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ABSTRACT Time delay and image quality degradation are main challenges faced by streaming video
transmission. How to make adaptive planning for transmission schemes according to dynamic change of
transmission environment, always remains a technical concern. As a consequence, this paper proposes a
deep reinforcement learning-based optimal transmission control method for streaming videos. Firstly, edge
buffer task allocation is combined with quality of experience (QoE)-oriented deep reinforcement learning
algorithm, in order to develop a resource allocation method for streaming videos. Secondly, an actively
coordinated streaming data streaming transmission mechanism is established to construct a specific optimal
transmission control method that satisfies environment requirement. Finally, a set of experiments are
conducted to verify effectiveness and performance on public video transmission datasets. And the proposal
is compared with several traditional transmission methods. The experiments show that the proposal in this
work can effectively reduce delay and startup time and improve the QoE. This shows that the proposal is
able to bring better stability and transmission quality.

INDEX TERMS Deep reinforcement learning, streaming videos, optimal transmission control, quality of
experience.

I. INTRODUCTION
In today’s digital age, streaming video has become an indis-
pensable part of people’s daily lives, and its applications in
fields such as education, entertainment, and communication
are becoming increasingly widespread [1]. However, with the
popularization of streaming video services and the increasing
demand for high-definition and low latency from users, how
to effectively transmit high-quality video content has become
a highly concerned issue [2]. In this context, the optimiza-
tion control method for streaming video transmission based
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on deep reinforcement learning is proposed to address this
challenge.

Traditional video transmission systems often have some
problems, such as video stream lag, degraded image quality,
or video loss in network congestion [3], [4], which directly
affect the viewing experience of users. As a technology that
combines deep learning and reinforcement learning [5], deep
reinforcement learning has the potential to automatically
learn and optimize system control strategies [6], providing
new ideas and methods for solving optimization control
problems in video transmission processes [7].

The purpose of this study is to explore an optimization con-
trol method for streaming video transmission based on deep
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FIGURE 1. Research framework of this paper.

reinforcement learning. We will combine deep learning tech-
nology and reinforcement learning algorithms to design an
intelligent decision-making system for real-time and dynamic
control of various parameters and strategies during video
transmission. By optimizing the encoding, transmission, and
decoding process of video frames, we aim to improve the
clarity, stability, and response speed of videos, and maxi-
mize the satisfaction of users’ needs for streaming media
videos. In this study, we will build an experimental environ-
ment based on existing open source platforms and datasets,
and propose an effective optimization control method based
on the characteristics and related technologies of streaming
video transmission. The research framework is shown in
Figure 1. We will validate the effectiveness and advantages
of the proposed method through extensive experiments and
comparative analysis, and compare it with traditional video
transmission methods to evaluate its performance in various
scenarios.

The main contributions of the study are as follows:
1) The difference between this study and previous stud-

ies is that we used QOE deep reinforcement learning
method to control edge video tasks. Unlike previous research,
we use reinforcement learning to process multiple edge
tasks to determine whether they can meet video transmission
requirements.

2) The study also considered the quality perception and
latency issues of video transmission. We allocate video trans-
mission tasks in more detail in edge tasks through more
efficient algorithms, optimize control methods, and improve
video quality while ensuring low latency video playback.

Structure of the article is organized as follows. Section I
analyzes the main problems and challenges faced in

streaming video transmission. The second section sum-
marizes some of the relevant research of predecessors.
Section III combines the caching task allocation of edge
devices and the control algorithm of QOE deep reinforce-
ment learning to complete the adjustment of video resources.
Section IV proposes an actively coordinated streaming data
transmission method based on the requirements of the video
output platform, and establishes a complete M-QOE video
transmission optimization control method. Section V col-
lected public data from the network and completed the
analysis of reinforcement learning comparison, bandwidth
allocation, and stability. Section VI is a summary of the entire
text and reflections on subsequent research.

II. LITERATURE REVIEW
This study is a research topic involving deep learning and
reinforcement learning techniques in the field of streaming
video transmission optimization. In the research of relevant
scholars, many are committed to using deep learning algo-
rithms to optimize various aspects of video transmission.
They usually explore how to use deep learning technology
to improve the efficiency and quality of video transmission
from aspects such as video encoding, transmission proto-
cols, and network topology. Among them, some scholars
are concerned about how to use deep learning algorithms to
optimize video encoding and decoding, in order to reduce the
bandwidth consumption of video streams while maintaining
high visual quality. They optimize video encoding by training
neural networks to adapt to different network conditions and
terminal devices, thereby improving the efficiency of video
transmission. In addition, some scholars are committed to
using reinforcement learning algorithms to optimize control
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FIGURE 2. Streaming video transmission optimization control.

strategies for video transmission. They establish a model
for video transmission systems and design corresponding
reward functions, allowing reinforcement learning algorithms
to dynamically adjust transmission parameters based on
real-time network status and video quality feedback, in order
to achieve optimal transmission control in different network
environments.

These scholars and organizations are representatives of
those who have made certain achievements in the field of
optimizing control methods for streaming video transmis-
sion based on deep reinforcement learning. Of course, many
other scholars and organizations are also conducting in-depth
research in this field. In summary, the optimization control
method for streaming video transmission based on deep rein-
forcement learning has become a research hotspot, attracting
the attention and investment of many excellent scholars and
organizations at home and abroad.

III. QOS-ORIENTED DEEP REINFORCEMENT LEARNING
FOR JOINT EDGE DEVICES
A. EDGE DEVICE CACHE TASK ALLOCATION
Edge device cache task allocation refers to the allocation of
video content delivery tasks to different cache devices accord-
ing to certain strategies in the edge computing environment
to optimize the transmission quality and user experience of
streaming video [16]. The optimization control method for
streaming video transmission based on deep reinforcement
learning can effectively solve the problem of edge device
caching task allocation [17]. Edge devices typically have
limited storage capacity, so it is necessary to allocate video
content delivery tasks to various devices in a reasonable
manner to maximize storage utilization [18].

Video popularity is an important indicator of live video
content, with a focus on considering the impact on user
viewing before the start of the live video. However, in addi-
tion to video popularity, several other important factors are
also considered comprehensively, and there are significant
differences in the order of magnitude between popularity
indicators and other factors. If popularity data is directly
used, the importance of popularity will be overly emphasized.
To balance this difference and ensure the reliability of the

results, This article has standardized the popularity data, and
the standardization formula is as follows [19]:

pop (v) =
curpop− dop

SD
(1)

Among them, pop(v) is the standardized popularity value
of live video v, curpop is the original popularity value, dop is
the mean popularity value, and SD is the standard deviation
of live video popularity.

Each server forms a collaborative domain with 10 regular
edge servers, and to simplify the experiment, the link band-
width is set to a fixed value. The delay between the edge
server and the server is 10ms, and the delay between the edge
server and the content delivery networks (CDN) is 200ms.
The request response time is as follows:

Delay = Tsend + Tc + Td (2)

Among them, Tsend is the transmission delay, TC is the
service request delay from the cluster head server, and Td is
the service request delay from the CDN. If a direct request is
made to the edge server and the requested resource exists on
the edge server, then TC and Td values are 0.

B. QOE-ORIENTED DEEP REINFORCEMENT LEARNING
The optimization control method for streaming video trans-
mission based on deep reinforcement learning has the
potential to improve the quality of user experience (QoE).
In this article, you may use deep reinforcement learning
control algorithms to optimize key parameters in the process
of streaming video transmission, in order to improve the
viewing experience for users. The QOE deep reinforcement
learning control algorithm is based on a deep reinforcement
learning framework, which selects appropriate actions from
a given state through interactive learning with the environ-
ment to maximize the predefined reward function [21], [22].
In streaming video transmission, QoE is influenced by many
factors, such as bandwidth, latency, packet loss rate, etc. Deep
reinforcement learning can optimize the video transmission
process by monitoring and adjusting these parameters in real-
time, thereby improving the viewing experience for users.

Value based reinforcement learning is used to handle
tasks with discrete action space and limited action space.
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FIGURE 3. Internal structure of QOE deep reinforcement learning.

By learning the value function, the value of the action is
obtained, and the action with the highest value is selected
for execution. This is an indirect way to select the optimal
strategy. Taking the update method of the Q-learning value
function as an example [23]:

Q′ (s, a) = Q (s, a)

+ α
[
R (s, a) + γ maxQ′

(
s′, a′

)
− Q (s, a)

]
(3)

The execution process of the entire system is as follows:
at the initial moment of the t time slot, the user reports their
current observed relevant information sj (t), including chan-
nel quality qjj (t), buffer data Tj (t), requested video block
number mj, to the central controller i. The central controller
stores sj (t) in the user’s cache queue Qj, and the resource
allocation module pulls the global environment state required
for QoS control decisions from the state storage module.

The optimization goal of the strategic network is to maxi-
mize the expected cumulative return J (θ) to obtain strategies
that maximize returns [24]:

J (θ) = Es∈S,a∈A [R (s, a)] (4)

Directly targeting policy parameters θ The formula for
derivative and strategy gradient update is as follows:

∇θJ (θ) = Eπθ

[
∇θ logπθ (a/s)Qπθ (s, a)

]
(5)

At the same time, Critical updates the network parameters
based on the time difference error, making the network’s
value estimation of the state more accurate and better guiding
the update of the Actor network. The state value function
of reinforcement learning is written in an iterative form as
follows:

Vπ (s) = Eπ

[
r + γVπ

(
s′
)]

(6)

Due to the fact that traditional value-based reinforcement
learning uses the original cumulative expected return Rt as
the state action value function Q π (s, a) to guide the degree
of policy update, it can lead to a high contrast, which can
be understood as the advantage of executing action a relative
to the average performance of state s. The formula for the
parameters of the policy gradient network can be rewritten as
equation 7, and its internal structure is shown in Figure 3.

∇θJ (θ) = Eπθ

[
∇θ logπθ (a/s)Aπθ (s, a)

]
(7)

C. VIDEO RESOURCE ALLOCATION FOR JOINT DEEP
REINFORCEMENT LEARNING
Joint deep reinforcement learning has great potential in video
resource allocation [25]. In the video transmission optimiza-
tion control method based on deep reinforcement learning,
video resource allocation is an important link that can deter-
mine the transmission quality and user experience of the
video stream. Through joint deep reinforcement learning,
the system can achieve intelligent decision-making and opti-
mize the allocation process of video resources [26]. Deep
reinforcement learning can help systems make intelligent
decisions based on factors such as current network condi-
tions, user needs, and video characteristics. In video resource
allocation, the system can learn the optimal strategy through
deep reinforcement learning to achieve optimal performance
during video transmission.

Specifically, the intelligent agent selects the optimal video
quality level at each time step and sends its options to the
client. These decisions will also be passed back to the server
and used to improve the next decision. According to the
previous definition of QoS for user viewing, the return rk
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is composed of video quality and quality fluctuations in the
spatiotemporal domain, and is affected by prediction accu-
racy. Set Setk to represent the set of code blocks that need to
be downloaded after the selected action updates the highest
level of Lk . For any element C, the return value can be
expressed as:

rk =

∑
C∈Setk

1G (C) ·
(
1 − PSetk · C

)
(8)

All encoding blocks in the set with playback or encoding
time ranking first are marked as Set∗k , and calculated 1 The
probability of C being viewed, which 1G(C) depends on,
is replaced by the predicted viewing probability of the FoV
where it is located. The video parameters for streamingmedia
transmission are shown in Table 1.

TABLE 1. Collection and display of streaming video parameters.

In addition, this joint deep reinforcement learning video
resource allocation method also has great flexibility and can
adapt to different types of streaming media services and
network conditions. For example, with higher bandwidth and
more stable network connectivity, this method can automat-
ically improve the video quality level and provide higher
quality video streams; In situations where the network is
more congested, the video quality level will be automatically
reduced to avoid video buffering and lag. The video resource
allocation of joint deep reinforcement learning is an efficient,
flexible, and personalized video transmission control method
that can automatically adjust the video quality level accord-
ing to real-time changes in network conditions, improve
user experience and satisfaction, which will be verified in
subsequent experiments.

IV. M-QOE: OPTIMAL TRANSMISSION CONTROL
METHOD FOR STREAMING VIDEOS
A. VIDEO TRANSMISSION PLATFORM REQUIREMENTS
The streaming video transmission platform needs to ensure
that video content is transmitted to users with high quality
and stability to provide a smooth viewing experience. The
transmission platform needs to have excellent encoding and
decoding capabilities and transmission technology, while uti-
lizing deep reinforcement learning algorithms to optimize

transmission control and improve the quality and perfor-
mance of video transmission. The research will focus on the
key requirements of the video transmission platform required
in the optimization control method of streaming video trans-
mission based on DDPG deep reinforcement learning. Video
transmission needs to meet efficient speed requirements,
which require efficient network bandwidth and transmission
protocols to ensure smooth video transmission [27]. In addi-
tion, reliable service quality and stable connectivity are also
required to avoid issues such as interruption or lag in video
transmission. Stability analysis can also help us evaluate the
performance stability of optimized control methods. The goal
of optimizing control methods is to maximize bandwidth
utilization and user experience while maintaining video trans-
mission quality. Stability analysis can help us determine the
performance stability of optimization control methods under
different network conditions, as well as their sensitivity to
different optimization objectives. DDPG is a reinforcement
learning method based on the Actor-Critic network frame-
work. It is a deterministic strategy approach, in which the
learned strategy outputs only one deterministic action under
the same state input [28]. In the DDPG algorithm, not only the
Actor-Critic method is used, but also a dual network structure
is used to distinguish the current network from the target
network. The task of the current network is to use greedy
algorithms to select corresponding actions for the current
input state s α And execute, during the training process of the
Critical network, as it is a value based method, it is similar to
the loss function of DQN [29]:

J (ω) =
1
N

N∑
i=1

{yi − Q [φ (s) , a, ω]} (9)

The actual meaning of the loss corresponding to the Actor
network is that under the same input state, if the policy
outputs two different actions α1 and α2. Through the Critical
network, the corresponding values can be calculated as Q1
and Q2, respectively. For a layer of convolutional layers,
N samples are first taken from the training samples and input
into the neural network to calculate the N feature maps ycov
output by the convolutional layer. The weight values in the
convolutional kernel of this layer are sequentially set to 0, and
the new output feature map y’cov is recalculated. The mean
square error of the feature map before and after pruning is
calculated:

Lw
(
yfc, y′fc

)
=

1
N

N∑
i=1

(
ycov − y′cov

)2 (10)

For video content with high real-time requirements, such
as live streaming activities, the transmission platform needs
to have low latency transmission capabilities to ensure
real-time and stability. By optimizing control methods
through deep reinforcement learning, transmission delay
can be effectively reduced and user experience can be
improved.
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FIGURE 4. M-QOE video transmission optimization control algorithm framework.

B. PROACTIVELY COORDINATED STREAMING DATA
TRANSMISSION
Proactively coordinated streaming data transmission refers
to the use of deep reinforcement learning techniques and
proactive measures taken to optimize data transmission dur-
ing the streaming video transmission process. In traditional
streaming media data transmission, video data is often sent
according to fixed transmission rules and strategies, but this
static transmission method often cannot adapt to changes in
the network environment and differences in user needs. The
intelligent agent can learn the optimal transmission optimiza-
tion strategy to provide better video transmission quality and
user experience. This method based on deep reinforcement
learning has certain adaptability and generalization ability,
and can adapt to dynamic changing environments under
different network conditions.

In order to cope with instantaneous wireless network chan-
nel fluctuations, the network channel conditions in a short
period of time are accurately estimated by periodically sam-
pling the physical layer channel to track the instantaneous
network channel fluctuations. Take t as the sampling start
time, t+n.1T is the end time of the sample, 1t is the sam-
pling interval, and equal interval sampling is performed on the
physical layer transmission blocks of the wireless network.
The specific calculation formula is as follows [30]:

BWi (t) =
1
1t

t+i·1t∑
t(i−1)·1t

TBSizej (11)

BWi (t) =
1
n

N∑
i=1

BWi (t) (12)

BWt = (1 − α) · BW (t) + α · BWt−1 (13)

Among them, BWi (t)represents the physical layer bandwidth
sampling value at the i equal time interval starting from
sampling time t , BW (t) represents the arithmetic mean of the
physical layer bandwidth sampling at sampling time t, BWi
represents the estimated user available network bandwidth
at time t , and BWt−1 is the estimated available network
bandwidth from the previous sampling, 1T is set to 50ms,
the number of samples is set to 20, and the attenuation factor
a is set to 01, which means the sampling covers the channel
conditions within a time range of approximately 05 seconds.

The optimization control method for streaming video
transmission based on deep reinforcement learning can
achieve better data transmission performance through
real-time network state perception and active adjustment
strategies based on user needs learning. Stability analysis can
help us evaluate the robustness of optimized control methods.
In practical applications, the streaming media transmission
environment may be affected by various factors, such as net-
work latency, bandwidth changes, etc [35]. Stability analysis
can help us evaluate the performance of optimized control
methods under these changing conditions and determine their
robustness and adaptability. Adopting reinforcement learning
algorithms for training and optimization in real environments,
continuously adjusting strategies through interaction with
the environment to maximize the long-term reward function
and provide a better user experience. In real-time video
transmission, based on the current network environment and
video quality requirements, the strategy obtained through
deep reinforcement learning model adjusts the video bit rate

VOLUME 12, 2024 53093



Y. Yang, Y. Xiao: Deep Reinforcement Learning-Based Optimal Transmission Control Method

and quality according to priority to provide the best viewing
experience [36]. Through this proactive and coordinated
streaming data transmission method, the system can automat-
ically adjust according to real-time requirements in complex
network environments, providing a better video playback
experience, reducing buffering time and image lag.

C. OPTIMAL TRANSMISSION CONTROL
In the process of streaming video transmission, there are
many factors that may affect video quality, such as bandwidth
fluctuations, network latency, packet loss, etc. To ensure a
good viewing experience for users, it is necessary to adjust
parameters such as bit rate, resolution, and buffering strat-
egy in real-time during the transmission process. Traditional
methods often adopt fixed strategies or adjust based on certain
rules, lacking flexibility and adaptability. This model takes
the current network state and video features as inputs and
outputs an optimal transmission parameter sequence. This
sequence can maximize the quality of video transmission
and user experience, while avoiding network congestion and
resource waste [31]. When the media plays smoothly, the
behavior of the timestamp in the RTP header is similar to that
of the transmission timestamp, which follows the following
approximate equation [32]:

Tr − Tr1
Tr − Tr2

=
Te − Tm1
Te − Tm2

(14)

Among them, Tr represents the timestamp in the RTP
header, and Tm represents the timestamp of the sent packet.
Te is the expected time to send a packet. When maintaining
the latest two pairs of Tr (Tr1 and Tr2) and Tm(Tm1 and Tm2),
Te can be calculated using the following equation.

Te =
(Tr − Tr1)Tm2 − (Tr − Tr2)Tm1

Tr2 − Tr1
(15)

This section will introduce the transmission packet loss
analysis model. Let R = {1, 2, · · · , r} represent the set of
subflows in a multiplexing connection. For any sub stream i
in R, its transmission loss analysis model can be expressed as
follows:

ϕi =
1

1 + µv(1−pi)·σi·ci
(16)

Among them ϕi is the transfer factor, σi is a parameter that
reflects the characteristics of RTT, and ci is a parameter that
describes the swnd state σi and ci evaluate the transmission
status from two different perspectives ρi is a parameter that
reflects the network packet loss rate. Parameters µ and v
are constants that determine the offset and sensitivity of the
TFE model, respectively. The optimization control algorithm
framework is shown in Figure 4. This work constructs an
appropriate model based on factors such as network topol-
ogy, transmission protocols, and video encoding, and use
deep reinforcement learning algorithms for training and opti-
mization. In addition, the bandwidth allocation problem in

multi-user scenarios can also be considered, and overall per-
formance can be improved through collaborative learning and
resource allocation strategies.

This transmission optimization control method based on
deep reinforcement learning has strong adaptability and
adaptability, and can dynamically adjust transmission param-
eters according to different network environments and video
content to achieve the best transmission effect [33]. In addi-
tion, this method can also improve transmission perfor-
mance and user satisfaction through continuous learning and
optimization [34], [35].

The method based on deep reinforcement learning can
automatically learn the optimal decision by training an intel-
ligent agent to optimize the process of video transmission.
The core idea of this method is to model the problem as a
Markov Decision Process (MDP), where the agent perceives
the network state and environmental feedback based on the
current state, selects the best action to achieve transmission
optimization.

Algorithm 1 Deep Reinforcement Learning-Based Optimal
Transmission For Streaming Videos
Input: The standardized popularity value pop (v)
1: of live video data, maximizing expected cumulative

returns as optimization goal J(θ), any element i, and
training sample N.

2: Standardized the popularity data
3: for all r = 1 to n do
4: Calculate the value of pop (v) for eq-1
5: Request and the edge server has the

requested resource
6: for J (θ )1: n
7: Strategy Gradient Update
10: State value function iteration
11: if the quality and spatiotemporal

fluctuations of the video
12: Predict viewing probability instead
16: else
17: Reset the weight values in the

convolutional kernel of the layer
18: Recalculate until the threshold is

met
19: end for
20: end for

V. EXPERIMENTS AND ANALYSIS
A. COMPARISON OF REINFORCEMENT LEARNING UNDER
DIFFERENT VIDEO STREAMS
Different types of video streams may have their own unique
characteristics, such as dynamism, complexity, and image
quality requirements, which can affect the effectiveness of
reinforcement learning algorithms. Therefore, it is necessary
to train and adjust reinforcement learning models for differ-
ent situations to maximize the quality of video transmission
and user experience. The comparison of decisions made by
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QE-MCC, DQN, MPC, and M-QOE in different iteration
sequences is shown in Figure 5, and their delivery patterns
are shown in Figure 6.
Based on the provided data, we can see the impact of

different optimization control algorithms on video stream
quality (QOE score) under different iteration orders. When
the iteration order is 0, the QOE score of M-QOE optimiza-
tion control is the highest, at 0.8, followed by the QOE score
of MPC optimization control at 0.7, QE-MCC optimization
control at 0.4, and DQN optimization control at 0.3. As the
iteration order increases, the QOE scores of all optimization
control algorithms have improved. At iteration order 1, the
QOE score of M-QOE optimization control is the highest,
at 1.1, MPC optimization control has a QOE score of 0.8,
QE-MCC optimization control has a score of 0.8, and DQN
optimization control has a score of 0.5. In iteration order 2,
the QOE score of M-QOE optimization control is the highest,
at 1.6, MPC optimization control has a QOE score of 1.3,
QE-MCC optimization control has a score of 1.0, and DQN
optimization control has a score of 0.8. As the iteration order
increases, the QOE scores of various optimization control
algorithms show an increasing trend, and M-QOE optimiza-
tion control performs best in all iteration orders.

FIGURE 5. Comparison of decision values for several reinforcement
learning methods.

B. OPTIMIZATION ANALYSIS OF BANDWIDTH
ALLOCATION IN VIDEO STREAMS
The bandwidth allocation in video streaming transmission
mainly involves the rational utilization of network resources
and the balanced allocation of video quality. Traditional
methods often rely on static rules to partition and allocate
bandwidth, but this approach is difficult to cope with the
dynamic changes in the network environment and the diver-
sity of video content. Deep reinforcement learning can model
key performance indicators (such as latency, throughput, and
video quality) during video streaming transmission, construct
optimization problems, and obtain optimal strategies through

FIGURE 6. Display of decision value delivery pattern.

FIGURE 7. Video stream output requirements M-QOE differential
summary.

training. Intelligent agents can choose appropriate bandwidth
allocation methods based on the current network status and
video characteristics, thereby maximizing user experience
and video quality. These constraints will affect the allocation
scheme of video stream bandwidth. The viewing experience
of users is one of the key factors in evaluating video stream
bandwidth allocation schemes. The viewing experience can
be measured by many indicators, such as video retention rate,
buffer waiting time, start playback delay, etc. The M-QOE
difference required for video stream output during the same
period is shown in Figure 7.

According to the data analysis in Figure 7, Based on the
provided data, we can see that the difference in QOE scores
between the optimization control algorithms and the M-QOE
algorithm varies for different video stream output require-
ments at different time periods. When the required number
of outputs is 6 video streams, the QOE score difference
of QE-MCC algorithm is 0.3, the QOE score difference of
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FIGURE 8. Bandwidth allocation and bit rate changes.

DQN algorithm is 0.5, and the QOE score difference of
MPC algorithm is 0.8. As the number of video stream output
requirements increases, the difference in QOE scores of each
algorithm also gradually increases, indicating that in these
situations, the M-QOE algorithm has better performance
compared to other algorithms. It should be noted that theQOE
(Quality of Experience) score difference is used to evaluate
the performance differences of different optimization control
algorithms in terms of video stream output quality. Based
on the given data, it can be seen that as the number of
video stream output requirements increases, the difference in
QOE scores of each algorithm will also increase. This may
mean that in higher demand video stream output situations,
better algorithms are needed to ensure the quality of user
experience.

Based on the above factors, obtain video quality levels,
bandwidth constraints, and viewing experience data under
different scenarios through experiments or real world user
data collection. These data will provide a basis for subsequent
analysis. Clean and preprocess the collected data to remove
outliers and noise. Ensure the accuracy and consistency of
data. Extract useful features from the collected data, such as
video quality levels, bandwidth constraints, and indicators of
viewing experience. These features will be used to construct
an optimization model, as shown in Figure 8.

According to the data in Figure 8, we can see that the
relationship between bandwidth (MHz) and QOE value is
not a simple positive relationship. When the bandwidth is 0,
the QOE value is 1.3003. This may be because there is no
available bandwidth, the network connection is very poor, and
the user experience is very low. As the bandwidth gradually
increases from 10 to 70, the QOE value gradually increases
from 1.1957 to 1.20413. This indicates that increasing band-
width can improve user experience, but the improvement is
relatively small. When the bandwidth is 80, the QOE value
drops to 1.78954, which may be due to channel limitations
or other network factors leading to a decrease in network

quality. At a bandwidth of 90, the QOE value sharply drops
to 2.28553. This may be due to signal interference or other
technical issues caused by excessive bandwidth, which in turn
reduces the user experience. At a bandwidth of 100, the QOE
value drops back to 1.72206, indicating a decrease in user
experience compared to the QOE value at higher bandwidths.
When the bandwidth is small, the QOE value is low, but when
the bandwidth reaches a certain level, the QOE value reaches
its peak, and then decreases as the bandwidth increases. This
may be because when the bandwidth is small, the data transfer
rate is slow, which can affect the user experience; When the
bandwidth is too high, signal interference and channel limi-
tations can lead to a decrease in network quality. In addition,
we can also see that the QOE value is relatively high when
the SNR is high, indicating that the signal-to-noise ratio has
a significant impact on user experience.

C. STABILITY ANALYSIS OF OPTIMIZED CONTROL
METHODS
In research, stability analysis of optimization control meth-
ods is a very important aspect. Stability analysis mainly
evaluates the stability of the proposed deep reinforcement
learning based streaming video transmission optimization
control method in the application process of the system. The
balance between video quality and network bandwidth is
crucial for user experience in streaming video transmission.
Optimization control methods can improve video transmis-
sion quality bymonitoring network status and adjusting video
encoding parameters. Stability analysis can help us determine
whether the performance of optimized control methods is sta-
ble and predict their performance in different environments.
Frequency domain analysis can provide useful information
about system stability and performance, as shown in Figure 9.

The data in Figure 9 shows that from the relationship
between the completion times of M-QOE and the number
of requirements, as the number of requirements increases,
the completion times of M-QOE also increase, indicating

53096 VOLUME 12, 2024



Y. Yang, Y. Xiao: Deep Reinforcement Learning-Based Optimal Transmission Control Method

FIGURE 9. Delivery of stability analysis results.

that the algorithm is effective to a certain extent. How-
ever, the number of M-QOE completed in the observed data
is not a monotonically increasing trend. Especially when
the demand frequency is 900, the completion frequency of
M-QOE slightly decreases, which may be due to certain spe-
cific conditions or abnormal situations. From the perspective
of stability, the stability performance of algorithms is incon-
sistent. In the case of low demand frequency, the algorithm
has greater volatility; After the number of demands exceeds
900, the volatility of the algorithm decreases and tends to
stabilize. In summary, from the perspective of stability of
the M-QOE optimization control algorithm, it has higher
robustness in data preprocessing, outlier handling, parameter
tuning, and data monitoring.

VI. CONCLUSION
This study is based on a deep reinforcement learning opti-
mization control method for streaming video transmission.
Through the combination of deep learning algorithms and
reinforcement learning theory, the optimization control prob-
lem in the streaming video transmission process is deeply
studied. We have demonstrated the effectiveness of deep
reinforcement learning algorithms in optimizing control of
streaming video transmission through research and experi-
mental verification. Deep reinforcement learning can intel-
ligently adjust the transmission parameters of videos, such as
bit rate and resolution, through learning and training, in order
to achieve the best video transmission effect. Compared with
traditional manual adjustment methods, deep reinforcement
learning can automatically optimize the video transmission
process, improve the quality of video transmission and user
experience.

Our research also focuses on the impact of network
environment instability on video transmission. Through the
training and learning of deep reinforcement learning algo-
rithms, we can adjust video transmission strategies based on
the dynamic situation of the network, and improve the trans-
mission quality of videos in unstable network environments.

The experimental results show that in unstable network
environments, control methods based on deep reinforcement
learning can effectively reduce video lag and image quality
loss.

This study achieved significant results in optimizing video
transmission performance using a deep reinforcement learn-
ing based streaming video transmission optimization control
method. Through the application of deep reinforcement learn-
ing algorithms, we can intelligently adjust video transmission
strategies, reduce video latency, and improve video trans-
mission quality and user experience. In the future, we will
further explore the application of deep reinforcement learning
in the field of optimizing and controlling streaming video
transmission, and continuously improve and perfect existing
methods to better meet the needs of users for high-quality
video transmission.
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