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ABSTRACT This paper presents a supervisory control strategy to intelligently split power within a hybrid
energy storage system (HESS) of battery and supercapacitor (SC) in electric vehicles (EVs). The intelligent
energy management strategy (IEMS) is based on linear parameter-varying model predictive control
(LPV-MPC) with the main aim of mitigating battery degradation. The battery RC model is considered in
the control-oriented model, where the increment of the battery current is selected as the control variable,
resulting in a linear state-space model dependent on the HESS parameters, namely, the battery state-of-
charge (SoC) and SC state-of-voltage (SoV). The cost function minimizes the power loss in the battery and
squared error of the SoV across the prediction horizon. A new SoV control strategy is proposed based on
the upcoming acceleration, providing opportunities for the efficient utilization of the SC and extending the
battery lifespan. Constrained optimization is transformed into a quadratic programming problem, which can
be easily solved in real time. The superiority of the proposed method in assessing battery degradation was
verified by comparing different strategies using five evaluation factors under two drive cycles. Compared
with the LPV-MPC, where SoV remained fixed, the proposed method demonstrates reductions of up to
18.82% in the battery current root-mean-square, 30.26% and 25.85% in the discharge and charge peak
current, 9.71% in the ampere-hour throughput, 4.78% in the capacity loss, and 29.06% in the energy loss.
To validate the real time performance of the proposed method, it is implemented in the real-time digital
simulator (RTDS).

INDEX TERMS Batteries, electric vehicle, energy management, hybrid energy storage system, linear
systems, model predictive control, quadratic programming, real-time simulation, supercapacitors.

NOMENCLATURE
DP Dynamic Programming.
EM Electric Motor.
EMS Energy Management Stratgey.
EV Electric Vehicle.
FE Forward Euler.
HESS Hybrid Energy Storage System.
IEMS Intelligent Energy Management Stratgey.
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LMO Lithium Manganese Oxide.
LPV-MPC Linear Parameter-Varying Model

Predictive Control.
LTI Linear Time-Invariant.
NCA Lithium Nickel-Cobalt-Aluminum Oxide.
NiMH Nickel-Metal Hydride.
OCV Open-Circuit Voltage.
PMP Pontryagin’s Minimum Principle.
QP Quadratic Programming.
RMS Root Mean Square.
RMSPE Root Mean Square Percentage Error.
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RTDS Real-Time Digital Simulator.
RWD Rear-Wheel Drive.
SC Supercapacitor.
SoC State-of-Charge.
SoV State-of-Voltage.
UDDS Urban Dynamometer Driving Schedule.
V2I Vehicle-to-Infrastructure.
V2V Vehicle-to-Vehicle.
WLTC Worldwide Harmonized Light Vehicles

Test Cycle.

I. INTRODUCTION
Electric vehicles (EVs) with hybrid energy storage system
(HESS), including the battery and supercapacitor (SC), are
widely recognized as a viable alternative to conventional
vehicles owing to their increased efficiency, reduced noise
levels, and capacity to contribute to a less polluted environ-
ment [1], [2], [3]. With its high energy density, the battery
serves as the primary energy storage, whereas the SC, with
its high power density, provides or captures peak power
during high acceleration or braking in EVs [4], [5], [6]. Large
fluctuations in power demand result in more frequent battery
discharging and charging, which degrades performance and
reduces lifespan [7]. This cycling event occurs more fre-
quently in battery/SC EVs, where the battery operates within
a wide range of state-of-charge (SoC) [8]. The integration of
SC and employing a suitable supervisory controller not only
mitigates stress on the battery and extends its lifespan but
also considerably enhances the driving range of the EV, which
paves the way for sustainable transportation [9]. The battery
can take advantage of the HESS when coupled with a suitable
supervisory controller; otherwise, improper hybridization
might yield undesirable results [10]. The energy management
strategy (EMS), as a supervisory controller, facilitates the
practical implementation of hybridization by splitting the
power flow within the HESS while considering predefined
objectives and constraints [11], [12]. EMSs in EVs can
be broadly classified into two main categories: rule-based
and optimization-based EMSs. Rule-based EMSs can be
categorized into deterministic rule-based [13], [14], fuzzy
logic-based [15], [16], filter-based [17], [18], and their
combinations [19], [20]. Rule-based EMSs use a set of
rules derived from human experience and are suitable for
implementation in a real-time digital simulator (RTDS).
However, they cannot provide an optimal solution for all
conditions because they require specific rules for each
scenario. By contrast, optimization-based EMSs, which can
be classified into global and real-time strategies, aim to
solve an optimal control problem by minimizing the cost
function. This cost function in a battery/SCEV aims to reduce
fluctuations in the battery current and extend its lifespan [21].
As a global optimization-based EMS, dynamic programming
(DP) is a commonly used algorithm that computes globally
optimal solutions by decomposing the control problem into
sub-problems. DP solves optimization backward but relies on

knowing the entire speed drive cycle a priori [22]. Because of
its requirement for recursively finding optimal solutions and
the significant computational burden involved, DP is typically
employed offline as a benchmark for evaluating and adjusting
other control strategies [23], [24].

Real-time optimization-based EMSs provide sub-optimal
solutions through the online minimization of a cost func-
tion [11]. Pontryagin’s minimum principle (PMP), which
is based on Hamiltonian equations, is typically considered
an offline method but can also be adapted for real-time
application. Nguyen et al. [25] proposed an alternative PMP
for a battery/SC EV, in which the EMS dealt with a nonlinear
system. To alleviate the computational burden, a simplified
model was applied to the battery and SC, and the converter
efficiency was kept constant to prevent switching behavior.
The open-circuit voltage (OCV) of the battery cell model
was assumed to be constant. However, this assumption results
in deviations from the optimal solution, as, in practice, the
OCV is a function of its SoC. Similarly, Odiem et al. [26]
computed the optimal solution using DP and PMP offline for
an electric bus with the energy storage of fuel cell, battery,
and SC. Power management is then applied using a genetic
algorithm, where the models of both the battery and SC are
greatly simplified. Additionally, global optimality cannot be
guaranteed in the PMP [27]. Furthermore, in a complicated
nonlinear system, determining the co-state of the Lagrange
multiplier is challenging.

In addition to the thorough modeling of the HESS, achiev-
ing optimum performance in the EMS requires information
about the upcoming speed of the EV. This information can
be provided through the traffic model of a connected EV
using vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communications [22].Model predictive control (MPC),
as a real-time optimization-based strategy, can consider the
anticipated power demand given the upcoming speed, while
minimizing a cost function over the prediction horizon.
As Ostadian stated [11], the EMS can be classified as
an intelligent energy management strategy (IEMS) if it is
implementable in the RTDS, adaptable to new environments,
and capable of anticipating outputs based on the system’s
prediction model. All these characteristics can be integrated
into an MPC method, rendering it a desirable supervisory
controller for energy management in EVs [28], [29], [30],
[31], [32], [33], [34]. In this respect, Xu and Shen [28]
developed an MPC-based optimization strategy to efficiently
split the power between the battery and engine in a connected
hybrid EV. Qi et al. [29] proposed an MPC-based EMS
for fuel cell/battery HESS. Liu et al. [30] proposed a
model predictive current control in a DC microgrid with a
battery/SC HESS. The proposed EMS mainly focuses on
the voltage stability of the DC-bus and only defines the
reference power, which is split by a simple low-pass filter
between the battery and the SC. Golchoubian and Azad [31]
developed a nonlinear MPC for an optimal power split
in a battery/SC HESS. One of the challenging issues of
nonlinear MPC is its implementation in RTDS owing to
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the increased computational burden in solving a nonlinear
system [35]. Unlike [25] and [31], where the power flows
were used as control variables, Hredzak et al. [32] used
explicit MPC where the currents were employed as control
variables, resulting in a linear time-invariant (LTI) state-
space model for the HESS. The explicit MPC computes
the control action offline based on a specific scenario.
Furthermore, in these studies [31], [32], a simple model
was used to represent the HESS, where the battery was
depicted as a voltage source with a constant OCV and
a resistor, neither of which was dependent on the SoC.
However, there are more sophisticated RC models that
can accurately capture the dynamic behavior of Lithium-
ion (Li-ion) cells in EV applications. Zhou et al. [36]
developed an adaptive MPC for HESS, which solves the
quadratic programming (QP) problem. This indicates that
the adaptive MPC outperformed the LTI-MPC. However,
because the power flow is utilized as the control action, the
model is nonlinear and needs to be linearized around the
operating point. In this regard, Jia et al. [34] considered
dynamic models of the battery and developed a linear
parameter-varying (LPV) predictionmodel, where the control
variables are the SC current and the increment of the battery
current. Linear parameter-varying model predictive control
(LPV-MPC) strategy is used to solve the constrained QP
problem in real time. The results demonstrate that the use of
LPV-MPC leads to significantly higher accuracy compared
to LTI-MPC and effectively reduces battery energy loss.
However, the state-of-voltage (SoV) of the SC remained
constant (SoV=0.75), thereby hindering efficient utilization
of the SC. Moreover, incorporating the minimization of both
SC and battery power losses into the cost function might not
be reasonable. In addition, the proposed EMS is a frozen-time
MPC, where the power demand is considered as a constant
measured disturbance over the entire prediction horizon [37].
This type of formulation is unsuitable for urban drive cycles,
particularly when the speed changes frequently, which may
substantially degrade the performance of the EMS [38].
In this paper, the LPV model of the HESS is developed

as a predictive model based on the dynamic RC model
of the battery, which is more accurate than the static
one [39]. The state-space model depends on the HESS
parameters, including the resistance, capacitance, voltage,
and SoC of the battery, SoV of the SC, and efficiency
factors in the charging and discharging modes of the bi-
directional dc-dc converter. The state-space matrices are
updated at each time-step; however, they remain constant over
the prediction horizon. The control problem is transformed
into an inequality-constrained QP optimization problem,
whereas the proposed LPV-MPC-based IEMS determines
the optimal control action by minimizing the cost function.
This cost function addresses both the power loss in the
battery and control of the SoV across the prediction horizon.
Furthermore, the power demand is considered as a measured
disturbance, which can be computed for the next time-step
using knowledge of the upcoming speed and the EV

powertrain model. It is assumed that this speed is provided
by another subsystem, considering the traffic model, and
V2V and V2I communications. The reference of SoV is set
to the maximum SoV of the SC which is 1. However, the
weighting factor of the cost function related to SoV is either
1 or 0, according to the anticipated acceleration of the EV.
It is demonstrated that employing a variable SoV control
strategy and considering the anticipated power demand offer
tremendous potential for minimizing fluctuations in the
battery current and expanding its operational lifespan. The
control variable is exclusively the increment of the battery
current, resulting in the QP optimization problem which
includes only inequality constraints and is easily solved by
conventional solvers in real time. To generate more realistic
results and observe the desirable performance of the proposed
IEMS, the electrochemical model of the battery pack in
MapleSim is used as a representation of a real battery. Finally,
the LPV-MPC-based IEMS is validated by implementation
in dSPACE. Furthermore, to evaluate the performance of
the proposed method, it was compared with other advanced
EMSs, based on measuring 1-the root mean square (RMS)
of the battery current, 2-the peak current, 3-the ampere-
hour throughput, 4-the battery cell capacity loss, and 5-the
battery pack energy loss, which are important factors in
assessing battery degradation in EV applications [10], [33],
[34], [40], [41], [42]. It is demonstrated that considering the
EV’s upcoming acceleration enhances the performance of the
LPV-MPC in reducing battery degradation compared to other
EMSs. The main contributions of this study are summarized
as follows:

1) Compared to previous studies [31], [32], [43], which
maintains SoV at 0.75, in this study, control of the SoV
is based on the anticipated acceleration of the EV by
adjusting the weighting factor. The new SoV control
strategy further reduces battery current fluctuations,
capacity loss, and energy loss, thereby improving bat-
tery lifetime efficiency. Also, this strategy is applicable
to connected EVs, where the vehicle’s upcoming speed
is provided by V2V and V2I communications.

2) Using the increment of the battery current as a control
action leads to a linear equation that omits the need
for a nonlinear optimization method. The obtained QP
optimization problem is solved using LPV-MPC,which
is more accurate than LTI-MPC [32], and it does not
have the complexity of nonlinear MPC.

3) A straightforward procedure for real-time modeling of
a battery/SC EV, considering the efficiency factors of
bidirectional dc-dc converters in charge and discharge
modes, has been developed [44], [45]. The proposed
framework can be used to evaluate different EMSs in
real time.

The structure of the paper is as follows. Section II explains the
configuration of the HESS consisting of the battery and SC,
along with its modeling. In Section III, the LPV-MPC-based
IEMS is proposed, involving the obtained LPV model of
the HESS, formulation of the QP optimization problem, and
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FIGURE 1. HESS of battery/SC EV in the semi-active topology.

proposing the SoV control strategy based on the upcoming
acceleration. Section IV focuses on the real-time validation of
the proposed EMS, analyzes the results, and compares them
with those of other approaches. Finally, the conclusions are
provided in Section V.

II. HESS CONFIGURATION AND MODELING
As a compromise between control performance, weight,
reliability, and cost, the semi-active topology is better suited
for configuring the HESS of the battery and SC [40],
[46], [47]. In the most commonly used type of semi-active
topology, depicted in Fig. 1, the battery pack is directly linked
to the inverter, ensuring a stable voltage at the electric motor
(EM) drive, and the SC pack acts as an auxiliary power
supply, which is connected to the battery pack via a bi-
directional dc-dc converter. The converter adjusts the current
of the SC pack to match the reference current provided by the
supervisory controller. The proposed supervisory controller is
based on MPC, which aims to split the power flow between
the battery pack and SC pack. Since the accuracy of the
system model is pivotal for the optimal performance of MPC,
dynamic models of the battery and SC are utilized, and
the converter efficiency factors in both the charging and
discharging modes are considered.

A. BATTERY
Li-ion batteries are the main components of EVs and play a
crucial role in their performance. The OCV of the majority
of Li-ion batteries commonly used in EV applications
varies widely over SoC, including lithium nickel-cobalt-
aluminum oxide (NCA), lithium manganese oxide (LMO),
and nickel-metal hydride (NiMH) batteries [42], [44], [48],
[49]. Therefore, it is crucial to place more emphasis on
accurately modeling battery cells. Battery cell behaviors
can be represented by electrochemical, data-driven, and
equivalent circuit models [50]. Equivalent circuit models are
suitable for model-based controllers as they represent the
battery cell using electrical elements, such as voltage sources,
resistors, and capacitors. These models include the single RC
branchmodel, double RC branchmodel, and triple RC branch
model, among which the double RC branch model is accurate

FIGURE 2. Double RC branch model of the battery cell [44].

FIGURE 3. Block diagram of the battery pack model for the simulation.

enough to capture the dynamic behavior of the battery cell
and can be effectively utilized as a control-oriented model
in LPV-MPC [39], [49], [50], [51], [52], [53]. In Fig. 2,
a double RC model of the battery cell is illustrated, of which
the parameters depend on the SoC and are influenced by the
battery current. Here, voc represents OCV, R0 denotes the
resistance for modeling the voltage drop, and v1 and v2 are
the voltages of R1C1 and R2C2 branches, respectively. These
branches exhibit the effects of the electrode surface and
diffusion process, which exhibit slow and fast dynamics,
respectively. The battery cell SoC, which defines the amount
of battery charge, is calculated by the Coulomb-counting
method, as given in (1).

d
dt
SoC(t) =

−Ib(t)
NbpQb

(1)

whereQb is the battery cell rated capacity in ampere-seconds,
Ib is the battery pack current, which is equal to the battery cell
current (ib) multiplied by the number of parallel cells (Nbp).
The terminal and the RC branch voltages are described in (2)
and (3), respectively.

vb(t) = voc − R0ib(t) − v1(t) − v2(t) (2)

Cx
dvx(t)
dt

+
vx(t)
Rx

= ib(t), x ∈ {1, 2} (3)

The battery pack terminal voltage Vb, is determined by
multiplying the cell voltage vb, by the total number of battery
cells in seriesNbs. TheOCV andRCparameters are computed
by the discharge pulse current and stored in lookup tables,
whose input is the SoC [44]. A block diagram of the battery
pack model used for the simulation is shown in Fig. 3.
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FIGURE 4. Faranda model of the supercapacitor cell [54].

B. SUPERCAPACITOR
There are various models for representing SC, such as
the first-order model, Zubeita model, RC transmission line
model, and Faranda model [54], [55], [56], [57]. The widely
used model is the Faranda model, which represents the
dynamic behavior of SCs in EV applications. This model
incorporates an equivalent circuit that includes two RC
branches with a voltage-dependent capacitance, as shown
in Fig. 4. The dynamic equations of the SC cell model are
presented in (4).

isc(t) = isc1(t) + isc2(t) + isc3(t) (4a)

vsc(t) = −Rf isc1(t) + vf (t) (4b)

vsc(t) = −Rsisc2(t) + vs(t) (4c)

vsc(t) = −Rdisisc3(t) (4d)

isc1(t) = −
d
dt

(
(Cvvf (t) + Cf )vf (t)

)
→ vf (t) = vf (t0) −

∫ t

t0

isc1(t)
(2Cvvf (t) + Cf )

dt
(4e)

isc2(t) = −Cs
dvs(t)
dt

→ vs(t) = vs(t0) −
1
Cs

∫ t

t0
isc2(t)dt

(4f)

where isc and vsc are the current and voltage of the SC cell,
respectively. The SC pack voltage Vsc can be computed by
multiplying vsc by the number of series cells Nscs. Given (4),
a block diagram of the SC pack model for the simulation is
shown in Fig. 5. For the prediction model, SoV, which is the
ratio of vsc to the SC cell rated voltage vsc,r , can be obtained
using (5).

d
dt
SoV (t) =

−Isc(t)
Qsc

(5)

where Isc andQsc represent the current and capacity of the SC
pack, respectively. Qsc is calculated by vsc,rNscpCsc, where
Nscp is the parallel number of SC cells and Csc is the SC cell
rated capacitance.

FIGURE 5. Block diagram of the SC pack model for the simulation.

C. POWER FLOW
There is a relationship between the battery pack power, Pb(t),
and the SC pack power, Psc(t), given by (6).

PL(t) = Vb(t)Ib(t)︸ ︷︷ ︸
Pb(t)

+η(t)Vsc(t)Isc(t)︸ ︷︷ ︸
Psc(t)

(6)

where PL(t), is the load power or power demand, which
can be computed using the EV powertrain model presented
in [45]. The efficiency of the bi-directional dc-dc converter is
given by (7).

η(t) =

{
ηdis, if Isc ≥ 0
1/ηcha, if Isc < 0

(7)

where ηdis and ηcha are the efficiency factors of the
bi-directional dc-dc converter during discharge (accelera-
tion), Isc ≥ 0, and charge (braking), Isc < 0, defined in (8)
and (9), respectively [45].

ηdis =
Vb
Vsc

(
Vsc − (Ron1 + rL)Isc

Vb + VD2 + (RD2 − Ron1)Isc
− fsw(tr +

Qr
Isc

)
)
(8)

ηcha =
Vsc
Vb

(
1

Vsc+VD1−(RD1+rL )Isc
Vb+VD1+(Ron2−RD1)Isc

− fsw(tr +
Qr
|Isc|

)

)
(9)

where Ron1 and Ron2 are the drain-source on-resistances of
switches S1 and S2 when they are turned on; RD1 and RD2,
as well as VD1 and VD2 are the diodes D1 and D2 resistances
and voltages when they conduct, respectively; tr is the diode
reverse recovery time, Qr is the diode recovered charge; and
fsw is the switching frequency (Fig. 1) [45].

III. PROPOSED LPV-MPC-BASED IEMS
MPC optimizes a multivariable constrained control problem
by determining the control action through the prediction
model byminimizing the cost function over a finite prediction
horizon at each time-step [11]. Selecting the current as a
control action results in a linear state-space equation as a
prediction model for the HESS. However, this depends on
the battery and SC parameters. In this regard, the LPV-MPC
method is employed to solve the optimization problem, where
the state-space matrices are updated at each time-step but
remain fixed over the prediction horizon. The optimization
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problem is transformed into an inequality-constrained QP
optimization formulation, which is solved using Hildreth’s
quadratic programming algorithm in real time.

A. HESS DISCRETE EQUATION
First, the discrete equation of the HESS is obtained. For the
battery model, equation (1) can be discretized through the
forward Euler (FE) method, as given by (10).

SoC(k + 1) = SoC(k) −
T

NbpQb
Ib(k) (10)

where T denotes discrete sample time. Similarly, for the
voltages of the RC branches, the discrete form of (3) is given
by (11).

vx(k + 1)

=

(
1 −

T
Rx(SoC(k))Cx(SoC(k))

)
vx(k) +

TIb(k)
NbpCx(SoC(k))

x ∈ {1, 2} (11)

Similarly, for the SC, given (5), the discrete equation of the
SoV is obtained through the FE method, as shown in (12).

SoV (k + 1) = SoV (k) −
T
Qsc

Isc(k) (12)

According to (6), the discrete form of the SC pack current can
be obtained in terms of PL and Ib as defined in (13):

Isc(k) =
PL(k) − Vb(k)Ib(k)

η(k)Vsc(k)
(13)

Additionally, by incorporating the inherent integral and
accounting for the variation in the battery current within the
cost function, variable Ib can be replaced by the relation
provided in (14).

Ib(k) = Ib(k − 1) + 1Ib(k) (14)

where 1Ib(k) is the increment of the battery current
and Ib(k − 1) is the current at the previous time-step.
Given (13) and (14), Isc is computed using 1Ib(k) and PL(k).

Subsequently, the SoV in (12) is determined using the same
parameters. Finally, with the discrete equations given in (10),
(11), (12), (13), and (14); considering SoC(k), v1(k), v2(k),
SoV (k), and Ib(k − 1) as state variables; 1Ib(k) as a control
variable; andPL(k) as ameasured disturbance, the state-space
model of the HESS can be developed, as defined in (15),
as shown at the bottom of the page. The state-space model
is linear, but its matrices depend on the parameters. The
numbers of state and control variables are nx = 5, and
nu = 1, respectively. 1u(k) ∈ Rnu is the incremental control
variable, x(k) ∈ Rnx is the vector of the state variables,
A(k) ∈ Rnx×nx is the system matrix, B(k) ∈ Rnx is the input
matrix of the control, and Bd (k) ∈ Rnx is the input matrix
of the disturbance. They change at each time-step, given the
HESS parameters, which depend on SoC and SoV. The only
control variable is the increment of the battery current, which
is supposed to be calculated by the LPV-MPC at each time-
step.

B. FORMULATION OF LPV-MPC
The state-space model in (15) is used as a prediction model,
where x(k + 1|k) represents the predicted value of x at
time-step k + 1 according to its value at k . The future
state variables vector over the prediction horizon, X (k) =[
x(k + 1|k), . . . , x(k + Np|k)

]T
∈ RnxNp , can be computed

by (16a).

X (k) = F(k)x(k) + φ(k)1U (k) + φd (k)PL,ref (k)

∈ RnxNp (16a)

F(k) =
[
A(k),A2(k), . . . ,ANp (k)

]T
∈ RnxNp×nx

φ(k) = (16b)
B(k) 0 . . . 0

A(k)B(k) B(k) . . . 0
A2(k)B(k) A(k)B(k) . . . 0

...
...

. . .
...

ANp−1(k)B(k) ANp−2(k)B(k) . . . ANp−Nc (k)B(k)


∈ RnxNp×nuNc (16c)

x(k + 1) =


1 0 0 0 −T/(NbpQb)
0 1 − T/(R1(SoC(k))C1(SoC(k))) 0 0 T/(NbpC1(SoC(k))
0 0 1 − T/(R2(SoC(k))C2(SoC(k))) 0 T/(NbpC2(SoC(k)))
0 0 0 1 TVb(k)/(Qscη(k)Vsc(k))
0 0 0 0 1


︸ ︷︷ ︸

A(k)

x(k)

+


−T/(NbpQb)

T/(NbpC1(SoC(k)))
T/(NbpC2(SoC(k)))

TVb(k)/(Qscη(k)Vsc(k))
1


︸ ︷︷ ︸

B(k)

1u(k) +


0
0
0

−T/(Qscη(k)Vsc(k))
0


︸ ︷︷ ︸

Bd (k)

PL(k)

x(k) =
[
SoC(k), v1(k), v2(k), SoV (k), Ib(k − 1)

]T
, 1u(k) = 1Ib(k), nx = 5, nu = 1 (15)
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φd (k) =
Bd (k) 0 . . . 0

A(k)Bd (k) Bd (k) . . . 0
A2(k)Bd (k) A(k)Bd (k) . . . 0

...
...

. . .
...

ANp−1(k)Bd (k) ANp−2(k)Bd (k) . . . Bd (k)


∈ RnxNp×Np (16d)

The optimization at each time-step includes the increment of
the control variable over the control horizon, Nc, 1U (k) =[
1u(k|k), 1u(k + 1|k), . . . ,1u(k + Nc − 1|k)

]T
∈ RnuNc .

The state-space model is determined at each time-step based
on the updated parameters of the HESS. However, the matri-
ces remain constant over the prediction horizon, resulting
in a small error but significantly reducing computational
burden [58]. The matrices F(k), φ(k) and φd (k) require
parameter information only at the current time-step, k . In this
study, it is assumed that the speed at the next time-step
is provided through the traffic model using V2V and V2I
communications. The upcoming speed at the next time-step
enables straightforward computation of the power demand at
the next time-step, PL(k + 1|k), based on the EV powertrain
model obtained in [45]. Thus, the vector PL,ref (k) =[
PL(k|k),PL(k + 1|k), . . . ,PL(k + Np − 1|k)

]T
∈ RNp con-

sists of the current state power demand, PL(k|k), and its
upcoming value, PL(k+1|k), which is known. The remaining
elements, PL(k + 2|k) up to PL(k + Np − 1|k), are the same
as PL(k+1|k). Hence, in terms of power demand, LPV-MPC
is a combination of prescient and frozen-time MPC, where
the disturbance is known for the next time-step and remains
constant over Np [37]. Because of the anticipation at k + 1,
Np should be at least 2.

C. COST FUNCTION
Both instantaneous and temporal changes in the battery
current significantly affect battery lifetime [59]. Moreover,
the SC should be controlled to supply peak power during
fast acceleration and braking modes. In this context, the cost
function focuses on minimizing the battery power loss and
squared error of the SoV. Hence, the cost function is given
by (17).

L(k) = λ1f1(k) + λ2f2(k) + λ3f3(k) (17)

where λ1 to λ3 are the weighting factors for each objective
function of f1 to f3 which are defined in (18a)-(18c).

f1(k) = (SoVref − SoV (k))2 (18a)

f2(k) = R0(SoC(k))i2b(k) +
v21(k)

R1(SoC(k))
+

v22(k)

R2(SoC(k))
(18b)

f3(k) = 1I2b (k) (18c)

Here, f1 minimizes the squared error of the SoV, f2 minimizes
the battery power loss, and f3 minimizes the battery current
fluctuations over the time-step horizon.

D. OPTIMIZATION OVER THE PREDICTION HORIZON

Given (17), the LPV-MPC minimizes the predicted total cost
function J , over the prediction horizon at each time-step,
as defined in (19).

J =

Np∑
i=1

(λ1f1(k + i|k) + λ2f2(k + i|k))

+

Nc−1∑
j=0

λ3f3(k + j|k) (19)

The objective functions of f1 and f2 can be normalized
to achieve the same dimensions. f1 can be divided into
(SoVmax − SoVmin)2, where SoVmax and SoVmin are the upper
and lower bounds of the SoV, and each component of f2 can be
divided by the maximum power loss of the related RC branch,
as defined in (20).

Ploss,max,R0 = R0,max i2b,max (20a)

Ploss,max,R1 = R1,max i2b,max (20b)

Ploss,max,R2 = R2,max i2b,max (20c)

where R0,max ,R1,max , and R2,max are the maximum resis-
tances of the battery cell model and ib,max is the maximum
current of the cell, which is set to the C-rate. Given (18)
and (20), after substituting and using Ib instead of ib, the
predicted total cost function of (19), can be represented
by (21) over the prediction horizon.

J =

Np∑
i=1

λ1(SoVref − SoV (k + i|k))2

(SoVmax − SoVmin)2

+
λ2

I2b,max

(
v21(k + i|k)

R1,maxR1(SoC(k))
+

v22(k + i|k)

R2,maxR2(SoC(k))

+
R0(SoC(k))I2b (k + i− 1|k)

R0,max

)

+

Nc−1∑
j=0

λ31I2b (k + j|k) (21)

According to the state variables and battery and SC, the
constraints of the optimization are presented in (22).

SoCmin ≤ SoC(k) ≤ SoCmax
v1,min ≤ v1(k) ≤ v1,max
v2,min ≤ v2(k) ≤ v2,max
SoVmin ≤ SoV (k) ≤ SoVmax
Ib,min ≤ Ib(k) ≤ Ib,max (22)

Given the HESS state-space equations and inequality con-
straints, the inequality optimization problem is formulated
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Algorithm 1 Hildreth’s Quadratic Programming Algorithm
1: Input: H , f ,M , b
2: Output: 1U
3: Unconstrained solution 1U = −H−1f
4: Check constraint satisfaction
5: if constraints satisfy then

break
else
P = MH−1MT , D = MH−1f + b

end
6: Initialize λ vectors
7: while c < max iterations do
8: for i = 1 : iterations number do
9: λc+1

i = max(0, −1
pii
[di +

∑i−1
j=1 pijλ

c+1
j +

∑n
j=i+1 pijλ

c
j ])

10: end for
11: count=count+1
12: end while
13: return 1U = −H−1f − H−1MTλ

in matrix form with state and control variables,which is
provided by (23).

min
1U (k)

(Rs − X (k))T Q(k)(Rs − X (k))

+ 1UT (k)R̄1U (k) (23a)

subject to

x(k + i|k) = A(k + i− 1|k)x(k + i− 1|k) (23b)

+ B(k + i− 1|k)1u(k + j|k)

+ Bd (k + i− 1|k)PL(k + i− 1|k)

xmin ≤ x(k + i+ 1|k) ≤ xmax (23c)

1umin ≤ 1u(k + j|k) ≤ 1umax (23d)

i ∈ {1, 2, . . . ,Np}, (23e)

j ∈ {0, 1, . . . ,Nc − 1} (23f)

Rs =
[
rT , rT , . . . , rT

]T
∈ RnxNp (23g)

r =
[
0, 0, 0, SoVref , 0

]T
∈ Rnx (23h)

Q(k) = diag(Q(k), . . . ,Q(k)) ∈ RnxNp×nxNp

(23i)

Q(k) = diag

(
0,

λ2

R1(SoC(k))R1,maxI2b,max
,

λ2

R2(SoC(k))R2,maxI2b,max
,

λ1

(SoVmax − SoVmin)2
,

λ2R0(SoC(k))

R0,maxI2b,max

)
∈ Rnx×nx (23j)

R̄ = diag(R, . . . ,R) ∈ RnuNc×nuNc (23k)

R = λ3 (23l)

where Rs is the reference trajectory or vector of the set
point information for SoV over the prediction horizon, which
includes SoVref ; Q(k) and R̄ are the weighting matrices of

the state and control variables, respectively; xmax and xmin;
and 1umax and 1umin are the upper and lower bounds of the
state and control variables, respectively. The control problem
in (23) can be rewritten as a QP optimization problem,
as defined in (24).

min
1U (k)

1
2
1UT (k)H (k)1U (k) + 1UT (k)f (k) (24a)

subject to M (k)1U (k) ≤ b(k) (24b)

H (k) = [φT (k)Q(k)φ(k) + R̄] ∈ RnuNc×nuNc (24c)

f (k) = φT (k)Q(k)
[
F(k)x(k) − φd (k)PL(ref ) − Rs

]
∈ RnuNc

(24d)

M (k) =

[
φ(k)

−φ(k)

]
∈ R2nxNp×nuNc

(24e)

b(k) =

[
Xmax − F(k)x(k) − φd (k)PL(ref )(k)
−Xmin + F(k)x(k) + φd (k)PL(ref )(k)

]
∈ R2nxNp

(24f)

Xmax =

xmax...

xmax

 , Xmin =

xmin...
xmin

 ∈ RnxNp (24g)

where H (k) is the Hessian matrix, f (k) is the vector of
the coefficient, M (k) is the matrix representing the linear
constraints, and b(k) is the vector on the right-hand side of the
linear constraints. The inequality-constrained QP optimiza-
tion problem in (24) can be solved using Hildreth’s quadratic
programming method, which is an iterative algorithm aimed
at finding a solution to QP problems [60]. A general form
of Hildreth’s method is described by Algorithm 1, where the
unconstrained solution is obtained and the final solution is
calculated by iteration, considering the constraints imposed
on all future state and control variables. Given the receding
horizon control law, after computing the vector 1U (k),
only the first element of the control movement 1u(k),
is implemented in the system.

E. SUPERCAPACITOR VOLTAGE CONTROL STRATEGY
In this study, the control of the SoV is based on the EV’s
upcoming acceleration. In [34] and [31], SoVref was set at
a fixed value of 0.75; in [61], it is determined by the EV’s
current speed; and in [21], it is computed based on the energy
demand during braking. In this study, the value of SoVref
is equal to SoVmax , which is set to 1. However, the SoV
does not always follow SoVref because the weighting factor
λ1 changes based on the upcoming acceleration of the EV.
It is assumed that the speed at the next time-step (k + 1) is
known. Thus, the EV’s upcoming acceleration, a, is defined
in (25).

a = (VEV (k + 1|k) − VEV (k|k))/T (25)

where VEV (k|k) is the current speed, and VEV (k + 1|k) is
the upcoming speed at the next time-step. In the proposed
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FIGURE 6. Block diagrams of the EV model and the LPV-MPC-based IEMS implemented in the RTDS.

strategy, λ1 changes according to a, by using (26).

λ1 =

{
1, if a ≥ 0
0, otherwise.

(26)

As an EV is close to increasing its speed, it is essential to have
SC adequately charged before the EV requests a significant
amount of power [21]. In acceleration mode, the power
demand is positive, causing the SC to discharge rapidly,
resulting in voltage reduction. Consequently, it is essential
to prevent the SC from fully discharging and maintaining
its SoV at a high level. Similarly, during vehicle idling, the
SC should be sufficiently charged by the battery to deliver
the required power at the start time. Therefore, when a >

0 or a = 0, λ1 is set to 1, leading to SoV → SoVref ,
which is set to SoVmax . This method ensures that the SC
is prevented from fast discharging and is charged to its
maximum voltage, enabling it to be ready for efficient peak
power delivery. Conversely, when the speed decreases, λ1 is
set to 0, allowing the SoV to vary freely. This enables the
SC to supply power efficiently or to capture the energy
produced by regenerative braking. Despite the simplicity
of the proposed technique for controlling the SC voltage,
it demonstrates outstanding performance in reducing battery
current fluctuations as well as battery capacity and energy
loss, outperforming other EMSs.

IV. REAL-TIME VALIDATION AND COMPARISON
A. IMPLEMENTATION CONFIGURATION
The proposed LPV-MPC-based IEMS is simulated in MAT-
LAB/Simulink, and implemented in the RTDS along with the
HESS model and the electrochemical battery cell. As shown
in Fig. 6, to achieve more realistic results the electrochemical
battery cell of MapleSim serves as a high-fidelity model
for generating battery voltage and SoC. The RTDS is a
dSPACE SCALAXIO 9HE processor with an Intel Xeon
E4-1275 V3 CPU. Two drive cycles of the Worldwide
Harmonized Light Vehicles Test Cycle (WLTC) class 2 and

FIGURE 7. Speed drive cycles. (a) WLTC class 2. (b) UDDS (FTP-72).

the Urban Dynamometer Driving Schedule (UDDS) or
the FTP-72 were selected as speed profiles, as shown in
Fig. 7. Power demand is computed based on the drive
cycle and EV powertrain model (B-class hatchback electric
RWD), as presented in [45]. The LPV-MPC solves the QP
optimization problem and determines the increment of the
control variable for future Nc steps, whose first element,
1u(k), is selected as the optimal value, which is the increment
of the battery current. After computing 1Ib(k), the values of
Ib(k) and Isc(k) are obtained, which in turn determine SoV (k),
η(k), and RC model parameters. In addition, the MapleSim
electrochemical model provides Vb(k) and SoC(k). The
parameters of the HESS vary at each time-step, updating the
state-space matrices, and this cycle continues.

B. HESS CHARACTERISTICS
The parameters of the battery cell RC model were extracted
based on the specifications of the NCR18650B battery,
as described in TABLE 1. To estimate the RC model
parameters, the MapleSim electrochemical model of the
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TABLE 1. Battery cell specifications [44].

TABLE 2. Supercapacitor cell specifications [57].

TABLE 3. Parameters of the supercapacitor cell Faranda model [57].

battery cell was used as the high-fidelity model. The
parameters were calculated by measuring the cell terminal
voltage using the discharge pulse current method during the
relaxation time [44]. The pulse amplitude was set to the
cell C-rate (3.25 A), and its duration was 72 s, causing
the SoC to decrease by 2% for each pulse. Once the
voltage curve was obtained, a curve-fitting method was
applied to calculate the parameters for each SoC value.
Subsequently, another curve-fitting method was applied to
represent the RC parameters versus SoC. The accuracy of
the obtained model was verified by implementation in the
RTDS, resulting in an error of 0.052% in the root mean
square percentage error (RMSPE) of the terminal voltage,
as compared to the MapleSim electrochemical model [44].
The number of series and parallel arrays of the battery pack
is 100 and 30, respectively. Hence, the total energy of the
battery pack when it is fully charged (SoC=1) is 40.8 kWh,
which is similar to that of the 2023 Nissan LEAF S with
a battery pack capacity of 40 kWh. The parameters of the
SC dynamic model are based on the characteristics of SC
Maxwell BCAP3000, 3000F, 2.7V, whose parameters are
listed in TABLE 2. The parameters of the SC model are
obtained by a single fast current-controlled charge/discharge
test, where a constant current charges the SC to its rated
voltage, and then it is left to rest. Using the measured
voltage and current data, the parameters were computed,
as listed in TABLE 3, and the accuracy of the SC model
was demonstrated [57]. The number of series and parallel
SC cells is 50 and 1, respectively. Given the cell mass and
specific energy, the total energy capacity of the SC pack
is 0.152 kWh.

FIGURE 8. RMS of the battery current versus the prediction horizon under
two drive cycles. (a) WLTC. (b) UDDS.

C. LPV-MPC PARAMETERS
The LPV-MPC and the QP optimization problem are
self-coded using the MATLAB function block. This function
can be employed to generate the C-code through a Simulink
coder and an embedded coder for implementation in the
RTDS. In the LPV-MPC, the discrete sample time, T , is set
to 1 s, similar to that in [25], [34], and the simulation time-step
is set as 200 ms. The prediction horizon and control horizon
are both set to be equal and defined according to the RMS of
the battery pack current, Ib,rms, as given in (27).

Ib,rms =

√
1

Tend

∫ Tend

0
I2b (t)dt (27)

where Tend denotes the drive cycle duration. Fig. 8 shows
the relationship between Ib,rms and Np. A smaller prediction
horizon leads to higher Ib,rms, whereas Ib,rms gradually
decreases with increasing in Np. At Np = 8, Ib,rms reaches
its optimum value. Because the anticipated power demand is
known only at the next prediction time-step with a large Np,
there is a significant error between the actual and anticipated
power demand. Moreover, a larger Np imposes a heavier
computational burden without significantly reducing the cost
function [34], [62]. Therefore, the prediction horizon and
control horizon are set to 8, resulting in smaller Ib,rms.
According to λ1 defined in (26), the value of λ2 is set to 1
so that f1 and f2 have the same weight, and the weighting
factor λ3 is set to 0.02, to minimize Ib,rms. In the optimization
problem, SoCmin and SoCmax are set to 0.2 and 1, respectively,
and the cell maximum charge and discharge currents are set
to 0.5 and 1 C-rate (3.25 A), respectively. Since the RCmodel
capacitors can be fully discharged, the v1,min and v2,min are set
to 0, and v1,max and v2,max are set to the maximum voltage of
the cell which is 4.185 V. For the SC, SoVmin and SoVmax are
set to 0.5 and 1, respectively. The initial SoC and SoV are
set to 0.9. After implementing the HESS model and IEMS
in the RTDS, the computation times in milliseconds [ms]
for both drive cycles are shown in Fig. 9. It is evident that
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FIGURE 9. Computation time in the RTDS under (a) WLTC. (b) UDDS.

FIGURE 10. Voltage of the battery pack RC model and electrochemical
model in MapleSim. (a) WLTC. (b) UDDS.

this time is significantly shorter than the simulation time-
step (200 ms). The terminal voltages of the RC model and
the electrochemical model of the battery in MapleSim under
the WLTC are depicted in Fig. 10(a), and those under the
UDDS are shown in Fig.10(b). The electrochemical and RC
models closely resemble each other, with the error for both
drive cycles being 0.03%. Thus, the RC model is sufficiently
accurate for use as an LPV model. The battery pack and SC
pack currents under theWLTC are shown in Fig. 11, and those
under UDDS drive cycles are shown in Fig. 12. It is evident
that the fluctuations in the battery pack current are smaller
than those in the SC pack current, and the battery current
constraint is satisfied. The SoV of the SC for both drive cycles
is shown in Fig. 13. In both cases, the SoV is consistently
greater than 0.5 and varies based on the power demand and
λ1, which depends on the upcoming acceleration.

To conduct a precise analysis, a detailed view of the speed,
λ1, power flows, and SoV for the WLTC and UDDS drive
cycles are presented in Fig. 14 and 15, respectively. Under the
WLTC in Fig. 14, from 1222 s to 1262 s, the speed decreases.
Therefore, according to (26), λ1 = 0, and there is no control

FIGURE 11. Currents of (a) the Battery pack and (b) the SC pack under
WLTC.

FIGURE 12. Currents of the (a) Battery pack and (b) the SC pack under
UDDS.

FIGURE 13. State-of-Voltage (SoV) under both drive cycles (a) WLTC.
(b) UDDS.

over the SoV. Initially, the power demand is positive, but
the SC power flow is negative. Hence, the SC captures the
energy produced during braking. Subsequently, at 1262 s,
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FIGURE 14. Results under WLTC drive cycle for (a) EV’s speed and λ1,
(b) Power flows, and (c) SoV.

the speed increased, leading λ1 = 1. The power demand is
positive, necessitating that the SC supply the required power
and assist the battery. Thus, from 1262 to 1307 s, the SC is
under discharge and provides energy, leading to a reduction in
the SoV. Note that λ1 is set to 1 to prevent the SC from being
completely and quickly discharged. Similarly, from 1307 to
1333 s, the speed decreases, and the power demand becomes
negative. Consequently, the supercapacitor is charged and
stores energy during regenerative braking.

Referring to Fig. 15, under the UDDS, when the speed
decreases (for t in the range of 112 s to 125 s), λ1 = 0 and
there is no control over the SoV. However, following the
cost function for minimizing the battery current stress and
taking into account the negative power demand, the SoV
increases. This means that the SC captures energy during
regenerative braking and is charged. Subsequently, between
125 s and 163 s, when the EV is in idling mode and upcoming
acceleration is zero (resulting in zero power demand), λ1 is
set to 1. During this time frame, the SC is charged by the
battery (SoV → 1) to deliver the required power when the
EV starts to move. Then, from 163 to 172 s, the speed begins
to increase, and λ1 is still 1. However, the power demand
becomes positive. During this period, the SoV decreases as
the SC assists the battery in supplying the required power.
Similarly, from 172 s onwards, the speed decreases, and
λ1 becomes 0; the SC is recharged owing to the negative
power demand of regenerative braking. This charging and
discharging cycle of the SC continues throughout the entire
route.

D. COMPARISON TO OTHER METHODS
The performance of the proposed LPV-MPC-based IEMS
was assessed through a comparison with various EMSs based
on five evaluation factors: the battery pack RMS and peak
current, battery ampere-hour throughput, capacity loss of the
battery cell, and energy loss of the battery pack. These factors
have been widely used for evaluating battery degradation
in EV applications [10], [33], [34], [40], [41], [42]. The

FIGURE 15. Results under UDDS drive cycle for (a) EV’s speed and λ1,
(b) Power flows, and (c) SoV.

RMS current of the battery pack, defined in (27), is the
most important factor for evaluating battery degradation.
Moreover, the battery cell capacity loss Qloss, as defined
in (28), is a commonly adopted approach for evaluating the
battery lifespan [34], [40], [41], which is a semi-empirical
technique based on the Arrhenius degradation model [41].

Qloss = A · exp(
Ea + B · Crate

R · Tbat
) · (Ah)z (28)

where A is the pre-exponential factor, Crate is the dis-
charge/charge rate,B is the compensation factor at C-rate,R is
the gas constant, Tbat is the absolute temperature, Ah is the
Ampere-hour throughput, and z is the time factor [41]. The
factor of the battery ampere-hour throughput from t0 to t is
defined in (29), which was also utilized in [10] and [33] to
evaluate the performance of the MPC in battery degradation.

Ah =
1

3600

∫ t

t0
|Ib(t)|dt (29)

Another factor for evaluating the battery degradation, which
is used in [34], is the energy loss of the battery pack,
as defined in (30).

Eloss =

∫ t

t0
Ploss(t)dt (30)

The EMSs are verified under two drive cycles of the WLTC
and UDDS. Their results are provided in TABLE 4, where
the first method used for comparison is the LPV-MPC
method of [34], in which SoVref = 0.75, and for a
meaningful comparison, the power demand prediction at the
next time-step is taken into account. The second method
is the LTI-MPC, which utilizes a fixed state-space model
and SoVref = 0.75. The third method is the LPV-
MPC, in which the SoVref varies based on the current
speed, according to the method presented in [61], using√
1 − VEV /VEV ,max , where VEV and VEV ,max are the EV’s

current and maximum speed, respectively. The fourth and
fifth methods are filter-based [45] and deterministic rule-
based methods [13]. Given TABLE 4 under both drive cycles,
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TABLE 4. Comparison of different EMSs on battery degradation under two drive cycles.

for the proposed LPV-MPC-based IEMS, the battery RMS
current, discharge peak current, ampere-hour throughput,
capacity loss, and energy loss of the battery were smaller
than those of the other methods. Under the WLTC, in a
comparison with [34], Ib,rms is reduced by up to 18.82%,
and the discharge and charge peak currents are reduced
by up to 30.26% and 25.85%, respectively. Moreover, the
ampere-hour throughput, capacity loss, and energy loss
of the battery are reduced 9.71%, 4.78%, and 29.06%,
respectively. Similarly, under the UDDS drive cycle, the
proposed LPV-MPC-based IEMSmaintains its superiority by
reducing Ib,rms, discharge and charge peak currents, ampere-
hour throughput, and capacity and energy losses to 12.71%,
30.35%, 31.94%, 4.35%, 3.46%, and 19.22%, respectively.
This result demonstrates that considering the upcoming
speed in the LPV-MPC leads to a lower RMS current and
battery capacity loss, thereby contributing to a more efficient
battery lifespan compared to other methods. This remarkable
performance is primarily attributed to the utilization of the
LPV model for the HESS and the introduction of the new
SoV control strategy based on the expected acceleration of
the EV.

V. CONCLUSION
In this study, an LPV-MPC-based IEMS is developed to split
the load power between the battery and SC packs, while
also extending the battery lifetime. The dynamic model of
the battery is used to develop the prediction model within
the LPV-MPC framework. The state-space model matrices
are updated at each time-step based on the SoC and SoV
of the battery and the SC, respectively. The control issue is
transformed into an inequality-constrained QP optimization
problem, which is implemented in the RTDS. The proposed
approach incorporates upcoming acceleration into SoV
control, effectively enhancing SC utilization and reducing
battery current stress. The proposed method was compared
with various EMSs by measuring the RMS current, peak
current, ampere-hour throughput, capacity loss of the battery
cell, and energy loss of the battery pack. The substantial
reductions observed in these evaluation factors demonstrate
the superiority of the proposed IEMS in EV applications
compared to others.

REFERENCES
[1] S. Habib, M. M. Khan, F. Abbas, L. Sang, M. U. Shahid, and H. Tang,

‘‘A comprehensive study of implemented international standards, technical
challenges, impacts and prospects for electric vehicles,’’ IEEE Access,
vol. 6, pp. 13866–13890, 2018.

[2] J. Park, Y. L.Murphey, andM. A.Masrur, ‘‘Intelligent energy management
and optimization in a hybridized all-terrain vehicle with simple on–off
control of the internal combustion engine,’’ IEEE Trans. Veh. Technol.,
vol. 65, no. 6, pp. 4584–4596, Jun. 2016.

[3] A. K. Karmaker, M. A. Hossain, H. R. Pota, A. Onen, and J. Jung, ‘‘Energy
management system for hybrid renewable energy-based electric vehicle
charging station,’’ IEEE Access, vol. 11, pp. 27793–27805, 2023.

[4] E. Schaltz, A. Khaligh, and P. O. Rasmussen, ‘‘Influence of bat-
tery/ultracapacitor energy-storage sizing on battery lifetime in a fuel
cell hybrid electric vehicle,’’ IEEE Trans. Veh. Technol., vol. 58, no. 8,
pp. 3882–3891, Oct. 2009.

[5] S. Pay and Y. Baghzouz, ‘‘Effectiveness of battery-supercapacitor
combination in electric vehicles,’’ in Proc. IEEE Bologna Power Tech
Conf., vol. 3, 2003, p. 6. [Online]. Available: https://ieeexplore.ieee.org/
document/1304472

[6] X. Luo, J. V. Barreras, C. L. Chambon, B. Wu, and E. Batzelis,
‘‘Hybridizing lead–acid batteries with supercapacitors: A methodology,’’
Energies, vol. 14, no. 2, p. 507, Jan. 2021.

[7] M. Uno and K. Tanaka, ‘‘Influence of high-frequency charge–discharge
cycling induced by cell voltage equalizers on the life performance
of lithium-ion cells,’’ IEEE Trans. Veh. Technol., vol. 60, no. 4,
pp. 1505–1515, May 2011.

[8] Z. Song, H. Hofmann, J. Li, J. Hou, X. Han, and M. Ouyang, ‘‘Energy
management strategies comparison for electric vehicles with hybrid energy
storage system,’’ Appl. Energy, vol. 134, pp. 321–331, Dec. 2014.

[9] T. Mesbahi, F. Khenfri, N. Rizoug, P. Bartholomeüs, and P. L. Moigne,
‘‘Combined optimal sizing and control of Li-ion battery/supercapacitor
embedded power supply using hybrid particle Swarm–Nelder–Mead
algorithm,’’ IEEE Trans. Sustain. Energy, vol. 8, no. 1, pp. 59–73,
Jan. 2017.

[10] X. Lu and H. Wang, ‘‘Optimal sizing and energy management for cost-
effective PEV hybrid energy storage systems,’’ IEEE Trans. Ind. Informat.,
vol. 16, no. 5, pp. 3407–3416, May 2020.

[11] R. Ostadian, J. Ramoul, A. Biswas, andA. Emadi, ‘‘Intelligent energyman-
agement systems for electrified vehicles: Current status, challenges, and
emerging trends,’’ IEEE Open J. Veh. Technol., vol. 1, pp. 279–295, 2020.

[12] A. K. Gautam, M. Tariq, J. P. Pandey, K. S. Verma, and S. Urooj,
‘‘Hybrid sources powered electric vehicle configuration and inte-
grated optimal power management strategy,’’ IEEE Access, vol. 10,
pp. 121684–121711, 2022.

[13] J. P. Trovão, P. G. Pereirinha, H. M. Jorge, and C. H. Antunes, ‘‘A multi-
level energy management system for multi-source electric vehicles—
An integrated rule-basedmeta-heuristic approach,’’Appl. Energy, vol. 105,
pp. 304–318, May 2013.

[14] B. Wang, J. Xu, B. Cao, and X. Zhou, ‘‘A novel multimode hybrid energy
storage system and its energy management strategy for electric vehicles,’’
J. Power Sources, vol. 281, pp. 432–443, May 2015.

[15] Y. Liu, Z. Yang, X. Wu, D. Sha, F. Lin, and X. Fang, ‘‘An adaptive energy
management strategy of stationary hybrid energy storage system,’’ IEEE
Trans. Transport. Electrific., vol. 8, no. 2, pp. 2261–2272, Jun. 2022.

51038 VOLUME 12, 2024



M. Rezaei Larijani et al.: LPV-MPC for Intelligent Energy Management in Battery/SC EVs

[16] H. Yin, W. Zhou, M. Li, C. Ma, and C. Zhao, ‘‘An adaptive fuzzy
logic-based energy management strategy on battery/ultracapacitor hybrid
electric vehicles,’’ IEEE Trans. Transport. Electrific., vol. 2, no. 3,
pp. 300–311, Sep. 2016.

[17] Q. Zhang, F. Ju, S. Zhang, W. Deng, J. Wu, and C. Gao, ‘‘Power
management for hybrid energy storage system of electric vehicles
considering inaccurate terrain information,’’ IEEE Trans. Autom. Sci. Eng.,
vol. 14, no. 2, pp. 608–618, Apr. 2017.

[18] L. Sun, K. Feng, C. Chapman, and N. Zhang, ‘‘An adaptive power-split
strategy for battery–supercapacitor powertrain—Design, simulation, and
experiment,’’ IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9364–9375,
Dec. 2017.

[19] O. Salari, K. Hashtrudi-Zaad, A. Bakhshai, M. Z. Youssef, and P. Jain,
‘‘A systematic approach for the design of the digital low-pass filters for
energy storage systems in EV applications,’’ IEEE J. Emerg. Sel. Topics
Ind. Electron., vol. 1, no. 1, pp. 67–79, Jul. 2020.

[20] C. Chang, W. Zhao, C. Wang, and Y. Song, ‘‘A novel energy management
strategy integrating deep reinforcement learning and rule based on
condition identification,’’ IEEE Trans. Veh. Technol., vol. 72, no. 2,
pp. 1674–1688, Feb. 2023.

[21] M.-E. Choi, J.-S. Lee, and S.-W. Seo, ‘‘Real-time optimization for power
management systems of a battery/supercapacitor hybrid energy storage
system in electric vehicles,’’ IEEE Trans. Veh. Technol., vol. 63, no. 8,
pp. 3600–3611, Oct. 2014.

[22] C. M. Martinez, X. Hu, D. Cao, E. Velenis, B. Gao, and M. Wellers,
‘‘Energy management in plug-in hybrid electric vehicles: Recent progress
and a connected vehicles perspective,’’ IEEE Trans. Veh. Technol., vol. 66,
no. 6, pp. 4534–4549, Jun. 2017.

[23] Z. Chen, C. C. Mi, J. Xu, X. Gong, and C. You, ‘‘Energy management
for a power-split plug-in hybrid electric vehicle based on dynamic
programming and neural networks,’’ IEEE Trans. Veh. Technol., vol. 63,
no. 4, pp. 1567–1580, May 2014.

[24] F. R. Salmasi, ‘‘Control strategies for hybrid electric vehicles: Evolution,
classification, comparison, and future trends,’’ IEEE Trans. Veh. Technol.,
vol. 56, no. 5, pp. 2393–2404, Sep. 2007.

[25] B.-H. Nguyen, T. Vo-Duy, M. C. Ta, and J. P. F. Trovão, ‘‘Optimal energy
management of hybrid storage systems using an alternative approach of
Pontryagin’s minimum principle,’’ IEEE Trans. Transp. Electrific., vol. 7,
no. 4, pp. 2224–2237, Dec. 2021.

[26] F. Odeim, J. Roes, and A. Heinzel, ‘‘Power management optimization of a
fuel cell/battery/supercapacitor hybrid system for transit bus applications,’’
IEEE Trans. Veh. Technol., vol. 65, no. 7, pp. 5783–5788, Jul. 2016.

[27] A. Biswas and A. Emadi, ‘‘Energy management systems for electrified
powertrains: State-of-the-art review and future trends,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 7, pp. 6453–6467, Jul. 2019.

[28] F. Xu and T. Shen, ‘‘Look-ahead prediction-based real-time optimal energy
management for connected HEVs,’’ IEEE Trans. Veh. Technol., vol. 69,
no. 3, pp. 2537–2551, Mar. 2020.

[29] Q. Li, P. Liu, X. Meng, G. Zhang, Y. Ai, and W. Chen, ‘‘Model prediction
control-based energy management combining self-trending prediction and
subset-searching algorithm for hydrogen electric multiple unit train,’’ IEEE
Trans. Transp. Electrific., vol. 8, no. 2, pp. 2249–2260, Jun. 2022.

[30] X. Liu, Y. Suo, Z. Zhang, X. Song, and J. Zhou, ‘‘A new model predictive
current control strategy for hybrid energy storage system considering the
SOC of the supercapacitor,’’ IEEE J. Emerg. Sel. Topics Power Electron.,
vol. 11, no. 1, pp. 325–338, Feb. 2023.

[31] P. Golchoubian and N. L. Azad, ‘‘Real-time nonlinear model predictive
control of a battery–supercapacitor hybrid energy storage system in electric
vehicles,’’ IEEE Trans. Veh. Technol., vol. 66, no. 11, pp. 9678–9688,
Nov. 2017.

[32] B. Hredzak, V. G. Agelidis, and G. Demetriades, ‘‘Application of explicit
model predictive control to a hybrid battery-ultracapacitor power source,’’
J. Power Sources, vol. 277, pp. 84–94, Mar. 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378775314020151

[33] L. Wang, Y. Wang, C. Liu, D. Yang, and Z. Chen, ‘‘A power distribution
strategy for hybrid energy storage system using adaptive model predictive
control,’’ IEEE Trans. Power Electron., vol. 35, no. 6, pp. 5897–5906,
Jun. 2020.

[34] C. Jia, J. Cui, W. Qiao, and L. Qu, ‘‘Real-time model predictive control
for battery-supercapacitor hybrid energy storage systems using linear
parameter-varying models,’’ IEEE J. Emerg. Sel. Topics Power Electron.,
vol. 11, no. 1, pp. 251–263, Feb. 2023.

[35] A. Taghavipour and S. Moghadasi, ‘‘A real-time nonlinear CRPE
predictive PHEV energy management system design and HIL evaluation,’’
IEEE Trans. Veh. Technol., vol. 70, no. 1, pp. 49–58, Jan. 2021.

[36] F. Zhou, F. Xiao, C. Chang, Y. Shao, and C. Song, ‘‘Adaptive model
predictive control-based energymanagement for semi-active hybrid energy
storage systems on electric vehicles,’’ Energies, vol. 10, no. 7, p. 1063,
Jul. 2017. [Online]. Available: https://www.mdpi.com/1996-1073/10/7/
1063

[37] H. Wang, Y. Huang, H. He, C. Lv, W. Liu, and A. Khajepour, ‘‘Energy
management of hybrid electric vehicles,’’ in Modeling, Dynamics and
Control of Electrified Vehicles, H. Zhang, D. Cao, and H. Du, Eds.
Bedford, U.K.: Cranfield Univ., 2018, ch. 5, pp. 159–206. [Online].
Available: https://www.sciencedirect.com/science/article/abs/pii/B9780
128127865000057

[38] S. D. Cairano, D. Bernardini, A. Bemporad, and I. V. Kolmanovsky,
‘‘Stochastic MPC with learning for driver-predictive vehicle control and
its application to HEV energy management,’’ IEEE Trans. Control Syst.
Technol., vol. 22, no. 3, pp. 1018–1031, May 2014.

[39] M. R. Larijani, M. Zolghadri, S. H. Kia, and A. El Hajjaji, ‘‘Performance
analysis of the lithium-ion battery RC equivalent circuit model using EPA
drive cycles,’’ in Proc. 13th Power Electron., Drive Syst., Technol. Conf.
(PEDSTC), Feb. 2022, pp. 393–397.

[40] Q. Zhang and G. Li, ‘‘Experimental study on a semi-active battery-
supercapacitor hybrid energy storage system for electric vehicle appli-
cation,’’ IEEE Trans. Power Electron., vol. 35, no. 1, pp. 1014–1021,
Jan. 2020.

[41] Z. Song, J. Li, X. Han, L. Xu, L. Lu, M. Ouyang, and H. Hofmann,
‘‘Multi-objective optimization of a semi-active battery/supercapacitor
energy storage system for electric vehicles,’’ Appl. Energy, vol. 135,
pp. 212–224, Dec. 2014. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0306261914008964

[42] L. Timilsina, P. R. Badr, P. H. Hoang, G. Ozkan, B. Papari, and
C. S. Edrington, ‘‘Battery degradation in electric and hybrid electric
vehicles: A survey study,’’ IEEE Access, vol. 11, pp. 42431–42462, 2023.

[43] C. Jia, W. Qiao, J. Cui, and L. Qu, ‘‘Adaptive model-predictive-control-
based real-time energy management of fuel cell hybrid electric vehicles,’’
IEEE Trans. Power Electron., vol. 38, no. 2, pp. 2681–2694, Feb. 2023.

[44] M. R. Larijani, M. Zolghadri, S. H. Kia, and A. El Hajjaji, ‘‘Battery cell
dynamic modeling using the RC equivalent circuit for RTDS frameworks,’’
in Proc. 47th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Oct. 2021,
pp. 1–6.

[45] M. R. Larijani, S. H. Kia, M. Zolghadri, A. El Hajjaji, and A. Taghavipour,
‘‘Modeling and controller design of battery/SC electric vehicles for real-
time energy management,’’ in Proc. IEEE 97th Veh. Technol. Conf. (VTC-
Spring), Jun. 2023, pp. 1–7.

[46] P. Bhattacharyya, A. Banerjee, S. Sen, S. K. Giri, and S. Sadhukhan,
‘‘A modified semi-active topology for battery-ultracapacitor hybrid energy
storage system for EV applications,’’ in Proc. IEEE Int. Conf. Power
Electron., Smart Grid Renew. Energy (PESGRE), Jan. 2020, pp. 1–6.

[47] B.-H. Nguyen, R. German, J. P. F. Trovão, and A. Bouscayrol, ‘‘Real-
time energy management of battery/supercapacitor electric vehicles based
on an adaptation of Pontryagin’s minimum principle,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 1, pp. 203–212, Jan. 2019.

[48] Z. Yang, D. Patil, and B. Fahimi, ‘‘Electrothermal modeling of lithium-ion
batteries for electric vehicles,’’ IEEE Trans. Veh. Technol., vol. 68, no. 1,
pp. 170–179, Jan. 2019.

[49] H.Miniguano, A. Barrado, and A. Lázaro, ‘‘Li-ion battery and supercapac-
itor modeling for electric vehicles based on pulse—Pseudo random binary
sequence,’’ IEEE Trans. Veh. Technol., vol. 70, no. 11, pp. 11378–11389,
Nov. 2021.

[50] M. Adaikkappan and N. Sathiyamoorthy, ‘‘Modeling, state of charge
estimation, and charging of lithium-ion battery in electric vehicle:
A review,’’ Int. J. Energy Res., vol. 46, no. 3, pp. 2141–2165, Mar. 2022.

[51] L. Siguang and Z. Chengning, ‘‘Study on battery management system and
lithium-ion battery,’’ in Proc. Int. Conf. Comput. Autom. Eng., Mar. 2009,
pp. 218–222.

[52] R. R. Kumar, C. Bharatiraja, K. Udhayakumar, S. Devakirubakaran,
K. S. Sekar, and L. Mihet-Popa, ‘‘Advances in batteries, battery modeling,
battery management system, battery thermal management, SOC, SOH, and
charge/discharge characteristics in EV applications,’’ IEEEAccess, vol. 11,
pp. 105761–105809, 2023.

[53] M. Chen and G. A. Rincon-Mora, ‘‘Accurate electrical battery model
capable of predicting runtime and I-V performance,’’ IEEE Trans. Energy
Convers., vol. 21, no. 2, pp. 504–511, Jun. 2006.

VOLUME 12, 2024 51039



M. Rezaei Larijani et al.: LPV-MPC for Intelligent Energy Management in Battery/SC EVs

[54] R. Faranda, M. Gallina, and D. T. Son, ‘‘A new simplified model of double-
layer capacitors,’’ in Proc. Int. Conf. Clean Electr. Power, May 2007,
pp. 706–710.

[55] F. Naseri, E. Farjah, T. Ghanbari, Z. Kazemi, E. Schaltz, and J.-L. Schanen,
‘‘Online parameter estimation for supercapacitor state-of-energy and state-
of-health determination in vehicular applications,’’ IEEE Trans. Ind.
Electron., vol. 67, no. 9, pp. 7963–7972, Sep. 2020.

[56] L. Zubieta and R. Bonert, ‘‘Characterization of double-layer capacitors for
power electronics applications,’’ IEEE Trans. Ind. Appl., vol. 36, no. 1,
pp. 199–205, Jan. 2000.

[57] A. Lahyani, P. Venet, A. Guermazi, and A. Troudi,
‘‘Battery/supercapacitors combination in uninterruptible power supply
(UPS),’’ IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1509–1522,
Apr. 2013.

[58] M. M. Morato, J. E. Normey-Rico, and O. Sename, ‘‘Model predic-
tive control design for linear parameter varying systems: A survey,’’
Annu. Rev. Control, vol. 49, pp. 64–80, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1367578820300250

[59] E. Redondo-Iglesias, P. Venet, and S. Pelissier, ‘‘Modelling lithium-ion
battery ageing in electric vehicle applications—Calendar and cycling
ageing combination effects,’’ Batteries, vol. 6, no. 1, p. 14, Feb. 2020.
[Online]. Available: https://www.mdpi.com/2313-0105/6/1/14

[60] L. Wang, ‘‘Discrete-time MPC with constraints,’’ in Model Predictive
Control System Design and Implementation Using MATLAB®. London,
U.K.: Springer, 2009, pp. 43–84.

[61] R. Carter, A. Cruden, and P. J. Hall, ‘‘Optimizing for efficiency or
battery life in a battery/supercapacitor electric vehicle,’’ IEEE Trans. Veh.
Technol., vol. 61, no. 4, pp. 1526–1533, May 2012.

[62] X. Hu, C. Zou, X. Tang, T. Liu, and L. Hu, ‘‘Cost-optimal energy
management of hybrid electric vehicles using fuel cell/battery health-
aware predictive control,’’ IEEE Trans. Power Electron., vol. 35, no. 1,
pp. 382–392, Jan. 2020.

MORTEZA REZAEI LARIJANI (StudentMember,
IEEE) received the B.Sc. degree in electrical engi-
neering from the Ferdowsi University of Mashhad,
Mashhad, Iran, in 2013, and the M.Sc. degree
in electrical engineering (power electronics and
electrical machines) from the Sharif University
of Technology, Tehran, Iran, in 2015. He is
currently pursuing the cotutelle Ph.D. degree in
electrical engineering with the Sharif University
of Technology and the University of Picardie Jules

Verne (UPJV), Amiens, France.
He is with the Modeling, Information and Systems Laboratory (MIS-

UR4290). His research interests include real-time energy management
in electric vehicles, power electronics, model predictive control, FPGA
programming, and modeling and control of power electronic converters.

SHAHIN HEDAYATI KIA received the M.Sc.
degree in electrical engineering from Iran Uni-
versity of Science and Technology, Tehran, Iran,
in 1998, and the M.Sc. and Ph.D. degrees (Hons.)
in power electrical engineering from the Uni-
versity of Picardie Jules Verne (UPJV), Amiens,
France, in 2005 and 2009, respectively.

From 1998 to 2004, he worked for several
Iranian companies, namely Pars Navard Engineer-
ing Company, AAlipayam Medical Engineering

Company, Saameh Company, and ONA Company. From 2008 to 2009,
he was a Lecturer with Institute Supérieur des Sciences et Techniques
(INSSET), Saint-Quentin, France. FromSeptember 2009 to September 2011,
he was a Postdoctoral Associate with the School of Electronic and Electrical
Engineering of Amiens (ESIEE-Amiens), UPJV. He is currently anAssociate
Professor and a member of the Department of Electrical Engineering and the
Modeling, Information and Systems Laboratory (MIS-UR4290).

MOHAMMADREZA ZOLGHADRI (Senior
Member, IEEE) received the B.Sc. and M.Sc.
degrees in electrical engineering from the Sharif
University of Technology, Tehran, Iran, in
1989 and 1992, respectively, and the Ph.D. degree
in electrical engineering from Institute National
Polytechnique de Grenoble (INPG), Grenoble,
France, in 1997.

In 1997, he joined the Department of Electrical
Engineering, Sharif University of Technology.

From 2000 to 2003, he was a Senior Researcher with the Electronics
Laboratory, SAM Electronics Company, Tehran. From 2003 to 2005, he was
a Visiting Professor with North Carolina A&T State University, USA. He is
currently an Associate Professor and the Head of the Power System Group,
Department of Electrical Engineering, Sharif University of Technology. He is
also the Founder and the Head of the Electric Drives and Power Electronics
Laboratory (EDPEL), Sharif University of Technology. He is the author of
more than 100 publications in power electronics and variable speed drives.
His research interests include the application of power electronics in energy
systems, modeling, and control of power electronic converters and variable
speed drives. He has been a member of the Founding Board of the Power
Electronics Society of Iran (PELSI) and the Chairperson of the Board of
PELSI, since February 2019.

AHMED EL HAJJAJI received the Ph.D. degree in
automatic control and the H.D.R. degree from the
University of Picardie Jules Verne (UPJV), France,
in 1993 and 2000, respectively.

He was the Director of the Professional Institute
of Electrical Engineering and Industrial Comput-
ing, from 2006 to 2012. He is currently a Full
Professor and the Head of the Automatic Control
and Vehicle Research Group, Modeling, Infor-
mation and Systems Laboratory (MIS-UR4290),

UPJV. Since 1994, he has published more than 350 journals and conference
papers in the areas of advanced fuzzy control, fault detection, diagnosis,
and fault tolerant control and their applications to vehicle dynamics, engine
control, power systems, renewable energy conversion systems, and industrial
processes. His research interests include fuzzy control, vehicle dynamics,
fault-tolerant control, neural networks, maglev systems, and renewable
energy conversion systems.

AMIR TAGHAVIPOUR received the B.Sc. and
M.Sc. degrees in mechanical engineering from
the Sharif University of Technology, Tehran,
Iran, in 2007 and 2010, respectively, and the
Ph.D. degree in the design and implementation of
real-time optimal energy management systems for
plug-in hybrid electric vehicles in collaboration
with Toyota Technical Centre North America
and MapleSoft Canada from the Systems Design
Engineering Department, University of Waterloo,

in 2014.
He is currently an Assistant Professor with the Department of Mechanical

Engineering, K. N. Toosi University of Technology. His research interests
include model-based and real-time controller design for mechatronic and
sustainable energy systems, especially energy management systems for
fully electric, hybrid (electric and hydraulic), plug-in hybrid, and fuel
cell-powered vehicles. His research interests include intelligent hybrid and
electric vehicles, automotive systems control, modeling and prototyping,
model predictive control, nonlinear and hybrid systems, and optimization
approaches.

51040 VOLUME 12, 2024


