MOHTS, which manifests its enhanced
coverage over the Pareto Front feature, referring to others.
DM metric computational analysis, as stated in Table 6,
shows that the best fmean value is realized by MOWSA,
which has an increase of 29.80%, 33.06%, 12.24%, and
40.64% from MOMVO, NSGWO, MOCBO, and MOHTS
algorithms correspondingly. The FNRT values gained by
MOWSA, MOHTS, MOCBO, NSGWO, and MOMVO are
500,125,400, 225, and 250, respectively. At 95% significance
value, MOWSA exhibits improved solution diversity. The PD
performance measure results are shown in Table 7, whereby
the best fmean is accomplished by theMOWSA technique and
displays a percentage increase of 68.09%, 13.18%, 37.91%,
and 31.39% from MOMVO, NSGWO, MOCBO, and
MOHTS, respectively. The FNRT values accomplished by
MOWSA, MOHTS, MOCBO, NSGWO, and MOMVO
are 475, 275, 200, 375, and 175, respectively. At 95%
significance value, MOWSA demonstrates an enhanced
solution with pure diversity attributes over other algorithms.
Table 8 governs the SP metric results that demonstrate
fmean value of the MOWSA has a substantial percentage
decrease of 86.51%, 73.50%, 64.39%, and 55.28% from
MOHTS, MOMVO, MOCBO, and NSGWO, respectively.
Moreover, fstd value of MOWSA reported a significant
decrease of 97.29%, 95.39%, 86.08%, and 77.12% from
MOMVO, MOHTS, MOCBO, and NSGWO, respectively.
The MOWSA realizes the best FNRT value of 100 and
relatively presents its optimal spacing feature. SD perfor-
mance measure outcomes, as depicted in Table 9, indicates
that the best fmean value, i.e., 0.20310314, is attained by
MOWSA, showing a substantial 79.32%, 79.22%, 69.70%,
and 77.70% decrease from MOMVO NSGWO, MOCBO,
and MOHTS, respectively. The FNRT results of MOWSA,
MOHTS, MOCBO, NSGWO, and MOMVO are 100, 300,
200, 450, and 450, respectively. These findings manifest
the well-distribution of MOWSA non-dominated solutions
relative to others. As per the IGD metric computational
analysis that is illustrated in Table 10, the leading fmean
and fstd results are exhibited by the MOHTS technique
that MOWSA succeeds. The FNRT results of MOWSA,
MOHTS, MOCBO, NSGWO, and MOMVO are 175, 125,
350,350, and 500, respectively; MOWSA demonstrates its
strength in the property of convergence-spread equivalence
relatively. Table 11 indicates the RT metric results according
to which best fmean value of is reported by MOCBO while
the fstd results of MOWSA are less than other contrasted

FIGURE 21. Best pareto fronts of considered algorithms for 120-bar truss.

FIGURE 22. Box plots of considered algorithms for 120-bar truss.

optimization techniques. The FNRT results of MOWSA,
MOHTS, MOCBO, NSGWO, and MOMVO are 150, 325,
175, 350, and 500, respectively. At a 95% significance value,
MOWSA portrays its dominance in terms of the minimum
computational cost to find the optimal solutions relatively.
According to Table 12, the proposed MOWSA realizes the
fweight value of 19060.176 and 1546234.8 value for fcompliance
That is the best BCS among all.

Figure 21 illustrates the qualitative behavior of all
five algorithms in terms of their best Pareto fronts and
corresponding BCS results. Moreover, the figure presents
the comparative analysis through combined Pareto fronts
according to which the MOWSA solutions are well spread,
continuous, and smooth. The quantitative superiority of the
proposed MOWSA technique over the others is depicted in
Figure 22 for all examined performance metric implications.

7) 200-BAR 3D TRUSS BENCHMARK
The 200-bar 3D truss structure is shown in Figure 23.
According to Table 2, the best fmean and fstd result of the
HV metric is realized by MOCBO accompanied by NSGWO
and MOWSA. According to FNRT analysis, the proposed
MOWSA methodology achieved 325 ranks, and at a 95%
significance value, it demonstrates refined solutions density
near the Pareto Front. For GD indicator based on Table 3
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FIGURE 23. The 200-bar 3D truss.

FIGURE 24. Best pareto fronts of considered algorithms for 200-bar truss.

MOHTS fmean value is the best, while the MOMVO reported
the least fstd result relatively. The FNRT results of MOWSA,
MOHTS, MOCBO, NSGWO, and MOMVO are 250, 125,
450, 400, and 275, respectively. These outcomes illustrate
the MOWSA enhanced convergence attribute regarding other
optimizers at a degree of 95% significance. In terms of
CVG performance measures as per Table 4, the MOWSA
optimizer outperforms others by realizing the best fmean and
FNRT results of 0.6825 and 100, respectively. Also, at a 95%
significance value, MOWSA displays enhanced coverage
characteristics among other algorithms. Table 5 depicts that
the MOWSA CPF metric fmean the result has a significant
percentage increase of 254.02%, 75.50%, and 68.79% from
MOMVO, NSGWO, and MOHTS at better fstd value. The
FNRT results of MOWSA, MOHTS, MOCBO, NSGWO,
and MOMVO are 400, 225, 500, 275, and 100, respectively.
At a 95% significance value, MOWSA reveals its enhanced
coverage over the Pareto Front attribute. Table 6 presents the
DM metric investigation whereby MOWSA finds the best
fmean result with a 133.09%, 56.94%, and 35.53% increase
from MOMVO, MOHTS, and NSGWO. Here, MOCBO
finds the least fstd value. The FNRT values achieved by
MOWSA, MOHTS, MOCBO, NSGWO, and MOMVO are
450, 225, 450, 275, and 100, demonstrating the MOWSA
improved solution diversity compared to other contrasted
optimizers. PD measure outcomes according to Table 7,
which reveals a better fmean of investigated MOWSA has
a percentage increase of 149.61%, 105.34%, 20.20%, and

FIGURE 25. Box plots of considered algorithms for 200-bar truss.

22.13% from MOMVO, MOHTS, NSGWO, and MOCBO
correspondingly. MOWSA finds the best FNRT value of
425 out of all the optimization techniques considered,
followed by MOCBO. At 95% significance value, MOWSA
exhibits its enhanced pure diversity behavior. Table 8 indi-
cates the SP measure accordingly to the MOWSA fmean the
value reported a percentage decrease of 84.06%, 72.95%, and
69.71% fromMOHTS, NSGWO, andMOCBO, respectively.
Likewise, MOWSA achieves the best the fstd result that
realizes an 81.92%, 80.69%, and 75.71% decrease over
MOHTS, MOCBO, and NSGWO, respectively. MOWSA
and MOMVO algorithms realize the best FNRT value of
150. At a 95% significance value, the suggested MOWSA
shows a more acceptable spacing quality behavior against
other techniques. MOCBO outperforms others based on the
SDmetric fmean results are reported in Table 9. TheMOWSA,
MOHTS, MOCBO, NSGWA, and MOMVO achieve FNRT
values of 300, 150, 150, 475, and 425, respectively.
Thus, MOWSA illustrates its non-dominated solutions’ fair
distribution against other methodologies at a degree of
95% significance. Referring to the IGD test as specified in
Table 10, MOCBO finds the best fmean and fstd value. The
FNRT results of MOWSA, MOHTS, MOCBO, NSGWO,
and MOMVO are 275, 425, 150, 175, and 475. Thus, at a
95% significance value, MOWSA displays its enhanced
convergencespread equivalence. Table 11 depicts the RT
metric results according to which MOWSA found the best
fmean and fstd results relative to other accounted optimization
techniques. TheMOWSA,MOHTS,MOCBO, NSGWA, and
MOMVO achieve the best FNRT values of 150, 250, 250,
350, and 500 correspondingly, manifesting the MOWSA
excellence in reaching the optimal solution with minimum
computational complexity against other optimizers. From
BCS analysis, as can be seen in Table 12, MOWSA realizes
the minimum fweight results of 23201.131 and maximum
fcompliance value of 74750.126 amongst other algorithms
tested.

The qualitative behavior of all considered algorithms is
illustrated through their corresponding best Pareto fronts and
combined behavior, as shown in Figure 24. Per comparative
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FIGURE 26. The 942-bar tower truss.

analysis, MOWSA provides smooth, continuous, and diverse
solutions. Box plots were constructed to demonstrate the
quantitative behavior of considered algorithms in terms of the
performance measure (as shown in Figure 25), which depict
the superior behavior of MOWSA with other optimizers.

8) 942-BAR 3D TRUSS BENCHMARK
Figure 26 shows a 942-bar tower truss. The HV perfor-
mance measure results are depicted in Table 2, according
to which the MOCBO optimizer realizes the best fmean

value of 0.72003647 succeeded by NSGWO and MOWSA
that realized the nearly identical result. The FNRT results
accomplished by MOWSA, MOHTS, MOCBO, NSGWO,
and MOMVO are 325, 225, 425, 375, and 150, respectively.
At a 95% significance value, MOWSA demonstrates its
improved solutions density near the Pareto Front. GD metric
is the second efficiency measure that computational results
are illustrated in Table 3; accordingly, NSGWO finds the
best fmean result whereas the best fstd value is exhibited by
MOHTS. MOHTS realizes the best FNRT value followed
by MOMVO, revealing its convergence behavior excellence
regarding other examined algorithms. As per Table 4, the
best CVG metric fmean result is reported by the MOWSA
algorithm. The FNRT results accomplished by MOWSA,
MOHTS, MOCBO, NSGWO, and MOMVO are 100, 275,
375, 375, and 375, respectively. Hence, at a 95% significance
value, MOWSA shows improved coverage characteristics
among other algorithms. Table 5 presents the CPF metric
outcomes that illustrate the MOCBO realizes the best fmean
value. Moreover, MOWSA found the second-best FNRT
value of 375 after MOCBO, manifesting its enhanced cover-
age over the Pareto Front feature. DM metric computational
analysis, as stated in Table 6, shows that the best fmean
value is realized by MOWSA, which has a percentage
increase of 291.16%, 88.43%, 41.64%, and 31.35% from
MOMVO, MOHTS, NSGWO, and MOCBO algorithms
correspondingly. The FNRT values gained by MOWSA,
MOHTS, MOCBO, NSGWO, and MOMVO are 500, 200,
350, 350, and 100, respectively. At a 95% significance value,
MOWSA exhibits improved solution diversity compared to
others. The PD performance measure results are shown in
Table 7, whereby the best fmean is accomplished by the
MOCBO technique. The FNRT values accomplished by
MOWSA, MOHTS, MOCBO, NSGWO, and MOMVO are
375, 200, 425, 400, and 100, respectively. At 95% signif-
icance value, MOWSA demonstrates an improved solution
pure diversity attribute. Table 8 governs the SP metric results
that demonstrate fmean value of theMOWSAhas a substantial
percentage decrease of 68.40%, 65.85%, and 55.45% from
MOHTS, NSGWO, MOCBO, respectively. Moreover, fstd
value of MOWSA reported a major 69.73%, 63.53%, and
37.90% decrease from MOHTS, NSGWO, and MOCBO,
respectively. The MOWSA realizes the best FNRT value of
150, which relatively presents its optimal spacing feature.
SD performance measure outcomes, as depicted in Table 9,
indicate that the best fmean value is attained by MOHTS,
succeeded by MOWSA. The FNRT results of MOWSA,
MOHTS, MOCBO, NSGWO, and MOMVO are 250, 100,
275, 425, and 450, respectively. These findings manifest
the well-distribution of MOWSA’s non-dominated solutions.
As per the IGD metric computational analysis that is
illustrated in Table 10, the leading fmean and fstd results
are exhibited by the MOCBO technique that NSGWO
succeeds. The FNRT results ofMOWSA,MOHTS,MOCBO,
NSGWO, and MOMVO are 275,400,150,175,500, respec-
tively, and at a 95% significance value, MOWSA reveals
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FIGURE 27. Best pareto fronts of considered algorithms for 942-bar truss.

FIGURE 28. Box plots of considered algorithms for 942-bar truss.

its enhanced property of convergence-spread equivalence.
Table 11 indicates the RT metric results as per the best
fmean value of is reported by the proposed MOWSA. The
FNRT results ofMOWSA,MOHTS,MOCBO,NSGWO, and
MOMVO are 125, 275, 325, 325, and 450, respectively. At a
95% significance value, MOWSA portrays its dominance in
terms of the least computational time to find the optimal
solutions relatively. According to Table 12, the proposed
MOWSA realizes the fweight value of 5857383.8 and
2802136.4 value for fcompliance , that is the best BCS among
all.

Figure 27 illustrates the qualitative behavior of all
five algorithms in terms of their best Pareto fronts and
corresponding BCS results. Moreover, the figure presents
the comparative analysis through combined Pareto fronts
according to which the MOWSA solutions are well spread,
continuous, and smooth. The quantitative superiority of the
proposed MOWSA technique over others is depicted in
Figure 28 for all examined performance metric implications.

To make all computational analysis comprehensive, the
average FNRT value of each metric is illustrated at the end
of the respective tables, along with the ranking. For the
SD measure, as depicted in Table 2, MOWSA exhibited
the maximum average value of 3100 and achieved the first
ranking, followed by MOHTS. MOWSA finds the least

average GD metric value of 1550 and ranked first amongst
all, as depicted in Table 3. Regarding the CVG metric,
as shown in Table 4, the best average value is realized by
MOMVO, i.e., 1762.5, while MOWSA settled at second
rank with a 1837.5 value. MOWSA finds the maximum
average value of 3550 for the CPF metric as per Table 5 and
ranked first, followed byMOCBO. Regarding the DMmetric
average FNRT value (refer to Table 6), MOWSA reports
a maximum result of 3825 and is ranked first. Similarly,
for the PD metric (as shown in Table 7), the maximum
result is exhibited by MOWSA, i.e., 3300, which makes it
rank first, succeeded by NSGWO. In the context of the SP
metric, as illustrated in Table 8, the least average FNRT
value of 1225 is realized by MOWSA, while MOMVO
accomplishes the second rank. From Table 9, it is evident
that the minimum value of 1150 is obtained by MOWSA and
ranked first, while MOCBO achieved the second position.
The IGD measure (as demonstrated in Table 10) shows the
first ranking of MOWSA owing to its least 1550 average
FNRT value. BothMOHTS and NSGWO ranked second with
the same 2125 mean value. In terms of crucial RT metric as
illustrated in Table 11, suggested MOWSA found the first
rank with the least value of 1050, succeeded by MOCBO.
Also, it is evident from Table 12 that MOWSA found the
best BCS results for all considered 2D and 3D bench-
marks. Therefore, the aforementioned computational analysis
and discussions demonstrate that the proposed MOWSA
optimization methodology outperforms others in resolving
real-world complex structural optimization problems and has
a balanced trade-off between exploration and exploitation of
search.

The Multi-objective Water Strider Algorithm (MOWSA),
a novel approach utilizing an elitist non-dominated sorting
mechanism and crowding distance to optimize complex
truss structures. Our empirical evaluation demonstrates
MOWSA’s notable efficacy, outperforming established algo-
rithms like MOHTS, NSGWO, MOCBO, and MOMVO.
This superiority is attributed to MOWSA’s unique balance
between exploration and exploitation abilities, as evidenced
by its performance metrics across various truss test cases.
Particularly, the algorithm’s adeptness in navigating the
multi-dimensional search space, as seen in its Hypervolume
(HV) and Inverted-Generational Difference (IGD) scores,
highlights its proficiency in achieving a diverse set of Pareto-
optimal solutions. However, our analysis extends beyond
mere performance metrics. We delve into the algorithm’s
structural nuances, examining how its components contribute
to its effectiveness. For instance, integrating a crowding
distance mechanism ensures solution diversity, a crucial
factor in multi-objective optimization.

C. EXPERIMENTAL RESULTS ON LARGE SCALE
OPTIMIZATION BENCHMARK PROBLEMS
(LSMOP1-LSMOP9)
Table 13 presents the Generational Distance (GD) results
for MOWSA, MOHTS, MOCBO, NSGWO, MOMVO, and
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FIGURE 29. Convergence curve of GD metric on state of the art
algorithms for LSMOP1-LSMOP9 problems.

FIGURE 30. Pareto fronts of state of the art algorithms for
LSMOP1-LSMOP9 problems.

NSGA-II on LSMOP test problems. For problem LSMOP1
with 3-M and 300-D, MOWSA records a mean GD of
1.1038e+0 (4.57e-1), which is significantly better than
NSGA-II with 5.7770e-2 (6.43e-2), and competitive with
MOMVO which shows a GD of 4.2015e-1 (1.10e-1).
In LSMOP3 with the same 3-M and 300-D configuration,
MOWSA has a mean GD of 2.8136e+3 (1.23e+2), outper-
forming NSGA-II which has a GD of 1.1315e+3 (1.96e+3)
and closely following NSGWO with a GD of 4.0939e+3
(8.25e+2). The table indicates that MOWSA is a competitive
algorithm across the LSMOP test suite, often achieving
lower mean GD values, indicating a closer approximation
to the true Pareto front, signifying better performance.
MOWSA particularly excels in LSMOP6 with a mean GD
of 1.3024e+2 (6.20e+0), showcasing its effectiveness in

FIGURE 31. Convergence curve of GD metric on state of the art
algorithms for LSMOP1-LSMOP9 problems.

dealingwith complexmany-objective optimization problems,
as compared to NSGA-II which records a higher mean GD
of 4.1721e+3 (3.43e+3). Across the LSMOP test suite,
MOWSA’s performance ranges from competitive to superior,
as it achieves better results in many cases when compared
to the other algorithms shown in Fig. 29. For instance,
in LSMOP2, MOWSA achieves a mean GD of 1.0350e-2
(1.12e-4), which is better than NSGA-II’s 9.8584e-3 (3.78e-
4). A lower mean GD indicates a closer approximation
to the true Pareto front shown in Fig. 30, signifying
better performance of the MOWSA algorithm. Such results
highlight the robustness of MOWSA in navigating the
trade-offs inherent in large-scalemulti-objective optimization
tasks.

Table 14 presents the Inverted Generational Distance
(IGD) results for MOWSA, among other algorithms,
on LSMOP test problems. MOWSA demonstrates competi-
tive performance compared to its counterparts, with notable
success across various problem instances. In LSMOP1 with
3 objectives (M) and 300 decision variables (D), MOWSA
achieves a mean IGD of 8.6071e-1 (±1.20e-5), which is
considerably better than NSGA-II which records 2.1304e-1
(±3.64e-2). This performance indicates MOWSA’s robust-
ness and effective convergence to the Pareto front. Across
the LSMOP test suite, MOWSA frequently achieves lower
mean IGD values, indicating a closer approximation to the
true Pareto front, which signifies the efficiency ofMOWSA in
addressing complex many-objective optimization problems.
For instance, in LSMOP6, MOWSA records a mean IGD
of 1.2670e+0 (±2.29e-4), while NSGA-II logs 1.2879e+0
(±1.92e-1), demonstrating MOWSA’s competitive edge.
In several instances, MOWSA outperforms other algorithms
concerning mean IGD values. For LSMOP2, MOWSA
posts a mean IGD of 9.5040e-2 (±4.64e-4), outshining
NSGA-II with a slightly higher mean IGD of 9.2655e-2
(±1.05e-3). Similarly, in LSMOP4, MOWSA’s mean IGD
of 2.7429e-1 (±1.33e-3) is better than that of NSGA-II,
which is 2.9683e-1 (±1.03e-3). The trend of MOWSA’s
performance is consistent, often outperforming NSGA-II and
showing competitive results against other algorithms. It is
particularly noteworthy in LSMOP9, where MOWSA has a
mean IGD of 1.5379e+0 (±0.00e+0), while NSGA-II shows
3.3175e+0 (±6.43e-1), highlighting the superior solution
quality offered by MOWSA. Regarding the proportion of
test problems where MOWSA outshines other algorithms,
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TABLE 13. Results of (GD Metric) on LSMOP problems.

TABLE 14. Results of (IGD Metric) on LSMOP problems.

TABLE 15. Results of (RT Metric) on LSMOP problems.

as shown in Fig. 31, it is evident that MOWSA secures
a significant number of best results in evaluating the IGD
metric across the LSMOP problems. This is exemplified
by LSMOP5, where MOWSA records a mean IGD of
5.4313e-1 (±6.19e-4), compared to the higher IGD value of
NSGA-II which is 3.2621e-1 (±1.89e-1). Overall, the data
from Table 14 suggest that MOWSA is a highly effective
algorithm formany-objective optimization problems. It offers
better convergence and diversity when solving LSMOP test
problems, often achieving lower mean IGD values than its
counterparts.

From Table 15, the overall running time of MOWSA
is consistently competitive among the algorithms tested,
indicating its efficient use of computational resources in
solving LSMOP problems. For instance, in LSMOP1 with
3 objectives (M) and 300 decision variables (D), MOWSA
has a running time of 3.59, substantially lower than NSGWO,
which has a running time of 734. This demonstrates
MOWSA’s computational efficiency, especially compared to
NSGWO, which requires much more computational time.
In LSMOP7, MOWSA’s running time is 2.90, while MOHTS
is at 69.4, showing that MOWSA is significantly faster and,
hence, can be considered more efficient in computational
time. This trend is consistent across various LSMOP
problems, indicating that MOWSA effectively finds

high-quality solutions and does so with a quicker runtime.
Comparatively, MOWSA’s running times are very close to
NSGA-II across all problems, suggesting that it provides a
competitive balance between performance and computational
speed. In LSMOP6, MOWSA shows a running time
2.88 against NSGA-II’s 4.40. This slight difference, while
maintaining competitive performance, highlights MOWSA’s
advantage in speed efficiency. MOWSA demonstrates its
superior efficiency in diverse LSMOP scenarios, often
requiring less computational time than other algorithms such
as MOHTS and NSGWO while maintaining a performance
that is on par with or better than NSGA-II and MOMVO. For
example, in LSMOP9, MOWSA’s running time is recorded
at 2.99, which is faster than MOMVO’s time of 4.31 and
almost identical to NSGA-II’s time of 4.30. Therefore, it can
be concluded from the experimental results in Table 15
that MOWSA exhibits a competitive running speed and
demonstrates high search efficiency, making it a strong
candidate for solving complex engineering optimization
problems efficiently.

The provided data indicates that the MOWSA algorithm
demonstrates promising performance in large-scale multi-
objective optimization problems (LSMOP), as evidenced by
its competitive or superior results in Generational Distance
(GD) and Inverted Generational Distance (IGD) metrics
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compared to established algorithms like NSGA-II, MOHTS,
MOCBO, NSGWO, and MOMVO. MOWSA exhibits a
closer approximation to the true Pareto front and efficient
computational time, suggesting its potential in handling com-
plexmulti-objective optimization tasks. However, the critique
that the paper lacks rigorous evaluation and comparison with
state-of-the-art multi-objective benchmarks and algorithmic
frameworks is valid.

As presented in the theory, the integration of non-dominant
sorting into theWater Strider Algorithm (WSA) demonstrates
effective results in various optimization scenarios, notably
in solving large scale with 300 decision variables based on
LSMOP and truss bar problems.

VI. CONCLUSION
For the design and optimization of the MO truss-bar, the
current research designed and deployed a unique MOWSA
algorithm. The lifecycle of water strider insects is the
motivation of the proposed technique mathematically for-
mulated by imitating territorial behavior, intelligent ripple
communication, mating style, feeding mechanisms, and
succession of water striders. To enhance the solution quality
and achieve a proper trade-off between search exploration
and exploitation of NDS and CD is used in this study. The
MOWSA algorithm was rigorously tested on nine large-scale
multiobjective benchmark problems (LSMOP1-LSMOP9)
with 300 decision variables and eight distinct structural
optimization benchmarks (specifically the 10-bar, 25-bar,
37-bar, 60-bar, 72-bar, 120-bar, 200-bar, and 942-bar models)
to assess its capabilities in exploration, exploitation, avoiding
local optima, and convergence. This evaluation involved
a comparative analysis with four renowned algorithms,
utilizing ten established performance metrics. This analysis
included quantitative and qualitative approaches, focusing
on the non-dominated solution set, the most effective
compromise solutions, and their distribution pattern near
Pareto fronts. The average Friedman’s rank test positioned
the proposed MOWSA approach at the forefront for most
technical challenges. Comprehensive examination indicates
that MOWSA holds a notable edge over competing optimiza-
tion tools regarding coverage, convergence, and diversity
of solutions, demonstrating its effectiveness in addressing
complex, large-scale, real-world optimization challenges.

While MOWSA demonstrates its efficacy in the addressed
design problems, it is advisable to examine further its
applicability in more complex, higher-dimensional industrial
and engineering challenges. Researchers could broaden
the scope of this study to encompass technical issues
characterized by multi-modal and non-linear functions with
competing objectives. Additionally, further studies could
involve detailed comparative analyses of this optimization
method against other established algorithms to gauge its rela-
tive performance. This would provide a more comprehensive
understanding of MOWSA’s capabilities in a wider range of
practical applications. The Matlab code for MOWSA can be
obtained from https://github.com/kanak02/MOWSA.
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