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ABSTRACT This paper investigates the synchronization problem for multiplex networks with the stochastic
perturbations via intermittent control. In the control schemes, the topologies of different layers of multiplex
networks can be different, the control strategy adopts aperiodically intermittent and pinning control methods,
and the number of pinned nodes can be different in different layers. Based on the stochastic theory and
the Lyapunov stability theory, linear feedback and adaptive controllers are constructed respectively, some
sufficient conditions are derived for guaranteeing synchronization of multiplex networks. Furthermore, for
the different connectivity of multiplex networks, the conditions for achieving synchronization are discussed.
Finally, two numerical simulations are provided to verify the theoretical results.

INDEX TERMS Multiplex networks, synchronization, stochastic perturbations, intermittent control.

I. INTRODUCTION
As an effective tool for studying complex systems, complex
networks (CNs) attract extensive attentions from researchers
of various fields of science and engineering. Collective
dynamic behaviors of CNs such as synchronization of CNs
has many potential applications in multi-agent coordinated
control and secure communication, and has therefore been
widely investigated widely. In general, CNs can not reach
synchronization without control, so some control approaches
have been proposed to drive CNs to achieve synchronization.
However, from a practical perspective, it is very difficult
to control all nodes in a large-scale network. Hence, it is
highly necessary to develop nodes-based pinning control
method for synchronization of CNs. Wang and Chen [1]
introduced pinning control method to study synchronization
of CNs firstly, since then, the pinning control method has
been commonly used in synchronization problem. On the
other hand, for reducing the requirements of system hardware
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and the consumption of communication resources, scholars
have proposed some control methods on the discrete signals
updated at instant times, such as intermittent control [2],
[3], [4], [5], [6], [7], event-triggered control [8], [9], [10],
[11], sampled-data control [12], [13], [14] and impulsive
control [15], [16], [17].

So far, research of the synchronization of CNs mainly
focused on single-layer networks. However, many networks
havemultiple links in reality, which havemore than one layer,
and their structure and dynamic behavior are more compli-
cated. For example, in transportation networks, there may
be roads, railways, and air routes among cities, in the social
networks, people exchange information with each other in
many different ways, such as WeChat, QQ, Facebook, E-
mail, etc. Such a type of CNs with multi-links have many
names, for example, multiplex networks (MNs) [18], [19],
[20], multilayer networks [21], [22], [23], multiweighted
networks (MWNs) [24], [25], [26], etc. Generally speaking,
multilayer networks refer to networks where the node states
corresponding to different layers of the network are not the
same. And MWNs are networks where there are multiple
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links between nodes, or the weights of the links can be any
real number. In recent years, the study of multiplex networks
has been a hot topic because of having many applications in
some fields. In [27], the public traffic network was took as a
MWN, which regarded bus lines as the network nodes, then
the synchronization of complex public traffic network with
multi-weights was studied. Du et al. [28] proposed a model
of a two-layer-coupled public bus and subway traffic, and
studied its synchronization problem. The types of synchro-
nization of MNs include intra-layer synchronization [29],
[30], inter-layer synchronization [29], [31], complete syn-
chronization [32], [33], and outer synchronization [34], [35],
[36] etc. Wherein, the outer synchronization refers to syn-
chronization between different MNs.

Intermittent control strategy implements discontinuous
control on systems in the time domain. Compared with the
continuous control, this control strategy can reduce control
costs. The intermittent control strategy has been widely used
in the research of traditional synchronization of CNs [2],
[3], [4], [5], [6], [7]. But research on the synchronization
of MNs via intermittent control is few. Yi et al [25] stud-
ied the synchronization issue of delayed neural networks
with multi-weights under aperiodically intermittent pinning
control, for the proposed neural network models with the
internal delay and coupling delay, derived criteria to guar-
antee exponential synchronization. Liang et al [35] studied
the outer synchronization of multilayer complex networks
by intermittent control, designed intermittent controllers in
the drive and response configuration, and derived sufficient
conditions to achieve the outer synchronization.

In the previous studies of the synchronization of CNs,
it was mostly assumed that node dynamics did not involve
noise interference. However, in some uncertain environ-
ments, the node dynamics are often affected by stochastic
perturbations [5], [18], [20], [22]. Thus, it is necessary to
take into account the noise effect on the synchronization.
Zhao et al. [18] studied the synchronization of MNs with
multiple delays and stochastic perturbations, based on the
LaSalle-type invariance principle and the Lyapunov stability
theory, obtained some pinning synchronization criteria. Jin et
al. [20] investigated the adaptive synchronization problem of
MNs with stochastic perturbations via pinning control, under
the conditions of transmission delay and no delay, derived
some pinning criteria for guaranteeing the complete synchro-
nization, respectively. For MNs with stochastic perturbations
via pinning control, Zhuang et al. [22] was concernedwith the
pinning synchronization of delayed multilayer networks with
stochastic perturbations, established some sufficient con-
ditions for guaranteeing the synchronization under control
input and no control input. Similar to the above MNs model,
subsequently Zhuang et al. [34] discussed the pinning syn-
chronization of a kind of drive-response multilayer networks
with stochastic perturbations, designed the state-feedback
pinning and the adaptive pinning controller, and derived some
sufficient conditions to reach the synchronization.

On the basis of the above, this paper studies the synchro-
nization problem of MNs with the stochastic perturbations
via aperiodically intermittent and pinning control. The main
contributions of the paper can be highlighted in three aspects
as follows:

1) To the best of our knowledge, the aperiodically inter-
mittent and pinning methods are firstly proposed to solve
the synchronization problem of MNs with stochastic per-
turbations. Under no perturbation conditions, reference [25]
studied the synchronization issue of delayed neural networks
with multi-weights under aperiodically intermittent pinning
control.

2) For the synchronization problem ofMNswith stochastic
perturbations in [20] and [22], the synchronization of MNs
was investigated by using pinning control. Compared to these
two research efforts, this paper adopts aperiodically intermit-
tent and pinning control methods to study the synchronization
of MNs with stochastic perturbations, and obtains criteria for
guaranteeing the complete synchronization ofMNs with state
feedback and adaptive controllers.

3) For the different connectivity of MNs, the paper ana-
lyzes the relationship between the number of connected
branches and the minimum number of pinned nodes in differ-
ent layers of MNs, discusses some conditions for achieving
the synchronization.

The rest of this paper is organized as follows. Some
necessary preliminaries, Assumptions, Lemmas, and model
description are given in Section II. In Section III, state feed-
back and adaptive controllers are designed, some sufficient
conditions for achieving the synchronization are derived sep-
arately. Two numerical examples are presented in Section IV.
Finally, conclusions of the paper are drawn.

II. PRELIMINARIES
In the paper, the following notations are adopted. N is the
set of natural numbers, Rn and Rn×n denote n-dimensional
real column vectors and n-dimensional real square matri-
ces, respectively. In is an identity matrix with order n. R+

denotes the nonnegative real numbers. The superscript T
represents the transpose operation to a corresponding matrix
(or vector). λmax(A) represents the maximum eigenvalue of
matrix A. ∥·∥ is the Euclidean norm of a vector in Rn.
For all the real-valued functions V (t, x(t)) on R+

× Rn,
C2,1(R+

× Rn,R+) stands for the family of V (t, x(t)), which
is continuously twice differentiable for x(t) ∈ Rn and once
differentiable for t ∈ R+. For two symmetric matrices P and
Q, P< 0 means that the matrix P is a negative definite matrix;
P≤ Qmeans that the matrix P - Q is a negative semi-definite
matrix.

A. RELATED LEMMAS AND ASSUMPTIONS
Consider the following stochastic differential equation:

dx(t) = f (x(t))dt + ϕ(t, x(t))dω(t), (1)
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with initial value x(t) ∈ Rn, t ≥ 0, f (x(t)) ∈ Rn is a
continuous vector function; ϕ(t, x(t)) ∈ Rn×n is a noise
intensity matrix and ω(t) ∈ Rn is a bounded vector-form
Weiner process.
Lemma 1 ([5]): For V (t, x(t)) ∈ C2,1(R+

× Rn,R+),
define an operator LV (t, x(t)) from R+

× Rn to R1 by

LV (t, x(t)) = Vt (t, x(t)) + Vx(t, x(t))f (x(t))

+
1
2
trace(ϕT (t, x(t))Vxx(t, x(t))ϕ(t, x(t))),

(2)

where Vt (t, x(t)) = ∂V (t, x(t))/∂t,Vx(t, x(t)) =

(∂V (t, x(t))/∂x1, ∂V (t, x(t))/∂x2, . . . , ∂V (t, x(t))/∂xn),
Vxx(t, x(t)) = (∂2V (t, x(t))/∂xi∂xj)n×n. IfE

∫ t
t0
LV (t, s(t))ds

exits, then for all t ∈ [t0, +∞), t0 ≥ 0,

EV (t) = EV (t0) + E
∫ t

t0
LV (t, s(t))ds. (3)

Lemma 2 ([5]): For any X ,Y ∈ Rn, a positive real number
α and P ∈ Rn×n, such that

2XTPY ≤ α−1XTPPTX + αY TY . (4)

Lemma 3 ([37]): Let the eigenvalues of matrix A
be λ1, λ2, . . . , λn, the eigenvalues of matrix B be
µ1, µ2, . . . , µm, then eigenvalues of matrix A ⊗ B are
λiµj, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Assumption 1: There exists a ρ > 0, for x, y ∈ Rn and a

matrix � ∈ Rn×n, such that f (·) satisfies

(x − y)T (f (x) − f (y)) ≤ ρ(x − y)T�(x − y), (5)

where � = diag(ω1, ω2, . . . , ωn), ωi is a nonnegative con-
stant, i = 1, 2, . . . , n.
Assumption 2: There exists a σ > 0, for x, y ∈ Rn, such

that ϕ(·) satisfies

trace((ϕ(t, x) − ϕ(t, y))T (ϕ(t, x) − ϕ(t, y)))

≤ 2σ (x − y)T (x − y). (6)

For the aperiodically intermittent control strategy, we will
give the following assumption.
Assumption 3: There exits a positive scalar 0 < di < Ti <

+∞, such that  inf
i
(si − ti) = di

sup
i
(ti+1 − ti) = Ti,

(7)

where ti is a time series, Ti is total time width in the i-th time
interval, di is control width in the i-th time interval. In the
paper, Assume that the control ratio (control width di to total
time width Ti ) in any time interval is a real constant r =

di/Ti(0 < r < 1),i ∈ N .

B. MODEL DESCRIPTION
Consider a M -layer MN with stochastic perturbations,
is described by

dxi(t) = [f (xi(t)) +

M∑
k=1

ck
N∑
j=1

a(k)ij H
(k)(xj(t) − xi(t))

+ ui(t)]dt + ϕ(xi(t))dω(t), (8)

where xi(t) = [xi1(t), xi2(t), . . . , xin(t)]T ∈ Rn is a state
vectors of the i-th node of NMs, i = 1, 2, . . . ,N , N is
the number of nodes in each layer; f (·) : Rn → Rn is a
smooth nonlinear vector field, ck is the strength of coupling
contributed by the k-th layer; A(k) = (a(k)ij )N×N is the outer
coupling matrix, if there is a coupling link from node i to
node j (j ̸= i), then a(k)ij > 0, otherwise, a(k)ij = 0, which

satisfies the diffusion property
N∑
j=1

a(k)ij =

N∑
j=1

a(k)ji = 0;H (k)
=

diag(h(k)1 , h(k)2 , . . . , h(k)n ) is an inner coupling matrix in each
layer, h(k)j > 0, j = 1, 2, . . . , n, k = 1, 2, . . . ,M ; ui(t) is an
intermittent pinning controller in i-th node ( the pinned node);
ϕ(·) ∈ Rn×n and ω(·) ∈ Rn are defined as Eq.(1).

From the properties of the diffusive matrix, Eq. (8) can be
rewritten as

dxi(t) = [f (xi(t)) +

M∑
k=1

ck
N∑
j=1

a(k)ij H
(k)xj(t)

+ ui(t)]dt + ϕ(xi(t))dω(t). (9)

Defining the desired synchronization state as x0(t), it sat-
isfies

dx0(t) = f (x0(t))dt + ϕ(x0(t))dω(t). (10)

Error vector is defined as ei(t) = xi(t) − x0(t), i =

1, 2, . . . ,N .

Then the system error:

dei(t) = [f (xi(t)) − f (x0(t)) +

M∑
k=1

ck
N∑
j=1

a(k)ij H
(k)ej(t)

+ ui(t)]dt + (ϕ(xi(t) − ϕ(x0(t))dω(t). (11)

Definition 1: Themultiplex network (8) achieves synchro-
nization, if lim

t→∞
∥Eei(t)∥ = 0, i = 1, 2, . . . ,N .

III. MAIN RESULTS
A. THE SYNCHRONIZATION OF MNS WITH A
STATE-FEEDBACK INTERMITTENT PINNING CONTROLER
In this section, we study synchronization of MNs under a
state-feedback intermittent pinning controller, where differ-
ent layers of MNs choose to pin different numbers of nodes,
and let the number of pinned nodes be lk in the k-th layer.
A state-feedback intermittent pinning controller in the i-th

node is described by

ui(t) = −

M∑
k

ckγ
(k)
li H (k)ei(t), (12)
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where γ
(k)
li > 0 is a control parameter, when i ≥ lk , γ

(k)
li = 0.

From Eq. (11), one obtains

dei(t) =



[f (xi(t)) − f (x0(t)) +

M∑
k=1

ck
N∑
j=1

a(k)ij H
(k)ej(t)

−

M∑
k=1

ckγ
(k)
l H (k)ei(t)]dt + (ϕ(xi(t)

−ϕ(x0(t))dω(t), 1 ≤ i ≤ l̄, t ∈ [ti, si)

[f (xi(t)) − f (x0(t)) +

M∑
k=1

ck
N∑
j=1

a(k)ij H
(k)ej(t)

]dt + (ϕ(xi(t) − ϕ(x0(t))dω(t),
l̄ < i, or 1 ≤ i ≤ l̄, t ∈ [si, ti+1)

(13)

where l̄ = max{lk |k = 1, 2, . . . ,M}. Denote
0(k)

= diag(γ (k)
1 , γ

(k)
2 , . . . , γ

(k)
lk , 0, . . . , 0)N×N , e(t) =

[eT1 (t), e
T
2 (t), . . . , e

T
N (t)]

T , Fi(t, ei(t)) = f (xi(t)) − f (x0(t)),
F(t, e(t)) = [FT1 (t, e1(t)), F

T
2 (t, e2(t)), . . . ,F

T
N (t, eN (t))]

T ,

8i(t, ei(t)) = (ϕ(xi(t) − ϕ(x0(t)), and 8(t, e(t)) =

[8T
1 (t, e1(t)) , 8T

2 (t, e2(t)), . . . , 8
T
N (t, eN (t))]

T .
Then Eq. (13) can be rewritten in the following compact

form:

de(t) =



[F(t, e(t)) + (
M∑
k=1

ck ((A(k) − 0(k)) ⊗ H (k)))e(t)]dt

+8(t, e(t))dω(t),
1 ≤ i ≤ l̄, t ∈ [ti, ti + di)

[F(t, e(t)) + (
M∑
k=1

ck (A(k) ⊗ H (k)))e(t)]dt

+8(t, e(t))dω(t), l̄ < i,
or1 ≤ i ≤ l̄, t ∈ [ti + di, ti+1)

(14)

Theorem 1: Under the Assumptions 1-3, the synchro-
nization of MNs with stochastic perturbations via aperiod-
ically intermittent pinning controller (12) can be realized,

if lim
j→∞

[q1
j∑

k=0
dk + q2

j∑
k=0

Tk (1 − r)] = −∞, where q1 =

2λmax[ρ(IN⊗�)+σ (IN⊗In)+
M∑
k=1

ck ((A(k) − 0(k))⊗H (k))] <

0, q2 = 2λmax[ρ(IN ⊗�)+σ (IN ⊗ In)+
M∑
k=1

ck (A(k)⊗H (k))],

dk , Tk and r are defined as above.
Proof: The Lyapunov function is introduced as follows:

V (t) =
1
2
eT (t)e(t).

When 1 ≤ i ≤ l̄, t ∈ [ti, ti + di),

LV (t) = eT (t)F(t, e(t)) + eT (t)[
M∑
k=1

ck ((A(k) − 0(k))

⊗ H (k))]e(t) +
1
2
trace(8T (t, e(t))(IN ⊗ In)

8(t, e(t))).

From Assumption 1, and Assumption 2, eT (t)F(t, e(t)) ≤

ρeT (t)(IN ⊗ �)e(t), and

trace(8T (t, e(t))(IN ⊗ In)8(t, e(t)))

=

N∑
i=1

8T
i (t, ei(t))8i(t, ei(t)) ≤

N∑
i=1

2σeTi (t)ei(t)

= 2σeT (t)(IN ⊗ In)e(t).

One obtains

LV (t) ≤ eT (t)[ρ(IN ⊗ �) + σ (IN ⊗ In)

+

M∑
k=1

ck ((A(k) − 0(k)) ⊗ H (k))]e(t)

≤ λmax[ρ(IN ⊗ �) + σ (IN ⊗ In)

+

M∑
k=1

ck ((A(k) − 0(k)) ⊗ H (k))]eT (t)e(t).

Therefore, one gets

LV (t) ≤ q1V (t). (15)

When l̄ < i, or 1 ≤ i ≤ l̄, t ∈ [ti + di, ti+1),

LV (t) = eT (t)F(t, e(t)) + eT (t)(
M∑
k=1

ckA(k) ⊗ H (k)))e(t)

+
1
2
trace(8T (t, e(t))(IN ⊗ In)8(t, e(t))).

Similarly, from Assumption 1 and Assumption 2,

LV (t) = eT (t)[F(t, e(t)) +

M∑
k=1

ck (A(k) ⊗ H (k))]e(t)

+
1
2
trace(8T (t, e(t))8(t, e(t)))

≤ eT (t)[ρ(IN ⊗ �) + σ (IN ⊗ In)

+

M∑
k=1

ckA(k) ⊗ H (k))]e(t).

Therefore, one gets

LV (t) ≤ q2V (t). (16)

In a word,

LV (t) ≤

{
q1V (t), 1 ≤ i ≤ l̄, t ∈ [ti, ti + di)
q2V (t), l̄ < i, or 1 ≤ i ≤ l̄, t ∈ [ti + di, ti+1)

.

(17)

According to the principle of calculus,

EV (t) ≤


EV (tj)eq1(t−tj), 1 ≤ i ≤ l̄, t ∈ [ti, ti + di)
EV (tj)eq2(t−(tj+dj)), l̄ < i, or 1 ≤ i ≤ l̄,
t ∈ [ti + di, ti+1)

. (18)

When t ∈ [t0, t1),EV (t) ≤ V (t0)eq1(t−t0), t ∈

[t0, t0 + d0) EV (t) ≤ V (t0 + d0)eq2(t−(t0+d0)) ≤

V (t0)eq1d0+q2(t−(t0+d0))
, t ∈ [t0 + d0, t1).
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By reduction, when t ∈ [tj, tj + dj),

EV (t) ≤ EV (tj)eq1(t−tj)

≤ V (t0)e
q1(

j−1∑
k=0

dk )+q2(
j−1∑
k=0

Tk (1−r))+a1(t−tj)
.

t ∈ [tj + dj, tj+1),
EV (t) ≤ EV (tj + dj)eq2(t−(tj+dj))

≤ V (t0)e
q1(

j∑
k=0

dk )+q2(
j−1∑
k=0

Tk (1−r))+q2(t−(tj+dj))

≤ V (t0)e
q1(

j∑
k=0

dk )+q2(
j∑

k=0
Tk (1−r))

.

When t = tj+1,

EV (tj+1) ≤ V (t0)e
q1(

j∑
k=0

dk )+q2(
j∑

k=0
Tk (1−r))

.

According to the conditions in Theorem 1, one obtain
lim
j→∞

EV (tj+1) = lim
t→∞

EV (t) = 0, which implies

lim
t→∞

E||xi(t) −x0(t)|| = 0. The proof is completed.
Based on the above analysis, it can be seen that the neces-

sary condition for MNs to achieve synchronization are

ρ(IN ⊗ �) + σ (IN ⊗ In) +

M∑
k=1

ck ((A(k) − 0(k)) ⊗ H (k)) < 0.

Below, we will discuss the relationship between network
connectivity and the minimum number of pinned nodes.
Corollary 1: As long as any layer of MNs is connected,

the synchronization can be achieved by pinning at least one
node in that layer.

Now, analyze the maximum eigenvalue of
M∑
k=1

ck ((A(k)

−0(k)) ⊗ H (k)). Let’s assume that the first layer of the
MNs is connected, then A(1) is an irreducible matrix, and
rank(A(1)) = N − 1. Form reference [38], there is at least
one γ

(1)
i > 0, so that (A(1) − 0(1)) < 0, From Lemma 3,

c1((A(1) − 0(1))⊗H (1)) < 0. So
M∑
k=1

ck ((A(k) − 0(k))⊗H (k))

< c1((A(1) − 0(1)) ⊗ H (1)) < 0. Obviously, by selecting the
appropriate γ

(1)
j (j = 1, 2, . . . , l1) and coupling coefficient ck ,

one get

ρ(IN ⊗ �) + σ (IN ⊗ In) +

M∑
k=1

ck ((A(k) − 0(k)) ⊗ H (k)) < 0.

Corollary 2: If each layer of the MNs is not connected,
let’s say, the network in the first layer has m connected
branches. Then we can always number the network nodes
appropriately so that the coupling matrix of the first layer has
the following form: A(1) = diag(A(1)1 ,A(1)2 . . . ,A(1)m ), where
A(1)1 ,A(2)2 . . . ,A(1)m are square matrices with order N1,N2,

. . . ,Nm, and are square irreducible matrices, respectively.

Let 0(1)
= diag(γ (1)

1 , . . . , γ
(1)
i1

, 0, . . . , 0︸ ︷︷ ︸
N1

,

γ
(1)
i1+1, . . . , γ

(1)
i1+i2

, 0, . . . , 0︸ ︷︷ ︸
N2

, γ
(1)
im−1+1, , . . . , γ

(1)
l1

, 0, . . . , 0︸ ︷︷ ︸
Nm

,.

For i = 1, 2, . . . ,m, if there is at least one γ
(1)
j > 0, j =

1, 2, . . . , l1, then λmax(A(1) − 0(1)) < 0. That is, the number
of pinned nodes at each connected branch is greater than or
equal to 1, the synchronization of MNs can be achieved.

B. THE SYNCHRONIZATION OF MNS WITH AN ADAPTIVE
INTERMITTENT PINNING CONTROLER
In the subsection, by designing an intermittent pinning
controller with adaptive control gains, explore the synchro-
nization of two MNs with stochastic perturbations.

For the error equation (11), an adaptive intermittent pin-
ning controller is as follows:

ui(t) = −

M∑
k=1

ckγ
(k)
i (t)H (k)ei(t), (19)

where γ
(k)
i (t) is an adaptive control gain, and γ̇

(k)
i (t) =

θkeTi (t)H
(k)ei(t),θk > 0. Denoting 0(k)(t) = diag(γ (k)

1 (t),
γ
(k)
2 (t), . . . , γ (k)

lk (t), 0, . . . , 0)N×N ,E (k)
= diag(ε(k)1 , ε

(k)
2 ,

. . . , ε
(k)
lk , 0, . . . , 0)N×N .

Error system can be written as

de(t) =



[F(t, e(t)) + (
M∑
k=1

ck (A(k) ⊗ H (k)))e(t)

−(
M∑
k=1

ck (0(k)(t) ⊗ H (k)))e(t)]dt

+8(t, e(t))dω(t), 1 ≤ i ≤ l̄, t ∈ [ti, ti + di)

[F(t, e(t)) + (
M∑
k=1

ck (A(k) ⊗ H (k)))e(t)]dt

+8(t, e(t))dω(t), l̄ < i, or 1 ≤ i ≤ l̄,
t ∈ [ti + di, ti+1)

(20)

Theorem 2: Under the Assumptions 1-3, the synchro-
nization of the multiplex networks with stochastic per-
turbations via an aperiodically adaptive intermittent pin-

ning controller (19) can be realized, if lim
j→∞

[q̄1
j∑

k=0
dk +

q̄2
j∑

k=0
Tk (1 − r)] = −∞, where q̄1 = 2λmax[ρ(IN ⊗

�) + σ (IN⊗ In) +

M∑
k=1

ck (A(k) − E (k)) ⊗ H (k))] < 0, q̄2 =

2λmax[ρ(IN ⊗ �)+ σ (IN ⊗ In)+
M∑
k=1

ck (A(k) ⊗H (k))], dk , Tk

and r are defined as above.
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Proof: The Lyapunov function is introduced as follows:

V (t) =
1
2
eT (t)e(t) +

M∑
k=1

ck
2θk

lk∑
i=1

(γ (k)
i (t) − ε

(k)
i )2.

When 1 ≤ i ≤ l̄, t ∈ [ti, ti + di)

LV (t) = eT (t)F(t, e(t)) + eT (t)(
M∑
k=1

ck (A(k) ⊗ H (k))e(t)

− eT (t)(
M∑
k=1

ck (0(k)(t) ⊗ H (k))e(t)

+

M∑
k=1

ck

lk∑
i=1

γ
(k)
i (t)eTi (t)H

(k)ei(t)

−

M∑
k=1

ck

lk∑
i=1

ε
(k)
i (t)eTi (t)H

(k)ei(t)

+
1
2
trace(8T (t, e(t))(IN ⊗ In)8(t, e(t)))

= eT (t)F(t, e(t)) + eT (t)(
M∑
k=1

ck (A(k) ⊗ H (k))e(t)

− eT (t)(
M∑
k=1

ck (E (k)(t) ⊗ H (k))e(t)

+
1
2
trace(8T (t, e(t))(IN ⊗ In)8(t, e(t))).

In view of Assumption 1 and Assumption 2,

LV (t) ≤ eT (t)[ρ(IN ⊗ �) + σ (IN ⊗ In)

+

M∑
k=1

ck (A(k) − E (k)) ⊗ H (k))]e(t).

One can obtain

LV (t) = q̄1V (t). (21)

When l̄ < i, or 1 ≤ i ≤ l̄, t ∈ [ti + di, ti+1)
Similar to derivation in Theorem 1, one has

LV (t) ≤ eT (t)[ρ(IN ⊗ �) + σ (IN ⊗ In)

+

M∑
k=1

ckA(k) ⊗ H (k))]e(t)

= q̄2V (t).

LV (t) ≤

{
q̄1V (t), 1 ≤ i ≤ l̄, t ∈ [ti, ti + di)
q̄2V (t), l̄ < i, or 1 ≤ i ≤ l̄, t ∈ [ti + di, ti+1)

.

(22)

It implies the following expression

EV (t) ≤


EV (tj)eq1(t−tj), 1 ≤ i ≤ l̄, t ∈ [ti, ti + di)
EV (tj)eq2(t−(tj+dj)), l̄ < i, or 1 ≤ i ≤ l̄,
t ∈ [ti + di, ti+1)

(23)

The discussion below is similar to Theorem 1.

IV. SIMULATION EXEMPLES
In this section, two simulation examples with intermittent
pinning controllers are given to verify the effectiveness of
main results.

A. EXAMPLE WITH A STATE-FEEDBACK INTERMIT-TENT
PINNING CONTROLER
Consider a two-layers network with 100 nodes. The first layer
of network is constructed by using a Watts-Strogatz small-
world network with initial degree m = 4 and the rewiring
probability p = 0.3. The second layer is constructed as a
Barabási–Albert scale-free network with initial nodes m0 =

5. And for each layer, we use random pinning strategy to
generate its coupling matrix.

Taking the following Lorenz system as dynamical system
of the ith node:
ẋi1(t) = a(xi2(t) − xi1(t))
ẋi2(t)=bxi1(t)−xi1(t)xi3(t) − xi2(t)
ẋi3(t) = xi1xi2(t) − cxi3(t)

, (i = 1, 2, . . . , 100),

(24)

where a = 10, b = 8
/
3, c = 28, then the Lorenz system

leads to chaos. According to reference [39], |xi1(t)| ≤ 29,
|xi2(t)| ≤ 29, −1 ≤ xi3(t) ≤ 57, |x01(t)| ≤ 29, |x02(t)| ≤ 29,
−1 ≤ x03(t) ≤ 57.

eTi (t)(f (xi(t)) − f (x0(t)))

= −ae2i1 − e2i2 − ce2i3 + (a+ b− xi3)ei1ei2
+ xi2ei1ei3 ≤ −ae2i1 − e2i2 − ce2i3 + (a+ b+ 1) |ei1ei2|

+ 29 |ei1ei3|

≤ (−a+
39α
2

+
29β
2

)e2i1 + (−1 +
39
2α

)e2i2 + (−c+
29
2β

)e2i3.

Select α = 0.9810, β = 0.6730, then eTi (t)(f (xi(t))
−f (x0(t))) ≤ 18.89eTi (t)ei(t), where ρ = 18.89, � = I3.
That is, f (·) satisfies the condition of Assumption 1. The noise
intensity matrix is selected as ϕ(xi(t)) = 1.2xi(t), obviously,
ϕ(·) meets Assumption 2, and here σ = 0.72. Select l1 =

l2 = 30, c1 = 10, c2 = 3, h(k)1 = h(k)2 = h(k)3 = 3,
k = 1, 2; γ

(1)
j = γ

(2)
j = 8, j = 1, 2, . . . , 30, we can

get that q1 = −48.6, q2 = 49. From Theorem 1, for any
k , when q1dk + q2Tk (1 − r) < 0. i.e, r ≥

q2
q2−q1

=

49.8%, the two-layers network with stochastic perturba-
tions via the aperiodically intermittent pinning controller can
achieve the synchronization. Choose that the control ratio
r = 50% , the control time intervals T1 = [0, 0.002),T2 =

[0.002, 0.012),T3 = [0.012, 0.032), . . . . Initial values of the
desired nodes and each node of the network are chosen as
x0(0) = [2, 3, 4]T ,xi1(0) = 2 + 0.2 × i × (−1)i,xi2(0) =

3+0.2× i× (−1)i,xi3(0) = 4+0.2× i× (−1)i, respectively.
Stochastic differential equations are solved with step size
0.00001. The following Figure 1 shows evolution trends of
three error components, and Figure 2 also draws evolution
of error components of the pinned nodes (30 nodes). From
Figure 1 and Figure 2, the impact of aperiodically intermittent
pinning and disturbances on the synchronization can be seen.
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FIGURE 1. Evolution trends of synchronization errors. (a) Error
components ei1(t), (b) Error components ei2(t), (c) Error components
ei3(t), i = 1, 2, . . . , 100.

B. EXAMPLE WITH AN ADAPTIVE INTERMITTENT
PINNING CONTROLER
In this example, consider that each layer of a two-layer net-
work with 7 nodes is not connected, whose topology is shown
in Figure 3.
Coupling matrices of the two connected sub-networks of

the first layer network are A(1)1 =

(
−1 1
1 −1

)
, A(1)2 =

−3 1 1 0 1
1 −3 1 1 0
1 1 −3 1 0
1 0 0 1 −2

, respectively; Coupling matrices for

FIGURE 2. Evolution trends of pinned node errors. Error components
ei1(t), (b) Error components ei2(t), (c) Error components
ei3(t), i = 1, 2, . . . , 30.

the two connected sub-networks of the second layer network

are A(2)1 =

−2 1 1
1 −2 1
1 1 −2

, and A(2)2 =


−3 1 1 1
1 −1 0 0
1 0 −1 0
1 0 0 −1

,

so, A(1) =

(
A(1)1 0
0A(1)2

)
, and A(2) =

(
A(2)1 0
0 A(2)2

)
.
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FIGURE 3. The topology of the two-layer network. (a) The topology of the
first layer network, (b) The topology of the second layer network.

Dynamic system of the ith node:

f (xi(t)) =

{
tanh(xi1(t))
tanh(xi2(t))

, i = 0, 1, 2, . . . , 7. (25)

First, we prove the dynamical system meets the condition in
Assumption 1.

(xi(t) − x0(t))T (f (xi(t)) − f (x0(t)))

= (xi1(t) − x01(t), xi2(t) − x02(t))

.

(
tanh xi1(t) − tanh x01(t)
tanh xi2(t) − tanh x02(t)

)
≤ ∥(xi1(t) − x01(t), xi2(t) − x02(t))∥2

.

∥∥∥∥( tanh xi1(t) − tanh x01(t)
tanh xi2(t) − tanh x02(t)

)∥∥∥∥
2

=

√
(xi1(t) − x01(t))2 + (xi2(t) − x02(t))2

.
√
(tanh xi1(t) − tanh x01(t))2 + (tanh xi2(t) − tanh x02(t))2.

From the Lagrange Mean Value Theorem, tanh xi1(t) −

tanh x01(t) = tan ḣθ1(t)(xi1(t) − x01(t)), and tanh xi2(t) −

tanh x02(t) = tan ḣθ2(t)(xi2(t) − x02(t)), here 0 <

tan ḣθ1(t) ≤ [(xi1(t)−x01(t))2+(xi2(t)−x02(t))2],θ1(t), θ2(t) ∈

R. Hence,

(xi(t) − x0(t))T (f (xi(t)) − f (x0(t)))

≤

√
(xi1(t) − x01(t))2 + (xi2(t) − x02(t))2

.
√
(xi1(t) − x01(t))2 + (xi2(t) − x02(t))2

≤ [(xi1(t) − x01(t))2 + (xi2(t) − x02(t))2]

= (xi(t) − x0(t))T (xi(t) − x0(t)).

So f (·) satisfies the condition of Assumption 1,wherein ρ =

1, � = I2. Set ϕ(xi(t)) = 0.6xi(t), then ϕ(·) meets Assump-
tion 2, here σ = 0.18. Set c1 = 3, c2 = 1, h(k)1 =

FIGURE 4. Evolution trends of synchronization errors. (a) Error
components ei1(t), (b) Error components ei2(t), i = 1, 2, . . . , 7.

h(k)2 = 1, k = 1, 2;θ1 = θ2 = 1, ε
(1)
j = ε

(2)
j = 5,

j = 1, 3, 4. Select pinning the 1st, 3rd, and 4th nodes of the
first layer, and the second layer does not have a controller
(i.e. the number of pinned nodes is 0), then set 0(1)

=

diag(1, 0, 1, 1, 0, 0, 0), 0(2)
= 07×7,get q1 = −3, q2 = 2.26,

and r ≥
q2

q2−q1
= 44% meets the conditions of Theorem 2.

Select that r = 50%, the control time intervals are
chosen as T1 = [0, 1.5),T2 = [1.5, 2.5),T3 =

[2.5, 4.5),T4 = [4.5, 5.5), . . . . Initial values are chosen as
x0(0) = [0.1, 0.15]T , xi1(0) = 0.1 +0.1 × i × (−1)i,
xi2(0) = 0.15+0.1× i× (−1)i, respectively. Solve stochastic
differential equations with step size 0.02. Evolution trends of
synchronization errors are shown in Figure 4.

In Figure 4, the blue curves display the evolution of the
pinned nodes ei1(t), ei2(t), i = 1, 3, 4, the black curves
are the non-pinned nodes ei1(t), ei2(t), i = 2, 5, 6, 7. And,
aperiodically intermittent pinning and disturbances show the
effects on the synchronization curves in Figure 4.

V. CONCLUSION
This paper has proposed new schemes of the synchronization
for MNs with the stochastic perturbations in which aperiod-
ically intermittent and pinning control methods are adopted.
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In the schemes, the pinned nodes can be different in different
layers ofMNs. By designing state feedback and adaptive con-
trollers, some sufficient conditions have been given to ensure
synchronization. Furtherly, for the different connectivity of
MNs, the conditions for synchronization of MNs have been
discussed by analyzing the relationship between the number
of connected branches and the minimum number of pinned
nodes in different layer networks. In the numerical simulation
section, two numerical examples have shown effectiveness of
the proposed schemes. In the paper, the MNs models do not
involve delays. However, some MNs have coupling delays or
system delays, which is a further problem to be investigated.
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