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ABSTRACT Parkinson’s disease (PD) is a neurological disorder caused by degeneration of dopaminergic
neurons in the midbrain. PD patients mainly suffer from motor symptoms, which significantly impact their
daily lives. The diagnostic criteria for PD include the presence of muscle rigidity, tremor, and postural
reflex disturbances. The Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) is the standard tool for evaluating PD symptoms, part III of which is dedicated to motor symptoms.
That part involves a comprehensive set of specific physical examinations, and physicians assign semi
quantitative scores from 0 to 4. However, this approach faces notable challenges, including the requirement
for movement-disorder experts proficient in using MDS-UPDRS and the presence of substantial inter
rater variability even among experts. Overcoming these challenges requires a quantitative and objective
assessment method. Given that the rating of motor symptoms predominantly involves assessing kinematic
characteristics, the integration of sensor-based devices andmachine learning techniques holds the potential to
outperform human experts in symptom evaluations. This study used the Leap Motion optical motion-capture
device to quantitatively measure and analyze hand movements while 45 PD patients performed the following
3 tasks from the MDS-UPDRS part III: finger tapping (FT), hand opening and closing (OC), and forearm
pronation and supination (PS). Data from these tasks were collected and processed, resulting in the extraction
of 31 movement patterns for each task. Additionally, 69 statistical features were extracted from each
movement pattern, yielding 2139 features for each task. We subsequently employed a random forest
algorithm to select the top 15% of features based on the reduction of Gini impurity. These selected features
were subsequently fed into a sequential-forward-floating-selection algorithm, combined with a support
vectormachine, to identify relevant feature combinations and predict the severity of themotor symptoms. The
classification accuracy was 87.0% for FT, 93.2% for OC, and 92.2% for PS. One-way analysis of variance
identified 13 features of the OC task that were significantlymore discriminative for classifying themovement
disability of PD patients (p<0.05). This study highlights the effectiveness of combining sensor-based
measurements with machine learning for symptom assessment, which demonstrated performance

The associate editor coordinating the review of this manuscript and

approving it for publication was Xinyu Du .

52466

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-7476-2468
https://orcid.org/0000-0001-6151-8071
https://orcid.org/0000-0003-2966-7055
https://orcid.org/0000-0002-0007-4435
https://orcid.org/0009-0006-0789-1725
https://orcid.org/0009-0005-2799-6922
https://orcid.org/0000-0001-6813-4564
https://orcid.org/0009-0007-0764-211X
https://orcid.org/0000-0002-6868-9313
https://orcid.org/0000-0002-5954-1675


J. Shin et al.: Classification of Hand-Movement Disabilities in Parkinson’s Disease

comparable to that of expert physicians. Implementing these findings in clinical settings holds the promise of
applying objective and quantitative methods for evaluating the symptoms of PD and related disorders.

INDEX TERMS Classification, Parkinson’s disease, MDS-UPDRS, leap motion, machine learning.

I. INTRODUCTION
Parkinson’s disease (PD) is the second-most-prevalent neu-
rodegenerative disorder. PD is caused by the degeneration
of midbrain dopaminergic neurons and the accumulation
of Lewy bodies composed of abnormal synuclein within
the brain [1]. PD patients suffer from a diverse array of
symptoms that profoundly impair both motor and nonmotor
facets of their daily lives [2]. The hallmark clinical triad
of akinesia, rigidity, and tremor is the key for diagnosing
parkinsonism [1], [3]. The severity of these clinical features
may change during the natural course of the disease,
in response to treatment, or even fluctuate within a single
day due to long-term motor complications. Therefore, the
availability of quantitative assessments of motor symptoms
is highly important for diagnosis and evaluative purposes.
It is crucial that sensitive and specific measures of motor
symptoms are applied to effectively reflect the impact of
treatments, especially in the context of clinical trials.

Various methods have been developed to assess PD
symptoms, including Hoehn-Yahr staging, the Schwab and
England Scale [4], and the Unified Parkinson’s Disease
Rating Scale (UPDRS). In 2008, the Movement Disorders
Society (MDS) revised the UPDRS to produce the MDS-
UPDRS, which has become the standard tool [5]. The
MDS-UPDRS consists of four parts, with part III dedicated
to motor symptoms employing a comprehensive list of
specific physical examinations, with physicians assigning
semiquantitative scores ranging from 0 to 4, where 0 indicates
a normal finding and a higher score indicates greater severity.
Akinesia is evaluated by measuring the speed, amplitude, and
rhythm of repetitive movements during finger tapping (FT),
hand opening and closing (OC), and forearm pronation and
supination (PS).

However, there are several limitations in the current rating-
scale approach: It requires experts who are well-trained in
the use of the MDS-UPDRS. Although interrater reliability
is high among adequately trained examiners, some interrater
variability persists [6]. Sensor-based devices designed for
quantitative kinematic measurements of limb movements
have recently become readily available. These devices
include wearable sensors [7], [8], [9], accelerometers [10],
gyroscopes [11] and camera-based sensors [12], [13], [14],
but they might not be suitable for practical application in
clinical settings due to their size, cost, and time require-
ments. In addition, although video recording devices are
inexpensive, they mostly are not able to capture small finger
movements [14].
To address these challenges, we utilized an optical

motion-capture device as a novel and promising solution for
recording handmovements in PD patients [15]. This so-called

Leap Motion device (LMD) has several key advantages over
other wearable devices, including compact size, affordability,
high-resolution image acquisition, and minimal need for
markers or devices on subjects during data collection. These
attributes render the LMD well suited for the quantitative
assessment of motor symptoms in PD patients. On the other
hand, the LMD also has certain limitations [16]. For example,
it is difficult to detect whole-body movements, which is
important since PD symptoms such as akinesia, rigidity, and
tremor affect the legs, posture, and gait [16]. It is also difficult
to evaluate rigidity using the LMD since this does not directly
relate to kinematics. In this study we evaluated akinesia using
the FT, OC, and PS tasks in the MDS-UPDRS part III.

Machine learning (ML)-based algorithms are becoming
increasingly prominent in various healthcare sectors [17],
[18], [19], [20], [21], [22], serving purposes such as
supporting clinical diagnosis, classifying disease stages, and
predicting clinical outcomes [23], [24]. ML-based methods
have emerged as robust approaches for identifying complex
data patterns, automating data analysis, and making infer-
ences/classifications related to diseases, including PD [25],
[26]. Furthermore, ML enables computer programs to learn
and extract meaningful features from data that are not
conventionally used in the clinical diagnosis of PD. The
performance of ML-based algorithms is highly dependent
on input features. Meaningful input features are extracted
from abundant generated sensor data through the appli-
cation of statistical tests and feature-selection techniques.
Nowadays, sequential forward floating selection (SFFS)
and random forest (RF) have been widely used to select
relevant combinations of features over different fields [27],
[28]. In this study we also used SFFS to determine the
combinations of potential features for PD patients. These
selected potential features were then included in ML-based
algorithms to classify stages of hand-movement disabilities
in PD. Previous studies have utilized various ML-based
algorithms to detect neurodegenerative diseases, including
support vector machines (SVMs), deep learning (DL), and
neural networks [29], [30]. In particular, SVMs have been
widely used in healthcare due to their superior performance
relative to traditional methods [31], [32]. SVMs have a low
risk of over-fitting and can build relatively robust models
for unknown data. In addition, SVMs have the flexibility
to accommodate both linear and nonlinear classification.
The motor symptoms of PD have linear or nonlinear
features depending on the severity. Therefore, SVMs can
accommodate a wide variety of data and we used an SVM
to evaluate the hand movements of PD patients. In summary,
this study performed the following tasks:
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• Collecting hand gesture signals using the LMD while
performing FT, OC, and PS tasks.

• Computing the movement patterns for each task.
• Extracting statistical features from each movement
pattern.

• Adapting an RF-based algorithm to sort the features
based on the reduction of Gini impurity and select the
top 15% of features.

• Implementing SFFSwith an SVM to determine the com-
bination of relevant features based on the classification
accuracy.

• Performing the statistical validations of the selected
features using a p-value criterion of <0.05.

The remainder of this paper is organized as follows:
Section II reports on related work. Section III describes the
proposed methodology, data-collection device, participant
selection, motor tasks, data acquisition, data preprocessing,
movement-patterns analysis, extreme-value detection, feature
extraction, and feature selection using RF and SFFS, and
statistical validations are also described in this section.
Section IV presents the experimental setup and performance
metrics. The experimental results and discussion are pre-
sented in Section V. Finally, the conclusion, limitation, and
future work are presented in Section VI.

II. RELATED WORK
In clinical practice, neurological symptoms are assessed
through physical examinations. The examinations performed
for movement disorders such as PD mostly involve assessing
the kinematic features of various types of movement. This
has been implemented using sensor-based devices to capture
PD symptoms, such as Chen et al. [33] developed the
objective and interpretable PD-Net visual system based on
video images obtained from the OpenPose library. Their
system comprised three modules: (i) a pose detector capable
of identifying 21 key locations on the hand in RGB video
recording, (ii) an analysis of task motor patterns based on key
locations on the hand and the identification of motor signs,
and (iii) a scoringmodule for predictingMDS-UPDRS scores
based on identified symptoms. Using hand-gesture signals
from 149 PD patients performing FT, OC, and PS tasks,
Chen et al. demonstrated that the PD-Net system achieved an
accuracy of 87.6% and a Cohen’s kappa coefficient of 0.82.
However, it should be noted that because their system relies
on a monocular camera, its three-dimensional (3D) spatial
recognition capabilities are inferior to those of systems based
on the LMD.

Guo et al. [34] similarly devised a novel computer-
vision-based system for detecting PD symptoms. They used
a depth camera and 3D hand pose estimation, collecting
112 videos of 59 subjects (48 with PD and 11 controls)
performing the FT task. Various motion-based features,
including amplitude, velocity, and rhythm, were computed
using the tsfresh package in Python [35]. They selected
the most effective features based on correlation coefficients

and included them in ML models to identify PD patients.
Multiple ML-based models, including k-nearest neighbors,
RF, extreme gradient boosting, and SVMs with linear and
radial basis function (RBF) kernels were evaluated for
their usefulness in predicting a PD diagnosis. The highest
classification accuracy of 81.2% was achieved using an SVM
with an RBF kernel. Dadashzadeh et al. [36] proposed an end-
to-end DL-based framework for assessing the severity of PD
symptoms based on the patient’s gait and ability to perform
hand-movement tasks. To evaluate the performance of their
proposed system, they collected a data set of 1058 videos
from 25 PD patients. Their algorithm achieved a highest
classification accuracy of 77.1% for gait and 72.3% for hand
movements.

Butt et al. [37] similarly developed an ML-based system
using the LMD to distinguish PD patients from healthy
controls. They collected hand gesture signals from 28 sub-
jects, which including 16 PD patients. Data were acquired
while the subjects performed FT, OC, and PS tasks, and
during the presence of postural tremor. Various time-domain
and frequency-domain features including angle, velocity,
amplitude, and frequency were extracted from the raw data
sets. Feature selection was subsequently performed using
correlation coefficients, followed by ML-based algorithms
such as logistic regression, naive Bayes (NB), and an SVM
trained to identify PD patients. The NB algorithm achieved
the highest average accuracy of 81.4%.

III. MATERIALS AND METHODS
A. PROPOSED METHODOLOGY
The overall experimental workflow employed in this study is
presented in Fig. 1. We used the LMD to evaluate akinesia
in the hands of PD patients while they performed three
hand-related tasks from the MDS-UPDRS part III (FT, OC,
and PS). The study was conducted by following a series of
five key steps. The first step involved data preprocessing,
in which we eliminated redundant variables and standardized
the data frame rate. Additionally, we computed 31 distinct
movement patterns for the FT, OC, and PS tasks. The second
step encompassed feature extraction. In this step, we identi-
fied extreme values and extracted 69 features from each of the
computed movement pattern. Following feature extraction,
we used an RF classifier to measure the Gini impurity for
feature importance of each task, and then arranged arranged
the value of Gini impurity in descending order. We selected
the top 15% of features based on their Gini impurity scores,
which were used in SFFS to identify the most-relevant
combinations. The chosen feature set was employed to train
an SVM model, which underwent hyperparameter tuning.
Using the Optuna framework, we effectively optimized three
SVM parameters: kernel function, cost and gamma (γ ). The
optimization process was repeated 200 times with the seed
value set to 42. We selected the optimal parameter values that
provided the highest classification accuracy. After optimizing
the hyperparameters, the SVM model was trained using
leave-one-out cross-validation (LOOCV) and then used to
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predict the disease severity of the PD patients, before
classifying them into five categories: normal, slight, mild,
moderate, and severe. The performance of the SVM model
was evaluated using performance metrics such as classifica-
tion accuracy, recall, precision, and F1-score.

FIGURE 1. Flowchart of the proposed ML-based method for predicting PD
patients.

B. DATA COLLECTION DEVICE
An LMDwas used to collect data. This is a noncontact optical
device manufactured by Ultraleap (CA, USA) and equipped
with two infrared cameras and three infrared LEDs. This
device facilitates the capturing of handmotion and position in
three dimensions. The LMD operates within a right-handed
coordinate system, as illustrated in Fig. 2, where the y-axis
signifies depth toward the sensor, the z-axis ascends towards
the user, and the x-axis extends to the right [38], [39]. Its field
of view is 150 degrees x 120 degrees.

FIGURE 2. Leap motion device coordinate system.

The region where the user’s hand or fingers interact with
the LMD’s field of view is referred to as the interaction
box [40]. Within this box, the y-axis spans from 82.5 mm
to 317.5 mm above the device, while the x-axis ranges

from 117.5 mm to -117.5 mm, and the z-axis extends
from 73.5 mm to -73.5 mm [40] However, the tracking
accuracy is contingent on factors such as hand-camera
distance, lighting conditions, and the specific part of the
hand being tracked. Vysocky et al. [41] demonstrated that
the detected position deviates from the actual position by
no more than approximately 5 mm within the interaction
box. Beyond this boundary, errors could reach up to 10 mm,
with measurements remaining stable both inside and outside
the box [41]. The LMD is cost-effective, compact, and easy
to use. It has dimensions of 80 mm x 30 mm x 11 mm
and weighs 45 g, and interfaces with computers via USB
to instantly and accurately display hand movements on the
screen. Remarkably, the operation of the LMD is not affected
by environmental conditions, instead being solely dependent
on hand-based information.

Fig. 3 shows the anatomical arrangement of each finger
encompassing four bones: the metacarpal, proximal pha-
lange, intermediate phalange, and distal phalange [42]. It is
noteworthy that the thumb lacks an intermediate phalange.
The LMD identifies fingers based on their fingertips, while
the length of the metacarpals is set to zero [42]. The LMD
supplies time-series data, including finger joint positions and
the orientation of the palm. In this study we used software
compatible with two different versions of the LMD API:
versions 3.2 and 4.1.0. We ensured data consistency by
harmonizing the format of version 3 with that of version
4. Although some variables were missing due to version
disparities, they were deemed nonessential for achieving the
objectives of this study.

FIGURE 3. Four bones constituting each finger.

C. PARTICIPANT SELECTION
Participants for inclusion in this study were recruited
from two esteemed medical institutions: Teikyo University
Hospital and Kyorin University Hospital. All participants
had been diagnosed as PD by board-certified neurologists
with expertise in movement disorders (N.K., S.I.T., Y.T.,
and S.K.) following the diagnostic criteria established by the
MDS [3]. Our cohort consisted of 45 PD patients whose ages
range from 49 years to 87 years. Prior to participating in
the study, all individuals provided written informed consents.
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All of the study procedures were approved by the ethics
review committees of Teikyo University Hospital and Kyorin
University Hospital (approval ID numbers Teirin20-279 and
R03-014, respectively).

D. MOTOR TASKS
Each participant was instructed to perform three distinct
motor tasks selected from the MSD-UPDRS: FT, OC, and
PS. Before recording data, an examiner demonstrated how
to perform each task, and the participants were given the
opportunity to practice them. The start of each measurement
session was signaled by a tone. We recorded each task
multiple times for both the left and right hands to ensure
comprehensive and accurate data collection. To accurately
track the hand movements, participants positioned their
palms facing the LMD sensor at the beginning of each
session.We defined each task based on theMDS-UPDRS part
III as follows:

• FT (MDS-UPDRS 3.4): Participants were instructed to
tap their index finger on their thumb ten times as rapidly
and as big as possible.

• OC (MDS-UPDRS 3.5): Participants were instructed
to open and close their hands ten times as fully and
rapidly as possible. If the hand did not open or close
sufficiently, participants were instructed how to perform
the task correctly and then data collection was repeated.

• PS (MDS-UPDRS 3.6): Participants were instructed to
extend their arms forward with their palms facing down
and alternately pronate and supinate their forearm by
rotating the palm up and down alternately ten times as
rapidly as possible.

Board-certified movement-disorder specialists (N.K.,
S.I.T., Y.T., and S.K.) examined these three tasks as
performed using the left and right hands separately and rated
them according to five characteristics: speed, amplitude,
hesitations, halts, and decrementing amplitude (details
are provided elsewhere [4]). This produced a data set
encompassing 207 hand-gesture signals for FT, 207 for OC,
and 206 for PS.

E. DATA ACQUISITION
The measurement setup is shown in Fig. 4. An acrylic stand
served a dual purpose: (i) providing a comfortable platform
for the participant to rest their hand during the examination
and (ii) ensuring a consistent hand position relative to the
LMD sensor, which was securely attached to a nonslip mat.
Participants positioned their forearms on the inclined surface
of the stand with their hand extended beyond the stand’s edge
and the palm facing the LMD sensor. The height of the stand
was 15 cm. In addition, we placed a nonslip mat underneath
the acrylic stand to anchor it in place and thereby prevent any
unintended vibrations during the measurements.

F. DATA PREPROCESSING
As mentioned above, we utilized the LMD for collecting
hand-gesture signals, which provided us with time-series

FIGURE 4. Measurement environment.

data, including on the finger joint positions and palm
orientation. The LMD also provided information on various
physical properties, such as bone lengths and hand visibility.
However, we opted to exclude these physical properties from
our analyses. Furthermore, to ensure uniformity in our data,
we applied linear interpolation to standardize the sampling
rate to 50 Hz, resulting in a constant data-point interval of
0.02 seconds.

G. MOVEMENT PATTERN ANALYSIS
Following data preprocessing, we computed two distinct
movement patterns for each task as depicted in Fig. 5. For the
FT task we computed two parameters: (i) FTdis represents the
Euclidean distance between the index finger and thumb, and
(ii) FTang denotes the angle formed between the index finger
and thumb. For the OC task we computed OCdis, which
represents the sum of the Euclidean distances between the
palm center and the five fingertips. Additionally, OCang was
derived from the angles formed by the middle and tip of each
finger. For the PS task, we determined the palm angle based
on the vector formed by the thumb to the little finger (PSang),
along with the x-plane distance between the thumb and index
finger (PSdis).

FIGURE 5. Movement patterns of MDS-UPDRS task.

We conducted a further extensive analysis by computing
15 different distances between 2 points from the palm and
the five fingertips. We additionally calculated 14 distinct
ranges of motion for each joint of the fingers. This resulted
in the generation of 31 unique movement patterns for each
task, encompassing movement-related parameters (N = 2),
distances between 2 points (N = 15), and ranges of motion
(N = 14).
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TABLE 1. Names and descriptions of the extracted movement patterns.

It is worth noting that, in the case of the FT task, the
movement pattern related to the task and the Thumb2Index
parameter (i.e., distance from the tip of the thumb to the tip of
the index finger) convey the same information. Therefore, the
analysis of the FT task was based on 30 movement patterns
(i.e., excluding Thumb2Index). A more-detailed description
of these movement patterns and their respective names is
provided in Table 1.

H. EXTREME-VALUE DETECTION
To focus the analysis on specific task segments, we manually
extracted data based on distinct movement patterns, namely
FTdis, OCdis, and PSang. It is important to note that while
some data were obtained from more than 10 repetitions of a
task, others had fewer repetitions; nevertheless, all available
data were included in our analysis. From the extracted data
we implemented the procedure described below for extreme-
value detection.

1) FOURIER FILTER
The frequency of human hand movements is generally
below 10Hz. Therefore, to remove high-frequency noise with
a cutoff frequency of 10 Hz. A lowpass cutoff of 10 Hz
was also used in a previous study [33]. It should be noted
that tremor in PD patients generally appears at 4–6 Hz [43].
Considering the Nyquist frequency, a lowpass filter with a
cutoff of 10 Hz may influence the acquisition of information
about the tremor components. However, this study focused
on evaluating akinesia rather than tremor, and so we consider
that lowpass filtering at 10 Hz is justifiable.

2) MOVING-AVERAGE FILTER
To further enhance data quality and address any gaps
resulting from applying the Fourier transform, we employed
a moving-average filter with a window size set at 2% of the
data length.

I. EXTREME-VALUE DETECTION USING THE AMPD
ALGORITHM
For the final stage of extreme value detection, we used
the AMPD (automatic multiscale-based peak detection)
algorithm to identify both local maxima and local min-
ima [44]. However, it is important to note that there were
instances where the algorithm did not accurately detect
extreme values. In such cases, manual correction of the

extreme values was performed. Fig. 6 presents the segmented
data and graphs displaying detected extreme values for FTdis,
OCdis, and PSang. Similar procedures were applied to other
movement patterns at the same time.

FIGURE 6. Hand gesture signals of PD patients before and after data
processing during performing three tasks: (a) FT task; (b) OC task; and
(c) PS task.

J. FEATURE EXTRACTION
To extract pertinent kinematic features, positive and negative
peaks were initially identified by detecting local max-
ima and minima, respectively. We then computed various
motion-quantification parameters such as velocity, frequency,
amplitude, slope, and variance for each movement pattern.
We additionally computed jitter and shimmer parameters in
accordance with previous research [45], [46], [47]. Jitter
quantifies the variation of the signal waveform along the
time axis, while shimmer is associated with amplitude
variations. Furthermore, we derived features using the
tsfresh library [35] and the noise valiance [48], [49], which
are independent of extreme values. Table 2 presents a
comprehensive list of the extracted features obtained through
this process.

K. FEATURE SELECTION
The performance of ML-based algorithms critically depends
on the quality of input features. This study used an RF-based
algorithm to order the input features based on the Gini
impurity scores. At the same time, SFFS with an SVM was
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TABLE 2. List of extracted features from raw features.

applied to three tasks to select the relevant combination of
input features, which can be used for the prediction and
classification of patients with PD. This study found that the
OC tasks exhibited outstanding performance for identifying
patients with PD.

In this study, we implemented two feature selection
methods (RF and SFFS) to identify significant features for
PD patients. We initially employed an RF-based algorithm to
select the top 15% of features based on their Gini impurity
scores. We then applied an SFFS-based algorithm to the top
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TABLE 3. Range of parameter tuning for RF.

15% features, which were initially selected by the RF-based
algorithm. Concise explanations of these two algorithms are
provided below.

1) RANDOM FOREST
RF is a supervised method that combines two techniques:
(i) decision tree and (ii) ensemble learning [52]. It is widely
used for classification and feature selection. In our study we
employed an RF-basedmodel to identify top-ranking features
using the following steps:

• N sets of subsamples were created from the original data
using the bootstrap method through random sampling.

• N decision trees were generated, each using one of the
subsamples.

• Nodes were created according to the following method
until the specified number of nodes was reached:
randomly selecting M explanatory variables and then
constructing a decision tree.

• The RF model was trained using LOOCV and its
hyperparameters were optimized. The range of the
hyperparameters for the RF-based model, as presented
in Table 3, were optimized using Optuna.

• The RF-based model was then retrained and the Gini
impurity was computed.

• The Gini impurity values were sorted into descending
order.

• Finally, the top 15% of features were selected based on
their Gini impurity scores.

2) SFFS-BASED ALGORITHM
SFFS is widely used to select a subset of k-dimensional
features from a d-dimensional feature space (where k<d), and
plays a crucial role in enhancing generalization errors [53].
In the present study, we employed SFFS to select relevant
features for PD patients across the FT, OC, and PS tasks
after identifying an initial 15% of potential features to
expedite computations. The detailed steps of the SFFS-based
algorithm are comprehensively documented elsewhere [27],
[28], [53].

L. CLASSIFICATION USING AN SVM
An SVM is one of the most robust supervised learning
models, and was initially proposed by Cortes and Vapnik
in 1995 [54]. SVMs excel in classifying both linear and
nonlinear data through kernel methods, by optimizing the
margin of the hyperplane. In this study we employed an

SVM to identify a hyperplane that effectively classifies PD
patients into five categories (normal, slight, mild, moderate,
and severe), addressing the following problems:

maxα

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjK (xi, xj) (1)

subject to
n∑
i=1

yiTαi=1, 0≤αi≤C, i=1, . . . , n ∀ i=1, 2, , 3, . . . , n

(2)

The final discriminate function takes the following form:

f (x) =

n∑
i=1

αiK (xi, xj) + b (3)

where b is the bias term.
This study employed an SVM with RBF and sigmoid ker-

nels for classifying PD patients. The computation formulae
for these kernels are as follows:

RBF : K (xi, xj) = exp(-γ ∥xi-xj∥2); γ > 0 (4)

Sigmoid Kernel : K (xi, xj) = tanh (kxi.xj + c) (5)

IV. EXPERIMENTAL SETUP AND PERFORMANCE METRICS
A. EXPERIMENTAL SETUP
All experiments were performed on a Windows 11 computer.
Data were obtained using an LMD with two distinct API
versions: versions 3.2 and version 4.1.0. The data were
analyzed using Python (version 3.10.9). For classification,
we adopted the SVM algorithm with LOOCV and fine-tuned
hyperparameters using Optuna. To optimize the SVM param-
eters effectively, we defined the parameter ranges as follows:
kernel: ‘rbf’, ‘sigmoid’, cost: (ranging from 0.01 to 100),
and γ : (ranging from 0.01 to 100). The optimization process
comprised 200 trials, and the seed value was fixed at 42.

B. PERFORMANCE METRICS
We trained an SVM model for predicting patients with PD,
and simultaneously constructed a confusion matrix by com-
paring predicted classes against actual classes. We employed
four performance metrics (accuracy, recall, precision, and
F1 score) to assess the performance of the SVM model.
These performance metrics can be easily computed from the
confusion matrix; their formulae have already been clearly
explained elsewhere [21], [22].
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TABLE 4. Baseline characteristics of patients with PD for right-handed with FT task.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. BASELINE CHARACTERISTICS OF PATIENTS WITH PD
PATIENTS
This study enrolled a cohort of 45 PD patients aged
69.8±10.1 years (mean±SD) and including 62.2% males.
Table 4 provides an overview of the baseline characteristics
of PD patients performing the FT task with their right hand.
There was no significant difference in age or sex among
patients with normal, slight, mild, moderate, and severe PD
symptoms.

B. CLASS DISTRIBUTION OF PD PATIENTS
We collected hand-gesture signals from the PD patients and
classified them into five categories (slight, mild, moderate,
and severe) based on their respective MDS-UPDRS scores
for both the left and right hands when performing each of the
three tasks (FT, OC, and PS). The distribution of PD patients
across these categories is presented in Table 5.

TABLE 5. Class distribution of patients with PD when performing the FT,
OC, and PS tasks with the left and right hands.

C. RESULTS FROM FEATURE EXTRACTION
We computed 31 distinct movement patterns for each task.
Of these patterns, 2 movement patterns were related to the
task, 15 were related to distances between 2 points, and the
remaining 14 were related to the ranges of motion. These
movement patterns were used to derive 69 statistical features.
The computational formulae for these statistical features are
provided in Table 2 for clarity. This comprehensive process
yielded 2139 features (69 features per pattern multiplied
by 31 patterns), which were utilized in both the RF-based
algorithm and the SFFS-based feature-selection model to
identify the most-relevant features for diagnosing patients
with PD.

D. RESULTS FROM THE FEATURE-SELECTION AND
CLASSIFICATION MODELS
After extracting 2139 features, we applied the RF-based
algorithm to compute the Gini impurity scores for each
feature. We then ranked the features in descending order of

Gini impurity scores and selected the top 15% of features;
that is, 321 of the original 2139. These 321 features were fed
into the SFFS process with an SVMmodel to classify patients
with PD. In this study we used LOOCV to train SFFS with
the SVM model and fine-tuned the hyperparameters of SVM
using Optuna.

These tuning efforts were performed separately for the FT,
OC, and PC tasks. During the training phase, we systemati-
cally explored two kernel functions (RBF and sigmoid) and
set the cost and γ to various values within the range from
0.01 to 100. Our approach involved conducting 200 trials with
the seed value fixed at 42. Upon optimizing the parameters,
we retrained SFFS with an SVM model for (N-1) patients
with PD, reserving one patient as a test set for predictive
evaluations. This procedure was repeated in N iterations.
Our observations revealed that SFFS with an SVM algorithm
yielded the highest performance scores for the FT, OC, and
PS tasks, each employing distinct combinations of 12, 14,
and 12 features, respectively. Furthermore, we constructed
confusion matrices (Fig. 7) by contrasting the actual class
against the predicted class labels for the FT, OC, and PS
tasks.

TABLE 6. Classification performance (in %) of the SVM for predicting the
presence of PD in patients performing the FT, OC, and PS tasks.

We computed various performance metrics from these
confusion matrices (including the classification accuracy,
recall, precision, and F1 -score) for the FT, OC, and PS tasks,
as presented in Table 6. Notably, the SVM demonstrated
remarkable performance with a classification accuracy of
87.0% for FT, 93.2% for OC, and 92.2% for PS. It is worth
highlighting that the classification accuracy of the SVM
was achieved the highest for the OC task. Furthermore,
we observed that the SVM exhibited a recall rate of 73.2%,
precision of 76.1%, and F1-score of 74.4% for the OC task.
From these results, we concluded that the OC task is a
promising tool for detecting patients with PD.

The ROC curves of the SVM for the multiclass prediction
of patients with PD across the FT, OC, and PS tasks are
presented in Fig. 8. ROC curves represent the change in
false-positive and true-positive rates when the threshold is
changed. Each graph in Fig. 8 shows ROC curves for the
micro average, the macro average, and the normal, slight,
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TABLE 7. AUC values for the FT, OC, and PS tasks.

TABLE 8. Statistical validation of selected features from SFFS for the FT, OC, and PS tasks.

FIGURE 7. Confusion matrix for three tasks: (a) FT; (b) OC; and (c) PS.

mild, moderate, and severe categories. The micro-average
indicates the overall performance by considering each class
as a single class, while the macro average is the average of
the curves for each class and their respective AUC scores
in each task, as presented in Table 7. The SVM attained
the highest micro-average AUC value of 0.96 for the OC
task. This indicates that the OC task is the most-effective and
discerning task for detecting patients with PD.

E. STATISTICAL VALIDATION OF SELECTED FEATURES
We applied one-way analysis of variance (ANOVA) to the
results described in the previous section. We also computed
the p-value for each feature in the context of all three tasks.
The results are presented in Table 8. It is evident from Table 8
that 7 features for FT, 13 features for OC, and 12 features
for PS exhibited statistical significance in relation to patients

FIGURE 8. ROC curve for multiclass over three tasks: (a) FT, (b) OC, and
(c) PS. The curves that each color represents are as follows: Magenta:
Micro-average, Red:Macro-average, Cyan:Normal, Orange:Slight,
Green:Mild, Yellow:Moderate, Blue:Severe.

with PD. We conclude that using the LMD with the OC task
is a promising method for detecting patients with PD.

F. COMPARISON WITH A PREVIOUS STUDY
This section describes a comparative analysis between the
performance of our proposed system and that of a previous
study, as presented in Table 9. Chen et al. [33] proposed
the PD-Net system for detecting PD patients based on hand
gestures. Their approach consisted of three steps: (i) detecting
21 key locations on the hand from RGB videos, (ii) analyzing
movement patterns to identify the temporal patterns of these
key locations on the hand and the motor symptoms, and
(iii) predicting MDS-UPDRS scores based on the identified
features. Their results indicated a classification accuracy of
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TABLE 9. Comparison between this study against a previous study.

85.7% for FT, 89.3% for OC, and 88.7% for PS. In our study
we also proposed an ML-based patient-detection system.
We extracted features not only from the actual motor task
but also from the movements of other joints. The identified
features were ranked using an RF-based model based on
their descending order of Gini impurity scores. The top 15%
of features were then used in SFFS with an SVM model
to identify the most-relevant combination of features. Our
approach achieved a classification accuracy of 87.0% for
FT, 93.2% for OC, and 92.2% for PS, which represents a
notably better performance than that achieved in the study of
Chen et al. [33].

VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK
This study proposed an ML-based PD detection system
based on the analysis of hand gestures. Our proposed
system comprised several steps: (i) collecting hand-gesture
signals using LMD sensors while performing FT, OC,
and PS tasks; (ii) identifying movement patterns and then
extracting statistical features from each movement pattern;
(iii) applying an RF-based algorithm to rank features based
on the classification accuracy, and then selecting the top 15%
of features; (iv) implementing SFFS with an SVM model to
determine relevant feature combinations based on the Gini
impurity scores; and (v) applying one-way ANOVA to assess
the statistical significance of selected features and evaluating
their discriminative power. This study has demonstrated that
our proposed system achieved impressive results, with an
accuracy of 87.0% for FT, 93.2% for OC, and 92.2% for PS.
Additionally, our findings highlighted the efficacy of using
12 specific features of OC tasks to classify patients with PD.
We anticipate that this proposed system will prove invaluable
to physicians in assessing motor symptoms in PD patients.

Despite achieving outstanding performance, this study had
several limitations. First, there was an imbalance in the
distribution of the data according to severity grading, with
only a small amount of data on the most-severe cases. Future
studies should confirm the present results by analyzing a
more-balanced dataset. We used an SVM in our study due to
the small amount of data. However, DL models should also
be developed to achieve more accurate diagnosis. Second,
we only evaluated akinesia. Future studies using sensor
devices should develop a more-comprehensive approach that
incorporates all of the cardinal Parkinsonian features; that
is, akinesia, rigidity, and tremor. Third, we focused only on
hand symptoms, whereas PD symptoms appear throughout
the body. Sensor-based methods for evaluating posture, leg

movements, and gait should therefore be developed. Fourth,
this study targeted PD patients, but there are other disorders
that manifest parkinsonism, such as progressive supranuclear
palsy and multiple-system atrophy. More evidence is needed
on how the present tool works on the disorders with atypical
parkinsonism and also whether it can discriminate among
these disorders.
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