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ABSTRACT In compressed sensing (CS), coherence is a simple and practical measure of the quality of a
sensing matrix. The smaller the coherence of the sensing matrix, the better the reconstruction result. Most
strategies for optimizing the coherence of a sensing matrix are only applicable to gray-value matrices and
are not to binary matrices with fast computation speed and smaller storage space. Under a certain condition,
the coherence can be improved by weighting the sensing matrix to make its condition number equal to 1,
i.e., all non-zero singular values become the same. In this paper, we propose a method for reweighting CS
models to reduce the condition number of the sensing matrix so as to improve its coherence, prove that
the condition number decreases monotonically to 1 as the weighting times approaches infinity, and then
obtain a coherence improvement model equivalent to the original CS model. Finally, we give the RwOMP
recovery algorithm based on the proposed reweighted method and verify its superiority by using different
binary sensing matrices for CS experiments.

INDEX TERMS Compressed sensing, coherence, sensing matrix.

I. INTRODUCTION
Compressed sensing (CS) is a technique for recovering a
sparse or compressible signal x ∈ RN from measured
data y ∈ Rm. When the data acquisition process is linear,
the reconstruction model is mathematically described as an
underdetermined linear system [1]

Ax = y (1)

where the sensing matrix A ∈ Rm×N (m ≪ N ) models
the linear measurement progress. The signal x is s-sparse if
∥x∥0 ≤ s ≪ N . The CS theory mainly consists of three
core issues: the sparse representation of signals, the design
of sensing matrices and the research of recovery algorithms.

The performance of CS recovery algorithms is closely
related to the sensing matrix. Efficient recovery necessitates
that the sensing matrix must meet certain properties such as
restricted isometry, null space and the coherence.
Definition 1 ([2]): The restricted isometry constant (RIC)

δs = δs(A) of the matrix A with restricted isometry property
(RIP) of order s is defined to be a smallest positive number
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such that

Cs(1 − δs)||x||22 ≤ ||Ax||22 ≤ Cs(1 + δs)||x||22 (2)

for some positive numbersCs and all s sparse vectors x ∈ RN .
The smaller the δs, the more accurate the reconstructions.
Among the properties, RIP is most suited to assess the quality
of a sensing matrix, and many researches have focused on the
requirements of different recovery algorithms on the δs(A) to
guarantee the accurate recovery of s sparse signals [3], [4],
[5], [6], [7], [8]. The calculation of δs(A) is NP-hard [9],
[10]. By comparison, coherence is simpler and easier to
calculate [11]. The sensing matrix A with coherence µ

satisfies the RIP of order s, i.e., δs = (s− 1)µ [12].
Coherence is usually used to guide the design and

optimization of a sensing matrix. Currently, some random
and deterministic sensing matrices have been presented [13],
[14], [15], [16]. Over the years, people have studied many
optimization methods for reducing the coherence of sensing
matrices. Abolghasemi et al. [17], [18] utilized the idea
of gradient descent to optimize the mutual coherence of
the Gaussian random matrix and improved the performance
of sparse recovery. Pan and Qiu [19] gave an orthogonal
optimization method for reducing the mutual coherence of
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the random measurement matrix based on QR factorization.
Li et al. [20] designed a projection matrix using the estimated
sparse representation to decrease the local cumulative
coherence of the measurement dictionary. Jin et al. [21] gave
an alternating projection strategy and an improved shrinkage
method for reducing the average mutual coherence and the
mutual coherence of the Gaussian random measurement
matrix. These optimization methods are mainly used for the
sensing matrix with continuous elements.

In addition to the gray-value matrices mentioned above,
there are also some binary sensing matrices designed and
applied in compressive imaging to save storage space of
sensing matrices and accelerate the speed of data sam-
pling [22], [23]. In compressive imaging, the sensing process
is sometimes unfixed and determined by the designed mask
for sampling data. Due to sampling speed limitations, the
designed masks are generally binary, the above optimization
methods are not applicable because the binarization of
optimized sensing matrices generally eliminates the gains
generated by optimization. Therefore, people are devoted to
designing a binary sensing matrix with small coherence, and
various design methods of binary sensing matrices have been
presented [24], [25], [26], [27], [28]. Despite these methods,
designing a satisfactory binary sensing matrix is still difficult,
and these methods are applicable to the CS problem with an
unfixed sensing process determined by the design sensing
matrices. This affects the promotion and application of CS
technology. Moreover, in some fields, the data sampling
process is fixed and the sensing matrix determined by
the fixed sampling process is immutable, once the sensing
matrix is with a large coherence, it is very hard to recover
successfully sparse signals. Thus, an optimization method
for reducing the coherence of matrix A without changing the
original sampling process is particularly important.

For the general CS problem, in [29] and [30], authors
optimized the CS model (1) by weighting the sensing
matrix to equalize all singular values. The weighted method
of [29] requires the singular value decomposition (SVD) of
A with a lot of numerical computations and the reciprocals
of all singular values, which may cause large round-off
errors for those appropriately small singular values. In [30],
we gave a method of reweighting the sensing matrix in (1)
by left-multiplying the normal equation of (1) by multiple
symmetric positive-definite matrices related to ATA ∈

RN×N . In CS, the signal length is usually much larger than
the number of measurements approximated to the signal
sparsity, i.e., m ≈ s ≪ N . This reweighted method has
a high computational complexity for a large-sized sparse
signal x. To this end, in this paper, we propose an improved
reweighted method to optimize the coherence of the sensing
matrix for the general CS problems by left-multiplying the
original CS model (1) a symmetric positive-definite matrix
related to AAT ∈ Rm×m, obtain a new CS model (12),
Anx = yn, equivalent to the original model (1), and prove that
the condition number of the new sensing matrix An decreases
monotonically to 1 as the weighting times n → +∞ in

Theorem 1 and the coherence of the new CS model (12) is
smaller than that of the model (1) in Theorem 2. Besides,
by combining the proposed reweighted method with the idea
of the orthogonal matching pursuit (OMP) algorithm, we also
establish the reweighted OMP (RwOMP) recovery algorithm,
and carry out the CS experiments on one-dimensional
sparse signals and two-dimensional non-sparse images using
different random binary matrices and different algorithms to
verify that the recovery using proposed RwOMP algorithm
outperforms the direct OMP recovery and the recovery using
the SVD-based weighted OMP algorithms [29]. Compared
with the weighted method of [29], our reweighted method
only requires the maximum singular value, which is easily
estimated. Meanwhile, due to m ≪ N in CS problems, the
order of the weighting matrix in our reweighted method is
much smaller than that of [30]. So our method has lower
computational complexity and better stability.

The organization of the paper is as follows. Section II
introduces the notations and several preliminary results.
Section III gives a reweighted method for the CS model and
its theoretical analysis of improving coherence. Section IV
presents the reweighted OMP recovery algorithms and
implements CS experiments. Section V concludes the paper.

II. PRELIMINARIES
In this section, we give several important definitions and
preliminary results. Let ∥ · ∥F and ∥ · ∥2 be the Frobenius
norm and 2-norm of amatrix, respectively.We use T to denote
the transpose of a matrix or a vector. Let {σk}

m̄
k=1 with the

algebraic multiplicity pk be the nonzero singular values of A
such that σ1 > σ2 > . . . > σm̄ and m =

∑m̄
k=1 pk .

Definition 2: For a matrix A ∈ Rm×N (m ≪ N ), denote its
largest singular value and the smallest nonzero singular value
by σmax and σmin, respectively. The condition number of A is
defined as

K(A) :=
σmax

σmin
. (3)

For greedy algorithms such as the OMP, the highly correlated
columns of the sensing matrix A can cause the wrong indices
and thus cannot recover correctly sparse signals.
Definition 3 ([11]): For a matrix A ∈ Rm×N , its mutual

coherence is

µ(A) := max
1≤i ̸=j≤N

|ATi Aj|

∥Ai∥2∥Aj∥2
, (4)

where Ai is the i-th column vector of A. The mutual coherence
µ(A) measures the maximum absolute correlation between
any two different normalized columns of A. The smaller
the µ(A), the more accurate the reconstructions. It is known
that µ(A) ≥

√
N−m
m(N−1) , where

√
N−m
m(N−1) is called as the

Welch bound [31]. The equality holds if and only if the
column-normalized vectors of A form an equiangular tight
frame (ETF) [32]. However, the ETF usually does not exist
in CS problems since m ≪ N .
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Assume that A is a matrix with ℓ2-normalized columns.
Let the Gram matrix G(A) = [gi,j]1≤i,j≤N . Then (4) can
be rewritten into that µ(A) = max1≤i̸=j≤N |ATi Aj| =

max1≤i ̸=j≤N |gi,j|. The absolute off-diagonal entries, |gi,j| for
1 ≤ i ̸= j ≤ N , quantify the correlations between any two
different columns of A. The coherence µ(A) only accounts
for the largest absolute off-diagonal entry and reflects the
worst similarity between different columns of A. Compared
to the mutual coherence µ(A), the average mutual coherence
of A can better reflect the overall orthogonality level of the
submatrices of A [33], [34].
Definition 4 ([35]): For the sensing matrix A, its average

mutual coherence

µ̄(A) :=

∑
1≤i ̸=j≤N gi,j

2

N (N − 1)
, (5)

where gi,j is the element in the i-th row and j-th column of
G(A). The nonzero eigenvalues of G(A) are {σk

2
}
m̄
k=1 with

the algebraic multiplicity pk . From the properties of the
Frobenius norm and it follows that ∥G(A)∥F =

∑N
i,j=1 gi,j

2
=∑m̄

k=1 pkσk
4. Since gi,i = 1 for i = 1, 2, · · · ,N ,∑

1≤i≤N gi,i
2

= N . By (5), we have that

µ̄(A) =
∥G(A)∥F − N
N (N − 1)

. (6)

Lemma 1: Let A ∈ Rm×N (m ≪ N ) be a
column-normalized matrix of rank m, {σk}m̄k=1 be its nonzero
singular values with the algebraic multiplicity pk such that
m =

∑m̄
k=1 pk and G(A) be its Gram matrix. Let β(σ ) =∑m̄

k=1 pk (σk
2

−
N
m )

2, where σ = (σ1, σ2, · · · , σm̄). Then we
have that

• the smaller β(σ ), the smaller ∥G(A)∥F .
• ∥G(A)∥F ≥

N 2

m and equality holds if and only if σ1
2

=

σ2
2
· · · = σm̄

2
=

N
m .

The proof is provided in Appendix A.
By the equality (6) and the Lemma 1, it is illustrated that

the smaller the value of β(σ ) where N
m is the average of

eigenvalues, the smaller the average mutual coherence µ̄(A),
and µ̄(A) reaches to its minimum, N−m

m(N−1) , if and only if
σ1

2
= · · · = σm̄

2
=

N
m which means the condition number

K
(
A
)

= 1.Moreover, the smaller the condition numberK(A),
the more eigenvalues near its average N

m , which means a
smaller value of β(σ ). Thus, a method of improving condition
number K(A) can reduce the value of β(σ ) by improving
the distribution of eigenvalues, and then improve the average
mutual coherence µ̄(A).

III. A REWEIGHTED METHOD AND THE IMPROVEMENT
OF COHERENCE
In this section, we propose a reweighted method and prove
that it improves the coherence of the sensing matrix under a
certain condition.

Let r be the rank of matrix A ∈ Rm×N such that r ≤

m ≪ N . Denote {σk}
m̄
k=1 with the algebraic multiplicity

pk as the nonzero singular values of A such that σ1 >

σ2 > . . . > σm̄ and r =
∑m̄

k=1 pk . For j = 1, 2, · · · pk and
k = 1, . . . , m̄, we use {uj,k}m̄k=1 and {vj,k}m̄k=1 to denote the
left and right singular vectors corresponding to the singular
value σk , respectively. Denote wj (1 ≤ j ≤ q) as the
eigenvectors of the zero singular values of Awith an algebraic
multiplicity q = N − r . Let U = (U1,U2, · · · ,Um̄) ∈

Rm×m and V = (V1,V2, · · · ,Vm̄,W ) ∈ RN×N , where
W = (w1,w2, · · · ,wq), Uk = (u1,k , u2,k , · · · , upk ,k ) and
Vk = (v1,k , v2,k , · · · , vpk ,k ) for k = 1, 2, · · · m̄. By the SVD
of matrix A, then

UTAV =
(
S,Om×(N−m)

)
, (7)

where S = diag
(
σ1Ip1 , · · · , σm̄Ipm̄ ,Om−r

)
, I is a unit matrix,

and O is a null matrix. Obviously, the matrix AAT ∈ Rm×m

is symmetric semi-positive definite, its eigenvalues {σk
2
}
m̄
k=1

satisfy σ1
2 > σ2

2 > . . . > σm̄
2 > 0. Given a constant a0 >

1, with the same U in (7), the matrix a0σ12Im − AAT can be
diagonalized into

UT (a0σ12Im − AAT )U

= diag
(
(a0σ12 − σ1

2)Ip1 ,

· · · , (a0σ12 − σm̄
2)Ipm̄ , a0σ12Im−r

)
. (8)

From σ1
2 > σ2

2 > . . . > σm̄
2 > 0 and it follows that

0 < a0σ12 − σ1
2 < a0σ12 − σ2

2 < . . . < a0σ12 −

σm̄
2 < a0σ12. So the matrix a0σ12Im − AAT is symmetric

positive-definite. To improve the condition number of the CS
model (1), we give the following reweighted method,

A0 = A, y0 = y, ∗ (9a)

V−1
n = an−1σ

2
n−1,1Im − An−1ATn−1, (9b)

An = V−1
n An−1, yn = V−1

n yn−1, (9c)

where constants an−1 > 1 are weighted parameters, σn−1,1
are the largest singular values of An−1, and the weighting
times n = 1, 2, . . ..
Theorem 1: For n = 0, 1, . . ., assume that an ≥ 1 +

1/K(An) + 1/K2(An), {an} is a convergent sequence with
limn→∞ an = ā ≥ 3 and let {An} be a matrix sequence
defined by (9c). Then, we have

K(An+1) < K(An), (10)

and

lim
n→∞

K(An) = 1. (11)

The proof is provided in Appendix B.
With the reweighted method (9a), the sensing process (1)

can be written equivalently as

Anx = yn, (12)

where An can be regarded as a new sensing matrix equivalent
to the original sensing matrix A. We use the CS model (12) to
recover x.
Theorem 2: Given a positive integer n1 ≥ 1 and two

fixed positive numbers d0 and d1. Let Ān1 and Ā be the
column-normalized matrices of An1 and A, respectively.
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FIGURE 1. Average mutual coherence (1st row) and mutual coherence (2nd row) as the functions of the
number of measurements m, where the sensing matrix is Gaussian random matrix (left), Toeplitz random
matrix (middle) and uniform random matrix (right), respectively. The weighting times n = 5 and the weighted
parameters ak = 1.9 for k = 1, 2, · · · , 5.

Assume that |K(Ā) − K(A)| ≤ d0 and |K(Ān1 ) − K(An1 )| ≤

dn1 . Then if K(A) −K(An1 ) > d0 + dn1 , we have

µ̄(An1 ) < µ̄(A). (13)

The proof is given in Appendix C.

IV. EXPERIMENT
In this section, we implement several experiments consisted
of two parts, i.e., the one-dimensional sparse signal recov-
ery in subsection IV-A and two-dimensional compressive
coded aperture imaging in subsection IV-B, respectively.
By combining our reweighted method with the OMP idea,
we give a new algorithm, namely RwOMP, as displayed in
Algorithm 1. In the following experiments, the weighting
times is determined by repeated experiments, the maximum
weighting times n = 9, and the weighted parameters an are
set to 1.9 (in Figs. 1, 3 and 4) and 3 (in Fig. 2), respectively.
The initial sensing matrix A in (1) is a {0, 1} binary random
matrix. Compared with the reweighted method of [30], the
reweighted method in this paper has a lower computational
complexity, i.e., the order of the weighting matrix is much
lower than that of [30]. Their reconstruction results are
almost the same and not be compared here. For the sake of
illustration, we use SVD-WOMP to denote the SVD-based
weighted OMP recovery algorithms of [29]. To verify the
superiority of the proposed algorithm, we compare the
RwOMP algorithm with the OMP [36] and SVD-WOMP
algorithms by recovering sparse signals. All the experiments
were run on the MATLAB code (if needed, please contact us
via email) on a standard PC with a 2.11 GHz Intel Core i5
processor and 16 GB of memory, running on the Windows 11
system.

Algorithm 1 RwOMP Algorithm
Input:
observed data y, Sensing matrix A, sparsity s, the maximum
weighting times n̄, T 0

= ∅, x0 = 0.
Reweighting the CS model (1):
for n = 1, . . . , n̄ do
1: the calculation of weighting matrix V−1

n with (9b)
2: the calculations of the matrix An and the vector yn

with (9c)
Iteration:
Repeat until a stopping criterion is met at
k = k̄
1: T k+1

= T k
⋃

{jk+1},
2: jk+1 = argmax

j∈[1,...,s]

{∣∣∣(ATn (yn − Anxk
))
j

∣∣∣},
3: xk+1

= argmin
z∈Rn

{
∥yn − Anz∥2

}
, sup(z) ⊆ T k+1.

Output: x k̄

A. ONE-DIMENSIONAL SPARSE SIGNAL RECOVERY
In the following CS experiments, the recovered one-
dimensional sparse signal x is with the length N = 512 and
the sparsity s = 1, 3, 5 · · · , 65. The OMP and RwOMP
algorithms are used to recover sparse signals, respectively.
We choose the Gaussian random binary matrix, the Toeplitz
random binary matrix and the uniform random binary matrix
as the initial sensing matrix A in (1), respectively. Fig. 1
shows the average mutual coherence µ̄ and the mutual
coherence µ of sensing matrices as a function of the number
of measurements m = 64, 96 · · · , 384. We can find that the
average mutual coherence µ̄ and the mutual coherence µ of
the optimized sensing matrices are better than those of the
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FIGURE 2. The reconstruction results of OMP (blue) and RwOMP (red: the weighting times n = 8 and the
weighted parameters ak = 3 for k = 1, 2, · · · , 8). Left: Gaussian random matrix. Middle: Toeplitz random
matrix. Right: uniform random matrix.

FIGURE 3. PSNR and SSIM of reconstruction results of the cameraman image as a
function of the measurement number m. For each m, the weighting times n is
2, 6, 5, 9, 8, 9, 7, 6 and 9, respectively. The weighted parameters ak = 1.9 for
k = 1, 2, · · · , 9.

initial sensing matrices, and the mutual coherence µ of the
optimized sensing matrices is closer to the Welch bound.

In the one-dimensional sparse signal recovery, we use the
frequency of exact reconstruction and the relative error as
two indexes to evaluate the reconstruction results. For every
sparsity s, we reconstruct repeatedly 100 different random
s sparse signals obeying Gaussian distribution to compute
the frequency of exact reconstruction and the relative error
between the original signals x and the reconstructions x̄,
which is defined as follows

Relative Error :=
∥ x − x̄ ∥2

∥ x ∥2
. (14)

Fig. 2 shows the frequency of exact reconstruction and
the relative error with different sparsity levels, where the
measurement number is fixed to 128, i.e., the compression
rate (Cr) is 4. As can be seen from Fig. 2, for a fixed
measurement number m, the sparser the signal, the higher
the frequency of exact reconstruction and the smaller the
relative error. Moreover, the RwOMP algorithm with the

weighting times n = 8 can improve the frequency of the exact
reconstruction and the relative error compared with the direct
OMP reconstruction.

B. TWO-DIMENSIONAL IMAGE RECONSTRUCTION
Next, we conduct the compressive coded aperture imaging
experiments. In the following experiments, the original image
is the cameraman with a size of 512 × 512, the number
of measurements m = 64, 96 · · · , 320. The reconstruction
is done column by column. More specifically, each column
of the target image is first encoded with m different mask
patterns to obtain measurements, and then decoded through
CS algorithms to achieve reconstruction. Thus, the sensing
matrix A has a fixed number of columns N = 512 and the
number of rows m varying from 64 to 320. Considering that
the original image signal itself is non-sparse, we take the
sparse transform, 9, as a discrete symlet wavelet transform
matrix to give the sparse representation of x and as follows

x̃ = 9−1x. (15)
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FIGURE 4. Reconstructed results of different algorithms under the number of measurements m = 192. The first is the
original cameraman image, the second is the image reconstructed by the OMP (PSNR=26.35db, SSIM = 0.7030), the third is
the image reconstructed by the SVD-WOMP (PSNR=27.08db, SSIM = 0.7036), and the fourth is the image reconstructed by
the RwOMP with the weighting times n = 8 (PSNR=28.49db, SSIM = 0.7936). The weighted parameters ak = 1.9 for
k = 1, 2, · · · , 8.

Thus, the sensing process (1) can be rewritten as

A9 x̃ = y. (16)

Now, A9 is the sensing matrix, we reconstruct x̃ by (16), and
then get x through (15). We use the OMP, SVD-WOMP, and
RwOMP algorithms to reconstruct x, respectively.
The peak signal-to-noise ratio (PSNR) and structural

similarity (SSIM) are two important indexes for evaluating
the quality of reconstruction images. Fig. 3 gives the PSNR
and SSIM curves of the reconstruction results of different
algorithms, where the number of measurements m =

64, 96 · · · , 320. Fig. 4. shows the reconstruction results of
different algorithms, where the number of measurements
is 192. We can see that the direct OMP reconstruction
performs worst, and the reconstruction results of the RwOMP
algorithm in this paper are better than those of the other two
algorithms.

V. CONCLUSION
In this paper, we have proposed a method of reweighting the
CS models, established its complete theoretical analysis of
improving the coherence of sensing matrices, and obtained
a coherence improvement CS model (12) equivalent to the
original model (1). We have also provided the RwOMP
algorithm for recovering sparse signals by incorporating
the proposed reweighted method into the idea of the OMP
algorithm, and implemented the CS recovery experiments of
the one-dimensional sparse signals and the two-dimensional
non-sparse images to verify its superiority and effectiveness.

It is noteworthy that our method of improving the
coherence of sensing matrices is applicable to general CS
models with a linear sampling process. Two of the factors
affecting the practical application of CS technology are: 1) the
fixed sensing matrix determined by the measurement process
is not with a sufficiently small coherence, and 2) it is tough
to design a satisfactory binary sensing matrix with a small
coherence due to certain limitations. For the two factors,
our method can reduce effectively the coherence of sensing
matrices and then improve the recovery results. Thus, it is
helpful to expand the application field of CS technology.

In a practical application of the reweighted method pro-
posed in this paper, the weighting times n may be increased
appropriately according to the actual recovery requirement,

and it is noteworthy that the weighting times n cannot be very
large to trade off between the improvement of coherence and
the errors generated by discretization and accumulated with
the increase of n. According to the condition of Theorem 1,
an ≥ 1 + 1/K(An) + 1/K2(An), the weighted parameters
are estimated reasonably, and our method always improves
the reconstruction results. A comprehensive analysis of
maximum weighting times and optimal sequence parameters
is our future work.

APPENDIX A
PROOF OF LEMMA 1

Proof: For the Gram matrix G(A), it is easy to know
that its trace tr

(
G(A)

)
= N . Then the sum of its eigenvalues∑m̄

k=1 pkσk
2

= tr
(
G(A)

)
= N , and N

m is the average
of eigenvalues. Expanding the expression β(σ ) yields that
β(σ ) = ∥G(A)∥F −

N 2

m . Then we have that

∥G(A)∥F = β(σ ) +
N 2

m
≥
N 2

m
. (17)

Thus, the smaller the value of β(σ ), the smaller the value of
∥G(A)∥F , and ∥G(A)∥F reaches the minimum N 2

m if and only
if β(σ ) = 0, i.e., σ12 = · · · = σm̄

2
=

N
m .

APPENDIX B
PROOF OF THEOREM 1

Proof: For n = 0, 1 · · · , denote {σn,k}
m̄
k=1 with the

algebraic multiplicity pk as the nonzero singular values of An
such that σn,1 > σn,2 > . . . > σn,m̄. By the definition of An
in (9c), with the same U and V in (7), the matrices An and
An+1 satisfy

UTAnV =
(
diag

(
σn,1Ip1 , · · · , σn,m̄Ipm̄ ,Om−r

)
,Om×(N−m)

)
,

(18)

and

UTAn+1V

=
(
diag

(
(anσ 2

n,1 − σ 2
n,1)σn,1Ip1 ,

· · · , (anσ 2
n,1 − σ 2

n,m̄)σn,m̄Ipm̄ ,Om−r
)
,Om×(N−m)

)
, (19)

respectively. Define the function with respect to t ∈ (0, +∞)

ϕn(t) := (anσ 2
n,1 − t2)t. (20)
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By (19) and (20), the nonzero singular values of An+1 can
be represented as {ϕn(σn,k )}m̄k=1, and ϕn(σn,k ) > 0 for k =

1, 2, · · · , m̄, n = 0, 1, · · · . {ϕn(σn,k )}m̄k=1 are permuted as
{σn+1,k}

m̄
k=1 satisfying σn+1,1 > σn+1,2 > · · · σn+1,m̄ >

0. Taking the derivative of a function ϕn(t) yields that
ϕn(t)′ = anσ 2

n,1 − 3t2, and it follows that argmaxt>0 ϕn(t) =
√
an/3σn,1. We therefore have

σn+1,1 ≤ ϕn

(√
an
3

σn,1

)
(21)

and

σn+1,m̄ = min
{
ϕn(σn,1), ϕn(σn,m̄)

}
. (22)

If an > 3, σn,m̄ < σn,1 <
√

an
3 σn,1. Then σn+1,1 =

ϕn(σn,1) and σn+1,m̄ = ϕn(σn,m̄). So

K(An+1) =
σn+1,1

σn+1,m̄
=

(anσ 2
n,1 − σ 2

n,1)σn,1

(anσ 2
n,1 − σ 2

n,m̄)σn,m̄

<
σn,1

σn,m̄
= K(An). (23)

If 1 +
1

K(An)
+

1
K2(An)

≤ an ≤ 3, then

(an − 1)σ 2
n,1 ≥ σn,m̄σn,1 + σ 2

n,m̄. (24)

By the above inequality (24) and σn,1 − σn,m̄ > 0, we have

ϕn(σn,1) − ϕn(σn,m̄) = (an − 1)σ 3
n,1

− (anσ 2
n,1 − σ 2

n,m̄)σn,m̄ = (σn,1 − σn,m̄)

× [(an − 1)σ 2
n,1 − σn,m̄σn,1 − σ 2

n,m̄] ≥ 0. (25)

By (22) and (25), then

σn+1,m̄ = ϕn(σn,m̄). (26)

From 1 +
1

K(An)
+

1
K2(An)

≤ an ≤ 3 and it follows that

anK2(An) − 1 ≥ K2(An) + K(An) ≥ 2. Combining (21)
and (26) yields that

K(An+1) =
σn+1,1

σn+1,m̄
≤

ϕn

(√
an
3 σn,1

)
ϕn(σn,m̄)

=
2an

√
anσ 3

n,1

3
√
3(anσ 2

n,1 − σ 2
n,m̄)σn,m̄

=
2an

√
anK2(An)

3
√
3
(
anK2(An) − 1

)K(An)
=

2
√
an

3
√
3

(
1 +

1
anK2(An) − 1

)
K(An)

<
2
3

(
1 +

1
2

)
K(An) = K(An). (27)

Thus the inequality (10) holds for an ≥ 1 +
1

K(An)
+

1
K2(An)

.
The condition number K(An) ≥ 1 is monotonically

decreasing, so the limit of K(An) exists. Assume that

lim
n→∞

K(An) = z ≥ 1. (28)

For ā > 3, taking the limit on both sides of (23) yields

1 ≤ z =
(ā− 1)z3

āz2 − 1
. (29)

Solving (29) and we have z = 1. Then the equality of (11)
holds for ā > 3.
For ā = 3, let

{
anj1

}
and

{
anj2

}
be the two subsequences of

{an} such that 1+
1

K(Anj1 )
+

1
K(Anj1 )

2 ≤ anj1 ≤ 3, anj2 > 3, and

{an} =
{
anj1

}⋃{
anj2

}
. At least one of the two subsequences

is an infinite sequence. If
{
anj1

}
is an infinite subsequence,

replacing n by nj1 in (27) and this yields

K(Anj1+1) ≤
2√anj1
3
√
3

(
1 +

1
anj1K2(Anj1 ) − 1

)
K(Anj1 ).

(30)

Due to that K(Anj1 ) ≥ 1, we can rewrite (30) as

K(Anj1+1)

K(Anj1 )
≤

2√anj1
3
√
3

(
1 +

1
anj1K2(Anj1 ) − 1

)
. (31)

From (28) and it follows that limj1→∞

K(Anj1+1)

K(Anj1 )
= 1,

limj1→∞ 2√anj1 = 2
√
3, and limj1→∞ anj1K2(Anj1 ) = 3z2.

By the definition of the limit of sequence, for every ε > 0,
there exists an integer n̄ > 0, when j1 ≥ n̄, it follows that

1 − ε ≤
K(Anj1+1)

K(Anj1 )
≤ 1 + ε, 2

√
3 − ε ≤

√
2anj1 ≤ 2

√
3 + ε

and 3z2 − ε ≤ anj1K2(Anj1 ) ≤ 3z2 + ε. By (31), then

1 − ε ≤
2
√
3 + ε

3
√
3

(
1 +

1
3z2 − ε − 1

)
. (32)

Solving (32) gives that 1 ≤ z2 ≤ 1+
1
3

(
1 +

5+6
√
3

√
3−(2+3

√
3)ε

)
ε.

So z2 = 1. By (28) and thus limj1→∞K(Anj1 ) = 1. If
{
anj2

}
is

an infinite sequence, we also have limj2→∞K(Anj2 ) = 1. The
proof is similar and not given here. Then limn→∞K(An) =

1 for ā = 3. Hence, (10) and (11) hold for an ≥ 1 +
1

K(An)
+

1
K(An)2

and limn→∞ an = ā ≥ 3. The theorem is established.

APPENDIX C
PROOF OF THE THEOREM 2

Proof: From the assumptions, it follows that

K(A) − d0 ≤ K(Ā) ≤ K(A) + d0,

K(An1 ) − dn1 ≤ K(Ān1 ) ≤ K(An1 ) + dn1 . (33)

IfK(A)−K(An1 ) > d0+dn1 , i.e.,K(An1 )+dn1 < K(A)−d0,
by the inequality (33), then

K(Ān1 ) ≤ K(An1 ) + dn1 < K(A) − d0 ≤ K(Ā). (34)

Let {σk
2
}
m̄
k=1 with the algebraic multiplicity pk and

{σn1,k
2
}
m̄
k=1 with the algebraic multiplicity pn1,k be the pos-

itive eigenvalues of the positive semidefinite Gram matrices
G(Ā) and G(Ān1 ), respectively. Since the matrices Ān1 and Ā
are column-normalized,

∑m̄
k=1 pkσk

2
=
∑m̄

k=1 pn1,kσn1,k
2

=

N and then the mean values of the eigenvalues {σk
2
}
m̄
k=1
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and {σn1,k
2
}
m̄
k=1 are both

N
m . Because the sum of eigenvalues

of matrix Ān1 is equal to that of Ā, and K(Ān1 ) < K(Ā),
then the sum of the distances between the eigenvalues σn1,k

2

and the mean value N
m is smaller than that of σk

2 for k =

1, 2, · · · , m̄. More specifically,
∑m̄

k=1 pn1,k (σn1,k
2

−
N
m )

2 <∑m̄
k=1 pk (σk

2
−

N
m )

2, i.e., β(σn1 ) < β(σ ). From Lemma
2.4 and (6), the inequality (13) is held, and the Theorem 2
is established.
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