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ABSTRACT Early detection of stroke warning symptoms can help reduce the severity of ischemic stroke, the
leading cause of mortality and disability worldwide. This study aims to develop a model to predict the disease
by leveraging machine learning-based models. A model that concatenates a convolutional neural network and
a long short-term memory was developed as the proposed model. Seven other classifiers were treated as the
baseline models: logistic regression, random forest, extreme gradient boosting, k-nearest neighbor, artificial
neural network, long short-term memory, and convolutional neural network. All models were trained using
a healthcare dataset of 5110 patients’ health profiles. A synthetic minority oversampling technique was
deployed to balance the data. Metrics such as accuracy, precision, F1-score, recall, area under the curve,
and confusion metrics were used to evaluate the models’ performance. With a 95.9% accuracy, the proposed
model outperformed the models employed in this study and improved the accuracy of prior studies that used
the same dataset. The Shapley Additive Explanations method was applied to explain the result obtained
by the best model. The proposed model was created to predict ischemic stroke. It considers each patient’s
profile, allowing for personalized decision-making in resource-constrained settings.

INDEX TERMS Ischemic stroke prediction, SHAP method, hybrid deep learning model, machine learning.

I. INTRODUCTION

Stroke, also known as a cerebrovascular accident, is a sig-
nificant global health problem and one of the leading global
causes of death. The World Health Organization (WHO) [1]
defines stroke as a severe, worldwide disruption or malfunc-
tion of the blood arteries supplying the brain that leads to
limb paralysis, severe morbidity, and coma. Symptoms of a
stroke may persist for more than 24 hours and often end in
mortality within 3 to 10 hours [2]. Annually, fifteen million
individuals have a stroke, and one person dies every four to
five minutes [3]. Ischemic and hemorrhagic strokes are the
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two most common types of strokes [4]. According to the
American Heart Association [5], ischemic strokes (IS) occur
when a blood clot obstructs or stops a brain-supplying blood
vessel.

In contrast, 15% of strokes [5] are hemorrhagic, which
occurs when a weakened blood vessel ruptures or bleeds.
In the previous five decades, the incidence of stroke-related
mortality in developing countries has been ten times greater
than in the West [6]. The United States has seen perma-
nent disability as a consequence of this disease. The World
Health Organization [7] states stroke has the 84th-highest
estimated global mortality rate. Each year, this sickness
affects around 700,000 people. In the past several decades,
numerous research methods have identified nonmodifiable
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risk indicators (genetic factors, male gender, older age) and
modifiable risk markers (hypertension, cigarette smoking,
diabetes mellitus) [8]. Figure 1 depicts risk variables associ-
ated with strokes. With an increasing worldwide population,
the disease’s mortality rate and the number of people it affects
rise. However, early treatment and diagnosis may decrease
this mortality rate.

Hypentension Smoking
\

Obesity ————| ® j—— Work stress

Diabetes ———| f—— Heart disease

Ischemic Hemorrhagic

High blood Cholesterol Stroke Stroke Bad life styles

FIGURE 1. Risk factors for stroke [8].

Previously, conventional statistical techniques for devel-
oping prediction models, including “Cox proportional haz-
ards regression analysis” and “logistic regression,” were
employed. However, due to the data type limitations inherent
to these methods, these approaches have a limited impact on
data mining when dealing with clinical data, which has imbal-
anced and high-dimensionality issues. With the advent of
powerful computer technology and competent medical care,
machine learning (ML) and deep learning (DL) have been
used to predict sickness risk. The capacity of a computer to
deduce patterns from data regularities is crucial to the devel-
opment of artificial intelligence [5], [6]. Previous research
reveals that ML and DL algorithms beat traditional statistical
methods in predicting stroke with more accuracy and lower
costs [7] due to their capacity to produce predictions based
on large datasets. Thus, it reflects the inferiority of traditional
approaches compared to prediction models constructed using
ML and DL algorithms [8]. DL may outperform conventional
ML algorithms (without needing feature selection) if the
hyperparameters are well-controlled.

In this study, the performance of the proposed hybrid DL
model (a convolutional neural network (CNN) and a long
short-term memory (LSTM)) was compared to the baseline
models (other ML and DL models) and the previous studies
that used similar datasets. The Shapley Additive Explanations
(SHAP) method explains the features revealed by the best-
performing model.

A. CONTRIBUTION
Based on the gaps identified from the review of the related
work in section II, below are the following key contributions
of this study:
« A novel and robust hybrid DL model (CNN+LSTM) is
proposed.
o Synthetic minority oversampling technique (SMOTE)
was deployed to balance the imbalanced dataset.
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o The SHAP method is used to discover which model
attributes are most important.

« The experimental results compare the proposed model’s
performance to the baseline and models from previous
studies.

The rest of the paper is organized into four sections, where
Section II represents related work. The proposed materials
and method of this paper for predicting stroke disease are
explained in Section III. The result and analysis are discussed
in detail in Section IV. Section V highlights some of the
study’s limitations. Finally, Section VI concludes this study.

Il. RELATED WORK

This section reviews recently published studies on ischemic
stroke prediction from 2017 onwards from various Internet
sources. This study compares the deployed dataset, data pre-
processing or resampling method, deployed classifiers, and
the performance metrics attained by the study.

A. AN OVERVIEW OF PREVIOUS PREDICTION OF
ISCHEMIC STROKE APPROACHES

Numerous ischemic stroke prediction models based on
regression or other statistical methods have been created
thus far. Nevertheless, because these models by [9] only
incorporate small factors, their clinical value is sometimes
severely limited. A study by [10] found that multivariable
logistic models performed well, with an area under the
receiver operating characteristic (AUROC) curve of 0.71-
0.74. These models were developed using clinical and retinal
characteristics (20 variables) based on 332 patients. Utilizing
ML and DL approaches, along with large amounts of real-
world patient-level data from EHR, can increase the number
of features captured, allowing for the construction of more
accurate prediction models [11].

B. STATE-OF-THE-ART PREDICTION OF ISCHEMIC
STROKE APPROACHES

In 2017, [12] gathered the “‘Cardiovascular Health Study”
(CHS) datasets. Three datasets were created, containing
212 strokes and non-strokes. The completed collection has
357 properties and 1,824 entities, with 212 stroke occur-
rences. The suggested method employs C4.5 decision tree
methods for feature selection and principal component analy-
sis (PCA) for dimension reduction. Following the reduction,
a classification model was developed using Artificial Neu-
ral Network (ANN), resulting in an accuracy classification
model of 94.7%.

Stroke risk diagnosis is a laborious and intricate process,
as explained by [13]. The biomedical examination uncovered
six features linked to the significant risk factors. In addi-
tion, they suggested a novel feature selection approach that
combines support vector machines (SVM) with ““glow-worm
swarm optimization” and is based on the standard deviation
of features. The accuracy that the suggested model produced

VOLUME 12, 2024



S. Sakri et al.: Improved Concatenation of Deep Learning Models for Predicting and Interpreting IS

IEEE Access

was 82.58%. This model will be considered in the research as
it improved the accuracy of the described unique technique.

According to [14], the 2019 study aimed to test ML-based
modeling methodologies. In this work, they developed the
concept of recognizing the type of stroke, hemorrhagic or
ischemic, and predicting the condition’s future repercus-
sions. In conjunction with monitoring technologies, they can
identify the kind of stroke within minutes following the emer-
gency. Both the a) stroke diagnosis and the b) death prediction
datasets had seven predictors and two objective variables,
respectively. A total of seven algorithms were examined and
assessed. The model with the best performance was the Ran-
dom Forest (RF) one, with average values of 0.9340.03.

In 2019, [15] suggested and implemented five stroke pre-
diction approaches: SVM, ANN, PCA+ANN, DT+ANN,
and DT+PCA+ANN. Feature selection was done using only
the C4.5 and the Decision Tree (DT) model. The PCA
algorithm was used to reduce dimensionality, improving
accuracy while decreasing run time. Classifiers such as ANN
and SVM were used as the baseline. Finally, among the
several approaches used, the DT, PCA, and ANN composite
approach produced the best results.

According to [16], the DNN model had a considerably
higher AUC than the ASTRAL (statistical method) score
(0.888 against 0.839; P<0.001); however, neither the RF
(0.857; P =0.136) nor the LR models’ areas under the curves
were significantly greater than the ASTRAL score. Not even
when limited to just the six components used by the ASTRAL
score did the ML models’ performance deviate significantly
from the ASTRAL score,

Conducting an early brain stroke prediction in 2020 [17]
could generate additional data. Several machine learning
approaches were applied in this investigation, such as ST,
MT, CT, LR, LSVM, QSVM, and ANN classifiers. Lastly,
the ANN model finished with the highest score of 95.3%.

RLR, SVM, and RF were the ML techniques supplied
by [18] in 2020. The RF model successfully achieved a
maximum accuracy of 78 percent. Due to the fact that the
data source was quite unequal, ROS, RUS, and SMOTE were
applied to bring it into balance.

In 2021, [19] built five distinct models for reliable predic-
tion using machine learning techniques such as LR, DT, RF,
kNN, SVM, and NB Classification. These algorithms were
utilized to take into account a variety of physiological param-
eters. It was determined that the algorithm that performed
this work the most effectively was NB, which achieved an
accuracy of roughly 82 percent.

In 2021, [20] created ML models to predict the likelihood
of a stroke in the brain. This study employs a variety of phys-
iological metrics and machine learning methods, including
LR, DT, RF, and Voting Classifier (VC), to train four distinct
models for accurate prediction. RF was the best-performing
algorithm for this task, with an accuracy of around 95.7%.

In 2021, [21] began creating algorithms to identify
high-risk patients for targeted therapies, as well as improv-
ing predictors of 30-day readmission following an ischemic
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stroke. They utilized patient-level information from elec-
tronic health records (EHR). The five ML algorithms are
RF, GBM, XGBoost, SVM, and LR. The methods that were
utilized included data-driven feature selection and adaptive
sampling. Out of all the tested algorithms, XGBoost with
ROSE sampling had the highest area under the curve (AUC),
whereas LR with ROSE sampling and feature selection
achieved the highest sensitivity.

In 2022, [22] developed the model, and a ‘“‘brain stroke
dataset” was utilized. Data can be standardized through the
use of a procedure called standardization. RF, SVM, and
DT classifiers are employed simultaneously in training and
testing rounds. Accuracy, sensitivity (SEN), error rate, false-
positive rate (FPR), false-negative rate (FNR), root mean
square error, and log loss were some of the characteristics
that were utilized to assess the performance of each classifier
being tested. The findings indicated that the RF classifier
achieved a maximum accuracy of 95.30%.

In 2022, [23] aims to enhance stroke prediction by con-
ducting an in-depth analysis of the multiple components
that make up electronic health records (EHR). They use
statistical and principal component analysis methods to iden-
tify the most critical stroke prediction factors. The REF,
SVM, and DT models were deployed so that they could
be trained on the EHR. It was determined that RF was
the model that performed the best, with an accuracy of
95.3 percent.

Table 1 presents the summary and the accomplishments of
previous studies reviewed in this section.

Ill. MATERIALS AND METHODS

This study follows a systematic research methodology,
as shown in Figure 2, which encompasses six main steps.
By complying with this method, researchers and healthcare
practitioners can develop robust and clinically relevant stroke
prediction methods that improve patient outcomes and reduce
the burden of stroke-related morbidity and mortality. The
steps include data acquisition (as explained in sub-section A),
exploratory data analysis (as elaborated in sub-section B),
data preprocessing (as discussed in sub-section C), model
classification (as analyzed in sub-section D), model evalua-
tion (as clarified in sub-section E), and model interpretation
(as described in sub-section F).

A. DATASET AND ACQUISITION

This study deployed the healthcare stroke dataset [24] to train
the proposed and baseline models. Each row of the data set
contains the patient’s vital statistics. The data aims to assess
historical estimations and forecast whether or not the patient
will have a stroke. No personally identifying information,
such as a patient’s name, address, or Social Security number,
is included in the dataset. Therefore, there is no risk that
the dataset used in the experiment would endanger patient
privacy. Here, the main significant characteristics of the data
set are summarized.
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TABLE 1. A review summary of previous studies’ accomplishments.

Ref. Authors (Year) Data Preprocessing Deployed Classifiers Accuracy/AUC Performance
[12] Singh & Choudary PCA for dimensionality reduction, DT, ANN ANN =94.7%
(2017) DT for feature selection
[13] Zhang et al. Developed a novel feature selection SVM+ glow-worm swarm 82.5%
(2018) method optimization techniques
[14] Garcia Terriza et Using z to normalize the data RF 93%
al. (2019)
[15] Singh et al. (2019) DT and C4.5 for feature selection, PCA PCA+ANN, ANN, SVM, ANN + PCA =95.2%
for dimensionality reduction DT+ANN, PCA+ANN+DT
[16] Heo et al. (2019) Missing value handling LR, DNN, RF and ASTRAL DNN (AUC = 0.88)
(statistical method)
[17] Govindarajan et Using tagging and maximum entropy ST, MT, CT, LR, LSVM, QSVM, ANN =95.3%
al. (2020) methodologies for feature selection and ANN
[18] Wu et al. (2020) ROS, RUS, and SMOTE RLR, SVM, RF RF =78%
(balancing)
[19] Sailasya et al. Missing value handling, label encoding, LR, DT, RF, kNN, SVM and NB NB = 82%
(2021) and imbalanced data using ROS
[20] Tazin et al. (2021) Utilized SMOTE for data balancing LR, DT, RF, and VC RF =95.7%
[21] Darabi et al. RStudio Baruta for feature selection, RF, RB, XGBoost, SVM, LR, LR+ROSE = 64%
(2021) ROSE (Random over-sampling) is used to
balance the dataset.
[22] Akter et al. Train-Test Split Method RF, SVM, DT RF =95.3%
(2022)
[23] Dev et al. (2022 Feature selection using PCA DT, RF, ANN ANN with PCA =75%
&
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FIGURE 2. Proposed methodology of Ischemic stroke prediction.

o The dataset has 5110 samples.

o Each sample has 11 features and one target value.

o The target includes “0’”, which refers to stroke cases,
and ““1”’, which refers to no stroke cases.

« Between the classes, 249 samples were with stroke, and
4861 samples did not.

« Handle missing data and removing “‘unknown” sam-
ples. The cleaned dataset has 179 stroke cases and 3,247
non-stroke cases for 3,426 samples.

A short description of those features is defined in
Table 2.

B. EXPLORATORY DATA ANALYSIS (EDA)

EDA presents the characteristics of the deployed dataset.
Figure 3 illustrates the distribution plot of the two numerical
features. Figure 4 shows the scatter plot of six selected cate-
gorical features. Figure 5(a) shows the correlation between
the features. Figure 5(b) illustrates the FreeViz plot of all
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FIGURE 3. Distribution analysis of the “avg glucose_level” and “age” variables.
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FIGURE 4. The characteristics of all variables.

variables. The red color denotes the occurrence of a stroke,
and the blue color denotes non-stroke occurrence. Figure 3
and Figure 4 indicate that the data distribution is not balanced
between the stroke and non-stroke cases. The data reported
that 95% contained ‘no stroke’ data and only 5% with stroke
occurrence.

In Figure 5(a), it was observed that ‘“‘age’ and ‘‘stroke”
are strongly positively correlated. ‘“avg_glucose_level,”
“ever_married,” ‘‘heart_disease,” and ‘“hypertension” are
also associated with stroke. At the same time, the ‘“res-
idence_type,” “bmi,” and ‘“‘gender” seem not to be
correlated to stroke. The data shows that ‘“‘age” and
“avg_glucose_level” correlate with stroke. Further evalua-
tion of the relationship between stroke and all the variables
is shown in Figure 5(b). The general overview from this plot
indicates that the variables containing stroke data were much
less than those without stroke. The concentration of stroke
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data was found between the “age” and ““avg_glucose_level”
variables quadron.

C. DATA PREPROCESSING

Data preparation is essential to address the issue of missing,
noisy, and unknown data, which may degrade the exper-
imental data quality and thus affect prediction accuracy.
SMOTE [25] was used to adjust for the imbalance between
the stroke and non-stroke classes. The output of the bal-
ancing is shown in Figure 6. The underrepresented sample
was oversampled to guarantee accurate representation. Since
there were no missing values, neither deletion nor imputa-
tion of data was undertaken. In ML, “‘hyperparameters” are
parameters with predetermined values [26]. It influences how
machine learning models behave. Without it, model failure
is more likely to occur. “GridSearchCv,” an implementation
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(a) Correlation analysis of all the variables

FIGURE 5. Correlation and FreeViz analysis of all the variables.

TABLE 2. Dataset feature description.

Feature Description
ID Unique identifier for a person
Gender Male, Female, others
Age Age of the patient

0 (zero) = no hypertension, 1 (one) = has
hypertension
0 (zero) = no heart disease, 1 (one) = has heart
disease

Hypertension
Heart disease

Patient’s marital status
Patient’s work type
Residence type Patient’s residence type

Avg. glucose level The average glucose level in the blood

BMI Patient’s body mass index
Smoking status Patient’s smoking status: formerly
smoking/never smoked/ smoked

0 (zero) = no stroke, 1 (one) = has stroke

Ever married
Work Type

Stroke (Target)

of grid search with cross-validation, is used in this study to
fine-tune hyperparameters. This method evaluates the model
for each conceivable combination of the dictionary’s input
values. Consequently, the ideal model is selected, and the
highest level of precision is achieved for all hyperparameter
values.

D. MODEL CLASSIFICATION

1) THE PROPOSED MODEL (CNN+LSTM)

We proposed a model that concatenates CNN with LSTM
to be trained using the source dataset in predicting ischemic
stroke. This model (Figure 7) harnesses both the excellent
capabilities of CNN and LSTM models. During the imple-
mentation, the CNN layer will collect ischemic stroke data
as input to learn and extract the most significant properties
from the data and use ‘ReL.u’ as the activation function. This
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adds non-linearity to the network and enables the model to
learn more rapidly and effectively. Each CNN layer generates
a feature map that activates a separate kernel by sliding it over
the stroke data. CNN then convoluted the extracted features
and compacted the stroke data for the classification tasks.
Then, this data is transferred to the LSTM layer, which uses
past and future knowledge to enable more exact classifica-
tion and more accurate prediction. Thus, it created a fully
connected neural network to learn long-term dependencies.
‘ReLu’ is then used as an activation function to categorize
two classes of patients into stroke and no stroke. Later,
to keep the model from overfitting, a dropout layer of 0.5 is
applied; also, an attention layer is employed to give weights
to the significant features while disregarding the unimportant
ones. Finally, a sigmoid activation function is applied to the
dense layer. Then, using binary cross-entropy as the loss
function and 0.001 as the learning rate, Adam is utilized as
an optimizer to minimize the loss function. The ischemic
stroke prediction mechanism is improved when all of these
layers are combined. The proposed model leverages the best
hyperparameters, as stated in Table 4.

2) THE BASELINE MODELS

The justification for choosing the seven models (as the base-
line models) was based on the findings of the related work,
which delineate the model’s performance as stated in Table 1.
CNN and LSTM models were included to observe if there is
any performance against the hybrid of these two models. The
following paragraph describes the models:

1) Random Forest (RF): This model can be used for clas-
sification and regression problems and as an ensemble
learning technique [27]. Their strategy depends on the
extensive training of a forest of decision trees. When
used for classification problems, the RF output is the
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S. Sakri et al.: Improved Concatenation of Deep Learning Models for Predicting and Interpreting IS

IEEE Access

TABLE 3. Hyperparameter search space and best hyperparameters.

Hyperparameter Search Space Value
Optimizer Adam, adadelta, rmsprop, sgd Adam
Activation functions (Hidden layers ReLU, tanh, elu ReLU
Dropout rate 0.1-0.5 0.3
Epoch 10, 20, 40, 60 40
Batch size 16, 32, 64 64
TABLE 4. Description of best-selected hyperparameters of deep learning models.
Parameters ANN LSTM CNN CNN+LSTM
Number of units 64 64 64 64
Number of layers 3 1 2 3
Number of fully connected units 64,32, 16 16 16, 8 64,32, 16
Number of fully connected layers 1-3 1-1 1-2 1-5
Activation Function ReLU ReLU ReLU ReLU
The last layer’s activation function Sigmoid Sigmoid Sigmoid Sigmoid
Learning rate le-4 le-4 le-4 le-4
Loss function Adam Adam Adam Adam
Number of epochs (in each fold) 40 40 40 40
Optimizer Adam Adam Adam Adam
Dropout 0.3 0.2 0.3 0.3

2)

3)

4)

class most trees choose. A method that employs several
classifiers to address complicated issues and enhance
the efficacy and precision of a model is known as
ensemble learning. As its name suggests, the RF clas-
sifier “‘combines a large number of decision trees on
diverse subsets of a given dataset and calculates an
average to increase the accuracy of its predictions.”
K-Nearest Neighbor (KNN): KNN [28] is a kind of
slow learning in which all classification computations
are maintained, and there is no distinct preprocessing
phase. This data categorization approach determines
decisions based on the closeness of training data points
on the feature map. Using the “Euclidean distance
measure,” the KNN classifier provides predictions
about the target class. The dataset determines the ideal
value of the classifier’s performance control parame-
ter, k. Following an analysis of the consequences, the
excellent value is determined. Our research used a K
value of 3.

Extreme Gradient Boosting (XGBoost):XGBoost
implements the gradient augmentation approachwell
[29]. The gradient gain alternative may be rigor-
ously developed for precision and optimization, even
if no mathematical breakthroughs exist in this spe-
cific instance. A linear representation is used, and the
newborn tree may be a strategy that utilizes multiple
artificial intelligence algorithms to assess whether a
susceptible rookie would result in a trustworthy rookie
to increase the model’s accuracy.

Logistic Regression (LR): LR [30] is relatively promi-
nent among supervised learning ML approaches. It is
a technique for predicting a categorical dependent
variable by evaluating several contributing factors.
The primary distinction between logistic and linear
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5)

6)

regression is in their respective uses. Linear regres-
sion addresses regression difficulties, while logistic
regression addresses classification issues. Any multi-
collinear data may be studied using ridge regression,
a model-tuning approach. Through this method, L2
regularization is accomplished.

Artificial Neural Network (ANN): An ANN [31] is a
distributed, massively parallel processor composed of
fundamental processing units with an innate propen-
sity to retain and make experimental data available.
Because ANN is so good at resolving multivariate
and non-linear modeling problems, such as function
approximations and classification, it is often used as
a surrogate or response surface approximation model.
ANN is a data processing technique inspired by the
organic nervous system of the human brain. In addi-
tion to neurons, it contains input, output, hidden,
and activation layers. Figure 8 displays the ANN
structure.

Long short-term memory (LSTM): The LSTM [32]
method is an RNN subset. Traditional RNNs fail to
make sense of data sets with ten or more time steps,
their primary shortcoming. If necessary, LSTM may
prioritize and retain data for an extended time. Data
separated by over a thousand-time interval may still
be connected. Each node in an LSTM is provided with
the input text, output Ht 1, and bias Ct = 1 (cell state
of the previous node). Long-term, the condition of the
cell hides vital information. Data flows via the It (input
gate), Ft (forget gate), and Ot (output gate) gates of
the LSTM (output gate). These gates enable the LSTM
node to retain or discard the initial cell state to generate
the subsequent outputs. Figure 9 depicts the LSTM
structure.
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Convolutional Neural Network (CNN): CNN-based
models depend primarily on ‘“‘convolutional” pro-
cesses. CNNs can learn and extract the most significant
properties from data due to their capacity to do these

tasks [32]. Each CNN layer generates a feature map
that activates a separate kernel by sliding it over the
input. The fundamental advantage of CNNs over DNN's
is their ability to reduce the computational cost of each
successive layer. These models’ convoluted features
and compact input data representations may be utilized
in downstream tasks such as classification. Figure 10
illustrates the core design of a CNN.
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FIGURE 11. AUCROC plot description.

E. MODEL EVALUATION

Accuracy, precision, specificity, recall, and F1 score are used
to assess the effectiveness of models. The formula of the
metrics is shown in Equation 1 — Equation 4. The efficacy
of the proposed deep learning model is determined by com-
paring the predicted and actual results. The true positive (TP)
and true negative (TN) scores represent the accuracy with
which the classifier model can determine whether or not a
patient has had a stroke (TN). False positives (FP) and false
negatives (FN) reflect inaccurate model predictions (FN).
Accuracy is the proportion of genuine positives relative to
the total number of positives. Recall measures the number
of accurate predictions, while specificity counts the number
of false negatives. The function measure determines average
recall and precision.

(TP+1N)

Accuracy = (1
(TP + TN + FP + FN)
. (TP)
Precision = ———— )
(FP+TP)
(TP)
Recall = ————— 3
(FN + TP)
(Precision x Recall)
F1-Score =2x — 4
(Precision + Recall)

The function of ROC Figure 11 depicts the link between the
true positive rate (TPR) and the false positive rate (FPR) via
the receiver operating characteristic (ROC) curve (FPR). The
area under the receiver operating characteristic (ROC) curve
demonstrates a classifier’s ability to differentiate between its
two classes (AUC). When AUC is substantial, model predic-
tions are accurate.

The confusion matrix shown in Figure 12 is a tabular
depiction of the proportion of correct and wrong predictions
produced by the classifier. It is a metric for assessing a
classification model’s performance. It is feasible to calculate
and use measures such as accuracy, precision, recall, and
Fl-score to evaluate the utility of a classification model.
Confusion matrices are preferable to classification accuracy
as an indicator of a model’s performance.

F. MODEL INTERPRETATION
Lundberg and Lee introduced the SHAP (Shapley Addi-
tive Explanations) [33] value to assess an individual’s
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FIGURE 12. Confusion matrix description.

contribution to a collective effort. The objective was to dis-
tribute the prizes of victory according to each contestant’s
contribution to the final score. Since Shapley values comply
with the principles of local precision (additivity), consis-
tency (symmetry), and nonexistence, they may be utilized
to compensate all parties fairly or appropriately (null effect).
In prediction work, Shapley values may be rationalized as a
realistic distribution of feature importance given a specific
model output. Shapley values account for the magnitude
and direction of each feature’s effect on the model’s perfor-
mance or prediction. The Shapley value quantifies a feature’s
relevance (contribution size) and orientation (sign). Some
personality qualities influence activity prediction positively,
whereas others influence the prediction of inactivity nega-
tively (i.e., a negative contribution to activity prediction).
Specifically, the Shapley value in Equation 5 describes the
significance of the feature:

1 .
bi = VI Z ISIEANT = IS] = DI (S U i) = f (S)]

" SCN\{i}

&)

The ML model’s output, f (S), can be described by a
collection of S features, but the set of all potential features,
N, cannot. The Shapley value of “feature I’ is computed
by averaging its contributions over all possible feature set
permutations. Therefore, features are added to the set one at
a time, and the change in the output indicates their impor-
tance. Considering the ordering of features known to alter
the reported changes in a model’s output when correlated
features are present, this method is especially advantageous.
Since ML and DL models are interpretable, their conclusions
may be valid. If the logic behind the predictions of a complex
model could be comprehended, its black-box aspect may be
minimized or removed.

SHAP’s additive feature attribution is distinct, mathemati-
cally sound, and precise. It pulls from other sources, such as
an enlargement of the feature’s relevance, game theory, and
in-depth localization. The final conditional prediction is the
sum of all the qualities of the model’s outcomes. Response
reliability is assured using game-theoretic arguments and
an average of all feasible feature orderings. The primary
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advantage of this method is that it evaluates the relevance
of various sample characteristics by giving each one a score
(a SHAP value). SHAP values may be estimated using the
following techniques:

o Substitute a random value for a subset of sample char-
acteristics.

o Determine the forecast for each variant sample.

« Use the SHAP Kernel to calculate SHAP values.

Increasing the sample size will decrease the estimate’s
variance since the original estimate was based on a random
sample. It also presupposes the autonomy of individual traits.
If we substitute x1 with random values when x1 and x2 are
highly correlated in our training data, our SHAP value esti-
mate will suffer since it will be based on fewer examples of x1
and x2 in the training set. Each prediction in a given dataset is
analyzed using a linear model in a Kernel SHAP Explainer.
The loss Equation 6 that this kernel seeks to optimize is as
follows:

Lfgm) =2 [f (@) ~e@)m () ©

Predictions that use less or virtually all qualities get more
weight in the x term, which is a compliance weighting
strategy. Only tree-based methods may be utilized with the
SHAP Tree Explainer. Instead of random sampling, trees
simulate missing data by bypassing the critical decision
paths. Therefore, Tree Explainer produces results that are
both predictable and unaffected by context. Complexity is
reduced from O(T L2M) to O(T LD2) by pushing all varieties
through the tree concurrently rather than iterating over each
conceivable feature combination (or subset thereof), where
M is the number of features, T is the number of trees, L is
the maximum number of leaves, and D is the maximum tree
depth.

Since no linear models are used, calculating SHAP val-
ues using this approach is more efficient. The SHAP values
are calculated by looking at how the conditional expecta-
tion of all features changes when specific characteristics
are changed. This approach estimates the shift based on the
conditional expectation given this subset sample, ignoring
the nodes of features that aren’t present. SHAP is a novel
method for gaining a deeper understanding of a projected
occurrence by shedding light on the interdependence of
numerous components in a predictive model. SHAP is an
effective strategy to separate the effects of the drivers and
break down the forecast on the impact of its component
features. When using ML methods for stroke classification,
feature selection is crucial. Modelers may dissect any predic-
tion into its constituent parts by adding up the SHAP value
and explaining how each feature value contributed to the
result.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this subsection, we presented the experimental results,
which aim to evaluate the model’s performance and explain
the results using the SHAP method.
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A. PREDICTION MODEL PERFORMANCE ANALYSIS

Model classification for both ML and DL classifiers was
first performed. All models were then validated using 10-
fold cross-validation and evaluated based on performance
metrics. The Python programming language was used to
execute all experiments, and extensions were created for both
Python and the scikit-learn ML library. The hyperparameter
search space and best selected hyperparameters are shown in
Table 3, Table 4, and Table 5, respectively. The experimen-
tal results, which comprise prediction models’ performance
results, models’ AUCROC results, models’ confusion matrix
results, and models’ training and testing time results, are
shown in Table 6, Figure 13, Figure 14, Figure 15, and
Figure 16, respectively.

B. FEATURES IMPORTANCE

Figure 17 depicts the plots of feature significance matrices for
binary classification problems in stroke prediction. We used
the “Permutation Feature Importance Technique,” illustrated
by a bar chart, to determine the relative significance of several
variables. The result indicated that the higher the rank, the
more likely the hybrid CNN+LSTM model is to emphasize
this trait. The result also provides insight into the most signif-
icant stroke prediction factors. With a better understanding of
these features, stroke patients may benefit from more targeted
rehabilitation programs and treatments.

C. MODEL INTERPRETATION

Here, we evaluate the effect of different parameters on the
outcomes of the optimal hybrid DL model (CNN+LSTM
classifier). Figure 18 illustrates the relationships between
these factors and the two potential outcomes (1 = stroke,
0 = no stroke). The values of these parameters (the SHAP
summaries) are presented in descending order, with the most
critical qualities shown first. Red indicates high importance,
and blue indicates low values for each parameter’s impact
on the model’s output. The variables such as age, patients
who stayed in urban residences, were married, never-smoked
patients, and patients who worked in private firms substan-
tially impacted stroke prediction. However, cardiovascular
risk factors such as hypertension and heart disease contribute
only marginally to the prognosis of stroke. However, being
self-employed, being male, and working in the public sector
had little influence on stroke prediction.

D. DISCUSSIONS

Since stroke is a devastating disease worldwide, it is crit-
ical to precisely detect the outcome early on so that
patients can recover. As a result, this model was created
to address the disease’s restrictions. The EDA shows the
dataset is highly imbalanced (Figure 6). Thus, we deployed
the SMOTE resampling technique to balance the sam-
ples to avoid overfitting and increase the data quality. For
the model classification, the results showed that the pro-
posed CNN+LSTM model achieved the highest accuracy
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TABLE 5. Description of best-selected hyperparameters of machine learning models.

Algorithms Hyperparameter
RF Deployed 300 trees, considering 10 attributes per split.
XGBoost Each of the 100 trees had a learning rate of 0.300 and a maximum depth of 6.
kNN Start k = 10, distance metrics = Euclidean distance.
LR Regularization strength (C) = 0.01, 0.1, 1.0, 10.0, and higher. Regularization

penalties = L2 (Ridge). Solver options = 'sag' and 'saga.' Max_iter = 100

TABLE 6. The results of the model classification analysis.

Classifiers Accuracy F1-Score Precision Recall
Machine Learning-based
RF 0.9407 0.9357 0.9545 09177
XGBoost 0.8879 0.8747 0.9216 0.8323
kNN 0.8234 0.8335 0.7485 0.9403
LR 0.8142 0.8072 0.7880 0.8274
Deep Learning-based
CNN+LSTM 0.9587 0.9558 0.9617 0.9510
CNN 0.9554 0.9525 0.9540 0.9500
LSTM 0.9251 0.9215 0.9077 0.9358
ANN 0.9158 0.9120 0.8961 0.9285
1 /T 1
—
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(a) ML-based Models of AUCROC Analysis

FIGURE 13. Results of AUCROC analysis.

of 95.9% (Table 6). CNN+LSTM model also attains
the highest AUCROC (Figure 13) of 98.9%. The con-
fusion matrix analysis (Figure 14 and Figure 15) shows
the proposed model can correctly classify the samples
based on the number of instances predicted to suffer from
stroke.

All of the experimental findings above supported this
study’s findings, which demonstrated that the proposed
model is superior in predicting strokes. Regarding the time
required to train and test the models, it was discovered that the
suggested model requires 42.5 seconds to train and 0.3 sec-
onds to test. This information can be found in Figure 16.
kNN, on the other hand, is the model that can be trained the
quickest, which takes 0.32 seconds, while LR has the shortest
testing time (0.06 sec.). Based on the findings, the proposed
model requires more processing time than the other models.
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The results might be considered a potential disadvantage for
the proposed model.

To further understand the outcome of the best hybrid
model, we used the Permutation Features Importance Tech-
nique to identify the critical features in the dataset. We used
the SHAP method to measure the best-performing model’s
impact on the dataset’s features. Feature “‘age” was identi-
fied as the most important feature in the stroke prediction,
and CNN-+LSTM highlighted the feature “age” as having
a strong positive impact on the stroke prediction. The com-
parative analysis between the current and previous studies is
shown in Table 7.

V. LIMITATIONS AND IMPLICATIONS
This section briefly discusses the limitations and implications
of this study.
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FIGURE 15. Results of confusion matrix analysis for DL-based models.

A. LIMITATIONS
The limitations are:

53200

The stroke dataset utilized in this study is highly
imbalanced and consists of sample values labeled
“unknown.” The preprocessed data is performed to
increase its quality. However, this process could have
performed similar methods and classifiers on several
other stroke datasets for comparison. The performance
could change significantly on various datasets. Nonethe-
less, the results are expected to be satisfactory even if the
models utilized diverse datasets.

The study assumes that the dataset used in the literature
is precise, complete, and free of noisy cases. However,
as in many circumstances, a few noisy events may
impact our models’ performance. To further improve the
success of the results, different resampling techniques,

feature selection methods, model validations, and dif-
ferent evaluations of error can be deployed. This
means the hybrid model can be exhaustively processed
to ensure its robustness, efficiency, and effectiveness
in predicting stroke based on the patient’s clinical
data.

« This study only deployed one hybrid model, which could

have possible hyperparameter tuning biases affecting the
result.

o Predicting strokes involves analyzing various risk fac-

tors, including medical history, lifestyle factors, genetic
predisposition, and clinical symptoms. While CNN’s and
LSTMs can capture complex patterns in data, predicting
strokes accurately often requires considering a wide
range of factors, some of which the model may not
effectively capture.

VOLUME 12, 2024



S. Sakri et al.: Improved Concatenation of Deep Learning Models for Predicting and Interpreting IS

IEEE Access

ML-based Models

LR

kNN

XGBoost

RF

0.322

o
-
~

3

mTrain Time

4.911

5.017

5.271

LR

kNN

XGBoost

RF

0.062

0.116

0.2

1.183

0.478

04 0.6 08 1 12

Test Time

14

DL-based Models

LSTM

CNN

CNNIST™M

3.129

8.019

o
w
-
15
I
«
N
o
N
«a

M Train Time

ANN

LSTM

CNN

CNNLSTM

0 0.05

0.108

0.111

0.244

01 0.15 02 0.25 03

Test Time

0.319

035

FIGURE 16. The results of training and testing time taken analysis.

TABLE 7. Comparison of the current study with previous studies that use

- [, the same dataset.
Ref.  Authors Balancing Deployed Accuracy
smoking. s | S - (Year) Methods/ Classifiers Performance
3 Data
avg_glucose_level
Preprocessing
weerension [ - [19] Sailasya  Missing value LR, DT, RF, NB (82%)
' et al. handling, label ~ K-NN, SVM
i - [2021] encoding, and and NB
e seere [ imbalanced
data handling
once | using ROS
T e — [20] Tazinet Use SMOTE LR,DT,RF, RF (95.7%)
e al. for data and VC
evermaricd |- [2021] balancing
: 5 ~ s = = e i 7 [22]  Akter et Train-Test RF, SVM, RF (95.3%)
; ' T Deie ‘ i ' al. Split Method DT
[2022]
FIGURE 17. Feature importance matrix plots of the best prediction [23]  Devet  Dimensionality DT, RF, ANN with
(CNN+LSTM) model. al. reduction ANN PCA (75%)
[2022] using PCA
Current e 10— Fold RF, CNN+LSTM
e - P . S . Study Cross- XGBoost, (95.9%)
« Interpretability is crucial in m'edlcal applications to gain validation KNN, LR,
the trust of healthcare professionals and ensure that pre- e SMOTE CNN, ANN,
dictions are clinically meaningful. Hybrid CNN+LSTM e Delete CNIf\ISJrTLI\éITM
models may lack interpretability, making it challenging Samﬁg’s that
for healthcare professionals to understand the model’s “unknown”
predictions and trust its decisions. value

o Medical datasets often suffer from missing data and
class imbalance, where instances of strokes may be rel-

B. POTENTIAL IMPLICATIONS

atively rare compared to non-stroke instances. Handling
missing data and class imbalance is essential to prevent
biases in the model’s predictions and ensure robust per-
formance.

Despite the abovementioned limitations, the proposed model
holds significant clinical implications and could potentially
revolutionize stroke management. Here are some potential
clinical implications:
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FIGURE 18. Parameters impact on CNN+LSTM model output for the stroke prediction.

o Early prediction: Early prediction of ischemic stroke
risk factors can enable healthcare providers to intervene
proactively, thereby preventing or minimizing the occur-
rence of strokes. By leveraging predictive modeling
techniques, the proposed model can identify individuals
at high risk of developing ischemic stroke based on
their demographic information, medical history, lifestyle
factors, and other relevant data.

o Timely Intervention: Early identification of individuals
at risk of ischemic stroke allows for timely inter-
ventions, such as lifestyle modifications, medication
management, and targeted preventive therapies. Health-
care providers can use the model’s predictions to tailor
preventive strategies to each patient’s specific risk pro-
file, potentially reducing the incidence and severity of
ischemic strokes.

« Personalized Medicine: The model can facilitate person-
alized medicine approaches by identifying individual-
ized risk factors and tailoring interventions accordingly.
Healthcare providers can prioritize resources and inter-
ventions for patients at the highest risk of ischemic
stroke, optimizing healthcare delivery and resource
allocation.

« Integration into Healthcare Systems: The model could
be integrated into existing EHR systems or clinical
decision support systems used by healthcare providers.
Integration could involve developing user-friendly inter-
faces or dashboards that display patients’ stroke risk
scores and recommendations based on the model’s pre-
dictions. Automated alerts or notifications could prompt
healthcare providers to review and address patients’
stroke risk factors during routine clinical encounters.

VI. CONCLUSION

In conclusion, our study highlights the transformative
potential of ML-based predictive models, particularly the
CNN+LSTM architecture, in revolutionizing ischemic stroke
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prediction. With promising accuracy rates of 95.9% and
achieving the highest AUCROC value of 98.9%, our find-
ings underscore the effectiveness of this approach. However,
addressing limitations such as data quality and interpretabil-
ity is crucial, which may hinder healthcare professionals’
understanding and trust in the model’s predictions. Despite
these challenges, the proposed model is promising to opti-
mize healthcare resource allocation and enhance patient
outcomes. Yet, successful integration into real-world settings
demands collaborative efforts and addressing multifaceted
challenges. Future research should prioritize validating the
model’s generalizability and comparing it with other method-
ologies. We can propel stroke prediction and management
to new heights through ongoing innovation and collabora-
tion, ultimately improving healthcare delivery and patient
outcomes.
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