
Received 18 February 2024, accepted 26 March 2024, date of publication 8 April 2024, date of current version 18 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3386431

Analysis and Enhancement of Resilience for LSTM
Accelerators Using Residue-Based CEDs
NOOSHIN NOSRATI , (Student Member, IEEE), AND
ZAINALABEDIN NAVABI, (Life Senior Member, IEEE)
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran

Corresponding author: Nooshin Nosrati (nosrati.nooshin@ut.ac.ir)

ABSTRACT As Long Short-Term Memory (LSTM) accelerators are increasingly being employed in
safety-critical applicationswith high-reliability demands, protecting them against errors becomes imperative.
Traditional protection techniques for LSTMs are either costly, conflict with strict area and power constraints
for neural network accelerators, or introduce performance overhead that is untenable for real-time and
latency-critical accelerators. In this paper, we propose residue-based Concurrent Error Detection (CED)
schemes to detect transient faults and alleviate their impact during LSTM computations. CED units are
employed in a coarse-grain or fine-grain fashion, depending on the granularity of the components being
protected from the whole LSTM computations to individual processing elements. In pursuit of a more cost-
effective strategy, we use fine-grain CEDs in a selective manner based on the resilience characteristics
of LSTM. The selections are made spatially for LSTM synaptic weights or temporally based on LSTM
time steps. The experimental results show that the proposed residue-based CEDs (i) can achieve nearly
complete fault coverage even under extremely large bit error rates, (ii) significantly decrease misprediction
rates compared to the unprotected LSTM, and (iii) incur low overhead without compromising performance.
Our method is compared with modular redundancy techniques such as DMR and TMR (Double and Triple
Modular Redundancy).

INDEX TERMS AI accelerators, deep learning, fault tolerance, long short-term memory, reliability.

I. INTRODUCTION
Recurrent Neural Networks (RNNs) are a class of Deep
Neural Networks (DNNs) with the capability of remember-
ing past information [1], [2]. Unlike traditional feedforward
neural networks, RNNs have feedback connections, allowing
them to maintain a memory of previous inputs. The most
commonly used RNN is Long Short-Term Memory (LSTM)
[1], which can learn the long-term dependencies in input
sequences, providing high accuracy. LSTM networks have
demonstrated great effectiveness in real-time safety-critical
sequence processing tasks, such as robotics [3], healthcare
devices [4], and autonomous driving [5].
For efficient performance of LSTMs in the inference

phase, dedicated hardware accelerators are employed [2],

The associate editor coordinating the review of this manuscript and

approving it for publication was Sajid Ali .

[6], [7]. However, these accelerators are susceptible to faults
stemming from fabrication technology and hardware archi-
tectures [8], [9], [10], [11]. From the fabrication technology
perspective, in the resilience-wall era [12], faults are caused
by factors such as high-energy cosmic radiation, aging, and
temperature variations [11]. These factors that are part of
the physics of hardware are inevitable in hardware systems.
From the hardware architecture point of view, hardware
accelerators are usually optimized for performance and power
efficiency, which introduce reliability challenges [13].

Our preliminary reliability analysis, as illustrated in
Figure 1 and supported by recent studies [8], [14] highlights
how vulnerabilities mentioned above from the hardware can
propagate and impact the output of LSTM networks. In this
figure, the misclassification rate of LSTM, referred to as
Silent Data Corruptions (SDCs), is depicted for various bit
error rate (BER) values. It can be seen that the SDC rate

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 52851

https://orcid.org/0009-0007-6230-5271
https://orcid.org/0000-0003-4868-7932

N. Nosrati, Z. Navabi: Analysis and Enhancement of Resilience for LSTM Accelerators Using Residue-Based CEDs

increases with growing fault rates. Here, random bit-flip
faults are injected into the computations of the LSTM net-
works performing sequence classification on theMNIST [15]
and GTSRB [16] datasets.

In a nutshell, faults have the potential to jeopardize the
integrity of LSTMs, leading to violations of safety and reli-
ability specifications. Hence, there is a vital necessity to
enhance the resilience of these networks in safety-critical
applications.

In this paper, we present two Concurrent Error Detec-
tion (CED) approaches utilizing residue codes to protect
LSTM accelerators against the transient faults that occur
during the network computations. The first approach that we
refer to as regular protection applies residue-based CEDs
at coarse and fine granularity levels to all LSTM compu-
tations. The coarse-grain CED scheme monitors the whole
LSTM computations in a begin-to-end approach, while the
fine-grain CED solution safeguards individual processing
elements (PEs).

Beyond the regular protection mechanisms that uniformly
safeguard all network computations without any discrimina-
tion, we propose an alternative approach named criticality-
aware partial protection to provide a cost-effective protection
mechanism. In this approach, we consider the criticality of
area, power, and vulnerability in choosing the arithmetic
components to place fine-grain CEDs. Here, we explore
both spatial and temporal resilience characteristics of LSTM.
Based on this, we employ the fine-grain CEDs in a selec-
tive fashion and propose spatial and temporal CED selection
schemes tailored to the distinct features of LSTM. These
criticality-aware schemes provide a cost-effective protection
mechanism that aligns with reliability specifications.

The following summarizes the main contributions of this
work.

• While works in the literature mainly focus on reliabil-
ity issues of feedforward neural networks, we analyze
and enhance the resilience of recurrent neural networks,
particularly LSTMs.

• We employ residue-based CEDs to make LSTMs reli-
able against transient faults, while other works in this
domain have used AN-codes for feedforward networks.

• This work is unique in applications of CEDs to LSTM
computations at coarse-grain and fine-grain levels.

• Instead of indiscriminate application of CEDs to all
network PEs at all time steps, we have adopted novel
methods of spatial and temporal selection of CEDs based
on LSTM resilience analysis. This reduces the protec-
tion overheads with minimal impact on SDC coverage.

• We implemented our approach within the TensorFlow
deep learning framework and applied it to sequence
classification LSTM models to demonstrate reliability
enhancements.

• To assess the hardware overheads, the LSTM models
were mapped onto a state-of-the-art LSTM accelerator
equipped with our CEDs. The protected hardware accel-
erator was synthesized in 45 nm technology.

FIGURE 1. LSTM vulnerability assessment. Error bars range from ±0.51%
to ±2.66% at the 95% confidence interval.

This work suggests an interaction between designers and
developers of an IP-core and those who incorporate the
core into a System-on-Chip (SoC) or embedded system and
develop an application for it. A possible scenario of use is that
the application developer (core user) decides what level of
reliability of the IP-core he or she desires, and based on that
purchases the IP-core with that specific reliability grading.
This reliability grading has the specifications including power
and area that the IP-core developer provides. Furthermore,
to reduce power usage, the application developer may select
the CEDs that should be turned on or remain inactive. This
selection can be configured by the core user using JTAG or
a similar serial configuration. For various applications, some
templates of temporal selections will be provided by the IP-
core developer.

The rest of the paper is organized as follows. In Section II,
related protection methods for DNNs are reviewed.
Section III provides the necessary background on LSTMs.
Section IV gives an overview of residue codes and building
blocks of our residue-based CEDs. The proposed regular
and criticality-aware protection mechanisms are detailed in
Sections V and VI, respectively. In Section VII, the simula-
tion results are presented and discussed. Finally, Section VIII
concludes the paper.

II. RELATED WORK
In the literature, the majority of research focuses on fault
detection and mitigation techniques for feedforward net-
works, while only a few attempts address fault tolerance
issues in recurrent networks. Nevertheless, the existing
research on the reliability of DNNs can be categorized into
the following primary approaches.

A. HARDWARE MODULAR REDUNDANCY
Modular redundancy in hardware, encompassing both tradi-
tional DMR and TMR (Double/Triple Modular Redundancy)
techniques [17], ensures robust reliability by operating iden-
tical systems concurrently and implementing a voter system
to cross-check outputs. However, the substantial energy and
hardware overheads they incur are at odds with the primary
goal of optimizing DNN accelerators for computational effi-

52852 VOLUME 12, 2024

N. Nosrati, Z. Navabi: Analysis and Enhancement of Resilience for LSTM Accelerators Using Residue-Based CEDs

FIGURE 2. (a) RNN with LSTM cells, (b) LSTM cell unfolded over time
steps, (c) LSTM cell architecture.

ciency in resource-limited systems. To reduce overheads,
works [18], [19], [20] selectively applied modular redundan-
cies to protect only parts of the network. Although these
techniques provide a better balance between resilience and
resource usage, they often suffer from limited fault coverage.
For instance, [18] was capable to cover merely 40% of faults.

B. ALGORITHM-BASED FAULT TOLERANCE
Another line of research leverages algorithmic perspec-
tive to make DNNs reliable. These methods, known as
Algorithm-Based Fault Tolerance (ABFT) [21], [22], [23],
[24], typically compute checksums for input data, which are
then stored alongside the original data. Then, both the original
and redundant computations are conducted to verify outputs.
Zhao et. al. [22] proposed four different ABFT schemes
to protect convolutional layers. Hari et. al. [23] suggested
an error detection technique with precise checksums for
deterministic coverage. In [24], a new ABFT technique was
proposed to predict the convolution checksum at the border
of the input image. Nevertheless, these techniques usually
incur remarkable latency or performance overhead due to
redundant computations, which makes them unsuitable for
latency-critical DNN inference.

C. SYMPTOM-BASED ERROR DETECTION
The studies outlined in [10], [14], [25], and [26] found devi-
ation of an expected range of values as a symptom of the
occurrence of an error. They rectified faulty values through
the restriction of bounds. Works presented in [10] and [25]
used a global bound reference value for the activation out-
put of all neurons in a network layer to enhance the error
resilience of feedforward DNNs. However, global bounds
become ineffective with growing BER. Ghavami et. al. [26]
addressed this issue by employing a fine-grained neuron-
wise activation function in the network. On the other hand,
Ahmadilivani et. al. [14] investigated a similar strategy for
LSTM networks. They leveraged the range checking for
weights instead of the activation outputs. Then, the faulty

weights were replaced with zero. Despite the low overhead,
these methods are inefficient when applied to quantized mod-
els with smaller data types, which are frequently employed
to enhance energy efficiency and performance of DNN
accelerators.

D. CODE-BASED ERROR DETECTION
Code-based techniques have been used for the protection
of data processing [27], [28], [29] and memory [30], [31]
in DNNs. Feinberg et. al. [28] proposed data-aware AN-
codes to protect memristive accelerators. They leveraged the
noise characteristics and data layout of DNN to detect and
correct faults through modulus operations and a correction
table lookup. Goldstein et. al. [27] employed a similar code-
based scheme, i.e., AN-codes, to protect MAC PEs of a
systolic array-based accelerator. They necessitated a specific
data quantization during network training to reduce protec-
tion overhead. It may result in a reduction of accuracy and,
in some cases, require retraining. Nevertheless, AN-codes do
not draw a line between the coded circuitry and the circuitry
performing the original operation. This deficiency leads to
a notable loss of practical implementation advantages com-
pared to separable arithmetic codes such as residue-codes that
are adopted in this work.

III. BACKGROUND
A. LONG SHORT-TERM MEMORY (LSTM) NETWORKS
Figure 2(a) shows an RNN with LSTM cells/layer [1] that
has feedback connections allowing the use of information
from previous inputs. An illustration of a single LSTM cell
unfolded over time steps is shown in Figure 2(b). As shown,
in each time step t , current input (xt) and information
from previous input(s) are taken to compute the current
output (ht).

There are various extensions of LSTM cell depending on
the cell structure and learning process. The standard LSTM
cell illustrated in Figure 2(c) is used to compute a mapping
from an input sequence x= (x1, . . . , xT) to a hidden sequence
h = (h1, . . . , hT) by using the following set of equations
iteratively from t = 1 to T:

it = σ (wixxt + wihht−1 + bi) , input gate (1)

ft = σ
(
wfxxt + wfhht−1 + bf

)
, forget gate (2)

ot = σ (woxxt + wohht−1 + bo) , output gate (3)

c̃t = tanh (wcxxt + wchht−1 + bc) , candidate memory (4)

ct = ft ⊙ ct−1 + it ⊙ c̃t , memory cell (5)

ht = ot ⊙ tanh (ct) . hidden state (6)

where wjx and wjh (j=i,f,o,c) are input and hidden weight
matrices and bj (j=i,f,o,c) represents the biases. ct is memory
data at time step t . ⊙ denotes element-wise multiplication.
σ and tanh are sigmoid and hyperbolic tangent activation
functions.

As shown in Equations (1) to (6) and Figure 2(c), an LSTM
unit consists of input, forget, and output gates considered

VOLUME 12, 2024 52853

N. Nosrati, Z. Navabi: Analysis and Enhancement of Resilience for LSTM Accelerators Using Residue-Based CEDs

FIGURE 3. MVM Engine in LSTM.

as regulation structures, and a candidate memory. The gates
regulate the flow of information into and out of the memory
cell, allowing the network to control what information to
remember, forget, and output.

1) TRAINING - BACKWARD PASS
Training is the process of turning the weight matrices in order
to minimize the total prediction error. The most common
method used to train LSTMs is Back-Propagation Through
Time (BPTT) [32], which is an extension of backpropagation
used in traditional neural networks. BPTT involves unfolding
the network in time steps and propagating error signals back-
ward through these time steps. To update the weights, BPTT
computes the gradients of total prediction error with respect
to each weight (∂Etot/∂W). Etot is a total error function that
is defined as the difference between the predicted output and
the actual output in all time steps. It can be calculated using
a cost function, such as mean squared error or cross-entropy
loss.

It is worth mentioning that the specific training mecha-
nism of LSTM may vary depending on the implementation
and the specific task at hand, but the general principles
mentioned above form the basis of training an LSTM
model.

2) INFERENCE - FORWARD PASS
The inference is the phase in which a trained network is used
to predict outputs for unseen input data. Computationally,
the gates and candidate memory in Equations (1) to (4) are
matrix-vector multiplication (MVM) blocks, followed by a
nonlinear elementwise activation function. The MVM oper-
ations, as the dominant computation of the LSTM inference,
can be constructed by a Multiply/MAC stage followed by an
ADD (tree-like) stage as shown in Figure 3. The PEs in this
architecture are MAC and ADD units, i.e.,M and A notation
in the figure.

As over 90% of the network’s computation relies on MAC
and ADD operations [2], the correct execution of MAC and
ADD PEs directly influences the overall system reliability.
Consequently, we build our CED solutions upon the MVM
engine depicted in Figure 3.

FIGURE 4. Sequence classification using LSTM.

B. SEQUENCE CLASSIFICATION USING LSTM
LSTMs are commonly employed for sequence classification
tasks [33], [34]. These applications aim to assign a label or
category to an input sequence. The input sequence might take
the form of a time series, a series of pixels in an image,
a sequence of images within a video frame, or any other type
of sequential data.

Figure 4 provides a simple illustration of using LSTM for
image sequence classification [34], as adopted in this paper.
As shown in the figure, each image is inferred as n rows
of m pixels (i.e., columns). At each time step, a single row
of m pixels is fed into the LSTM model to compute output
sequences. Consequently, the processing of a complete image
involves n time steps in LSTM. In this illustration, the input
data sequence is directly applied to the LSTM input. How-
ever, in more practical situations, the input data undergoes
preprocessing through a feature extractor unit or any type
of pre-processor to identify important features. Subsequently,
the extracted features are fed into the LSTM at each time step.

In the network shown in Figure 4, the LSTM output
sequences at the last time step pass through a fully connected
layer to calculate the probability distribution across the var-
ious classes. The number of neurons in the fully connected
layer corresponds to the total number of classes for classifi-
cation.

IV. ARITHMETIC ERROR CODES
Code-based techniques add information redundancy with the
property that certain errors can be detected or sometimes
corrected. While non-arithmetic codes, like Hamming and
Cyclic codes, are well-suited for memory [30] and commu-
nication [35] protection, data processing can efficiently be
protected through arithmetic codes likeAN-codes and residue
codes [27], [28], [36], [37].

Residue codes are a well-known class of arithmetic codes
that operate using residue arithmetic to check a set of arith-
metic operations. The following subsections discuss how
residue codes are adopted for fault detection and the hardware
details of a residue generator, serving as a building block
utilized in the design of our residue-based CEDs.

A. RESIDUE ARITHMETIC CODES
Residue code error detection involves encoding data through
modulo operations prior to executing residue-based calcu-
lations. In the encoding process, the data is divided by a

52854 VOLUME 12, 2024

N. Nosrati, Z. Navabi: Analysis and Enhancement of Resilience for LSTM Accelerators Using Residue-Based CEDs

FIGURE 5. 16-bit residue generator modulo 15.

specified modulus, and the remainder is retained as the
encoded value. After encoding the data, a residue-based
execution of the same arithmetic operation as the original
is conducted in parallel with the original operations. The
results of the residue-based calculations are compared with
the original output encoded by the same modulo operation.
A mismatch indicates an error in the original arithmetic oper-
ation. Formally, an arithmetic operation can be checked by

|A⊛ B|k
?
=

∣∣∣ |A|k ⊛ |B|k

∣∣∣
k
, ⊛ϵ{+, −, ×} (7)

where |A|k is A modulo (mod) k .
The error detection capability with the residue code

depends on the choice of the k value in Equation (7), which
is referred to as check base. A low-cost implementation of
residue code, used in this work, has a check base of Mersenne
numbers k = 2n − 1, where n is an integer value greater
than 1 [36], [37]. The smallest n value, i.e., k=3, provides
the least expensive residue detection hardware. However, this
circuit does not offer the best detection capability due to
increasing the probability of aliasing. Aliasing occurs when
the code-word of a faulty value is the same as the fault-free
one.

B. RESIDUE GENERATOR HARDWARE
For fault detection using residue codes modulo 2n − 1,
an essential building block is the residue generator. The
residue generator is responsible for calculating the remain-
der of the division of an m-bit integer number A =

(am−1 . . . a1a0) by k = 2n−1, where the remainder is an n-bit
integer output.

The work [36] presented a procedure to design fast and
low-cost residue generators. It introduced the periodicity of
the series of powers of 2 taken modulo k . For the check base
k = 2n − 1, the periodicity measure is P (k) = n. Based
on the periodicity, a carry-save adder/ carry-propagate adder
(CSA/CPA) network with end-around carry (EAC) can be
built to calculate modulo 2n−1. In this method, the CSA trees
are used to reduce partial results with calculations carried on
several bits of P (k) groups. Then, the periodicity property is
used to add carry from the most significant bit (MSB) back
to the next stage of the tree on the least significant bit (LSB).

FIGURE 6. Block diagram of the proposed coarse-grain CED. MVM Engine
is shown in Figure 3.

Figure 5 illustrates the circuit diagram of a 16-bit residue
generator modulo 15. For k = 15, the periodicity measure
is 4, P (15) = 4. Therefore, the bits with the same weight
are organized into 4 groups. Grouping the bits of the same
weight exploits the fact that the result of applying residue
modulo 15 to the 16-bit integers 1, 16, 256, and 4096 is
consistently 1. Consequently, bits a0, a4, a8, a12 are grouped
in G1. Likewise, the application of residue module 15 to
16-bit integers 2, 32, 512, and 8192 consistently yields 2.
As a result, bits a1, a5, a9, a13 are grouped in G2, and this
pattern continues for G3 and G4. After the grouping process,
the 16-bit residue generator modulo 15 is constructed by
employing two stages of CSA followed by a CPA stage,
as shown in the figure. Notably, the CPA stage functions as
an 8-bit residue generator modulo 15, effectively serving as
the modulo 15 adder.

V. REGULAR PROTECTION MECHANISMS
To improve the reliability of LSTM accelerators, we propose
Concurrent Error Detection (CED) solutions rooted in residue
code error detection, as explained in the preceding section.
In this section, we present two residue-based CED solutions:
coarse-grain and fine-grain. These solutions serve as regular
protection mechanisms, fully safeguarding LSTM computa-
tions.

A. COARSE-GRAIN CED (CG-CED)
In the coarse-grain CED (CG-CED) solution, we construct
one residue-based checker on the whole MVM structure of
an LSTM. Using Equations (1) to (4), the MVM structure in
each time step can be calculated as:

MVMout t = wjxxt + wjhht−1 + bj, j = i, f , o, c. (8)

Considering input dimension di and hidden dimension dh,
Equation (8) becomes:

MVMout t =

∑
di
wjx × xt +

∑
dh
wjh × ht−1 + bj. (9)

We concatenate weights and biases to form matrix W , and
concatenate inputs to form vector IN , where

VOLUME 12, 2024 52855

N. Nosrati, Z. Navabi: Analysis and Enhancement of Resilience for LSTM Accelerators Using Residue-Based CEDs

FIGURE 7. (a) Block diagram of the proposed fine-grain CED,
(b) Input-side protected PE, (c) Middle protected PE.

W ∈ R4dh×(di+dh+1) and IN ∈ R(di+dh+1)×1. Therefore,
MVM can be simplified as:

MVMout t =

∑
di+dh+1

W × IN . (10)

Applying Equation (7) to Equation (10), the MVM output
in each time step can be checked by the right-hand side of
Equation (11),

|MVMout t |k
?
= |

∑
di+dh+1

||W |k × |IN |k |k |k . (11)

The CED box in Figure 6 depicts the implementation of
Equation (11) and provides an overview of the CG-CED solu-
tion. As seen in the figure, the residue code of input operands
is produced by the residue generators (e.g., see Figure 5) and
then fed into the residue-based MVM. The architecture of the
residue-based MVM follows the original circuit with mod-k
arithmetic components, i.e., %M and %A for M and A PEs.
They operate concurrent with the original circuit and perform
residue-based matrix multiplication calculations.

A residue generator is placed at the output of the orig-
inal circuit to calculate |MVM_out t |k in Equation (11).
Consequently, the residue code of the original output,
|MVM_out t |k , is compared with the CED output (the right-
hand side of the equality of Equation (11)). A mismatch
detected by the residue number comparator indicates an error
in the MVM calculation. Note in CG-CED architecture that
the residue generators are only placed on the input side and
the output side of the MVM structure.

The effectiveness of the residue-based detection scheme
is compromised if a fault occurs in the checker, leading to
a false alarm in the checker output. To mitigate this issue,
one approach is to decrease the likelihood of faults by min-
imizing the checker’s area footprint. In this context, our
work utilizes a check base of Mersenne numbers, known for
its cost-effective hardware implementation, as discussed in
Section IV.

FIGURE 8. An example of aliasing, (a) Protection using CG-CED,
(b) Original circuit, (c) Protection using FG-CED.

Another scenario where the CG-CED scheme falters is
when faults modify theMVM result as such a fault-free code-
word is produced. One solution to this aliasing problem is
careful selection of the check base that can reduce the aliasing
probability. The CG-CED will be evaluated for several check
base values in Section VII. A better solution is to split the
coarse-grain CED into multiple fine-grain CEDs to reduce
the probability of aliasing. The next section elaborates on this
topic.

B. FINE-GRAIN CED (FG-CED)
Instead of placing a coarse-grain CED on the whole MVM
structure, from the input side to the output side, a more
elaborate scheme is our fine-grain CED solution. This scheme
distributes the planned CED to the individual PEs from the
input side to the output side among all internal layers. This
more-detailed checking not only enhances the error detection
rate by minimizing the probability of aliasing but also equips
the system with the ability to mitigate the effects of faults.

In applying the distributed CEDs to the MAC PEs, a fine-
grain CED checks the partial result at time step t by the
right-hand side of Equation (12),

|par_out t |k
?
= |

∑
q
||w|k × |in|k |k |k (12)

where q is the number of iterations of a processing element to
calculate a partial result. w ∈ R1×q and in ∈ Rq×1 represent
subsets of weights and inputs that the PE operates on.

Figure 7(a) illustrates the overall scheme of FG-CED.
As shown, MAC and ADD CEDs are attached to every MAC
and ADD PE, respectively. A protected PE on the input side
(e.g., anM unit in Figure 7(b)) requires residue generators on
its inputs, performs modulo computations (e.g., a %M unit),
and compares the residue value of its original output with the
output of the modulo computations. Such a protected PE pro-
duces a regular output along with the residue-k of its output
as shown in Figure 7(b). Availability of the residue-k outputs
eliminates the need for residue generators on the inputs of PEs
in the next layers of the MVM structure (Figure 7(c)). Not

52856 VOLUME 12, 2024

N. Nosrati, Z. Navabi: Analysis and Enhancement of Resilience for LSTM Accelerators Using Residue-Based CEDs

FIGURE 9. An overview of criticality-aware protection approach.

requiring input residue generators for the PEs in the middle
layers significantly reduces the required CED hardware.

C. ALIASING PROBABILITY FOR CG AND FG CEDS WITH
DIFFERENT CHECK BASE VALUES
The simple diagram presented in Figure 8 clarifies the dis-
tinction between CG-CED and FG-CED in fault detection,
particularly in a given scenario where aliasing is a possibility.
Figure 8(b) depicts the fault-free (green) and faulty (red) val-
ues on the original circuit, comprising MAC and ADD PEs.
Let us assume a bit-flip fault occurs at bit position 0 (BF-0)
of MAC PE, and a bit-flip occurs at bit position 3 (BF-3) of
ADD PE during different clock cycles. Similar scenarios may
occur if two or more faults manifest simultaneously at the
same clock cycle in one or different PEs. Figures 8(a) and (c)
illustrate the coarse-grain and fine-grain detection schemes,
respectively. Let us first consider the check base value
of 3 (black values) for both CG-CED and FG-CED. With the
coarse-grain solution, the effects of faults can be concealed,
as the code-word for a faulty value becomes indistinguishable
from the fault-free one. Consequently, Residue-3 CG-CED
falsely indicates a fault-free situation. In contrast, Residue-3
FG-CED can correctly detect both injected faults. It reduces
the probability of aliasing by checking PEs individually.

On the other hand, utilizing larger check base values, such
as 7 denoted by blue numbers in the figure, has the potential
to decrease the probability of aliasing even in CG-CED.
This demonstrates an interesting conclusion that although in
CG-CED the number of hardware components may be fewer
than those of FG-CED, better reliability necessitates that the
components be more complex in CG-CED.

VI. CRITICALITY-AWARE PARTIAL PROTECTION
MECHANISMS
The regular protection mechanisms, FG-CED and CG-CED,
uniformly safeguard all PEs in all time steps without any
discrimination. Alternatively, in a different approach, that we
refer to as criticality-aware partial protection, either more

FIGURE 10. Spatial criticality assessment for LSTM-MNIST.

sensitive PEs are protected in all time steps, or all PEs are
protected in some time steps that are recognized as more sus-
ceptible to errors. The former, that we refer to as Spatial CED
Selection (SCS), is shown in Figure 9(a), while the latter,
referred to as Temporal CED Selection (TCS), is presented
in Figure 9(b). As shown in Figure 9, we first investigate
the resilience characteristics of LSTM and introduce spa-
tial and temporal criticalities. Building upon these insights,
we present the structure of our CEDs. The CEDs involve
selection methods to enable overhead-reliability trade-offs
for working at a certain error rate. The details of the SCS
and TCS approaches will be discussed in the subsections that
follow.

A. SPATIAL CED SELECTION (SCS)
1) SPATIAL CRITICALITY
Spatial CED selection is grounded in the principle that DNN
layers, filters, and neurons differ in their error resiliency [10],
[13], [38]. The idea can be expanded to LSTM unfolded over
time steps. Our preliminary results presented in Figure 10(a)
demonstrate the error susceptibility (criticality) variations for
PEs of an LSTM accelerator performing individual MAC
computations. The study is for five randomly selected PEs.
The figure depicts the SDC rate of an LSTM during sequence
classification for MNIST at various BERs. Further details on
the simulation setup will be discussed in Section VII-A. From
this figure, we can observe that errors in PEs involving more
critical MAC computations result in a substantial mispredic-
tion rate, whereas similar errors in computations with less
critical computations lead to a smaller misprediction rate.

Further analysis is conducted on the error resiliency of
MAC PEs compared to ADD PEs within the adder-tree, and

VOLUME 12, 2024 52857

N. Nosrati, Z. Navabi: Analysis and Enhancement of Resilience for LSTM Accelerators Using Residue-Based CEDs

the results are shown in Figure 10(b). The findings indicate
that the MAC PEs are more sensitive to errors than the
ADD PEs. The above studies highlight the need for selection
of arithmetic components to be protected, thus the spatial
criticality associated with MAC and ADD computations in
LSTM.

2) SPATIAL CED STRUCTURE
The spatial criticality is the concept of allowing only a subset
of the PEs to be protected, instead of placing fine-grain
CEDs on all PEs. This partial scheme is shown in the upper
part of Figure 9(a). It is effective in reducing the hardware
overhead of the protection circuitry, specifically in terms of
area footprint and power consumption.

The CED structure used for implementing spatial critical-
ity is in effect a partial FG-CED. Parts that are protected are
decided at the design time. The CEDs are like those shown
in Figures 7(b) and (c). As shown, the residue generator on
the output of a protected PE feeds the residue computations
of the protected PE in the next layer. This eliminates the
need for residue generators on the inputs of the middle layer
PEs. Because of this dependency among protection layers,
the placement of CEDs on PEs must be in a contiguous
fashion from the input side to the output of the MVM block
to achieve appealing hardware overhead savings. If the CEDs
are not contiguous, the middle layer CEDs become orphaned
due to the absence of residue generator units on their inputs,
requiring replacement with more costly input-side CEDs.

3) SELECTION METHOD
To assign the more critical computations to the protected PEs,
it is necessary to assess the error sensitivity of the synaptic
weights in the LSTM network. We consider this sensitiv-
ity as a measure of criticality. For this measure, we adopt
the gradient-based approach [39] using the backpropagation
algorithm (BPTT) [32], designed initially for updating a net-
work’s weights during the training phase. The other resilience
prediction approaches like [37] and [39] are orthogonal to our
work and can be employed in conjunction with it.

The entire process of the gradient-based sensitivity anal-
ysis is described in Algorithm 1. The algorithm involves
iterating through each instance in the training dataset. For
each training instance, a forward pass and a backward pass
(discussed in Section III-A) are conducted.
In the forward pass (lines 5-8), the LSTM processes the

input data and updates its internal states, including the cell
state and hidden state. The total error is also accumulated at
each time step. The backward pass is then performed through
time. As shown in lines 9-11, we start from the last time step
(T) and calculate gradients with respect to the total errors and
the network parameters. Unlike the training process, here,
we do not update the network parameters, i.e., weights and
biases.

After calculating the gradients for all training instances,
the average error contribution of each synaptic weight is

Algorithm 1 Gradient-based Sensitivity Analysis for
LSTM.
Input: Training dataset: Dtrain, Pre-trained LSTM

parameters:W, Number of time steps: T ,
Ratio of protected PEs: RCED

Output: Set of sensitive synaptic weights: SSSW
1 Begin
2 initialize Grad to [0, 0, . . . , 0]
3 foreach (x,y) in Dtrain do
4 initialize Etot to 0

// Forward Pass
5 for t = 1 to T do
6 (ht, ct) = lstm_forward(xt, ht−1, ct−1,W)

//Equations (1) to (6)
7 Etot + = compute_loss(yt,ht)
8 end for

// Backward Pass
9 for t = T to 1 do
10 Grad + = lstm_backward(Etot ,W)
11 end for
12 end for
13 Grad = Grad / range(Dtrain)
14 SortedGrad = sort_ascending(|Grad|)
15 SSSW = SortedGrad[(1-RCED)× range(W): range(W)]
16 End

computed (line 13). Finally, the absolute values of gradient
errors are arranged in an ascending order to facilitate the
identification of the most critical synapses. The algorithm
ends on line 15 with a number of weights (as determined at
the design time) selected as critical.

Determining the optimal number of unprotected PEs in
advance is challenging because the critical computation ratio
varies based on the specific application being executed on
the LSTM hardware and the associated reliability require-
ments. Consequently, some critical computations, typically
associated with protected PEs, may be mapped onto unpro-
tected PEs. A practical solution to address this challenge
is to move beyond a binary categorization of PEs as either
black (unprotected) or white (protected). Instead, consider-
ing a spectrum of protection levels can be accomplished by
employing residue-based CEDs with diverse check bases.
We propose this as an extension of our work, and it is not
the focus of this paper.

B. TEMPORAL CED SELECTION (TCS)
While SCS represents a static method linked to synaptic
weights, TCS is a dynamic technique associated with time
steps. TCS illustrated in Figure 9(b) will be described here.

1) TEMPORAL CRITICALITY
On one side, the current hidden state, as described in Equa-
tions (1) to (6), exhibits a temporal dependency on the
preceding hidden state. On the other side, a neuromor-

52858 VOLUME 12, 2024

N. Nosrati, Z. Navabi: Analysis and Enhancement of Resilience for LSTM Accelerators Using Residue-Based CEDs

FIGURE 11. Temporal criticality assessment for LSTM-MNIST. Error bars range from ±1.07% to ±2.62% at the 95% confidence interval.

phic principle, Delta Network, asserts that hidden sequences
exhibit stability in their activity transmission over time [7],
[41]. These facts inspire the idea that hidden states at different
time steps manifest distinct levels of error resiliency.

Along this line, we investigated the error sensitivity of the
hidden sequence across various time steps, as depicted in
Figure 11. The figure illustrates the SDC rate of the LSTM
for 28 time steps under various BERs (refer to Section VII-A
for simulation setup details). For a given BER, similar errors
are injected in different time steps.

After a closer examination of the fault simulation results,
a noticeable pattern becomes apparent. It is observed that the
vulnerability to error increases for higher time steps, except
for the first time step. This phenomenon is termed temporal
criticality, which we define as the likelihood of the LSTM
hidden state in a specific time step being susceptible to faults.

The high vulnerability observed in the first time step is
attributed to the characteristics of the LSTM architecture
detailed in Section III-A. As outlined in Equations (1) to (4),
the bulk of the hidden state is constructed in the first time
step, performing computations involving the input, forget,
and output gates, along with the candidate memory. Then
after the first time step, these units collectively regulate the
flow of information through the network. Consequently, even
a small deviation during the first time step has the potential
to result in misprediction. Apart from the first time step,
the computations at later time steps make a more significant
contribution to the LSTM output. This higher influence in
later time steps amplifies their susceptibility to errors.

2) TEMPORAL CED STRUCTURE
The temporal criticality concept allows deactivation of CEDs
for time steps in which computations have a less significant
effect on LSTM output (resilient time steps). This temporal
CED scheme illustrated in the lower part of Figure 9(b)
effectively mitigates power consumption associated with the
fine-grain CEDs.

The CED deactivation involves minor modifications to
the hardware of fine-grain CEDs and the controller. The
addition of an inactive mode to the CEDs is accomplished

through the insertion of tri-state logic into the inputs of each
CED. These tri-state logics are controlled by a rotational
shift-register that is responsible for activating/deactivating
CEDs at each time step. The shift-register is placed in the con-
troller unit of the LSTM accelerator andmust be programmed
prior to deploying the hardware accelerator for inference.
The programming process will be discussed in the following
part.

3) SELECTION METHOD
In an offline process, the time steps are categorized as resilient
or sensitive through fault injection-based sensitivity analysis
and the application of a heuristic threshold, denoted as 2.
The sensitivity analysis based on fault injection determines

the probability of misprediction for each time step. A hidden
sequence in time step t of the LSTM computations is consid-
ered resilient if the probability of misprediction is below the
threshold value (misPred (h (t)) < 2).

Subsequently, a significance binary sequence is gener-
ated with a length equal to the number of time steps.
In this sequence, a ’0’ signifies that the corresponding
time step is resilient, resulting in the deactivation of CEDs,
and conversely, a ’1’ indicates sensitivity. The significance
binary sequence is used for programming the controlling
shift-register discussed above.

The2 value plays an important role in achieving favorable
reliability while concurrently conserving power consump-
tion. It is noteworthy that the efficiency of TCS can be
enhanced by integrating spatial criticality analysis with
temporal considerations. This involves making decisions
about the activation or deactivation of CEDs based on both
resiliency of the protected PEs and the time step at which
protection is applied. This makes an interesting and complex
problem that can be dealt with in the future work of our
research.

VII. EXPERIMENTAL RESULTS AND EVALUATIONS
In this section, we describe our simulation setup and present
the simulation results to evaluate the effectiveness of the
proposed protection mechanisms.

VOLUME 12, 2024 52859

N. Nosrati, Z. Navabi: Analysis and Enhancement of Resilience for LSTM Accelerators Using Residue-Based CEDs

TABLE 1. Simulation setup.

A. EXPERIMENTAL SETUP
1) DNN MODELS AND DATASETS
For our evaluation, we trained two LSTM-based DNNs from
scratch on the MNIST [15] and GTSRB [16] datasets. These
network models consist of an LSTM layer followed by a fully
connected layer for sequence classification [34], as discussed
in Section III-B. Table 1 details the properties of the networks.
The baseline accuracy (top-1) values for the LSTM-MNIST
and LSTM-GTSRB are 98.2% and 96.4%, respectively.

2) FAULT MODEL
We consider hardware transient faults that occur randomly
during the inference phase of the LSTMs. We assume that
faults occur in the processing engine of LSTM accelerators
rather than the memory, due to the reasons explained in [10]
and [27]. Therefore, both weights and input sequences are
fault-free. We inject bit-flip faults in storage elements of the
datapath of the LSTM processing engine, i.e., MVM PEs.
Faults in the controller unit of LSTM accelerators are not
considered, as they constitute a negligible portion of the
overall hardware. This is in line with the existing literature
on reliability [10], [25], [42].

3) RESEARCH QUESTIONS
We answer the following research questions (RQs) in our
experiments:

RQ1: How effective are coarse-grain and fine-grain CEDs
in the detection of faults?

RQ2:Howdo coarse-grain and fine-grain CEDs contribute
to improving resilience?

RQ3:What are the associated costs of the proposed CEDs?
RQ4: How do SCS and TCS contribute to selectively

protecting LSTM?

4) BASELINES
To evaluate our work, we considered three versions of
an LSTM model: original (unprotected), protected with
residue-based CEDs (as proposed here), and protected with
double modular redundancy (DMR). Similar to our CEDs,
we have implemented two versions of DMR, coarse-grain and
fine-grain, for comparison. The coarse-grain DMR duplicates
the entire MVM block with a comparator at the end, whereas

the fine-grain DMR performs duplication and comparison for
each individual PE.

5) FAULT SIMULATION METHODOLOGY
To analyze the impact of faults in LTSM networks and evalu-
ate the proposed protection methods, we developed our fault
injection framework in Python using the TensorFlow frame-
work [43]. In this framework, we create a register-accurate
model of the LSTM for inference by associating every line of
the inference with its respective hardware component. This
methodology, that is in line with work [10], allows us to
precisely determine the effects of fault injection on the under-
lying microarchitectural components. Moreover, we have the
register-accurate models for the residue-based CEDs and
DMRs to integrate them into the network models.

We use a 16-bit fixed-point data type for model param-
eters, as it proves to be more energy-efficient in hardware-
based model executions. This data representation is in line
with [23], [25], [26], and [28].

We generated random fault campaigns based on our fault
model and injected them into registers of the LSTM models.
Due to the time-intensive nature of fault injection experi-
ments, we randomly choose a subset of 100 images from each
of the 7,001 test images ofMNIST and the 12,901 test images
of GTSRB, following prior work [31]. Each fault injection
experiment is repeated 1000 times and the average result is
reported.

In all fault injection experiments, the standard error bars
are calculated at the 95% confidence intervals. All exper-
iments run on an Intel (R) Core (TM) i7-2620M CPU @
2.70GHz with 16 GB memory and an NVIDIA GeForce
RTX 3050 Ti.

B. SIMULATION RESULTS
This part presents the simulation results to answer the above
research questions.

RQ1: Fault detection. Initiating the journey toward a
dependable DNN system involves the identification of run-
time faults. To demonstrate the ability of the CG-CED and
FG-CED checkers to detect injected faults, we measure fault
coverage, which indicates the proportion of injected faults
that are detected by the checker.

Figure 12 illustrates the fault coverage of the proposed
CG-CED compared to coarse-grain DMR at various BERs
ranging from 9.48E-06 to 1.90E-04 for two different LSTM
models. The residue-based CEDs use the check base values
of 3, 7, 15, and 31. While fault coverage exhibits a dimin-
ishing trend as BER values increase (as expected), the figure
shows that for very harsh environments with high BER val-
ues, the residue-3 CEDs become inefficient (fault detection
rate falls below 80%). This is due to aliasing presented in the
smaller check base as discussed in Section V-C.
With the check base values of 7, 15, and 31, CG-CED

exhibits similar fault detection rates for lower BERs. As BER
increases, larger check base values demonstrate superior fault

52860 VOLUME 12, 2024

N. Nosrati, Z. Navabi: Analysis and Enhancement of Resilience for LSTM Accelerators Using Residue-Based CEDs

FIGURE 12. Fault coverage of the coarse-grain CED technique at different BERs. For (a) and (b), error bars range from ±0.08% to ±0.21% and from
±0.02% to ±0.18% at the 95% confidence interval, respectively.

FIGURE 13. Fault coverage of the fine-grain CED technique at different BERs. For (a) and (b), error bars range from ±0.04% to ±0.17% and from ±0.03%
to ±0.10% at the 95% confidence interval, respectively.

coverage, which, of course, comes with the price of a larger
hardware overhead (discussed in RQ3). As shown, even in
high BER values, the residue-7 CEDs are still providing fault
coverage at around 90%.

It is notable that the CG-CED solution yields compa-
rable fault coverage rates for both the LSTM-MNIST and
LSTM-GTSRB models. This is in contrast with the vul-
nerability assessment depicted in Figure 1, which shows a
greater susceptibility of the LSTM-GTSRBmodel to random
faults.

Figure 13 shows fault coverage for the FG-CED solution
compared to fine-grain DMR with various check base values
across different BERs for different models. The story is dif-
ferent with fine-grain CEDs that protect each individual PE
of the LSTM accelerator.

Figure 13 shows that FG-CED offers significantly higher
fault coverage in comparison with CG-CED. We see that
even the small check base, i.e., k=3, for the harsh error
conditions, still provides detection rates above 98%. This is
justified because the fine-grain CEDs are applied to units that
perform fewer calculations than the coarse-grain CED, and
error aliasing is reduced because of that. The difference in
fault detection rate between the residue-7 CEDs and CEDs
employing larger check base values is negligible, as they all
demonstrate nearly complete fault coverage around 100%,
similar to DMR.

In a nutshell, CG-CED with a large check base, i.e., k=15
and 31 can provide robust fault coverage (exceeding 95%)
for different BERs, while FG-CED for all check base values
achieves nearly complete fault coverage similar to DMR.

RQ2: SDC Rate. Upon detection of a fault, the proposed
residue-based CEDs enhanced with the Minerva word mask-
ing technique [44], mitigate the propagation of fault impact.
To show the efficacy of the proposed CEDs in reducing mis-
predictions and enhancing resilience, we consider the SDC
rate as a metric for our evaluation. For DNNs, the SDC rate
represents the ratio of mismatch between the classification
output of a faulty and the fault-free inference execution [10],
[25], [31].

Figure 14 compares the SDC rates of the LSTM mod-
els equipped with our FG-CED with those protected by
fine-grainDMRand the unprotected ones (original) at various
BERs. The results from the LSTM-MNIST model are shown
in Figure 14(a). Alongside DMR, FG-CED with zero mask-
ing achieves significant SDC reduction for check base values
of 3, 7, 15, and 31. It is demonstrated that mispredictions
occur when BER goes above 4.74E-05. Prior to this fault
rate, mispredictions are effectively reduced to∼0%. At a high
BER of 1.26E-04, the proposed protection mechanism with
the check base of 7 (for instance) decreases the SDC rate to
5.8% compared to 90% observed for the unprotected LSTM
(15X improvement).

VOLUME 12, 2024 52861

N. Nosrati, Z. Navabi: Analysis and Enhancement of Resilience for LSTM Accelerators Using Residue-Based CEDs

FIGURE 14. SDC rate of the unprotected LSTM and models protected with the fine-grain CED solutions with different check base values across
different BERs. For (a) and (b), error bars range from ±0.39% to ±2.71% and from ±0.48% to ±2.03% at the 95% confidence interval,
respectively.

A comparable pattern of SDC improvement is apparent in
the LSTM-GTSRB network, as depicted in Figure 14(b). The
protection generally becomes less effective for the LSTM-
GTSRB network, when compared to the LSTM-MNIST. This
arises from the fact that the LSTM-GTSRB has 43 output
dimensions (depending on the application), thereby elevating
the likelihood of falling outside the correct class when apply-
ing zero masking to faulty values.

Another takeaway from Figure 14 is that the results indi-
cate no substantial differences between CEDs with smaller
and larger check base values. Of course, the larger check base
values demonstrate lower SDC rates at high BERs, which
stem from the fault detection rate.

The integration of CG-CED with the Minerva masking
mechanism [44] fails to eliminate the misprediction caused
by transient faults. The reason is that masking will result
in nullifying a substantial portion of network calculations.
Instead of zero masking, setting the faulty values to their
correct/expected values (Oracle) that is employed in [27] can
be an effective solution. The assessment of leveraging various
masking methods in conjunction with CG-CED is discussed
in [45].
To recap, utilizing the FG-CED scheme provides reliabil-

ity improvement comparable to DMR. FG-CED results in a
reduction in SDC rates relative to the unprotected model,
ranging from 92% to 100% across various BERs.

RQ3: Protection Cost. The primary cost factors associ-
ated with implementing error detection circuitry are design
time cost and run time cost, as discussed below.

1. Design time cost: This refers to the effort needed to
design the protection mechanism and effectively integrate
it into the target system. In terms of hardware, neither
coarse-grain nor fine-grain CEDs require a new architectural
design. They simply follow the existing architecture of the
hardware accelerator. Moreover, our CED solutions are non-
intrusive, requiring no changes to the DNN accelerator, and
can be easily integrated into the original circuit. This is
attributed to the fact that residue codes provide modularity
and separability between the original circuitry and the check-
ing circuitry [37].

In terms of software, our approach is agnostic to the
DNN architecture, whether during training or outside training
unlike the symptom-based methods [25], [26]. Moreover, our
method eliminates the need for network retraining, which is
an additional burden imposed by [27].
2. Run time cost: The incorporation of error detection

mechanisms comes with the price of additional power con-
sumption and silicon area or may influence performance.
We examine the run time overheads of our CEDs in relation
to area, power, and performance. To conduct these evalua-
tions, we implemented the RTL design of the proposed CEDs
in a synthesizable VHDL format and incorporated them
into the RTL VHDL description of an LSTM accelerator.
For the LSTM accelerator, we considered the n-dimensional
DiBA architecture [6] and proceeded to map the LSTM
networks onto it. The hardware accelerator and the pro-
posed protection mechanisms are synthesized with the 45 nm
technology node using the Nangate open cell library, oper-

52862 VOLUME 12, 2024

N. Nosrati, Z. Navabi: Analysis and Enhancement of Resilience for LSTM Accelerators Using Residue-Based CEDs

TABLE 2. Area and power overheads of the proposed CG-CED and
FG-CED schemes in comparison with DMR.

TABLE 3. Area overhead of the proposed techniques for LSTM
accelerators with different architectures and various PE sizes.

ating at a frequency of 200 MHz with a supply voltage
of 1.1 V.

Table 2 reports the silicon area and power consumption
of the DiBA LSTM accelerator, DMR, and the proposed
residue-based CED schemes for various check base values.
We make two observations from the table. First, the larger
check base values result in elevated overheads for both
fine-grain and coarse-grain CEDs, as expected. A comparison
between the check base values of 3 and 31 provides a clear
depiction of this expected trend. As observed, in the case of
CG-CED, the area overhead rises from 21.09% to 32.04%
and power consumption increases from 24.13% to 44.21%,
for 3 and 31 check base values. Further analysis, as shown
in Figure 15, indicates that this increase stems from the basic
arithmetic circuits rather than the residue generators.

Second, the CG-CED solution entails reduced costs when
compared to FG-CED. Taking Residue-7 as an example, the
area and power overheads for CG-CED amount to 24.85%
and 34.72%, respectively, whereas they reach 45.09% and
64.63% for FG-CED. The reason for that is the comparison
process. The coarse-grain approach conducts a single com-
parison between the outputs of the checker and the original
circuity at the end of the MVM computations, whereas the
fine-grain CEDs perform the comparison process individu-
ally for each PE. As discussed in Section V, each comparison
process involves a residue generator for the output of the
original circuit along with a modulo comparator.

FIGURE 15. Area footprint for residue generator and basic arithmetic
circuits mod 3, 7, 15, and 31.

FIGURE 16. Area breakdown of Residue-3 FG-CED with input-side CEDs
for all PEs of DiBA.

Figure 16 presents the area breakdown of Residue-3 FG-
CED that employs only CEDswith three residue generators as
depicted in Figure 7(b), to protect all PEs of the LSTM accel-
erator. As shown in the figure, the notable area overhead is
associated with residue generators on inputs. This highlights
the importance of using two distinct types of CEDs for input
side and middle PEs (see Figures 7(b) and 7(c)).

As mentioned earlier, our CEDs do not require a new
design and simply follow the existing architecture of the hard-
ware accelerator. Table 3 investigates the impact of LSTM
accelerator architecture and the number of PEs on the area
overhead of the proposed methods. In this investigation,
we explore both 1-D architectures, such as those employed
by DiBA [6] and LSTM-Sharp [2], and 2-D architectures that
use the systolic array style [2]. To facilitate a meaningful
comparison, for a 2-D architecture, we examine a typical
systolic array with identical PE structures as DiBA.

Two observations can be derived from Table 3. First, uti-
lizing our CEDs in accelerators with 2-D computing arrays
results in 13%, 15%, and 17% hardware overhead reduction
for configurations 1, 2, and 3, on average, as compared to 1-
D architectures. This is because the 2-D architectures use a
lower count of costly input-side CEDs. Second, for configu-
rations 1 to 3 as the number of PEs increases, the overhead
for 1-D architectures remains relatively constant, whereas it
decreases for 2-D architectures.

Regarding the performance analysis, our CEDs do not
cause any additional computational cost, in contrast to the
ABFT methods [21], [22]. This is attributed to the parallel
execution of data checking alongside the original processing.
On the other hand, the synthesis results outlined in Table 4
reveal that the inclusion ofmultiplexers, intended formasking

VOLUME 12, 2024 52863

N. Nosrati, Z. Navabi: Analysis and Enhancement of Resilience for LSTM Accelerators Using Residue-Based CEDs

TABLE 4. Critical path for the DiBA LSTM Accelerator with and without
the masking Multiplexers.

faulty values to zero, in the DiBA LSTM accelerator, has no
impact on its critical path.
In summary, the area overhead varies between 4.8% and

53.9%, depending on factors such as the granularity of CEDs,
check base value, and the accelerator architecture. In the
worst-case scenario, our CEDs impose an area and power
overhead that is half of the DMR method, with no impact on
performance.

RQ4: Efficiency of SCS& TCS. The modularity and sep-
arability inherent in our residue-based CEDs enable skipping
some operation checks. This provides a trade-off between the
accuracy degradation and hardware overhead savings, thus
spatial and temporal CED selections. In Figure 17, the SDC
rate of LSTM-MNIST is presented for the unprotected model
(original), fully protected using the fine-grain CEDs (FG-
CED), and selectively protected using SCS (spatial) at various
BERs. The full and selective protection methods both use
CEDs with a check base of 3. The chart also displays the
percentage of hardware overhead saved by SCS (right axis).

In the case of SCS, we assume that 80% of PEs in the
LSTM accelerator are safeguarded by Residue-3 CEDs, leav-
ing the remaining 20% of PEs unprotected. This partial
protection results in approximately a 10% reduction in pro-
tection area overhead as shown in the figure with dotted lines.

Like the full protection, SCS maintains an SDC rate close
to 0% for BER values below 2.53E-05. Above this BER, the
disparity in the SDC rates between FG-CED and SCS begins
to widen. For example, at BER=4.74E-05, the SDC rate is
1% and 3.9% for full and partial protection schemes, respec-
tively. SCS increases the SDC rate by 2.9% compared to full
protection, but it still offers a significant SDC reduction of
94.3% relative to the unprotected model. Here, we employed
BPTT [32] to characterize the more resilient weights to be
mapped onto the unprotected PEs of the LSTM accelerator.
Exploring efficient methods as proposed in [37], and [39] can
enhance this trade-off.

Figure 18 shows the SDC rate of LSTM-MNIST for the
unprotected model, fully protected, and selectively protected
with TCS across various heuristic threshold values at a BER
of 3.16E-05. The secondary axis shows the power overhead
associated with the protection mechanisms. Notably, with
larger thresholds (indicating the deactivation of CEDs over
an extended duration of time steps), there is a reduction
in the TCS power overhead. Simultaneously, the SDC rate
experiences an increase, albeit at a slower pace compared
to the decrease in power overhead. To exemplify, when the
threshold values are set at 8, 11, and 14, power overhead
decreases from 48.3% (red dotted line) for full protection to
37.4%, 31.7%, and 26% (green dotted line) for TCS, respec-

FIGURE 17. SDC rate and hardware saving for SCS with Residue-3 CEDs at
various BERs. Error bars range from ±0.51% to ±2.62% at the 95%
confidence interval.

FIGURE 18. SDC rate and power consumption for TCS with Residue-3
CEDs across various thresholds under a BER of 3.16E- 05. Error bars range
from ±0.42% to ±2.18% at the 95% confidence interval.

tively. This reduction corresponds to an increase in SDC rates
from 0.2 for full protection to 1.4%, 5.3%, and 7.7% for TCS
at each respective threshold.
Consequently, SCS and TCS can substantially decrease

protection overheads through both static and dynamic deci-
sions, with minimal impact on the SDC rate.

C. COMPARISON WITH PRIOR WORKS
Table 5 displays a comparative analysis between our approach
and some existing methods. As can be observed, the selec-
tive methods presented in [18] and [19] demonstrate limited
effectiveness in reducing SDC. In contrast, the TMR and
DMR, despite offering high protection, entail considerable
overhead.

The proposed FG-CED achieves SDC coverage rang-
ing from 92% to 100%, marking a significant protec-
tion close to DMR. It incurs an overhead ranging from
24% to 54%, which can be acceptable in most safety-
critical applications. In addition, SCS and TCS effec-
tively mitigate the protection overhead by employing
fine-grain CEDs selectively. SCS can reduce overhead by
10% while providing 84% to 100% SDC coverage for
various BERs.

52864 VOLUME 12, 2024

N. Nosrati, Z. Navabi: Analysis and Enhancement of Resilience for LSTM Accelerators Using Residue-Based CEDs

TABLE 5. Comparison with some existing methods.

D. DISCUSSION
This section discusses additional opportunities and limita-
tions associated with the proposed protection approach.

Opportunities: Although this paper focuses on LSTM
networks, the CG-CED, FG-CED, and SCS mechanisms are
applicable to feedforward networks such as fully-connected
and CNN (Convolutional Neural Networks), as well as other
recurrent networks like vanilla RNNs and GRUs (Gated
Recurrent Unit). However, the TCS scheme is specifically
designed for recurrent neural networks handling time series
data. In the future, we plan to employ residue-based CEDs to
protect the feedforward networks against bit-flip faults.

Limitations: Our residue-based CEDs are designed for
networks with fixed-point data types. Although fixed-point
data types are prevalent in the inference phase [6], [7], [23],
[25], [26], [28], some systems may use floating-point data
types [2]. Such systems cannot be protected with our CEDs,
because of complexities in floating-point arithmetic.

VIII. CONCLUSION
This paper presented coarse-grain and fine-grain residue-
based CEDs designed to protect the LSTM neural net-
works against transient faults. The coarse-grain approach is
constructed based on the entire MVM structure, whereas
fine-grain CEDs are placed on individual PEs. The fine-grain
CED scheme exhibited superior fault coverage, nearly reach-
ing 100%, in comparison to the coarse-grain scheme. The
complete coverage provided by the fine-grain solution, along
with a simple zero-masking mechanism, leads to a reduction
in SDC rates from 92% to 100% relative to the unprotected
model. This significant protection comes at the cost of an area
overhead ranging from 24% to 54%, depending on the LSTM
accelerator architecture and problem size. In comparison to
the conventional DMR, our fine-grain CEDs offer compara-
ble protection with less than half the overhead.

To further minimize the protection overhead, considering
the stringent area and power constraints of DNN accel-
erators, we introduced two partial protection mechanisms.
They employ fine-grain CEDs selectively, guided by the
spatial and temporal resilience characteristics of LSTM. Spa-
tial selections are associated with LSTM synaptic weights,
while temporal selections are based on LSTM time steps,

providing overhead-reliability trade-offs. Experimental
results show that partial protection methods provide
cost-effective protection when some loss in reliability quality
is acceptable.

REFERENCES
[1] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural

Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.
[2] S. Mittal and S. Umesh, ‘‘A survey on hardware accelerators and opti-

mization techniques for RNNs,’’ J. Syst. Archit., vol. 112, Jan. 2021,
Art. no. 101839.

[3] J. Lee, W. Hong, and P. Hur, ‘‘Continuous gait phase estimation using
LSTM for robotic transfemoral prosthesis across walking speeds,’’ IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 1470–1477, 2021.

[4] S. Kusuma and K. R. Jothi, ‘‘ECG signals-based automated diagnosis
of congestive heart failure using deep CNN and LSTM architecture,’’
Biocybern. Biomed. Eng., vol. 42, no. 1, pp. 247–257, Jan. 2022.

[5] C. Gómez-Huélamo,M. V. Conde, R. Barea, M. Ocaña, and L.M. Bergasa,
‘‘Efficient baselines for motion prediction in autonomous driving,’’ IEEE
Trans. Intell. Transp. Syst., early access, 2023.

[6] M. S. Roodsari, M. Ali Saber, and Z. Navabi, ‘‘DiBA: N-dimensional
bitslice architecture for LSTM implementation,’’ in Proc. 23rd Int. Symp.
Design Diag. Electron. Circuits Syst. (DDECS), Apr. 2020, pp. 1–6.

[7] C. Gao, T. Delbruck, and S.-C. Liu, ‘‘Spartus: A 9.4 Top/s FPGA-based
LSTM accelerator exploiting spatio-temporal sparsity,’’ IEEE Trans. Neu-
ral Netw. Learn. Syst., vol. 35, no. 1, pp. 1098–1112, Jun. 2022.

[8] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee,
N. Mulholland, D. Brooks, and G.-Y. Wei, ‘‘Ares: A framework for
quantifying the resilience of deep neural networks,’’ in Proc. 55th
ACM/ESDA/IEEE Design Autom. Conf. (DAC), Jun. 2018, pp. 1–6.

[9] F. Su, C. Liu, and Haralampos-G. Stratigopoulos, ‘‘Testability and depend-
ability of AI hardware: Survey, trends, challenges, and perspectives,’’ IEEE
Des. Test. Comput., vol. 40, no. 2, pp. 8–58, Apr. 2023.

[10] G. Li, S. Kumar Sastry Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, ‘‘Understanding error propagation in deep learning
neural network (DNN) accelerators and applications,’’ in Proc. Int. Conf.
High Perform. Comput., Netw., Storage Anal., Nov. 2017, pp. 1–12.

[11] I. Moghaddasi, S. Gorgin, and J.-A. Lee, ‘‘Dependable DNN accelerator
for safety-critical systems: A review on the aging perspective,’’ IEEE
Access, vol. 11, pp. 89803–89834, 2023.

[12] S. Mitra, P. Bose, E. Cheng, C.-Y. Cher, H. Cho, R. Joshi, Y. M. Kim,
C. R. Lefurgy, Y. Li, K. P. Rodbell, K. Skadron, J. Stathis, and L. Szafaryn,
‘‘The resilience wall: Cross-layer solution strategies,’’ in Proc. Tech.
Papers Int. Symp. VLSI Design, Autom. Test, Apr. 2014, pp. 1–11, doi:
10.1109/VLSI-DAT.2014.6834933.

[13] D. Shin, W. Choi, J. Park, and S. Ghosh, ‘‘Sensitivity-based error resilient
techniques with heterogeneous multiply–accumulate unit for voltage scal-
able deep neural network accelerators,’’ IEEE J. Emerg. Sel. Topics Circuits
Syst., vol. 9, no. 3, pp. 520–531, Sep. 2019.

[14] M. H. Ahmadilivani, J. Raik, M. Daneshtalab, and A. Kuusik, ‘‘Anal-
ysis and improvement of resilience for long short-term memory neural
networks,’’ in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI Nan-
otechnol. Syst. (DFT), Oct. 2023, pp. 1–4.

[15] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[16] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, ‘‘Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,’’
Neural Netw., vol. 32, pp. 323–332, Aug. 2012.

[17] S. Eldridge and A. Joshi, ‘‘Exploiting hidden layer modular redundancy
for fault-tolerance in neural network accelerators,’’ in Proc. Boston Area
Archit. (BARC) Workshop, 2015, pp. 1–2.

[18] F. Libano, B. Wilson, J. Anderson, M. J. Wirthlin, C. Cazzaniga, C. Frost,
and P. Rech, ‘‘Selective hardening for neural networks in FPGAs,’’ IEEE
Trans. Nucl. Sci., vol. 66, no. 1, pp. 216–222, Jan. 2019.

[19] A. Mahmoud, S. Kumar Sastry Hari, C. W. Fletcher, S. V. Adve, C. Sakr,
N. Shanbhag, P. Molchanov, M. B. Sullivan, T. Tsai, and S. W. Keckler,
‘‘HarDNN: Feature map vulnerability evaluation in CNNs,’’ 2020,
arXiv:2002.09786.

[20] K. Adam, I. I. Mohamed, and Y. Ibrahim, ‘‘A selective mitigation tech-
nique of soft errors for DNN models used in healthcare applications:
DenseNet201 case study,’’ IEEE Access, vol. 9, pp. 65803–65823, 2021.

VOLUME 12, 2024 52865

http://dx.doi.org/10.1109/VLSI-DAT.2014.6834933

N. Nosrati, Z. Navabi: Analysis and Enhancement of Resilience for LSTM Accelerators Using Residue-Based CEDs

[21] H. Liu, V. Singh, M. Filipiuk, and S. K. S. Hari, ‘‘ALBERTA:
Algorithm-based error resilience in transformer architectures,’’ 2023,
arXiv:2310.03841.

[22] K. Zhao, S. Di, S. Li, X. Liang, Y. Zhai, J. Chen, K. Ouyang, F. Cappello,
and Z. Chen, ‘‘FT-CNN: Algorithm-based fault tolerance for convolutional
neural networks,’’ IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 7,
pp. 1677–1689, Jul. 2021.

[23] S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W. Keckler, ‘‘Making
convolutions resilient via algorithm-based error detection techniques,’’
IEEE Trans. Dependable Secure Comput., vol. 19, no. 4, pp. 2546–2558,
Jul. 2022.

[24] D. Filippas, N. Margomenos, N. Mitianoudis, C. Nicopoulos, and
G. Dimitrakopoulos, ‘‘Low-cost online convolution checksum checker,’’
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 30, no. 2,
pp. 201–212, Feb. 2022.

[25] Z. Chen, G. Li, and K. Pattabiraman, ‘‘A low-cost fault corrector
for deep neural networks through range restriction,’’ in Proc. 51st
Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2021,
pp. 1–13.

[26] B. Ghavami, M. Sadati, Z. Fang, and L. Shannon, ‘‘FitAct: Error resilient
deep neural networks via fine-grained post-trainable activation functions,’’
in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2022,
pp. 1239–1244.

[27] B. F. Goldstein, V. C. Ferreira, S. Srinivasan, D. Das, A. S. Nery, S. Kundu,
and F. M. G. França, ‘‘A lightweight error-resiliency mechanism for deep
neural networks,’’ in Proc. 22nd Int. Symp. Quality Electron. Design
(ISQED), Apr. 2021, pp. 311–316.

[28] B. Feinberg, S. Wang, and E. Ipek, ‘‘Making memristive neural network
accelerators reliable,’’ in Proc. IEEE Int. Symp. High Perform. Comput.
Archit. (HPCA), Feb. 2018, pp. 52–65.

[29] N. Nosrati, S. M. Ghasemi, M. Sadeghipour Roodsari, and Z. Navabi,
‘‘Concurrent error detection for LSTM accelerators,’’ in Proc. IEEE Eur.
Test Symp. (ETS), May 2022, pp. 1–2.

[30] J. Li, A. S. Rakin, Z. He, D. Fan, and C. Chakrabarti, ‘‘RADAR:
Run-time adversarial weight attack detection and accuracy recovery,’’
in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Feb. 2021,
pp. 790–795.

[31] A. Asgari Khoshouyeh, F. Geissler, S. Qutub, M. Paulitsch, P. J. Nair,
and K. Pattabiraman, ‘‘Structural coding: A low-cost scheme to pro-
tect CNNs from large-granularity memory faults,’’ in Proc. Int. Conf.
High Perform. Comput., Netw., Storage Anal., Nov. 2023, pp. 1–17, doi:
10.1145/3581784.3607084.

[32] P. J. Werbos, ‘‘Backpropagation through time: What it does and how to do
it,’’ Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.

[33] Z. C. Lipton, J. Berkowitz, and C. Elkan, ‘‘A critical review of recurrent
neural networks for sequence learning,’’ 2015, arXiv:1506.00019.

[34] T. M. Breuel, ‘‘Benchmarking of LSTM networks,’’ 2015,
arXiv:1508.02774.

[35] N. Nosrati, K. Basharkhah, R. Sadeghi, and Z. Navabi, ‘‘An ESL environ-
ment for modeling electrical interconnect faults,’’ in Proc. IEEE Comput.
Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2019, pp. 88–93.

[36] S. J. Piestrak, ‘‘Design of residue generators and multioperand modular
adders using carry-save adders,’’ IEEE Trans. Comput., vol. 43, no. 1,
pp. 68–77, Jan. 1994.

[37] S. J. Piestrak and P. Patronik, ‘‘Design of fault-secure transposed FIR filters
protected using residue codes,’’ in Proc. 17th Euromicro Conf. Digit. Syst.
Design, Aug. 2014, pp. 575–582.

[38] C. Schorn, A. Guntoro, and G. Ascheid, ‘‘Accurate neuron resilience
prediction for a flexible reliability management in neural network acceler-
ators,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2018,
pp. 979–984.

[39] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, ‘‘ApproxANN:
An approximate computing framework for artificial neural network,’’
in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2015,
pp. 701–706.

[40] C. Sakr, J. Choi, Z. Wang, K. Gopalakrishnan, and N. Shanbhag, ‘‘True
gradient-based training of deep binary activated neural networks via con-
tinuous binarization,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Apr. 2018, pp. 2346–2350.

[41] D. Neil, J. H. Lee, T. Delbruck, and S.-C. Liu, ‘‘Delta networks for opti-
mized recurrent network computation,’’ in Proc. Int. Conf. Mach. Learn.,
2017, pp. 2584–2593.

[42] J. J. Zhang, T. Gu, K. Basu, and S. Garg, ‘‘Analyzing and mitigating
the impact of permanent faults on a systolic array based neural network
accelerator,’’ in Proc. IEEE 36th VLSI Test Symp. (VTS), Apr. 2018,
pp. 1–6.

[43] M. Abadi et al., ‘‘TensorFlow: A system for large-scale machine learning,’’
in Proc. 12th USENIX Symp. Operating Syst. Design Implement., 2016,
pp. 265–283.

[44] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks, ‘‘Minerva: Enabling
low-power, highly-accurate deep neural network accelerators,’’ in Proc.
ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 267–278.

[45] N. Nosrati and Z. Navabi, ‘‘A low-cost residue-based scheme for error-
resiliency of RNN accelerators,’’ in Proc. 26th Int. Symp. Design Diag.
Electron. Circuits Syst. (DDECS), May 2023, pp. 83–86.

NOOSHIN NOSRATI (Student Member, IEEE)
received the B.S. degree in electrical engineering
from the Jundi-ShapurUniversity of Technology at
Dezful, Dezful, Iran, in 2014, and the M.S. degree
in electronic from Iran University of Science and
Technology (IUST), Tehran, Iran, in 2017. She
is currently pursuing the Ph.D. degree in digital
electronic systems with the University of Tehran.
Her current research interests include hardware
design andmodeling, reliability and fault tolerance

in digital systems, and design for test (DFT) and testability of embedded
systems.

ZAINALABEDIN NAVABI (Life Senior Member,
IEEE) received the B.S. degree from The Univer-
sity of Texas at Austin, Austin, TX, USA, in 1975,
and the M.S. and Ph.D. degrees from The Univer-
sity of Arizona, Tucson, AZ, USA, in 1978 and
1981, respectively. He is currently a Professor of
electrical and computer engineering with the Uni-
versity of Tehran, Tehran, Iran, and an Adjunct
Professor with theWorcester Polytechnic Institute,
Worcester, MA, USA. He has authored ten books

in various aspects of design and test with hardware description languages
(HDLs). He has written numerous articles in HDLs, design automation,
and digital system test. His current research interests include high-level
design and description methodologies, digital system testing, and design and
definition of HDLs.

52866 VOLUME 12, 2024

http://dx.doi.org/10.1145/3581784.3607084

