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ABSTRACT In light of the escalating global concerns surrounding climate change, the significance of
sustainable development in the realm of logistics cannot be overstated. This study undertakes the imperative
task of devising strategies aimed at mitigating carbon emissions, reducing logistics costs, minimizing
transportation time, and enhancing customer satisfaction. The research delves into the intricacies of an
optimization model tailored for a specific iteration of the Location-Routing Problem (LRP), namely the
Multi-Objective Multi-Period Low-Carbon Location-Routing Problem (MMLCLRP). This variant of the
LRP takes into meticulous consideration several crucial parameters, such as the overall logistics cost, the
arrival times of demand points, and carbon emissions. These factors are pivotal in determining both the
optimal location for depots and the programming of routes within a multi-period planning horizon. The pro-
posed model guarantees the long-term sustainability of logistics operations while flexibly adapting location
routing decisions for each period in response to evolving market demands. To tackle the inherent complexity
of this problem, an improved version of the Non-dominated Sorting Genetic Algorithm (NSGA-II) was
employed. This approach integrates a pioneering similarity distance metric to quantify the resemblance
between potential solutions. Additionally, a crowding clustering strategy was implemented to enhance
the diversity within the NSGA-II. Empirical results illustrate the capability of the proposed optimization
model in effectively harmonizing various objectives, encompassing economic, efficiency, and environmental
aspects within the logistics domain. Additionally, the enhanced algorithm exhibits notable advantages in
addressing the complexities inherent in the optimization model.

INDEX TERMS Improved NSGA-II, crowding clustering strategy, low-carbon location-routing problem,
multi-objective optimization, multi-period.

I. INTRODUCTION
The Location-Routing Problem (LRP) holds significant prac-
tical importance in the logistics domain. Under the traditional
circumstance of LRP, the decision makers determine the
location of depots and the format of the distribution routes
utilizing customer records [1], [2]. Supply chain manage-
ment encounters various challenges, and among them, LRP
stands out as a critical issue, particularly for logistics and
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e-commerce firms. It is important for these companies to
select appropriate depot locations and allocate route program-
ming over different periods for the location of the customers,
which is usually not static. Considering the uncertain market
environment, LRP is revealed as a weighty decision for logis-
ticsmanagement to dynamically optimize depot locations and
route programming under dynamic customer locations over
several periods.

The increase in emissions of different pollutants is respon-
sible for the occurrence of global warming, while gas emis-
sions from freight transportation are generally recognized as
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one of the major factors of global climate change [3], [4].
In 2020, approximately 7.7 Gt CO2, equivalent to around 8%
of global greenhouse gas emissions, was attributed to freight
transportation, but the figure increases to 11% when ware-
houses and ports are taken into consideration.1 According to
the EU greenhouse gas inventory report 2021 [5], approxi-
mately 27% of the EU’s overall greenhouse gas emissions
originated from road transportation. The economic expan-
sions in Asia, Africa, and Latin America are likely to triple
the need for freight services by the year 2050, resulting in
a twofold increase in emissions [6]. There is thus a growing
emergence for logistics management to pay regard to low-
carbon logistics.

With the purpose of balancing economy, efficiency,
and environmental issues of the logistics, an optimization
model is proposed for a Multi-Objective Multi-Period Low-
Carbon Location-Routing Problem (MMLCLRP), which
features three objectives: the total cost, the service satisfac-
tion, the carbon emissions. Further, in order to solve the
Multi-Objective Problem (MOP), which requires optimiz-
ing several objectives simultaneously despite their inher-
ent contradictions, Multi-Objective Evolutionary Algorithms
(MOEAs) are utilized to discover a group of non-dominated
solutions [7], [8].

During a planning horizon, the customers of each period
stochastically evolve in the territory. Some customers left the
territory during the previous period, and some new customers
entered the territory. Nevertheless, prior to each period, the
details regarding the number and whereabouts of customers
are already known. Multiple potential depots are strategically
positioned, and the primary challenges lie in determining the
depot locations and adapting route scheduling over multiple
periods.

TheMMLCLRP problem can be depicted by an undirected
graph G = (V ,E,P), where P indicates the group of all
periods in the planning horizon,V = D∪V 1

∪· · ·∪V t
· · ·∪V T

is the set of vertex, and D denotes the potential depot set,
which is located at fixed positions. V t is the customer set at
period t (t ∈ P). The matrix E is symmetrical and represents
the Euclidean distance, which is also equal to the distance
traveled. The issue involves identifying multiple depots that
are serviced in each period and programming routes for cus-
tomers who belong to these depots in such a way that: (1) the
depots’ supply is sufficient; (2) a single vehicle with a carry-
ing capacity of Q visits each customer only once; (3) when
the vehicle goes through a section of road, it accumulates
a service time denoted by s, and (4) the model’s objectives
including minimizing the total cost, minimizing all arrived
time for demand points service, minimize the total emission
of CO2 of the transportation.

This article makes the following key contributions:
1) The focus of this study is to introduce an optimization

model that addresses a multi-objective multi-period low-

1IEA (2022), Transport, IEA, Paris https://www.iea.org/reports/transport.
Accessed Sep 2022

carbon problem that considers dynamic customer locations
and CO2 emissions.
2) A novel similarity distance is defined to measure the

similarity between solutions.
3) An enhanced co-evolutionary algorithm built upon the

NSGA-II is introduced in which a crowding clustering based
on density and connectivity is applied to improve the perfor-
mance of the algorithm.

The structure of the remaining sections of this article is as
follows: A comprehensive review of relatedworks is provided
in section II. Section III provides a detailed explanation of
the problem description and outlines themathematical model.
The improved NSGA-II algorithm is described in Section IV.
The numerical experiments are conducted to validate the
proposed works in Section V. Finally, In Section VI, the con-
clusions that have been reached from the study are presented.

II. LITERATURE REVIEW
A. THE LOCATION-ROUTING PROBLEM
The Location-Routing Problem (LRP) is a problem in com-
binatorial optimization that involves identifying the most
optimal sites to position depots, as well as the most effi-
cient routes for vehicles to take in serving customers. Over
the past few years, there has been a significant increase in
the search for efficient and effective algorithms designed to
solve the LRP. Schneider and Drexl [9] treated the standard
location-routing problem as a single-objective, static, deter-
ministic, location-routing problem. There is a rich literature
on the standard Location-Routing Problem (LRP). To reduce
the level of complexity associated with various constraints
and to minimize operational costs, Granada et al. [10] have
proposed a mixed-integer programming model for the open
location-routing problem. Lopes et al. [11] use a heuristic
genetic algorithm that utilizes both variable neighborhood
descent and biased random key techniques to minimize the
total cost involved in the many-to-many hub location-routing
problem. Fazayeli et al. [12] introduced an integer linear pro-
gramming model for a location-routing problem that is based
on a multimodal transportation network. The objective func-
tion is designed to minimize all associated costs, including
those related to location-routing and multimodal transporta-
tion. Chen et al. [13] investigated the Location-Routing
Problem With Full Truckloads (LRPFT) and developed a
mathematical model that incorporates dual objectives for the
many-to-many raw material supply network. A novel method
that combines a multi-objective algorithm and heuristics has
been introduced, along with a chromosome presentation built
upon natural numbers. Rabbani et al. [14] have proposed an
approach aimed at solving a mathematical model that incor-
porates multiple decisions related to industrial hazardous
waste management. The approach takes into account location
decisions, vehicle routing decisions, and inventory decisions.
Given the uncertain nature of the waste management sys-
tem, the problem is described as a multi-objective stochastic
(MINLP) model, ensuring reliability. In order to address this
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problem, a new Sim heuristic approach has been developed
by combining NSGA-II and Monte Carlo simulation.

The research on the Location-Routing Problem (LRP) has
yielded fruitful results across various domains. However,
there is not sufficient consideration of the comprehensive
integration of sustainability metrics, including carbon emis-
sions reduction, into the optimization models. Incorporating
environmental considerations, such as carbon footprint reduc-
tion, adds complexity to the optimization models.

B. THE MULTI-OBJECTIVE LOCATION-ROUTING PROBLEM
Most of the above single-objective location-routing problems
pursue economic indicators. In order to achieve the balance
of economic, environmental, and societal issues of logistics,
multi-objective location-routing models are getting more and
more attention [15]. Samanlioglu [16] proposed a multi-
objective location-routing model specialized for industrial
hazardous waste management. Three criteria are incorporated
in the model: minimizing the total cost, transportation risk,
and site risk. Rabbani et al. [17] leveraged an NSGA-II along
with a clustering method to solve a bi-objective location-
routing problem, which consists of an economic objective
and societal objective in the case of waste collection opera-
tions. Karimi and Setak [18] presented a hub location-routing
problem that integrates flow shipment scheduling. The objec-
tive was to minimize overall costs while maximizing the
volume of flow delivered within a predefined time frame.
Bozorgi-Amiri and Khorsi [19] introduce a dynamic multi-
objective location-routing model for relief logistics in the
scenario that the needs of the affected areas, the total cost, and
transportation time are assumed to be uncertain. Three objec-
tives, the total travel time, the total post- and pre- disaster
costs, and the maximum number of shortages are incorpo-
rated to decide the optimal number, the location, the optimal
routes, and other relevant factors. Wang et al. [20] proposed a
bi-objective model to address two-echelon location-routing
problems regarding costs and customer satisfaction simul-
taneously. To simultaneously address the tasks of locating
logistics facilities, optimizing the vehicle routing network,
and allocating customers, a modified version of NSGA-II
was introduced. The genetic operator utilized in this modified
approach is the partial-mapped crossover.

Many stochastic location-routing problems are regarded as
multi-period problems when taking into account the dynamic
feature scenarios of a planning horizon [21], [22]. In many
studies, the location of depots is set in the first period,
and the routes are optimized in each period depending on
the changing parameters [19], [21]. In a long planning
horizon, if the depots are located first without considering
the future route, low-quality solutions are acquired. There
are few cases concerned with multi-objective programming
with changing circumstances. Hassan-Pour et al. [23] pre-
sented a location-routing problem to minimize transportation
costs and maximize customer delivery probability, where
dynamic changes in facility and route availability were con-

sidered, and the problem was addressed using a mathematical
algorithm for facility location and a hybridized simulated
annealing algorithm with genetic operators for vehicle rout-
ing. Long et al. [24] proposed a multi-objective multi-period
robust optimization model for the location-routing problem
in the context of emergency logistics for epidemic relief
distribution with an improved heuristic algorithm called
PICEA-g-td implemented to solve the proposed optimization
model. An enhanced genetic algorithm utilizing dynamic
programming was suggested by Wang and Zu-Jun [25] for
the multi-objective multi-period location-routing problem.
Saffarian et al. [26] proposed a multi-objective location-
routing model for relief chain management under uncertainty,
considering three conflicting objectives: minimizing total
costs, minimizing total delivery times, and maximizing fair-
ness in distribution of commodities. However, due to the
weight method treating the multi-objective model as a single-
objective model, additional specifics regarding the problem
exposed by the Pareto solution are not accessible.

The Location-Routing Problem (LRP) holds a fundamen-
tal position in logistics research. In contemporary studies,
the LRP is often approached with consideration of multiple
objective functions. Nonetheless, the majority of algorithms
currently employed for addressing this multi-objective prob-
lem resort to conventional multi-objective techniques, which
may result in suboptimal solutions. Therefore, it is necessary
to develop algorithms that are tailored to the unique char-
acteristics of location decision-making and path planning to
achieve improved solution outcomes.

C. THE LOW-CARBON LOCATION-ROUTING PROBLEM
The Low-Carbon Location-Routing Problem (LCLRP) is
a variant version of the Location-Routing Problem (LRP)
that seeks to minimize both total costs and carbon emis-
sions linked to the design of the supply chain network [13],
[27], [28], [29]. It involves fuel consumption, vehicles,
fixed costs of depots, and driver salaries [30], as well
as time-dependent factors such as carbon emissions [31].
Martínezsalazar et al. [32] addressed a transportation loca-
tion routing problem aimed at minimizing distribution costs
while simultaneously achieving workload balance among
drivers. A scatter tabu search procedure for the NSGA-II
and non-linear multi-objective optimization were imple-
mented to address the problem. Leng et al. [27] propose a
multi-objective regional low-carbon LRP with three objec-
tives: total costs, service duration, and client waiting time.
Amulti-objective hyper-heuristic approach consisting of both
high-level and low-level heuristics was formulated by them.
Leng et al. [33] explored a quantum-based approach com-
bined with acceptance criteria for a regional low-carbon
LRP with bi-objective. In order to improve clients’ satis-
faction with the logistics service and reduce cost, carbon
emissions, and service cycles, Fatemeh et al. [34] pro-
posed a bi-objective model to settle this problem, and a
hybridmeta-heuristic algorithm combined genetic algorithms

51592 VOLUME 12, 2024



B. Chen et al.: Multi-Objective Multi-Period Low-Carbon Location-Routing Problem

and simulated annealing algorithms for model optimiza-
tion. To achieve economic and environmental optimization
with the objective of minimizing total costs, including car-
bon emission costs, in the cold chain logistics low-carbon
LRP model, Wang et al. [35] developed a hybrid genetic
algorithm. A bi-objective mathematical programming model
was introduced by Wang et al. [36] for optimizing the green
logistics location-routing problem with eco-packages, which
involves solving a two-echelon location-routing problem as
well as the pickup and delivery problem with time win-
dows. In order to address this problem, two metaheuristic
algorithms, namely MOGWO and NSGA-II, were employed.
A logistics system optimization model was presented by
Biuki et al. [37] that incorporates location, routing, and
inventory control planning, with a focus on minimizing costs
and environmental impact from greenhouse gas emissions
while maximizing job creation, taking into account eco-
nomic, ecological, and social factors. A two-phase solution
strategy was proposed to solve the problem, which involves
supplier selection using a PROMETHEE method, followed
by the use of two hybrid metaheuristics. Faraji et al. [34]
devised a metaheuristic algorithm that merges the Genetic
Algorithm (GA) with Simulated Annealing (SA) to address
a green routing issue with multiple depots, hard and soft
time windows, heterogeneous vehicles, multiple periods,
and products. Tavana et al. [38] presented a bi-objective
mixed-integer linear programming model for solving the
location-inventory-routing problems in green supply chains
with low-carbon emissions under uncertainty with considera-
tion to supplier selection, order allocation, distribution center
location, vehicle routing, inventory control, and backorder
shortage.

Hence, reducing carbon emissions has emerged as a signif-
icant focus of contemporary logistics research in the realm
of environmental protection. Nevertheless, a predominant
proportion of studies equate carbon emissions solely with the
distance covered by the vehicle. Nonetheless, it is noteworthy
that carbon emissions are also contingent upon several addi-
tional factors, such as the vehicle’s load and speed, which are
not born in mind in many studies.

D. OPTIMIZATION ALGORITHM
As discussed above, the location-routing problem can typ-
ically be addressed using an evolution strategy algorithm,
which is a classic NP-hard problem. However, when con-
sidering the Multi-objective location-routing problem, which
is a variation of the standard LRP, the current state
of multi-objective optimization research faces significant
challenges. Over the past few decades, to obtain Pareto
solutions for multi-objective problems (MOPs), a vari-
ety of Multi-Objective Evolutionary Algorithms (MOEAs)
have been suggested [39]. Some well-known examples of
classical MOEAs including NSGA-II [40], [41], Multi-
Objective Particle Swarm Optimization (MOPSO) [41], [42],
[43], MOSA et al. [44] and Multi-Objective Evolutionary

Algorithm by Decomposition (MOEA/D) [45] are proved to
offer advantages in gaining Pareto solutions.

The NSGA-II algorithm has been demonstrated to be a
highly effective method for addressing multi-objective prob-
lems [46], [47], [48]. Nevertheless, there remains scope for
enhancing the algorithm concerning varied mission-specified
multi-objective problems [49]. In the context of location
routing, a novel mathematical model has been proposed
to address the waste collection problem based on specific
assumptions [17]. It features two stages of collection and
transfer and the use of vehicles with multiple compartments
for diverse types of waste. The hybrid NSGA-II meta-
heuristic algorithm is employed to generate optimal solutions,
which is augmented by clustering techniques to enhance the
starting population. For stochastic combinatorial optimiza-
tion, Rabbani et al. [14] have developed a new heuristic
method that integrates NSGA-II andMonte Carlo simulation.
A bi-objective mathematical programmingmodel is proposed
for open location-routing and two-echelon close problems to
minimize costs and CO2 emissions [50]. To tackle the prob-
lems, two metaheuristic algorithms, MOGWO and NSGA-II,
are employed. An enhanced version of the NSGA-II is intro-
duced to address a dynamic multi-objective location model
with three objectives problem [51], which incorporates a
tabu search algorithm into the elitism strategy. By combining
the strengths of both local and global search methods, the
evolutionary optimization algorithm proposed is expected
to improve local search capability and retain global search
ability. These enhancements are anticipated to increase the
global optimal solution convergence and enhance solution
accuracy.

However, most algorithms utilizingNSGA-II or its variants
have primarily considered only two objectives. The inclusion
of additional objectives tends to compromise algorithmic
convergence performance due to conflicting goals. Simul-
taneously, the majority of studies have relied on generic
approaches to address specific problems without delineating
the similarity between solutions based on problem char-
acteristics. This deficiency hinders the ability to enhance
algorithm efficiency by better exploiting the information
embedded within the relationships among solutions.

Inspired by the previous works, we improve the NSGA-II
algorithm by combining an adaptive crowding clustering
strategy to balance diversity and convergence to improve
solving ability. Furthermore, by considering the similarity of
the solution, this study provides a novel similarity distance to
overcome fast convergence to a narrow solution of the multi-
objective algorithm. As per our comprehension of the existing
literature, the modification is novel.

III. MATHEMATICAL MODEL
A. THE PROBLEM DESCRIPTION
The model of the MMLCLRP can be described as a graph
Gt

=
(
Vt ,Et

)
Where t = 1, 2, . . . ,T is the planning

period set. Vt is a vertex set and contains two subsets:
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M = {1, 2, . . . ,m} represents the set of eligible depots with
a fixed cost Fi And adequate capacity. Besides, those can-
didate depots are fixed during the planning horizon. Nt

={
m + 1,m + 2, . . . ,m+nt

}
is the set of demand points that

is random in number and position in each period. In the
context of MMLRP, the details regarding demand points,
including their positions, the number of points

∣∣Nt
∣∣ the cor-

responding service time sj, j∈N t are available at the outset of
each period. Nonetheless, the actual customer demands are
only disclosed once the initial location-routing decision has
been made. E =

{
(g, h) :g, h∈V t , g ̸= h

}
is the vehicle route

set, D =
(
dgh
)
is distance matrix which satisfies the triangle

inequality. K = {1, 2, . . . , k} is the set of identical vehicles
whose vehicles move with speed v. Fv is use-cost of a vehicle,
c indicates the cost of each unit length of route for those
vehicles, Q represents the loading capacity.

The key objective of this problem is to select established
depots from a pool of candidate depots and devise the routing
strategy for vehicles from the chosen depots to the demand
points while taking into account the vehicle capacity. In addi-
tion, the depot location and the demand point allocation
are adjusted based on the distribution of customers except
for the first period. Notably, when addressing multi-period
problem solving, it is crucial to consider the conditions from
the previous period during each subsequent period. Decision-
making regarding the location-routing problem significantly
varies for each individual period.

The three objectives are incorporated in the MMLCLRP:
(1) minimization of the total cost, which includes the estab-
lishment costs of depots, fixed vehicle expenses, and route
travel costs; (2) minimization of the total traveling time for
all of the demand points; (3) minimization the total emission
of CO2.
Objective 1 is to strive for economic value. Objective 2 is

to seek effectiveness. Arriving earlier with vehicles allows
for quicker assistance to be provided at the demand points.
Objective 3 is to pursue the sustainability of the environment,
which is an important goal of modern logistics.

B. THE OBJECTIVES OF THE MMLCLRP
We first propose the variables as follows:

yi (t) =

{
1, if depot i is chosen to usein period t;
0, otherwise

(1)

xij (t) =


1, if depot i is chosen in period t to

provide service for demand point j;
0, otherwise

(2)

µik (t) =


1, if vehicle k is assigned to

depot i in period t;
0, otherwise

(3)

ujk (t) =


1, if demand point j is supplied

by vehiclek in period t;
0, otherwise

(4)

δghk (t) =


1, if vehicle k travels from vertex g

to vertex h during period t;
0, otherwise

(5)

The MMLCLRP has three fundamental objectives:
(1) The first objective is to minimize overall expenses

and align rental expenses for TRCs and transport expenses
within the planning horizon (the rental costs, the transporta-
tion costs, and the fixed cost of vehicles):

minZ1 =

∑
t∈T

∑
i∈M

Fiyi (t) +

∑
t∈T

∑
i∈M

∑
k∈K

Fvµik (t)

+

∑
t∈T

∑
g∈(M∪Nt)

∑
h∈(M∪Nt)

∑
k∈K

cdghδghk (t) (6)

(2) The second objective is to dispatch vehicles at the
earliest possible time to demand depots in order to optimize
the provision of aid to affected populations. We focus on the
sum of time to each vehicle to ensure the time-effectiveness.
Tjk (t) represents the arrival time of demand point j served by
vehicle k in period t.

minZ2 =

∑
t∈T

∑
j∈Nt

∑
k∈K

Tjk (t) (7)

(3) The third objective is the emission of CO2: This study
focuses on CO2 emissions from transport to ensure the sus-
tainability of the location-routing problem. The vehicle’s fuel
consumption is direct related with CO2 emissions. Burning
fuels in engines produces carbon dioxide as a byproduct, with
the carbon content in the fuel influencing emission levels.
Therefore, we model the fuel consumption of vehicles to
calculate the carbon dioxide emissions in this problem.

minZ3 = e
∑
t∈T

∑
g∈(M∪N t )

∑
h∈(M∪N t )

∑
k∈K

×

(
ρ0

+
ρ∗

−ρ0

Q
qtkgh

)
dghδghk (t) (8)

where qtkgh is the carrying amount of the vehicle from point g
to point h at period t. The e is the CO2 emissions originated
by the vehicle’s fuel consumption per unit. The ρ0 and the
ρ∗ are the fuel consumption for the unit distance of an empty
vehicle and the fuel consumption for the unit distance of a
fully-loaded vehicle, respectively.

C. CONSTRAINTS OF THE MMLCLRP

yi (t)

≥ xij (t) , ∀i ∈ M, j ∈ M, t ∈ T (9)

yi (t)

≥ µik (t) , ∀i ∈ M, k ∈ K, t ∈ T (10)∑
k∈K

µik (t) +

∑
h∈(M∪Nt)

δjhk (t) − xij (t)
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≤ 1, ∀i ∈ M , k ∈ K , t ∈ T (11)

µik (t)

≥

∑
j∈Nt

δijk (t), ∀i ∈ M, k ∈ K, t ∈ T (12)

∑
i∈M

∑
j∈Nt

δijk (t)

≤ 1, ∀k ∈ K , t ∈ T (13)∑
g∈(M∪Nt)

δgjk (t)

= 1, ∀j ∈Nt, k ∈ K, t ∈ T (14)∑
g∈(M∪Nt)

δigk (t) −

∑
h∈(M∪Nt)

δhik (t)

= 0,∀i ∈ M, k ∈ K, t ∈ T (15)∑
g∈(M∪Nt)

δgjk (t) −

∑
h∈(M∪Nt)

δjhk (t)

= 0, ∀j ∈ Nt, k ∈ K, t ∈ T (16)

Tjk (t)

= Tik (t) + si +
dij
v

δ
ijk

(t) , ∀i ∈ M ∪ Nt, j ∈Nt,

k ∈ K, t ∈ T (17)

yi (t)

∈ (0, 1) , ∀i ∈ M, t ∈ T (18)

xij (t)

∈ (0, 1) , ∀i ∈ M, j ∈Nt, t ∈ T (19)

µik (t)

∈ (0, 1) , ∀i ∈ M, k ∈ K, t ∈ T (20)

δghk (t)

∈ (0, 1) , ∀g ∈
(
M∪Nt) , h ∈

(
M∪Nt) , k ∈ K, t ∈ T (21)

Constraints (9) and (10) serve to limit vehicle allocation
and demand service provision to the selected depots. Con-
straint (11) mandates that vehicle k can only access demand
point j if they are assigned to depot i in period t . Con-
straints (12) and (13) dictate that each route serviced by
vehicle kmust start at a single depot. Constraint (14) specifies
that each demand point can only receive service from a single
route in period t. Constraint (15) demands that each vehicle
returns to the departure depot per period. Constraint (16)
guarantees the continuity of each route. Formula (17) calcu-
lates the time required for vehicle k to reach demand point j in
period t. Constraints (18) - (21) ensure that decision variables
are non-negative and binary integers.

IV. AN IMPROVED NSGA-II ALGORITHM USING A
CROWDING CLUSTERING STRATEGY
NSGA-II has become a widely adopted optimization
algorithm, particularly in the field of multi-objective opti-
mization. Renowned for its non-dominated sorting and
crowding distance mechanisms, NSGA-II efficiently cate-
gorizes solutions into Pareto fronts, maintaining a diverse

and well-distributed set of trade-off solutions. The inclusion
of elitism ensures the preservation of high-quality solu-
tions across generations, preventing premature convergence.
NSGA-II is also adept at handling optimization problems
with constraints, adding to its versatility. Researchers favor
NSGA-II due to its effectiveness in finding a range of Pareto
optimal solutions, its straightforward implementation, and its
ability to address real-world problems, making it a popular
choice in optimization studies and applications.

To efficiently get Pareto optimal solutions of the MML-
CLRP (refer to Fig.1), we proposed an improved NSGA-II
combining a clustering strategy, which performs well on
many-objective problems [16], [52]. In order to enhance the
quality and variety of the solutions, a strategy called crowding
clustering is suggested, which has been incorporated into
the evolutionary algorithm framework named NSGA-II-cc.
The NSGA-II-cc algorithm, designed to enhance the overall
solutions, introduces a subprocedure with a crowding clus-
tering strategy that calculates distances between solutions to
improve diversity and superiority. This modification is made
without a substantial increase in computational complexity,
as the crowding clustering strategy has a complexity of O(n),
resulting in an overall algorithmic complexity of O(n3) for
NSGA-II-cc.

A. FRAMEWORK OF NSGA-II-CC
The NSGA-II-cc exists as an evolutionary algorithm, which
is applied to solve the problem with multiple conflicting
objectives. The NSGA-II-cc’s general framework consists of
encoding the population, crossover, and mutation operators,
and selection operators based on solution fitness.

1) ENCODING SCHEME
Bulleted in MMLCLRP, a launched depot is allocated sev-
eral customers, which are contiguity and around the depot.
A solution is formed by a sequence of status numbers for the
potential depots and an allocation of customers for the depots.
The chromosome of the solutions is encoded in Fig. 2.
In Fig. 2, fifteen customers code from 1 to 15, and four

potential depots in the triangle are distributed in the territory.
Depots 1, 2, and 4 are opened. Each opened depot is arranged
by several vehicles to service customers (such as depot 1) has
two routes, and route 1 of depot 1 services customers 1, 2, 5,
and 6.

The solution of the MMLRP is depicted by a natural
number permutation encoding, which aids in identifying the
potential depots to open and route planning for the demand
points. In each solution Chτ

g at the period t , the depot selec-
tion, vehicle allocation, and demand point route planning are
represented by three distinct vectors. τ ∈ NG is the number
of generations and g = 1, 2, . . . ,NP. NP is the number of
solutions in the population. The chromosome Chτ

g is encoded
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FIGURE 1. NSGA-II-cc framework.

FIGURE 2. Example of solution.

as follows.

Chτ
g =



(
Chτ1

g11,Ch
τ1
g12, . . . ,Ch

τ1
g1K

)
,(

Chτ1
g21,Ch

τ1
g22, . . . ,Ch

τ1
g2K

)
,(

Chτ1
g31,Ch

τ1
g32, . . . ,Ch

τ1
g3N 1

)
...(

Chτ t
g11,Ch

τ t
g12, . . . ,Ch

τ t
g1K

)
,(

Chτ t
g21,Ch

τ t
g22, . . . ,Ch

τ t
g2K

)
,(

Chτ t
g31,Ch

τ t
g32, . . . ,Ch

τ t
g3N t

)
...(

ChτT
g11,Ch

τT
g12, . . . ,Ch

τT
g1K

)
,(

ChτT
g21,Ch

τT
g22, . . . ,Ch

τT
g2K

)
,(

ChτT
g31,Ch

τT
g32, . . . ,Ch

τT
g3NT

)



(22)

The first vector Chτ t
g1 is a permutation of K vehicles that

allocates vehicles for candidate depots. The vector Chτ t
g2 is an

integer vector with K-dimension distributed from 0, 1 to |M|

that determines which candidate depots are opened. A per-
mutation of

∣∣N t
∣∣ demand points Chτ t

g3 determines routing
sequences within each route for demand points. The assign-
ments must comply with the loading capacity Q.

From the result of Fig. 3, as same as in Fig. 2, depots 1, 2,
and 4 are open; vehicle1 and 3 start from depot 1; route 1
(Vehicle 1) caters to demand points 1, 2, 5, and 6 while
route 3 attends to demand points 9 and 10 separately. Vehicle
4 departs from depot 2 and tends to demand points 3, 4, 7,
and 8 prior to returning to depot 2. Due to the reality that
three vectors of the chromosome differ, genetic operations of
the improved NSGA-II algorithm respectively occur in U τ t

g1 ,
U τ t
g2 and U

τ t
g3 .

2) CROSSOVER OPERATORS
In the given solution, the crossover operations are restricted
to occur within a single period of the chromosome. The line
vector U τ t

g represents a particular location-routing planning
period within the complete planning horizon, and it is chosen
randomly for the crossover operation. The representation of
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FIGURE 3. Encoding in the improved NSGA-II algorithm.

U τ t
g is given by Eq. 42 as follows:

Uτ t
g =



(
Uτ t
g11,U

τ t
g12, . . .,U

τ t
g1K

)
︸ ︷︷ ︸

Uτ t
g1

,(
Uτ t
g21,U

τ t
g22, . . .,U

τ t
g2K

)
︸ ︷︷ ︸

Uτ t
g2

,(
Uτ t
g31,U

τ t
g32, . . .,U

τ t
g3Nt

)
︸ ︷︷ ︸

Uτ t
g3


(23)

For the sub-vector U τ t
g1U

τ t
g2 and U τ t

g3 , offspring are gener-
ated using a two-point crossover as described below.

Firstly, two sub-vectorsU τ t
g1 andU

τ t
g′1 are picked by chance

from the parent chromosome U τ t
g and chromosome U τ t

g′ sep-
arately. Next, two crossover points are chosen haphazardly
within vectors U τ t

g1 and U
τ t
g′1.

U τ t
g1 = [1 2 3 | 4 5 6 7| 8 9 10] (24)

U τ t
g′1 = [5 1 7 | 4 2 8 10 | 9 3 6] (25)

Secondly, U τ t
g1 and U τ t

g′1 retain the numbers prior to the
earliest crossover point and swap the numbers among the
crossover points with one another, while ignoring the num-
bers beyond the second crossover point during this phase.

U τ t
g1 = [ 1 2 3 | 4 2 8 10 | ∗ ∗∗] (26)

U τ t
g′1 = [ 5 1 7 |4 5 6 7 | ∗ ∗∗] (27)

Thirdly, if the quantity appears in the crossover vector, any
amount beyond the initial crossover point will be removed.

U τ t
g1 = [1 3 | 4 2 8 10 | ∗ ∗ ∗ ∗] (28)

U τ t
g′1 = [ 1 | 4 5 6 7 | ∗ ∗ ∗ ∗∗] (29)

Finally, after the second crossover point, the numbers that
do not appear and the numbers behind the first crossover
point in the parent chromosome will be retained based on the
sequence.

U τ t
g′ = [1 3 | 4 2 8 10 | 5 6 7 9] (30)

U τ t
g′1 = [1 | 4 5 6 7 | 2 8 10 9 3] (31)

3) MUTATION OPERATORS
After performing the crossover operations, mutation opera-
tions are applied to a randomly selected chromosome’s line

vector Vτ t
g , which represents a section of location-routing

planning throughout the planning horizon.

V τ t
g =



(
V τ t
g11,V

τ t
g12, . . . ,V

τ t
g1K

)
︸ ︷︷ ︸

V τ t
g1

,(
V τ t
g21,V

τ t
g22, . . . ,V

τ t
g2K

)
︸ ︷︷ ︸

V τ t
g2

,(
V τ t
g31,V

τ t
g32, . . . ,V

τ t
g3N t

)
︸ ︷︷ ︸

V τ t
g3


(32)

A reverse sequence mutation is employed to generate off-
spring from sub-vectors of chromosomes. The mutation of
V τ t
g1 is carried out as follows:
Firstly, two inversion points are haphazardly selected

inside a sub-vector V τ t
g1 .

V τ t
g1 = [1 2 3 | 4 5 6 7 | 8 9 10 ] (33)

Secondly, the inversion of the numbers between the two
points of inversion results in the generation of offspring.

V τ t
g1 = [ 1 2 3 | 7 6 5 4 | 8 9 10 ] (34)

B. A CROWDING CLUSTERING STRATEGY FOR
MULTI-OBJECTIVE NSGA-II-CC PROCEDURE
1) THE DEFINITION OF SIMILARITY DISTANCE
For multi-objective optimization, non-dominated objective
vectors become exceptionally large with the increasing num-
ber of objectives. Fast convergence to a narrow solution space
affects the multi-objective algorithm’s efficiency [53]. It is
important for a multi-objective optimization algorithm to
keep the variety of solutions during the procedure of calcula-
tion. The crowding clustering strategy, as a niching technique,
was widely used to improve the diversity of evolutionary
algorithms [54], [55]. The crowding clustering algorithm is
not influenced by parameters, and no prior knowledge of the
objective function is required [56].

A similar distance is designed to assess the similarity
among the solutions of the MMLRP. The similarity of solu-
tions can be considered as the probability that two data
belong to the same class in the clustering strategy. To resolve
the quantification of the similarity between the solutions,
we proposed a similarity calculation method considering the
structure of the solutions, which are composed of depot
selection and sequence of demand points on the routes. The
similarity is obtained by averaging the similarity of each
dimension of the solutions.

(1). The similarity of the depot location
Considering the depot’s location of the solutions, the loca-

tion similarity between the solution S t and solution S
′t in the

l− th dimension is measured by the open state of the depot l.
The similarity of the depot location is formulated as follows,

S1
(
S t , S

′t
)

=

|M |∑
l=1

ϕ1
(
αil, αjl

)
(35)
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where αil is the value of the set of open states αi on the
l (l ∈ M) dimension, and αjl is the value of the set of open
states αj on the l dimension. The similarity of different
depot’s positions can be transformed as follows,

ϕ1
(
αil, αjl

)
=

{
1, if αil = αjl
0, otherwise

(36)

(2). The similarity of route planning
Due to the demand points in each route being different in

solutions, the similarity of route planning between solution
S t and solution S

′t in the l − th dimension can be measured
by the demand points served by the route l:

S2
(
S t , S

′t
)

=

|K |∑
v=1

ϕ3
(
γil, γjl

)
(37)

where γij is a demand point set served by the route l, γil is
the subset of the demand points of the allocation set γi on the
l − th dimension, and γjl is the subset of the demand points
of the allocation set γj on the l − th dimension.

ϕ3
(
γil, γjl

)
=


∑|γil |

r
ε
(
γilr , γjl

)
/
∣∣γjl ∣∣ , if

∣∣γjl ∣∣ > |γil |∑|γjl |

r
ε
(
γjlr , γil

)
/ |γil | , if |γil | ≥

∣∣γjl ∣∣ and |γil | ̸= 0

1, i f |γil(t)| =
∣∣γjl ∣∣ = 0

(38)

where

ε (a,B) =


1, if a ∈ B
0, otherwise
‘

(39)

Considering that the similarity of the depot location and
the similarity of route planning vary, the similar distance of
solutions between the solution S t and solution S

′t is thus
obtained by integrating three parts together:

SD
(
S t , S

′t
)

= 1 −

√
SD1

(
S t , S ′t

)
+ SD2

(
S t , S ′t

)
2

(40)

2) THE PROCEDURE OF CROWDING CLUSTERING STRATEGY
In this study, a crowding clustering strategy is developed for
the treatment of multi-objective optimization. The Crowding
Factor (CF) is allocated to the population number (NP) to
avoid substitution errors between the next-generation solu-
tions and the previous-generation solutions. Each successive
individual Ci (i = 1, 2, . . . ,NP), chooses the nearest parent
Pj according to the distance of the similarity in (40). For
each parent Pj (j = 1, 2, . . . ,NP), there is a set of successive
individuals SS j that compete with Pj, and the SS j could be
an empty set. A set CS j =

{
Pj, SS j

}
, j = 1, 2, . . . ,NP is

defined as a cluster in which individuals have a high degree
of similarity. A cluster center CC j is selected to survive
and other individuals will have perished in the cluster CS j.
The crowding clustering strategy brings competition to avoid

multiple clusters from converging to the same extremum and
prevent individuals with high similarity from entering the
evolutionary computation.

Considering that to address many-objective optimization
problems, there are multiple Pareto solutions instead of only
one optimal solution. Cluster center CC j are determined as
follows:

min
l∈NSj

∑
k∈NSj\Sl

SD (Sk , Sl) (41)

where NS j ∈ CS j is a set of no-dominated solutions and
CRj = maxα∈CSjSD

(
Sα, Sj

)
is a no-dominated solution that

has a maximum radius CRj. The many-objective crowding
clustering strategy is as algorithm 1.

Algorithm 1 A MANY-OBJECTIVE CROWDING CLUS-
TERING STRATEGY
Input: Candidate solution set S
Output: Update solution set S ′

Step 1. Children set C is generated by the crossover operator
and mutation operator.
Step 2. For each parent Pj ∈ S, a set OCSj ∈

{
Pj,SSj

}
is constructed as original cluster j, (j = 1, 2, . . . ,NP). The
original cluster radius OCSj is calculated, and the original
cluster center OCC j is selected for each original cluster j.
Using a non-dominated sorting approach,NP original clusters
are sorted by the objectives of the original cluster center.
Step 3. First, a set FC = ∅ is initialized to save the final clus-
ters, in which crowded and underperforming clusters have
been removed.
Step 4. A final cluster center is randomly selected from the
first Pareto layer, sorted by Step 2, and put into the FC . The
cluster center and cluster radius of the final cluster l are FCCl
and FCRl.
Step 5. Check for the cluster j (j /∈ FC) from the inner
Pareto l front. If SD

(
FCC l,CC j

)
> FCRl , the cluster j

is put into FC and removed from the original cluster set.
At the same time, the radius of cluster FC is updated to
min

(
SD

(
FCC l,CC j

)
,CRj

)
, ∀l ∈ FC .

Step 6. |NFC | is defined as the number of solutions in FC .
If |NFC | < NP, NP − |NFC |, solutions are generated as the
next generation of solutions together with the solutions inFC .
Step 7. Output S ′, if the run description criteria are met.
Otherwise, return to step 2.

V. COMPUTATIONAL EXPERIMENTS AND DISCUSSIONS
All experiments presented in Section IV were conducted
using Matlab2018 on a 4.60GHz Intel Core i7-11800CPU
with 32GB of RAM and operating on Windows 10. The
mutation and crossover rates for NSGA-II were set to pm =

0.7 and pc = 0.7, respectively. As the MMLRP is an NP-
hard problem, obtaining the complete set of Pareto optimal
solutions is not always feasible. Hence, we conducted ten runs
on the test instance to obtain an approximate set of solutions.
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TABLE 1. Parameters of test instances.

TABLE 2. Parameters of the vehicle.

A. TEST INSTANCES
There is currently no established benchmark dataset avail-
able for the evaluation of the multi-objective multi-period
optimization problem addressed in this study, as far as we
are aware. We have conducted a variant of standards LRP
instances R, RC, C1, and C2 of Solomon designed to evaluate
the capability of the improved NSGA-II as shown in Tab.
1 and Tab. 2 by the guidelines presented in reference [57].
In each test instance, all demand points and depots are located
in a 100×100 km2 grid. Take the test instance R-3-5-20/30/25
which is a variant of standards LRP instances R as an exam-
ple, we have divided the planning horizon into three periods
and assumed that 5 potential depots satisfy 20 demand points
in period 1, 30 demand points which increase 10 demand
points relative to period 1 in period 2 and 25 demand points
which lost 10 demand points and added 5 new demand points
relative to period 2 in period 3.

To conduct a comparative analysis, the classical NSGA-
II, PICEA-g, PICEA-G, MOPSO and MOEA/D are also
employed to solve the test instances. The parameters of the
algorithms are set as in Tab. 3 Note that PICEA-g is an
outstanding optimization algorithm to cope with the multi-
objective problem [58].

This study aims to identify potential depots to be opened
and to establish the routes from these depots to the demand
points while adhering to the vehicle capacity constraint. Fur-
thermore, the variation in locations and also the number of
demand points require readjusting decision making regarding
the positioning of the depots as well as the vehicle’s route
scheduling.

Without loss of generality, the assumptions are made:
(1) During each period, a single vehicle services each

demand point, and the demand at each point does not exceed
the carrying capacity Q.

VOLUME 12, 2024 51599



B. Chen et al.: Multi-Objective Multi-Period Low-Carbon Location-Routing Problem

TABLE 3. Parameters of the algorithms.

TABLE 4. Computation results for test instances with algorithms (A: NSGA-II-CC, B: NSGA-II, C PICEA-G, D MOPSO AND E MOEA/D).

(2) Candidate depots have adequate supply to satisfy the
demand points, and the location of candidate depots is fixed
during the planning horizon. The cost of location for each
depot is 5000 Yuan.

(3) Vehicles that are considered to be homogeneous have
the same speed and the same carrying capacity Q, as shown in
Tab. 1. The number of vehicles is enough for transportation.

(4) Distance between traffic nodes can be assessed by
Euclidean distance between points. In addition, the vehicle
needs to return to the departure depot when the vehicle has
serviced all the demand points on the route.

(5) To simplify the model, the MMLRP considers a single
shipment of goods and does not take into account the situation
of shortage.
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(6) The empty loaded fuel consumption for unit distance
ρ0 is 0.165 km/L, and the thoroughly loaded fuel use for unit
distance ρ∗ is 0.377 km/L. Carbon emissions brought about
unit fuel consumption e are 2.63L/kg.

B. COMPUTATIONAL RESULTS
All test instance parameters are set the same. The quantity of
chromosomes amounts to 100, coupled with 2000 iterations.
An assessment of the effectiveness ofMMLCLRP algorithms
is conducted utilizing a performance metric denoted as the
C-metric, which enables a comparison of the quality of the
Pareto approximation solution by the two algorithms. The
C(X ,Y ) indicator is the percentage of the solutions in the
Pareto approximation solution Y dominated by any solution
of Pareto approximation solution X [59].

C (X,Y) =
|y ∈ Y |∃x ∈ X : x ≤ y|

|Y |
(42)

Note that the value of the C(X ,Y ) is not essentially iden-
tical to 1−C(Y ,X ). After 10 runs, the mean value of results
solved by the NSGA-II-cc, NSGA-II, and PICEA-g are sum-
marized in Tab. 4.

To compare the results, superior results are underlined in
Tab. 4. NSGA-II-cc got superior results over NSGA-II for
almost all the instances in R, RC, C1, C2 except for the
Instance R-5-5-20/30/40/35/25 and C1-5-5-20/30/40/35/25.
We observe that the capability of the NSGA-II-cc is superior
to the PICEA-g, the MOPSO, and the MOEA/D for those
instances with more nodes and 5 periods. The results show
that the NSGA-II-cc algorithm has advantages for solving
MMLCLRP with multiple points and periods. This work
presents two novel techniques that have been incorporated
into the NSGA-II-cc algorithm to enhance its performance.
Firstly, customized designs were created for the similar-
ity between depot location and vehicle routing, enabling
the algorithm to elect neighborhoods more effectively and
enhance convergence. Secondly, a crowding clustering strat-
egy was implemented to augment the diversity of the
NSGA-II-cc algorithm. This technique is particularly criti-
cal for addressing location-routing problems with complex
solution structures. We analyze the optimal decision of the
three objectives in the Pareto solution obtained using the
Instance R-3-5-20/30/25, which comprises demand points for
three periods: 1-20, 1-30, and 11-35, respectively. For the
solution involving the minimum cost in the Pareto solution,
the three objective values are 25387.36 Yuan, 111.11 hours,
and 936.59 kilograms. In Fig.4, red points represent depots,
and the black points represent demand points. The decision
of the solution is as follows:

The solution selects only one depot in three periods to
service all of the demand points because the use cost of
the depot is 5000 Yuan, which is obviously higher than the
vehicle uses cost and cost per unit of length. We can observe
that Depot 1 is close to the central territory of the region,
and the selection of this depot can minimize the distance
to the routes. Compared with the first period, the amount
of vehicles exploited in the second period and third period

FIGURE 4. Illustration of the solution of the instance R-3-5-20/30/25 (the
optimal cost).

increases from 5 to 6 vehicles due to the increase in the
demand points. Although the amount of vehicles exploited in
the second period and the third period is as same as 6, we can
also find that the route planning has been adjusted due to the
change in demand points.

For the optimal solution of objective 2 in the Pareto solu-
tion, the values of the three objectives are 40765.20 Yuan,
109.32 hours, and 862.11 kilograms. Fig.5 presents the deci-
sion of the solution.

Compared to Fig. 4, we can observe that more depots
are used in Fig. 5. Multiple depot schemes can reduce the
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FIGURE 5. Illustration of the solution of the instance R-3-5-20/30/25 (the
optimal service time).

length of the routes. This results in a shorter total arrival time
to reach the demand points but increases the total cost to
40765.20 Yuan. We observe that the second period in Fig. 4
and Fig. 5 adopts almost the same optimization strategy,
and we believe this strategy has significant advantages for
the optimization of the first and second objectives in the
second period. In addition, a good strategy is included in
different Pareto solutions, which indicates that the NSGA-II-
cc algorithm has better stability. In addition, it is evident that
each vehicle route typically complies with the TSP principle,
affirming the rationality of the proposed algorithm for route

FIGURE 6. Of the solution of the Instance R-3-5-20/30/25 (the optimal
carbon emission).

creation. Consequently, based on the current circumstances,
decision-makers can select the appropriate option from the
multi-objective Pareto solutions.

In the option including the minimum CO2 emission from
the Pareto solutions, the values of three objectives are
41297.33 Yuan, 109.79 hours, and 847.65 kilograms. Fig.6
presents the decision of the solution.

From the solution illustrated in Fig. 6, minimizing CO2
emission, we can see that 7 vehicles are used in the sec-
ond period. Although the capacity of 6 vehicles is sufficient
to serve all demand points, long-distance transportation
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increases vehicle carbon emissions. Compared with Fig.4 and
Fig.5, the solution of Fig. 6 uses more depots and vehicles,
which reduces carbon emissions but has the highest cost
among the three solutions.

The findings reveal that the improved NSGA-II-cc is pro-
ficient in addressing the issue and has outperformed the other
leading multi-objective evolutionary algorithms. In addition,
the proposed MMLCLRP model can effectively deal with
optimization with three objectives. We can provide logistics
decision-makers with multiple solutions to achieve differ-
entiated needs. For Instance, logistics decision-makers can
reduce vehicle arrival time and carbon emissions by spending
the corresponding cost when customers have strict service
time requirements or government organizations have low
carbonization requirements for logistics networks.

VI. CONCLUSION
This paper proposed an optimization model for a multi-
objective multi-period low-carbon location-routing problem,
the MMLCLRP, considering the total logistics cost, the
arrival time of the demand points, and the carbon emissions
to determine depot location, and route programming in a
planning horizon with multi-period. The proposed model
ensures the sustainability of the logistics and dynamically
adjusts location routing decisions of each period to change
market demand.

We have modified NSGA-II-cc to solve the MMLCLRP
effectively. Through the customized design of the similarity
between depot location and vehicle routing, the NSGA-II-cc
algorithm was enabled to select more appropriate neigh-
bors, thereby improving the rate of convergence. In addition,
a crowding clustering technique was implemented to max-
imize the diversity of the NSGA-II-cc, which is essential
to address location-routing problems with complex solution
structures.

Experimental outcomes illustrate that the algorithm offers
benefits in addressing the variable multi-objective LRP prob-
lem, and the MMLCLRP framework can effectively balance
logistics-related concerns, including economy, efficiency,
and the environment. Our future works will concentrate on
solving the problem of multi-periods material distribution in
a stochastic environment. In addition, emergency logistics,
such as the relief supply for earthquakes, typhoons, and epi-
demics, will also be researched in the future.
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