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ABSTRACT Thanks to High Dynamic Range (HDR) imaging methods, the scope of photography has seen
profound changes recently. To be more specific, such methods try to reconstruct the lost luminosity of the real
world caused by the limitation of regular cameras from the Low Dynamic Range (LDR) images. Additionally,
although the State-Of-The-Art (SOTA) methods in this topic perform well, they mainly concentrate on
combining different exposures and pay less attention to extracting the informative parts of the images. Thus,
this paper aims to introduce a new model capable of incorporating information from the most visible areas
of each image extracted by a Visual Attention Module (VAM) which is a result of a segmentation strategy.
In particular, the model, based on a deep learning architecture, utilizes the extracted areas to produce the
final HDR image. The results demonstrate that our method outperformed most of the SOTA algorithms.

INDEX TERMS Deep neural network, high dynamic range imaging, image segmentation, multi-exposure

image, visual attention module.

I. INTRODUCTION

In the scope of photography, the real world consists of an
unlimited range of luminance. However, most devices are
capable of capturing only a limited amount of that light.
Therefore, the taken images are not desirable and consist of
saturated regions, in which some parts of the images are too
dark (underexposed) or overly bright (overexposed). These
types of pictures are called LDR images.

Thus, in order to cope with this problem, highly advanced
cameras [1], [2], [3], [4], [5], [6], [7] can be used, which
have special sensors to capture more light. However, such
devices are mainly too expensive and overly heavy, which are
not suitable for daily life, and instead, are primarily used in
industries.

A possible resolution for this drawback is developing soft-
ware algorithms called HDR imaging techniques. Moreover,
HDR images can be implemented by a single image [8],
[9], [10], [11] or fusing a stack of images with different
exposures, which are called single- and multi-exposure
methods, respectively. In algorithms with a single LDR
image, an HDR image can be produced from one image.
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However, the generated picture might not be as informative as
the HDR image produced by several LDR images because the
amount of detail in one single picture is limited compared to
several images with different exposures. More precisely, [8]
implemented an algorithm that only reconstructs the detail
of bright saturated areas. However, the model is not only
incapable of restoring the detail of dark regions but also does
not perform well if the amount of bright saturation is too
much. Thus, [12] first combined several LDR images and
then fed the low-frequency response of the wavelet transform
to the network to produce more detail in a shorter time.
Luckily, multi-exposure methods are more effective and
informative compared to single-exposure techniques. More-
over, these methods perform well when the images are
static [13], [14], while when there are movements in the
sequence of pictures, the ghosting problem emerges, which
is almost solved in [15], [16], [17], [18], [19], and [20].
Deep learning has been a significant means of producing
an HDR image for the past decade. For instance, [8] produced
an HDR picture in the logarithmic domain with the help
of a deep neural network. Additionally, [21], used a neural
network to reconstruct the detail of an image with different
exposure in each row in the irradiance domain. Moreover,
unlike other multi-exposure methods, [13], [14] used a neural
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network to produce synthetic LDR images with different
exposures from a single image. Furthermore, [16] proposed
to first align images with the help of the optical flow
method, and then use a deep neural network to combine them.
Therewith, [15], instead of using optical flow for alignment,
proposed to use two different neural networks first to align
them and then combine the aligned images with the second
neural network. Finally, [22] used a neural network to learn
the relative relation between the inputs and the Ground Truth
using input images in different scales.

In this article, we would like to exploit image segmentation
with the help of the Otsu method [23] in HDR imaging to
extract the most visible areas of the images and help the model
produce pictures with more detail. By doing so, we are able
to reduce the complexity of the neural network model and
obtain similar or better results. Indeed, deep learning methods
have demonstrated outstanding capabilities in identifying the
most relevant features in the images, and for the present task,
they are, in principle, able to identify the most informative
areas in the images with different exposures. However, this
may require a higher network complexity and an intractable
number of parameters. Conversely, this paper investigates
the possible role of segmentation in driving the network
architecture to a superior HDR reconstruction. To reach
this point, VAMs will be proposed to obtain such regions.
Moreover, in this research, Spatial and Attention modules
have been used from SOTA methods, and a new architecture
for the Reconstruction stage was designed and implemented,
in which the visual attention and the reference image were
used in the decoder part. Finally, although VAMs helped in
producing pictures with more details and outperformed most
of the SOTA methods, the results still illustrated a slight
amount of noise that was extracted from the input images.

In section II, the SOTA in HDR imaging and related
image segmentation are presented. In section III, the proposed
method is discussed in detail. Section IV demonstrates the
experimental results and comparison with the SOTA methods.
Moreover, section V presents ablation studies to prove the
value of the single proposed steps, concentrating on the use
of VAM and of the Refinement stage. Finally, section VI
concludes this article with ideas for further work. The code
will be available at the github page.

Il. RELATED WORK

In this section, we will discuss the SOTA methods in the
scope of HDR imaging in the Multi-Exposure category
(Section II-A) and survey unsupervised Image Segmentation
methods for extracting regions (Section II-B).

A. MULTI-EXPOSURE METHODS

Reference [24] proposed a two-stage algorithm, in which,
in the first phase they extracted features from the input images
and merged them to produce the HDR image in the latter
one. Additionally, to cope with the appeared noise from
the gamma correction operation on input images, i.e. the
gamma-corrected Short-Exposure image becoming similar to
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Medium-Exposure, they used a U-net to extract noiseless
features from it. Moreover, [25] implemented a model in
which images with lower scales were used to reduce the
consuming sources. Additionally, a novel loss function was
defined to focus more on the motion. Furthermore, [26]
forwarded features with different scales to deformable and
spatial attention blocks to align images in the feature space
and also extract the features of the specific areas of the input
images. Moreover, [27] proposed a model that first estimated
the optical flow from the two input images in different scales
and then fused them to produce the final output. In [28],
the features are extracted from different scales and then
processed by sampling and aggregation modules to align the
pixels of the non-reference features.

The work [29] implemented a baseline that had lower
computational resources and acceptable results compared to
the other SOTA models. They used a dual attention module,
which includes both spatial and channel attention modules,
to cope with misalignment and to better learn the details of
the produced areas. In [30], the authors proposed a model
that first extracts features from input images by multi-scale
encoding modules and then produces an HDR image by
progressively dilated U-shape blocks.

Reference [31] demonstrated that the ghosting problem is
mainly in short-frequency signals. Therefore, they proposed
a wavelet-based model to merge images in the frequency
domain and avoid any ghosting problems. Reference [32]
implemented an algorithm that extracted dynamic areas of
the images with the help of image segmentation and applied
two neural networks separately on the static and dynamic
scenes. Finally, they merged the information to produce an
HDR image without ghosting. In [33], a model based on
bidirectional motion estimation was proposed, in which the
amount of optical flow between LDR images was estimated
by motion estimation with cyclic cost volume and spatial
attention maps, and eventually, an HDR image was produced
with the help of the extracted local and global features.
Reference [34] implemented the first multi-bracket HDR
pipeline using event cameras, in which they merged the
extracted features of images and the events to produce
an HDR image. Reference [35] proposed a transformer-
based baseline, in which they used a context-aware vision
transformer to extract local and global features to model the
movement of objects and the diversity of intensity.

B. IMAGE SEGMENTATION

Image segmentation is a crucial task in computer vision,
which tries to partition images into segments to analyze
the pictures more easily. Additionally, image segmentation
not only can be used for object recognition, detection, and
medical purposes but also can be applied for extracting
regions of pictures with more details. In [36] images
were analyzed in HSV color space to segment pixels
based on Intensity or Hue value. Moreover, two image
segmentation methods were proposed based on luminance:
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histogram division [37] and clustering based on Gaussian
Mixture Model (GMM) of histogram [38]. Furthermore, [39]
calculated an optimal valley point based on the slope between
the histogram value of each pixel and the neighboring points,
and used the computed valley point to segment regions. The
literature on the topic is endless, depending on applications
and methodologies, from level set methods [40] to graph
cut [41] to recent deep learning-based frameworks [42].

lll. PROPOSED METHOD
A. OVERVIEW
As cited in [43], it might be beneficial to first segment images
based on exposure information to extract the best and more
detailed regions from the Over- and Under-Exposure regions
and exploit this knowledge in reconstructing an HDR image.
Following this idea, in this paper, a model is proposed in
which, with the help of image segmentation, regions with
more detail are segmented first in the preprocessing stage.
Finally, they are fed to the model along with the input images
to produce an HDR image with the help of VAMs.
Generally, the model can be divided into several sections.
Firstly, the input images are fed into the feature extraction
module, and afterward, the extracted features enter the
attention and spatial alignment modules to cope with any
possible misalignment. Moreover, the input images with
their corresponding masks go to the VAM simultaneously
to extract the visible areas of the LDR images. Next, the
outputs of the three modules are fed to the Reconstruction
stage to produce the initial HDR image. Finally, the generated
outcomes with the features of the reference image enter the
refinement section to construct the final HDR image.

B. PREPROCESS

In this article, the inputs are three LDR images with
different exposures, and the image with Medium-Exposure
is considered the reference image. Moreover, before feeding
the input images to the model, they are first mapped to the
HDR domain with the help of gamma correction. Finally, they
are concatenated channel-wise with their corresponding LDR
images.

ti

I = fori=1,2,3 1)
where ¢; is the exposure time of /;. y is the gamma correction
parameter, which was 2.24, and [; is the gamma-corrected
image.

1) SEGMENTATION

Most of the present algorithms in HDR imaging focus more
on the approach of image production, but not many pay
attention to how to extract the most helpful features. Thus,
in this research, the regions of the pictures with more details
are segmented and extracted as a preprocess and finally are
fed to the proposed model along with the LDR images as the
inputs.

VOLUME 12, 2024

Different methods, such as neural network-based
approaches and the Otsu method, were used for the image
segmentation stage; however, in our experiments, the neural
network-based approaches resulted in overfitting. Thus, the
widely adopted Otsu method has been selected, also given its
simplicity, to segment the visible areas of the pictures. To this
end, the images are first converted into the YUV color space
and then the luminance channel Y is taken into consideration
by computing a threshold based on the histograms of Short-
and Long-Exposure images. More exactly, in each sample,
different thresholds are calculated based on the histogram of
each image in each exposure. Thus, the threshold parameter
for each image is a variable threshold based on each sample.

thresh; = G(Y;)  fori=1,3 )

In which Y; is the luminance channel of the LDR image, G()
is the Otsu function, and thresh; is the threshold value of
image i.

In the Short-Exposure image, because most of the pixels
are dark, and the objective is to extract the regions with visible
pixels, the values equal to or more than the threshold are
considered one, and the rest are zero for the Short-Exposure
mask.

3)

1 p > thresh;
0 p < thresh;

where thresh; is the threshold value of the Short-Exposure
image, and p is the pixel.

On the other hand, because most of the pixels in the
Long-Exposure image are saturated, and the visible pixels
have the lowest values, the values that are less than the
threshold were considered one, and the rest as zero in the
Long-Exposure mask.

{ 0 p > threshs @)

1 p < threshs

By doing so, the masks of the areas with more detail are
extracted and can help to produce an HDR image.

Generally, most of the pixels in Short- and Long-Exposure
images are too dark or bright, respectively. Therefore, the
location of the areas with surplus information is extracted and
fed to the model. Doing so reduces the amount of calculation
and helps in producing an HDR image with more detail.
Fig. 1 demonstrates the segmented and visible regions of both
Short- and Long-Exposure pictures (first and second masks
from the left, respectively), and the third mask is a sum of
both generated masks.

Moreover, during experiments, three input images with
different exposures were used for image segmentation,
in which, after obtaining the suitable areas of Short- and
Long-Exposure images, the remaining regions were extracted
from the Medium-Exposure image. However, the acquired
areas of the Medium-Exposure were not sensible, as most
of them were only a few pixels. Thus, two reasons exist for
not using Medium-Exposure in the segmentation stage. First,
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FIGURE 1. Produced masks of Short- and Long-Exposure images.

it would be challenging to calculate a range for the visibility
of the pixels. Second, Medium-Exposure is the reference
image, and the picture will be used in the neural network.
Therefore, it is not necessary to use segmentation for it.

C. PROPOSED METHOD STRUCTURE
As shown in Fig. 2, the proposed algorithm consists of six
stages, which will be discussed separately and in detail.

1) FEATURE EXTRACTION

Fig. 3 illustrates the Feature Extraction block, in which a
SepConv is applied to the image to extract 32 feature maps.
Afterward, a Max Pool and an Average Pool are used to not
only smooth the features and focus on the details but also pay
more attention to the edges. Next, the outputs of Poolings
are concatenated, and another SepConv + ReLU is used to
reduce the number of channels to 32. Finally, the extracted
features are Upsampled to make them the same size as the
input image. The feature extraction can be written as follows:

features; = SepConv(/;) (@)
C; = concat (M (features;), A(features;)) (6)
F; = Upsample(ReLU(SepConv(C)))) @)

for i = 1,2,3, where M() and A() functions are Max
Pooling and Average Pooling, respectively, and C; is the
output of Concatenation. Finally, F; is the output of the
Feature Extraction Block.

2) VISUAL ATTENTION MODULE

As it was mentioned, in this article, Image Segmentation
is used to help the model to produce a better image.
Therefore, as shown in Fig. 4, the input images are multiplied
element-wise by their corresponding masks first. By doing
so, the regions with more details are kept, and those that are
overly dark or too bright will be removed. Next, they are
fed to the Feature Extractor to extract Features. Finally, they
are added together element-wise. The VAM can be formally
defined as follows:

features;, = F (multiply(masky , I7.)) ®)
featuresy = F'(multiply(masky, Iy)) O]
V = add(features; , featuresy) (10)
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where F is a feature extractor function, and V is the output
feature of the VAM.

3) SPATIAL ALIGNMENT MODULE

Because the input LDR images are not aligned, the extracted
features from the LDR images without the gamma correction
images are fed to an ad hoc module for aligning them. To this
end, we used the same Feaure-alignment Module used in [30].
As can be seen in Fig. 5, first a Conv + ReLU is applied
to the Reference Features, which can be called as Refj.
Next, a Conv 4 ReLU is applied to Ref; and is multiplied
element-wise by the input LDR features, which can be called
M; (for i = 1, 3). Finally, another Conv + ReL.U is applied
to the Ref] and is added element-wise with M;. Formally, the
operation in the module can be written as follows:

Ref; = ReLU(Conv(ref features)) (11
M; = multiply(ReLU(Conv(Ref})), inp features;) (12)
out; = add(ReLU(Conv(Ref})), M;) (13)

4) ATTENTION MODULE

The Attention Module is similar to [30] in terms of the
structure, but it differs in details, in which, as shown in Fig 6,
feature maps are produced for Short- and Long-Exposure
images to merge them with the reference image as guidance.
After feeding the features of gamma-corrected images with
the reference image, they are concatenated. Afterward,
SepConv + ReLU and SepConv 4 Simgoid operations are
applied to them. The module can be considered as follows:

R; = ReLU(SepConv(concat(f;, f;)) fori=1,3 (14)
S; = Sigmoid(SepConv(R;)) (15)

where f; and f, are the features of gamma-corrected and
reference images, respectively.

5) RECONSTRUCTION

All the extracted features from the modules are concatenated
and fed to the reconstruction stage. As shown in Fig. 7,
with the help of four encoder blocks, the input is merged,
and new features are produced. Next, each decoder block
receives features from the encoder along with features of the
reference image and VAM. Finally, a SepConv + ReLU is
used to produce the output of the stage.

Each encoder block (Fig. 8, left) initially applies SepConv,
Batch Normalization, and ReLU layers to the inputs. After-
ward, similar to Feature Extraction Module, Max and AVG
Poolings are used. Finally, they are concatenated and sent to
the next block.

Moreover, each decoder block (Fig. 8, right) consists of
three inputs, which are features of the VAM, features of
the reference image, and the output of the previous block.
First, AVG pooling is applied to the first two inputs to make
them the same size as the output of the previous block,
and then they are concatenated with each other. Finally,
SepConv + ReLLU and Upsampling are used, respectively.
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6) REFINEMENT
Unfortunately, the output of the reconstruction stage may
have blurry, saturated, or dark areas; therefore, to cope with
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image, a refinement section also has been added.

As Fig. 9 illustrates, SepConv + ReLU is applied to the
features of the reference image to reduce the number of
feature maps. Furthermore, after concatenating the inputs,
SepConv and SepConv + ReLU are used, respectively. The
process is repeated two more times, and eventually, Conv +
Sigmoid 1is applied to produce the final image in Sigmoid
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space. The process in Refinement can be represented in
pseudo-code as shown in Algorithm 1.

Algorithm 1 Pseudo-Code of Refinement Stage

1: Inputs: The output of the Reconstruction stage (as
Reconstruction,) and extracted features of the referenced
image (f;).

2: Output: The final image in the Sigmoid Space.

3: f, = ReLU(SepConv(f,))

4: 1«0

5: whilei < 3 do

6 if i == 0 then

7: ¢ < concat(Reconstruction,,, f,)

8 x < ReLU(SepConv(SepConv(c)))
9 else

10: c <« concat(x,f,)

11: x < ReLU(SepConv(SepConv(c)))
12: end if

13: i<—i+1

14: end while
15: out < Sigmoid(Conv(x))

As visible in Algorithm 1, the first two lines show the
inputs and the output of the refinement stage. Moreover, the
concat, SepConv, and SepConv + ReLU steps can be consid-
ered a block of the stage, respectively, which are applied three
times. The first block receives the reconstruction, and fr as
inputs (lines 6-8). However, the output of the previous block
and fr are fed to the next blocks.

Notice that, in this research, the Ground Truth images are
mapped from HDR Space into sigmoid space. Indeed, based
on our experiments, transforming the values into sigmoid
helps the network converge more conveniently (see Fig. 10)
for a comparison of train and validation loss in Sigmoid and
HDR space). The reason for changing the space is that the
values in HDR space are too large, and a model with a low
number of parameters is not able to learn to produce an HDR
image correctly; conversely, by mapping them to the sigmoid
space the values are converted between 0 and 1, which helps
the proposed model to learn the data more efficiently.
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TABLE 1. Brief highlights regarding the training and validation settings
for the proposed method.

Dataset NTIRE Challenge
Optimizer Adam Optimizer
Initial LR 0.001 with LR decay

Train Validation
Batch Size 16 2
Input Size 256x256 | 1920x1088
Augmentation True False
Epoch 100
Loss MAE

IV. EXPERIMENTS AND RESULTS

A. DATASETS

For the experimental test and validation of the proposed
method, standard benchmark datasets were used. The main
dataset is the NTIRE dataset which was collected for the
HDR Imaging Challenge (NTIRE) [44], [45]. In this dataset,
two types of pictures (Single-Exposure and Multi-Exposure
images) were provided; however, Multi-Exposure images
only were used in this research. More specifically, this dataset
includes images from [46] that were generated as follows.
First, HDR images were produced natively by two Alexa
Arri cameras with a mirror rig; then, their corresponding
LDR images were generated synthetically with noise sources.
There are approximately 1500 pairs of HDR/LDR images in
this dataset for the training set, 40 for the validation set, and
200 pictures for the test set with a resolution of 1900 x 1060.
However, in this research, we randomly selected 200 images
of the training set as a test set and trained the model with
around 1300 pairs.

In addition to the NTIRE dataset, we also tested our
method on two other datasets: Kalantari et al. [16] and
Hu et al. [47]. Both datasets contain dynamic scenes with
large motions between the medium, low- and high-exposure
images. Kalantari et al. dataset was created by capturing static
scenes and introducing motion either by having a human
actor move or by shifting the camera position between the
acquisitions of the different LDR images. Hu et al. dataset
consists of a set of sensor-realistic synthetic images generated
using Unreal Engine and then calibrated to match the color
gamut of a real sensor.

B. IMPLEMENTATION DETAILS

The highlights of the model are demonstrated in Table 1
briefly. Additionally, the weights of the model were ini-
tialized randomly and no pre-trained weights were used.
Finally, the information regarding the proposed method will
be discussed in the following subsections.

1) LOSS FUNCTION

Out of the various potential loss functions, the Mean Absolute
Error (MAE) loss function has been chosen for training the
model. This decision stems from the experimental findings
outlined in [48], specifically in the closely related task
of image denoising. In this study, the authors demonstrate
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that the three loss functions MS-SSIM+MAE, MAE, and
MS-SSIM consistently stand out as the best options. In this
paper, MAE is favoured for its simplicity in terms of
computation, making it a practical and effective choice for our
model. Operatively, the difference is that the Ground Truth
is first mapped to Sigmoid Domain, and eventually, MAE is
calculated in Sigmoid space between the Ground Truth and
the output of the model.

GT,, = sigmoid(GT)
L, GT,) = |GT;, — ¥

(16)
17)
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where GT,, is the Ground Truth image in the new domain, and
L is the loss between Ground Truth and the output.
Furthermore, after training the model in sigmoid space,
inverse sigmoid is used to re-map the output to HDR space.
The inverse sigmoid can be written as follows:
S))

HDR = log(1 =) (18)
where HDR is the output in HDR space and y is the image in

the sigmoid domain.

2) TRAINING

Flipping the images vertically or horizontally is also used as
an augmentation method during training. Moreover, before
feeding the images to the model, they are resized into 256 x
256. The reason for doing so instead of producing patches is
that some generated patches from the masks may be totally
black or completely white, which causes the model to pay
less attention to the images with Short-Exposure.

Moreover, batch size and the number of epochs are set to
16 and 100, respectively. In this article, Adam Optimizer with
an initial learning of 0.001 is used, and it will be reduced by
a factor of 0.1 if the validation accuracy does not improve.
Finally, the whole model is implemented in the Tensorflow
(Keras) framework and is trained on a DGX-A100 GPU.

3) VALIDATION

The images are first padded from 1900 x 1060 to 1920 x
1080 and then fed to the model without any augmentation
methods during validation.

C. EVALUATION METRICS AND COMPARISON

1) QUANTITATIVE COMPARISON

As Table 2 demonstrates, the results in this paper are
compared with the SOTA methods by PSNR and SSIM
in HDR and Tone-mapped domains. The u — PSNR and
u — SSIM are the tone-mapped versions, where the images
were tone-mapped in u — law. Moreover, in addition to
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TABLE 2. Comparison with the SOTA methods, and ours also considering it without the refinement stage and the segmentation stage as described in

Section V. The bold numbers are the best values, and the underlined ones are the second best.

Methods PSNR | p-PSNR | SSIM | p-SSIM | LPIPS | delta-E | GMACs | Param. x 103
GSANet [24] 36.88 35.57 0.996 0.873 0.02 0.40 199.38 80
DRHDR [26] 38.5 36.91 0.996 0.86 0.21 0.40 1701.932 1190
Vienetal. [33] | 39.44 35.39 0.994 0.837 0.34 0.45 198.819 1301

ours 43.25 35.86 0.997 0.90 0.03 0.57 234.107 570

ours-w-r 41.71 35.30 0.993 0.857 0.04 0.51 227.59 567

ours-w-s 40.27 34.99 0.993 0.842 0.05 0.66 223.96 545

TABLE 3. Comparison between the proposed method in HDR and
sigmoid spaces.

Methods PSNR | Mu-PSNR
Ours (HDR Space) 42.4 35.28
Ours (Sigmoid Space) | 43.25 35.86

PSNR and SSIM, the results are compared with the SOTA
methods by LPIPS [49], delta-E, GMACs, and the number
of parameters. Learned Perceptual Image Patch Similarity
(LPIPS) is a metric that computes the perceptual similarity
of two images using a neural network. Delta-E is a metric
that calculates the color difference of two images.

As mentioned in [45], the challenge focused on two tracks,
which were Fidelity and low complexity. In the first one,
the methods were required to obtain the highest © — PSNR
while the GMACs value is less than 200. In the latter track,
it was asked to reduce the GMACs value to less than the
baseline method while the PSNR and 4 — PSNR values
are almost the same as the baseline method. The proposed
method has been compared with GSANet [24], DRHDR [26],
and Vein et al. [33] methods. As can be seen, Table 2 shows
the proposed method has the highest value in terms of PSNR,
while having the second highest value in @ — PSNR.

Additionally, all the methods were close in SSIM, however,
our method was able to outperform the SOTA in both SSIM
and u — SSIM. Furthermore, although our result with the
value of 0.03 is the second best in LPIPS, it performed
worst in delta-E. On the other hand, Vien et al. [33] had
the lowest GMACs value, and GSANet is ranked second
lowest. Moreover, it is visible that in terms of the number of
parameters, GSANet has the lowest and the proposed method
is in the second place among the algorithms. As Table 2
shows, ours-w-r and ours-w-s methods refer to ours without
refinement and segmentation, and although the number of
parameters and the value of GMACsS in those methods are
lower than the total model, still in terms of metrics the full
model has a better result.

Furthermore, for more study, the proposed method was
trained and tested in HDR and Sigmoid Spaces to check
which space is superior for training the model. Thus,
as Table 3 demonstrates, the proposed method in Sigmoid
Space outperformed the algorithm in the HDR domain.
Moreover, during training, the model in Sigmoid space
converged quicker than the model in the HDR domain.
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2) QUALITATIVE COMPARISON

In terms of qualitative comparison, we used the images of
the NTIRE [44], [45], Kalantari [16], and Hu [47] datasets.
As can be seen in Fig. 11, the produced images by ours,
worked better in terms of image reconstruction compared
to DRHDR and Vienetal. methods. More specifically,
Fig. 11 demonstrates the results of ours, DRHDR [26],
Vien et al. [33], and GSANet [24]. As can be seen, the
output of Vien et al. in the first scene has distortion in the
bright areas, and it is visible that the algorithm cannot restore
the details from these areas correctly. Furthermore, there is
some degradation in the dark regions too. Moreover, although
DRHDR worked great and reconstructed both areas, this
method was not able to acquire the details in over-saturated
areas. For instance, looking at the two red and green boxes,
the model did not reconstruct the details of the hands and
the shirt, while the proposed method produced more detail
in these two regions. Moreover, the produced image from
the GSANet method shows significant details and is almost
similar to ours. More precisely, although both methods could
reconstruct the shirt nicely, the details of the hand in the
GSANet are more than ours.

Additionally, in the second scene, the DRHDR and
Vien et al. methods were not able to reconstruct the branches
that were only visible in the short exposure image and
restored only a part of them. In contrast, the proposed method
and the GSANet worked almost well in this regard. Finally,
looking at the last scene, it is visible that the proposed method
outperformed the first two algorithms and reconstructed more
details in both dark and bright areas, and the details of the sky
show this point.

As further research, we tested the model and the SOTA
on two other datasets with much more movement [16], [47].
Unfortunately, because all the models were trained on a
dataset with low movement, they did not perform as well
as they worked on the NTIRE dataset. Therefore, because
the quantitative results were not as acceptable as the NTIRE
dataset, we only used qualitative results for comparison.
As can be seen in Fig. 12 (first scene), three methods
including ours almost worked nicely to cope with the motion
problems. However, GSANet encountered a ghosting issue.
Additionally, similar to the NTIRE dataset, our model was
able to reconstruct more local details compared to the other
methods. On the other hand, as the second scene in Fig. 12
demonstrates, by having more motion, none of the methods
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FIGURE 12. Qualitative comparison with the SOTA. The first row of each scene contains short, medium, and long exposure images, respectively. The
second row includes ours, DRHDR, Vien et al., and GSANet outcomes, respectively. The First scene, and the second scene are acquired from [47]
and [16], respectively.

can produce images without any ghosting problems. The red
box in the images illustrates the common area where the
methods had a ghosting issue.

Furthermore, although the segmentation helped the model
to produce better results, the method might encounter two
possible issues. Firstly, due to plausible noise in input images,
using segmentation for extracting visible areas may also
acquire the noise, and the produced image might become
noisy. Lastly, although spatial alignment and attention
modules are used to avoid any possible ghosting problems,
the output might also encounter a ghosting issue if the input
images have a severe amount of movement. Because the
segmentation is applied to the Short- and Long-Exposure
images and extracts their visible areas. Therefore, some parts
of the images might not be aligned. Moreover, for future
research, we would like to investigate possible methods to use
segmentation and avoid any likely noise or misalignment.

V. ABLATION STUDY
In this paper, we proposed a model that included several
stages, which are Attention, Reconstruction, and Refinement,
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and each one of the steps has an important role in this
method. Therefore, to demonstrate the importance of each
one, we removed the VAM and the refinement stages each
time and retrained the model to compare them with the total
method. Additionally, we tested our model with two other
datasets [16], [47].

A. WITHOUT VISUAL ATTENTION MODULE

As mentioned in the III-C2, VAM is a helpful module that
can help the model reconstruct a better image. Therefore,
to demonstrate this statement, we kept the refinement stage,
retrained the model without the VAM module, and compared
the results with the main model.

Given the results in Fig 13, the segmentation has both
benefits and drawbacks. The zoomed part of the images
demonstrates that the segmentation helps the model to
reconstruct the details. As can be seen, the model was able
to reconstruct the wall and the cracks in the ground better
than the model without the segmentation stage. Moreover,
although the model was able to cope with the motion in
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FIGURE 13. Qualitative comparison between the proposed method (on the left) and proposed method without VAM module (on the right). The image is
acquired from [47].

the first scene of Fig 13, the model could not resolve the B. WITHOUT REFINEMENT

motion problem in the second scene due to the high volume Additionally, it was mentioned in I1I-C6, that the Refinement
of movement. Unfortunately, due to keeping the information stage was used to cope with possible distortions. Therefore,
from each exposure, the VAM module causes the ghosting  we retained the Segmentation part and retrained the model
problem. without the Refinement.
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FIGURE 14. Qualitative comparison between the proposed method (on the left) and the proposed method without the refinement stage (on the right).

The image is acquired from [16].

Given the outcomes in Fig 14, the first row of each
scene contains input images, and the second row includes
the outputs. The outputs on the right illustrate that the
model without the refinement step causes distortion in both
under-exposed and overexposed areas. More precisely, the
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specified box in the first scene indicates that the hair of
the person is not reconstructed well and is noisy, while the
complete model was able to reconstruct it well. Additionally,
as can be seen in the second scene, the outputs of both models
contain the ghosting problem. Moreover, the produced results
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of the model without the refinement stage suffer from the lack
of local details.

VI. CONCLUSION

In this article, we proposed a new method for HDR
imaging with the help of image segmentation. More specif-
ically, we first applied the Otsu method on Short- and
Long-Exposure images to acquire the areas with more details.
Afterward, the input images along with the segmentation
outputs were fed to the model to produce the HDR image.
The results show that the proposed method outperformed the
SOTA and generated more details. However, the proposed
model is not free of issues, and in case of possible noise or
misalignment in input images, the output might have a slight
amount of noise or misalignment due to extracting areas of
input images. More exactly, the experiments show that the
model is incapable of producing a ghosting-free image when
the level of motion is high because of the Segmentation stage.
Therefore, for future research, we would like to focus on
investigating these two problems.
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