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ABSTRACT Microscopic detection of acid-fast bacilli (AFB) from mycobacterium tuberculosis (MTB) in
Ziehl-Neelsen (ZN)-stained sputum samples is a crucial step in the detection of TB (tuberculosis) disease.
Pathologists encounter many challenges that may result in incorrect diagnoses, such as the heterogeneous
shape and irregular appearance of MTB, low-quality ZN staining, and errors in in scanning each of the
field of view (FoV) using a conventional microscope. Additionally, multiple manual observations may
cause fatigue that leads to human error. Several studies have created microscopic imaging databases of
sputum samples, aiding researchers in creating computer-aided diagnosis (CAD) for tuberculosis, which is
a promising method that offers timely, reliable, and repeatable assistance. Nevertheless, the implementation
of CAD systems for TB diagnosis remains an area of ongoing research and development owing to the lack of
microscopic image datasets of sputum samples, which represent whole-slide imaging (WSI) that follows the
WHO (World Health Organization) regulations. To address this issue, this study developed a novel digitized
microscopic image from sputum smear samples of Indonesian patients in the WSI that conform to the
WHO regulation. These images are collected as a Microscopic Imaging Database of Tuberculosis Indonesia
(MIDTI). This study also proposed a method based on the YOLOv7 (You Only Look Once seventh version)
algorithm to develop a CAD for tuberculosis diagnosis by classifying ZN-stained sputum smear samples
into International Union Against Tuberculosis and Lung Disease (IUATLD) grades, which has never been
revealed in any previous studies.

INDEX TERMS Tuberculosis, Ziehl-Neelsen, acid-fast bacilli, MIDTI, IUATLD, YOLOv7, reparameteri-
zation visual geometry group (RepVGG).

I. INTRODUCTION
Tuberculosis (TB), caused by mycobacterium tuberculosis
(MTB), is one of the leading global causes of death,
particularly among sensitive groups (such as those with
malnutrition, AIDS, and low-income nations). In 2021, the

The associate editor coordinating the review of this manuscript and
approving it for publication was Gina Tourassi.

World Health Organization (WHO) regions of the Western
Pacific (18%), Africa (23%), and Southeast Asia (45%) had
the highest proportions of TB cases, followed by the eastern
Mediterranean (8.1%), Americas (2.9%), and Europe (2.2%).
Eight of these 30 nations accounted for more than two-thirds
of the global total, including 87% of all estimated incident
cases worldwide: India (28%), Indonesia (9.2%), China
(7.4%), the Philippines (7.0%), Pakistan (5.8%), Nigeria

51364

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-0568-4424
https://orcid.org/0000-0002-4785-4156


S. Aulia et al.: Novel Digitized Microscopic Images of ZN-Stained Sputum Smear

(4.4%), Bangladesh (3.6%), and the Democratic Republic of
Congo (2.9%) [1], [2]. According to the global tuberculosis
report by the WHO, Indonesia was the second country
after India, which had major contributors to the global
TB increase between 2020 and 2021. The government, the
medical communities, intellectuals, and other groups must
work together to address this issue. The term ‘intellectuals’
refers to researchers who study the development of a system
to aid medical staff in diagnosing patients faster and with
higher precision, sensitivity, and specificity. Sputum smear
microscopy, chest X-rays [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12] rapid molecular tests, MRI [13], and culture
methods are diagnostic laboratory tests for TB. Sputum smear
microscopy is the most common and essential method used
in Indonesia because it is the most reliable and cost-effective
approach recommended by the WHO for first-line laboratory
diagnosis of TB [14]. The primary challenge is that the MTB
is a small bacillus (length 2 − 4µm/width 0.2 − 0.6µm),
which needs to be examined adequately in hundreds or
thousands of microscopic fields of 0.5 mm in diameter to
be found in a 2 × 3cm of tissue on the slide (6 × 1012

square microns) [15], [16]. To address this problem, MTB
is typically observed under a conventional light microscope
(CM) at 1000x magnification with immersion oil [17]. The
process of convertingMTB to acid-fast bacilli (AFB) involves
several steps, including air drying, heat-fixing, and staining
methods using Ziehl-Neelsen (ZN) [14], [18], [19]. In the
context of AFB detection, the choice of staining features, such
as color, is crucial for creating an effective visual contrast
and identifying the AFB in sputum smears. The ZN staining
method is specifically designed to target the AFB, which
appears red after staining, allowing for clear differentiation
from non-AFB and other cellular structures, in contrast to the
blue background, as shown in the red boxes in Fig.1.

After ZN staining, problems can arise due to several
factors, such as slide contamination, incorrect staining time,
overheating or underheating of the stain, and improper
blotting of the slide. For example, over or under heating, the
stain causes the AFB color to fade (blur) or become bluish
(dark red), which can result in missed detection of AFB as
the background. Variations in AFB shape, such as curves
and grouping or colonies, are also key features in detection,
because they can cause errors in calculating the number of
bacteria. These factors can lead to false-negative and false-
positive results [20], [21].

Pathologists commonly scan every field of view (FoV)
of sputum smear slides with their eyes to identify and
compute AFB under CM. Because of the time-consuming and
ineffective nature of this process, computer-aided diagnosis
(CAD) is a promising method that offers timely, reliable, and
repeatable assistance. The CAD system can help pathologists
to perform TB diagnostic smear microscopy more accurately
and quickly.

Two recent methods for sputum smear microscopy diag-
nosis have been developed to create CAD for TB: artificial

TABLE 1. IUATLD-grade of tuberculosis disease.

intelligence (AI) [15], [22], [23], [24], [25] and mechanical
automation [15], [26], [27], [28].These methods are similar to
digital pathology, which uses an image recognition algorithm
to detect AFB by digitally scanning the TB smear slides.
These two combinations make the examination procedure
more sensitive and accurate. Although most CAD studies
show improved performance over human evaluation, most are
still in the development stage and use ‘‘proof-of-concept’’
systems or laboratory-spikedmaterials [29].Most studies that
used mechanical automation and artificial intelligence (AI)
still needed to place sputum smear slides into International
Union Against Tuberculosis and Lung Disease (IUATLD)
classes, as shown in Table 2. They classified sputum smear
slides into positive (AFB +) and negative (AFB-) case
groups. However, skilled professionals still need to count
the number of the AFB and analyze the test results based
on IUATLD grades. This study aimed to determine how
well a CAD system can distinguish sputum smears into five
classes based on IUATLD grades: negative, scanty, TB1+,
TB2+, and TB3+, to assess the severity and extent of the
infection. This classification is primarily used in the context
of sputum smear microscopy, which is a common diagnostic
test for tuberculosis. Categories were defined based on the
presence and quantity of AFB in the sputum smears. AFB
count was determined by examining sputum samples under
a microscope and counting the number of AFB per FOV,
as shown in Table 1 [30], [31].
Our study provides new insights into various areas that

have not been covered in previous research, i.e:
• First, we created a new dataset of TB sputum sample
images, namely the Microscopic Imaging Database of
Tuberculosis Indonesia (MIDTI). MIDTI was catego-
rized based on the IUATLD grade and digitized system,
according to the WHO standard. The MIDTI images
had dimensions of 3072 × 2304 pixels in (. jpg) format.
The MIDTI is an open access data and can be accessed
at https://drive.google.com/drive/folders/1CB1jJbw38
yavWcMo3azPeSrVk9R9g_iW?usp=sharing. We also
provide the AFB annotations on Roboflow, available at
https://universe.roboflow.com/suci-aulia/afb-test-y7.

• Second, our study proposed CAD for TB based on
sputum examination using a method that is based on
the YOLOv7. This study classifies sputum smears into
IUATLD grades: negative, scanty, TB1+, TB2+, and
TB3+, which have never been revealed in previous
studies.
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FIGURE 1. Examples of AFB-MTB variations in one FoV (3702 × 2304 pixels). Some problems which come up after ZN-staining; ZN overstaining caused
the AFB to have a dark red color, an unfocused acquisition system caused the AFB to blur, an outdated sample caused the AFB to crack and disappear.
Besides AFB-color variations, another problem which caused miss leading the screening process was; one of the types of AFB is a curved form, and an
AFB group is an accumulation of AFBs nested together or in colonies.

II. RELATED WORK
Many researchers have described AFB detection techniques
for ZN-stained sputum smear images using both conventional
and automatic scanning microscopy (Table 2). The creation
of an automated AFB detection system generally involves
the following steps: (i) capturing and pre-processing images,
(ii) segmenting objects, (iii) extracting features, and (iv)
classifying them into AFB and non-AFB [30]. Several studies
have created microscopic imaging databases from sputum
samples to aid researchers in the development of CAD-TB.
Nevertheless, only a few of the microscopic image datasets of
sputum samples [16], [22], [23], [15], [25], and [28] shown in
Table 2 represent whole slide imaging (WSI) or at least 20–
300 FoVs/sputum samples following the IUATLD grade that
conforms to WHO regulations.

A related study produced microscopic image databases
of WSI-representative sputum samples [16]. An Aperio AT
Turbo automatic scanner was used to gather and divide
167 slides from the Cedars-Sinai Medical Center, producing
33,672 non-overlapping images. With a pixel size of 256 ×

256, each image was classified as AFB+ and AFB- using
CNN (Convolutional Neural Network) that yields 87.13%
sensitivity, 87.62% specificity, and 80.18% F1-score. Images
with and without AFB were denoted as AFB+ and AFB
−, respectively. Another study examined and digitized
441 images from 2016 to 2019 using Aperio AT2, Leica
Biosystems scanner, and Hamamatsu Nanozoomer XR was
given by Pantanowitz et al. in [22]. In this paper, an original
100, 000 × 100.000 pixel WSI size was partitioned into
separate patches with a pixel size of 64 × 64 pixels, and
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each patch in the AFB detection was classified by the CNN
algorithm as AFB+ or AFB −, with a sensitivity of 60% and
a specificity of 99.99%.

Lo et al. [23] used an automated whole-slide scanner
ScanScope XT (Aperio) to show the WSIs of 613 bacillus-
positive and 1202 negative images. Sputum smear slides
were obtained from Macky Memorial Hospital. As a result
of this study, the Deep CNN model correctly classified
the tissue images into AFB+ and AFB-, with a sensitivity
of 93.5%, a specificity of 96.3%, and an accuracy of
95.3%. Another study gathered 570 ZN-stained sputum slides
from the Department of Pathology of Colentina University
Hospital [15]. A Leica Aperio GT450 automatic scanner was
used to scan each slide as a whole slide image (WSI). ’’
‘‘svs’’ format. The images were classified as AFB+ or AFB−

using an artificial intelligence-based technique with 98.33%
accuracy, 100% specificity, and 95.65% sensitivity. Further,
Zaizen et al. developed an AI-assisted pathology method
using WSI labelled on HALO software to detect AFB in
ZN-stained sputum smear slides [25]. Every slide was taken
from a pulmonary tuberculosis autopsy case and digitized
WSI was acquired using Motic EasyScan with a resolution of
0.25 m/px. However, the outcomes were categorized as AFB
+ or AFB-.

Another assessment of an AI-based system for AFB
detection was used in the same year 2022 by Fu et al. in [27].
Each smear contained 200 images, which differed according
to the WHO standard of at least 20-300 FoVs depending on
tuberculosis level based on the IUATLD grades [31]. In this
study, an AI-based system for AFB detection successfully
identified AFB in 5930 TB sputum smears. Each smear
was classified into six groups: negative, trace, 1+,2+,3+,
and 4+, resulting in an accuracy of 95.2%, a sensitivity of
85.7%, and a specificity of 96.9%. The study in [31] claimed
that the microscopic images were digitally and randomly
captured; this acquisition did not meet the WHO standard
requirement, which is a well-organized scanning flow rule.
In addition, the sputum smear classification was not based
on IUATLD grades, which were divided into five groups:
negative, scanty, TB1+, TB2+, and TB3+. The last update
of the study was published in 2023 [28], and an automatic
slide scanner from 3DHISTECH was used to produce 28,913
negative images (without AFB) and 18,426 positive images
(containing AFB). This study reduced the original image size
from 512 × 512 pixels to 256 × 256 pixels to address the
analysis effectiveness of the covariance-based classification
(ANCOVA) method in training positive and negative images.
The aim of this study was to implement AI to classify the
WSI of ZN-stained slides as AFB + or AFB −. As shown
in Table 2, several studies employing various methods have
been conducted to identify AFB in ZN-stained sputum
smears. Nevertheless, studies that successfully classified
sputum smears into AFB+ and AFB− have primarily used
CNN-based approaches. As a variant of the CNN method,
object identification techniques, such as Region based CNN
(RCNN) and its variants [51] and [46], employ a sequence

of steps to complete the work. This can be slow to run and
difficult to optimize because each element must be trained
individually by creating the proposed regions and identifying
the objects within those regions, which are known as two-
stage object detectors [53].

You Only Look Once (YOLO) is one of the most well-
known object recognition algorithms because it uses single-
stage object detectors that can predict the outcome of an input
in only one pass. The YOLO family, which is based on neural
network models, is currently the recommended algorithm for
fast object detection because it is highly compatible with
industrial standards, including precision, lightness, and user-
friendly installation conditions [54].

YOLO was first launched in 2015 by Joseph Red-
mon [55] namely YOLOv1, then developed rapidly into
YOLO9000/YOLOv2 in 2016 [56] YOLOv3 in 2018 [57],
YOLOv4 in April 2020 [58], Scaled YOLOv4 in November
2020 [59], YOLOv5 in June 2020 (without research paper
published, but available online https://github.com/ultralytics
/yolov5), PP-YOLO in July 2020 [60], YOLOR in May
2021 [61], YOLOX in July 2021 [62], YOLOv6 in June
2022 [63], YOLOv7 in July 2022 [64], and the latest
is YOLOv8 in 2023 without research paper published,
but available online [65]. Our study employs YOLO-v7
algorithm as a base of method to detect the AFB on
MIDTI. The YOLO-v7 outperformed the examined object
detectors in terms of accuracy, speed, efficiency as shown
in Fig.2.

Fig. 2a shows that in the range of 5-160 FPS, YOLOv7
achieves the highest accuracy among all real-time object
detection models. This makes it suitable for real-time
applications, where the speed is crucial. Although YOLOv8
exhibits excellent real-time performance, it is assumed that
YOLO-v8 concentrates on limited device implementations
with high deduction speeds [54].

Fig.2b shows that YOLOv7 is 41% more efficient in terms
of parameter usage than YOLOv8 [54]. Thus, YOLOv7 is a
better choice for applications where resource constraints are a
concern. Additionally, YOLOv8 is still regarded as unofficial
because no paper has been published since its release by
Ultralytics in 2023 [54].
On the other hand, with a simple architecture comprising a

stack of CNN, ReLU (Rectified Linear Unit), and pooling, the
Visual Geometry Group (VGG) showed impressive results
in image recognition despite being still heavily used for
real-world applications in both academia and industry [66].
As a solution, reparameterization VGG (RepVGG) was
published in 2021 and achieved over 80% top-1 accuracy
on ImageNet compared with RegNetX, ResNet, ResNeXt,
and EfficientNet [67], [68]. The RepVGG model is typically
used for deep feature extraction and classification [69],
and it has recently been proposed to be linearly connected
with YOLOv6 [69] and YOLOv7 [70] to achieve a better
accuracy and speed trade-off. RepVGG has been added to the
YOLOv7 backbone network (RepVGG-Yolov7) to improve
the model capacity for feature extraction during training and
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TABLE 2. List of studies that report identification of the AFB of Mycobacteria tuberculosis in ZN-stained sputum smears using image processing methods,
including the development of datasets processes that follows the WSI approach or representing all smear viewpoints, mechanical automation and
whether the output is based on IUATLD. (x = no, = yes, NA = not available, = number of pathologist, output = the result of a study in classifying
sputum sample slides, AFB + = images with AFB, AFB- = images without AFB).

to achieve lossless model compression during inference [70].
According to numerical experiments, the proposed algorithm
can identify smokewith a complex backgroundwith accuracy
of up to 95.1% [70]. Another study combined YOLOv7
with RepVGG to detect beach litter [71]. Based on inference
time measurement, Yolov7 and Yolov7+RepVGG resulted
in 11.8ms and 8.4ms, respectively. This result shows that
RepVGG significantly speeds up the detection and reduces
the inference time.

To increase the performance of sensitivity and specificity
measurements, we proposed a model to detect AFB in
sputum images by adding RepVGG to theYOLOv7 backbone
network.

III. MATERIAL AND METHODS
A. MATERIAL DATA
In this study, the MIDTI consisting of 15,046 images, was
acquired and digitalized from 67 sputum smear samples.
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FIGURE 2. The performance of YOLO-v7 with earlier YOLO variations, (b) YOLO-v8 comparison with earlier YOLO variation based on its model (n =

nano, s = small, m = medium, l = large, x = extra) [57].

All 67 ZN-stained sputum smear samples were collected
from the RC3ID (Research Center for Care and Control
of Infectious) Diseases, Medical Faculty, Padjadjaran Uni-
versity (UNPAD), Bandung, Indonesia. Sample collection,
preparation, sputum smear microscopy scanning and diagno-
sis, and handling of the sputum smear slide for digitization
were performed according to the RC3ID guidelines, with
ethical approval number 4/UN6.KEP/EC/2023. Some of the
images captured using the digitizing system are shown in
Fig.3.

The image acquisition system used was an Olympus
CX-31 microscope equipped with a 700D DSLR camera
provided by the Biomedical Laboratory at the School of
Electrical Engineering and Informatics, Bandung Institute of
Technology (BME-ITB).

The acquisition of microscopic images or digitized sputum
smears followed the WHO and the Gold Standard of RC3ID-
UNPAD to guarantee that smears are read sequentially
following the WSI approach or represent all smear view-
points. We move to the next FoV and scan the slides with
visible stains from left to right, if the current FoV is empty.
Once we had the best focus on AFB, we captured the FoV.
Sputum smear samples with a grade of negative, scanty, and
TB1+ must have at least 300 FoVs in their image collection.
The minimum number of images for sputum smear samples
with 2+ and TB3+ was 100 and 20, respectively.

All sample data and digitalization of the MIDTI data
were collected from October 2020 to August 2022. MIDTI
comprises 15,046 images from 67 samples of ZN-stained
sputum smear slides. The image size had a resolution of 3,072
× 2,304 pixels in (. jpg) file format and RGB color. A total
of 15,046 images were divided into two groups. In the first
group, 5,687 images from 27 smears were digitalized and
analyzed for the training process. In the second group, 9,359
images were obtained from 40 blind samples that were used
for testing. The distribution of the number of samples for
each class was almost equal, with a proportional distribution

TABLE 3. Distribution of 67 samples and 15.046 images on MIDTI for
each class (grade) in IUATLD.

representative of all ZN staining categories (Fig.4), as shown
in Table 3.

B. DATA ANNOTATION
Three pathologists (NR, MI, and IZ) with various level of
experience in RC3ID diagnosed 67 sputum samples and
annotated or labelled each sample based on IUATLD grades:
negative, scanty, TB1+, TB2+, and TB3+. The pathologists
provided 27 samples with label identity of the diagnostic
results for training, and the 40 remaining samples were used
for testing as blind datasets or without label identity.

Throughout the training process using the MIDTI training
datasets, AFB objects were annotated using bounding
boxes (BB) for feature extraction, using Roboflow as
the digital annotation tool (www.roboflow.com). Roboflow
Annotate offers a user-friendly interface for annotating
images with tools like polygons and bounding boxes to
identify objects. The platform supports both model-assisted
labeling and human annotation. Labeling bacteria, i.e. the
AFB, on RoboFlow requires great expertise in tuberculosis
pathology. In this study, three pathologists with years of
experience in the tuberculosis laboratory at RC3ID UNPAD
annotated each bacterium on 371 images in Roboflow to
establish a baseline. Images were randomly selected from the
MIDTI training data, which were proportionally representa-
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FIGURE 3. Acquisition system for MIDTI. ZN-stained slides were prepared by the tuberculosis
laboratory at RC3ID UNPAD with red-path digitalized scanning using an Olympus CX-31 mounted with
DSLR 700D provided by BME ITB.

FIGURE 4. Background variations in sputum smear samples: (a) good
staining, (b) less staining, and (c) overstaining.

tive based on variations in the ZN staining intensity, AFB
shape, and color degradation.

The quality of ZN staining can cause AFB color variations,
as shown in Fig.1, the captured image results in Fig.3,
and the details in Fig.4, which affect the image acquisition
results of the MIDTI. For accurate results, the quality of
ZN staining is important. Staining can be graded as good,
less, or overstained according to how the stained smears
appear under a microscope by the pathologist, as shown in
Figures 4a, 4b, and 4c, respectively.

C. DATA VALIDATION
As explained in the Data Annotation section, pathologists
at RC3ID provided a blind dataset to test the proposed
model. After the system in this study classified the entire
blind dataset into IUATLD grades, pathologists compared the
results with those of their previous manual screening as the
ground truth using CM ZEISS with 1000x magnification and
oil immersion.

D. CLASSIFICATION METHODS
We proposed a study to classify ZN-stained sputum smear
slides in MIDTI into five classes based on IUATLD grades

(Table 1). Our active learning includes two stages: the first
stage is AFB detection using YOLOv7 and the second stage is
an optimization in AFB detection using YOLOv7-RepVGG,
as shown in Fig.5.

The following stages are the process of transforming
each sputum sample from MIDTI to IUATLD by using the
proposed model:

1. At first, a feature extraction of AFB was conducted
by annotating AFB using bounding boxes (BB) format
in Roboflow by the TB pathologists. All annotation
results or all BB AFB results from 371 images in
Roboflow can be downloaded in YOLOv7 format
(YOLOv7PyTorch.txt) as an AFB annotation package.

2. The packaging was then trained on Yolov7. During the
training, the model should learn to detect and localize
AFB in sputum microscopic images. Optimizing the
hyperparameters produced excellent AFB prediction
modelling, which was subsequently used for testing.
This stage result is called the AFB model-predicted
result, as shown in Fig.5.

3. To optimize the hyperparameters on Yolov7, we adjust
the tuning parameters, including input size, learning
rate, number of batch sizes, epochs, activation function,
and momentum during training [72].

4. The best AFB-model-predicted value was then used for
the data-test MIDTI. The model identifies and counts
the AFB in each image or the FoV. The total AFB of
WSI/sample sputumwas used to determine the grade of
TB disease based on the IUATLD, as shown in Table 1.

5. Validation of the performance of Yolov7 by pathol-
ogists. Measure the performance using appropriate
metrics and refine the model as needed to ensure
accurate detection and counting of AFB.

Once an AFB identification method using the YOLOv7
algorithm was employed, the complex AFB color variations,
as shown in Fig.1, produce many incorrect candidates.
Therefore, to optimize the performance of sputum smear
slide classification into IUATLD grades, a ZN staining
classification systemwas proposed in this study, as illustrated
in Fig.5. The input image underwent a filtering procedure
based on the three ZN-staining categories during the testing
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FIGURE 5. Active learning of the proposed model process for TB classification based on IUATLD grading. The top-left figure shows the training
procedure using 27 sputum samples, which were labeled by the pathologists based on the IUATLD grades. The training procedure is divided into
two parts: the feature extraction of AFB using Roboflow for AFB annotation and the feature extraction of background variations (good, less,
or overstained). The middle part with the red box shows an enhanced AFB identification technique that combines AFB detection outcomes using
YOLOv7 with background variation classification using Rep-VGG. The bottom part of the figure displays testing on MIDTI test data, where all
40 blind samples are categorized into IUATLD levels (Negative, Scanty, TB1+, TB2+, and TB3+).

phase. Following the ZN staining classification step, the
system counted the number of AFBs in each FOV and
accumulated them in the WSI to classify them according
to IUATLD grades. A large amount of red degradation
was caused by artifacts in the background, which were
misclassified as AFB. The CNN-based algorithm RepVGG
was then added to YOLOv7 for second-stage AFB detection
(YOLOv7-RepVGG), which filtered the AFB and non-AFB
from the first-stage AFB detection results. As shown by the
yellow block in Fig.5, the AFB detection technique in the
second step was the outcome of classifying sputum samples
according to the IUATLD grades.

E. PROPOSED MODEL
The YOLO-v7, as a continued development over the earlier
YOLO series, offers an excellent combination of accuracy
and processing time. TheYOLO-V7 network consists of three
primarymodules: backbone, neck, and head. In the YOLO-v7
backbone network, the optimization that reforms the previous
YOLO is an Extended Efficient Layer Aggregation Networks
(E-ELAN). E-ELAN is a computational block that can

proceed directly from different groups to acquire unique char-
acteristics without breaking the original gradient route [73].
To preserve an ideal structural model, the YOLOv7 neck
network is a new method for scaling concatenation-based
models to satisfy various application requirements. This
scaling changes some model features to produce models
of various sizes, such as depth scaling (number of stages),
width scaling (number of channels), and resolution scaling
(input image size) [64]. The YOLOv7 architecture uses
reparameterized convolution (Repconv) without an identity
connection [74]. The YOLOv7 head network has three head
blocks, consisting of a lead head and an auxiliary head.
The head network in the previous YOLO only produced
YOLO loss, based on the calculation of the prediction result.
Meanwhile, in YOLOv7, the lead head is responsible for
generating the final output, whereas the auxiliary head is
responsible for supporting middle-layer training.

This study proposes a model to identify AFB by adding
RepVGG to the head block of the YOLOv7 architecture
(YOLOv7-RepVGG), as shown in Fig.6, which has the
following architecture:
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FIGURE 6. Block diagram of the proposed model: (a) Backbone-neck of YOLOv7 architecture; (b) insertion of RepVGG on YOLOv7-Head block.
The backbone is the main body of the YOLOv7 network (steps 1-11), which produces the feature extractions. The feature extraction data from the
backbone is blended and combined in steps 12 through 27 of the neck process, preparing it for the head prediction stage (steps 28–33). The red
box illustrates the optimization process for identifying AFB by adding RepVGG to the head-block part of the YOLOv7 (steps 35–37). CBS is a
combination of three components: Convolutional, Batch Normalization and SiLU, E-ELAN (Extended Efficient Layer Aggregation Networks) is a
group of convolution, MP (Max Pooling) is an operation used to reduce the spatial dimensions of an image, SPPCSPC (Spatial Pyramid Pooling &
Convolutional Spatial Pyramid Pooling) is an advance of pooling technique which more robust to object deformations, CBM is a combination of
Convolutional, Batch Normalization and Sigmoid, RepConv (Reparameterization Convolution) is a reshaping of convolution layer to enhancing
the feature maps, RepVGG (Reparameterization Visual Geometry Group) aims to improve the performance of feature maps by reshaping the VGG
convolutional network.

- The input image was resized to a fixed size of 1,256 ×

1,256 pixels, which can lead to a loss of vital information
such as blurring or loss of pixel information. To address
this issue, YOLOv7 uses nine aspect ratio anchor boxes
during training, which allows for the detection of a wider
range of object shapes, colors, and sizes than previous
YOLO versions. This technique helps make accurate
predictions for objects of various shapes, colors, and
sizes.

- After the image was resized, it was run through several
convolutional layers to extract the features and save
spatial information, such as Convolutional, Batch Nor-
malization and SiLU (Sigmoid Linear Units) activation
(CBS); Spatial Pyramid Pooling & Convolutional Spa-

tial Pyramid Pooling (SPPCSPC); and Convolutional,
Batch Normalization and Sigmoid (CBM).

- The suggested extended ELAN (E-ELAN) maintains
the gradient transmission path of the original architec-
ture while utilizing group convolution to improve the
cardinality of the additional proposed features. It also
reorganizes and merges the cardinality of the features
of other groups. The architecture of the transition layer
remains unchanged, whereas E-ELAN only modifies
the architecture of the computing block. The E-ELAN
technique increases the number of channels and car-
dinality of computing blocks using group convolution.
In the computational layer, E-ELAN applied the same
group of parameters and channel multipliers to each
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computing block. The feature map produced from each
computational block was concatenated after shuffling
into groups (g) in accordance with the specified group
parameter (g). At this point, the number of channels in
each feature map group was equivalent to the number
of channels in the original architecture. To complete the
merging cardinality, E-ELAN adds (g) groups of feature
maps [64].

- YOLOv7 uses max pooling (MP) to compress the
feature size.

- YOLOv7 uses reparameterized convolution (RepConv).
RepConv is a convolutional layer that integrates
the identity connections, 3 × 3 convolution, and
1 × 1convolution.

- YOLOv7 uses a coarse auxiliary, and is suitable for lead
loss. In the YOLOv7 output, as part of the information
given for predicting the result of object detection, each
grid cell predicts the bounding boxes (BB) as well as
the dimensions and confidence scores. The confidence
score (conf .score) determines the presence of an inside
bounding box and the likelihood of prediction results
with the ground truth. The presence of an object can have
a probability p (object) range of 0 to 1. The likelihood
was calculated based on the mean average precision of
the likelihood, which in turn was calculated based on the
mean average precision of the Intersection over Union
(IoU) criteria (IoU truth

pred ). The confidence score formula
is calculated using (Equation 1-2) [54]:

conf .score = p (object) × IoU truth
pred (1)

IoUtruth
pred =

truth ∩ pred
truth ∪ pred

(2)

This algorithm can obtain multiple detections of the same
object. As an example, it may identify three BBs for the same
object, each with IoU probabilities of 0.8, 0.9, and 0.3. The
loss function formula for YOLOv7 is given by (Equation 3)
[55]:

λcoord

S2∑
i=0

B∑
j=0

obj
ij

[(
xi − x̂i

)2
+

(
yi − ŷi

)2]

+ λcoord

S2∑
i=0

B∑
j=0

obj
ij

[(
√
wi −

√
ŵi

)2
+

(√
hi −

√
ĥi

)2
]

+

S2∑
i=0

B∑
j=0

obj
ij

(
Ci − Ĉi

)2

+ λnoobj

S2∑
i=0

B∑
j=0

obj
ij

(
Ci − Ĉi

)2

+

S2∑
i=0

obj
i

∑
c∈classes

(pi(c)−p̂i(c))
2 (3)

where λcoord is a constant value of bounding box coordinate
predictions and λnoobj is a constant value of confidence

NMS Algorithm
Procedure NMS (B,c)
B is the list of initial detection boxes,
Bnms← ∅ # empty set

discard ← False # discarded
for bi ∈ B do # Repeat over every single box.

for bj ∈ B do # begin a new loop for comparison with bi
if same (bj,bj ) > λnms then #IoUbj, D IoUbj,
if score (c,bj) > score(c, bj) then #IoUbj, > IoUbi
discard ← True # discarded bi

if not discard then
Bnms← Bnms ∪ bi # select bi as final

return Bnms # Repeat all steps for the remaining boxes, then
return to the final result.

predictions for boxes that do not contain objects. S2 = SxS
is the size of the grid in the input image, B is the number of
boxes. obj

i denotes if object (obj) appears in grid cell-i, obj
ij

indicates the cell-jth BB prediction in the cell-i controls for
prediction. (xi, yi) is the box centre in the grid cell, and (x̂i, ŷi)
its normalization, (w, h) is the predicted width and height
according to the entire image and (ŵi, ĥi) is its normalization.
Cis class probabilities, and Ĉ is its normalization. pi (c) and
p̂i(c) are the predicted class probabilities (c) in the grid cell-i
and its normalization, respectively.

- YOLOv7 uses non-maximum suppression (NMS) to
delete duplicates, which selects the box with the highest
IoU probability as the prediction object. The NMS
pseudocode is as follows [74].

- RepVGG uses W (1)
∈ RC1×C2×3×3 for the kernel of a

1 × 1 branch and W (3)
∈ RC2×C1×3×3 for the kernel of

a 3 × 3 convolution (conv) layer, where C1 and C2 are
the input and output channels, respectively. RepVGG
use µ3, σ 3, γ 3, β3 represents the accumulated mean,
standard deviation, learning scaling factor, and bias of
the batch normalization (BN) layer following 3×3 conv.
Meanwhile, RepVGG use µ1, σ 1, γ 1, β1 for the BN
following 1 × 1 conv, and use µ0, σ 0, γ 0, β0 for the
identity branch. Let ∗ be the convolution operator,M1

∈

RN×C1×H1×W1 ,M2
∈ RN×C2×H2×W2 be the input and

output, respectively. If C1 = C2,H1 = H2,W1 = W2,
thenM2 is defined by [48].

M2
= bn

(
M1

∗W 3, µ3, σ
3
, γ 3, β3

)
+ bn

(
M1

∗W 1, µ1, σ 1, γ 1, β1
)

+ bn
(
M1, µ0, σ 0, γ 0, β0

)
(4)

Nevertheless, this study did not use the identity branch;
therefore, there are only two terms in the eq.4. Formally,
∀1 < i < C2, in which bn is the inference-time BN function
defined by (Equation 5)

bn = (M , µ, σ, γ, β):,i,:,:

= (M:,i,:,: − µi)
γi

σi
+ βi (5)
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FIGURE 7. Several cropped non-AFB objects misclassified as AFB (red markers) and true classified AFB (green markers) on the
sputum WSI in the upper part. The bottom of the figure illustrates the AFB detection process in each field of view and the
classification of sputum samples on MIDTI based on IUATLD grades.

F. PERFORMANCE MEASUREMENT
The following equations (6)–(9) were used to test how
well the suggested method classified the ZN-stained sputum
samples into five classes of TB based on the IUATLD grade.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Recall(Sensitivity) =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

F1-score =
2 × precision × Recall
Precision + Recall

(9)

Specificity =
TN

TN + FP
(10)

where:
- True Positive (TP): Positive classes were classified as
positive, scanty as scanty, TB1+ as TB1+, TB2+ as
TB2+,and TB3+ as TB3+.

- True Negative (TN): The negative class was classified as
negative.

- False Negative (FP): A negative class was classified as
positive (scanty, TB1+, TB2+,or TB3+).

• False Positive (FN): A positive class (Scanty, TB1+,TB2
+,or TB3+) was classified as a negative class.

IV. RESULTS
In the first-stage (stage-1) of AFB detection, YOLOv7 was
used with the best hyperparameters to classify sputum smears
based on the IUATLD grades for all MIDTI test data. The best
hyperparameters used in this study were as follows: batch
size = 4, epochs = 110, 0.01 learning rate, 2/grid for the
number of anchors, IoU threshold = 0.5, and confidence
score = 0.17. The test results on all datasets (all MIDTI
test data) achieved an accuracy level of 77.5% and had
low values in the negative 50%, scanty 62.5%, and TB1+
75%, as shown in Table 4. A specificity value of 44.44%
in the first experiment showed that out of the 40 sputum
samples examined using YOLOv7, the system successfully
classified of 4/8 of negative class samples. This problem
occurs because many objects detected were misclassified as
AFB, as illustrated in Fig.7 shows the total number of objects
detected as AFB by YOLOv7 from a sputum sample. Based
on the validation results by the pathologist, green round
marks represent true AFB and red round marks represent
non-AFB. This misclassification of AFB significantly affects
the ultimate outcomes of the IUATLD scale-based sputum
sample classification. Meanwhile, the TB2+ and TB3+
classifications achieved the highest accuracy of 100%. This
happened because there were a lot of AFB/FoV samples
in the TB2+ and TB3+ classes, which was still close to
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FIGURE 8. Confusion matrix classification results of 40 sputum samples for each class based on the IUATLD scale.

TABLE 4. ZN-stained sputum sample classification based on the IUATLD
grade (

∑
s = number of samples).

the minimum accumulated amount of AFB/sputum samples
based on the IUATLD scale.

Based on the first-stage AFB detection, we concluded that
the classification process for sputum samples cannot be done
if the ZN-stained sample is excessively dark or overstained.
Table 3 (column b) shows the results of the test, which was
performed using only 34 sputum samples. Sputum samples
were selected based on ZN categories with good staining
quality in the MIDTI test data only. When the YOLOv7 was
used to detect AFB, the accuracy increased from 77.5% to
91.18%, the sensitivity increased from 87.10% to 96.43%,
and the specificity increased from 44.44% to 57.14%. This
proved that the difference in background color due to the
quality of ZN staining could lead to misclassification of AFB.

As an optimization step (AFB detection stage-2) to
increase the performance of sensitivity and specificity
measurements, the main idea was to reduce the number of
misclassified AFBs from the AFB detection stage-1 result.

The proposed model for AFB detection in stage-2 is
illustrated in the red block in Fig.5 and 6. The optimization
stages are as follows:

1. The features of AFB characteristics for each ZN
staining category (good staining, less staining, and

TABLE 5. Measurement of sputum sample (MIDTI) classification based
on the IUATLD scale.

FIGURE 9. Comparison of sputum classification samples using YOLOV7
and YOLOv7-RepVGG.

overstaining) were extracted using the RepVGG
algorithm.

2. Adding RepVGG modelling results in the first point
above the head-block part of the YOLOv7 algorithm
(YOLOv7-RepVGG).

Finally, the proposed model was used for the AFB
detection stage–2. The test was conducted to classify all
40 sputum samples on the MIDTI (test data) into IUATLD
grade. Fig.8 shows the comparison of the performance results
of Yolov7 and our proposedmodel for the five-class IUATLD.

Table 5 and Fig.9 display the output values of the
performance results obtained from testing using the Yolov7
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TABLE 6. Results of proposed model of AFB detection in MIDTI using YOLOv7-RepVGG.

and proposed models. The visualization of the proposed
model resulted (AFB detection per FoV), as shown in Table 6.

As shown in Table 4, the proposed model outperformed
YOLOv7 in every performance metric, including the accu-
racy, specificity, recall or sensitivity, F1-score, precision,

and recall. As previously mentioned, the test results for
class TB2+ and TB3+ sputum sample calcification had a
high level of sensitivity using both YOLOv7 and YOLO-
Rep VGG, this was conducted because the number of
AFB detected still close to the minimum accumulated
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TABLE 6. (Continued.) Results of proposed model of AFB detection in MIDTI using YOLOv7-RepVGG.

amount of AFB/sputum samples based on the IUATLD scale
(Table 1).

The classification of sputum samples as TB2+ based
on IUATLD standardization (Table 1) is that the average
number detected is approximately 1–9 AFB/FoV for the
first 50 FoVs, and TB3+ is if the average number detected
is more than 10 AFB/FoV for the first 20 FoVs.

The large number of bacteria in the TB2+ and
TB3+ classes often causes AFB colonization.
However, the number of colonized AFBs was not
accurately calculated experimentally; instead, they
were considered as a single AFB object in the pro-
posed model, which presents a challenge for future
research.
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V. CONCLUSION
This study successfully built a database of microscopic
images from sputum smear samples of Indonesian patients
called MIDTI. MIDTI can facilitate the development of
computer-aided diagnosis (CAD) of tuberculosis. TheMIDTI
consists of 15,067 microscopic images acquired from 67 spu-
tum samples obtained from the WSI. The dataset image size
was 3,072 × 2,304 pixels in jpeg format.

A total of 67 sputum samples were obtained from RC3ID
UNPAD, and microscopic image acquisition was performed
at 20–300 viewing points for each sample according to the
WHO standard. The acquisition system used facilities from
the ITB Biomedical Laboratory, including an Olympus CX-
31 microscope connected to a modified DSLR 700D camera.
This study also proposed a model using a method based
on the YOLOv7 to detect AFB as part of CAD for sorting
sputum samples in MIDTI into IUATLD grades. The results
showed that the proposed model could help pathologists
diagnose TB in sputum samples as negative, scanty, TB1+,
TB2+, and TB3+. However, this study had limitations in
terms of accurately counting AFB, especially if they were
present in colonies. This could lead to challenges in precisely
determining the number of AFB objects in future research.

APPENDIX
Table 6 shows the visualization of the proposed model that
detects AFB per FoV. The left column shows the annotation
AFB by three pathologists (NR, MI, and IZ) with varying
experience levels in the TB laboratory RC3ID-UNPAD. The
column on the right shows the AFB detection results obtained
using the proposed model.
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SUPPLEMENTARY MATERIALS
The Microscopic Imaging Database of Tuberculosis
Indonesia (MIDTI) is available database, which can
be accessed at https://drive.google.com/drive/folders/1CB1
jJbw38yavWcMo3azPeSrVk9R9g_iW?usp=sharing.

The AFB annotations on Roboflow are available at
https://universe.roboflow.com/suci-aulia/afb-test-y7
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