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ABSTRACT Despite their growing popularity in recent research, most hybrid models that harness the
strengths of both classical time-series analysis and deep learning models have been explored within the
univariate forecasting context. In the econometric domain, where exogenous factors play a crucial role;
there is a pressing need for more studies focusing on multivariate forecasting. This paper introduces
a novel hybrid model, HyBiLSTM. It integrates an ARIMAX GARCHX model for initial forecasting,
followed by a second forecasting phase that addresses the residuals using a bidirectional long short-term
memory model optimized through grey wolf optimization algorithm. The final forecast is a composite
derived from both models. Three quantitative metrics (mean absolute error, root mean square error, and
mean absolute percentage error) assessed the model performance using data that spanned social and
economic variables from July 1, 2019, to December 31, 2022. The results revealed several key findings:
1) The addition of exogenous factors improved the performance of the ARIMA and GARCH models.
2) The BiLSTM variant outperformed other LSTM variants when combined with the ARIMAX GARCHX
model. 3) An analysis using Shapley additive explanations indicated that bitcoin price was influenced
by stock prices, Twitter volume, gold prices, and the Twitter sentiment index. 4) The presence of a
structural break had a significant effect on the model’s forecasting accuracy. Beyond expanding the
academic literature on hybrid models within a multivariate context, this offers valuable practical insights
for investors. Specifically, it analyzes various factors that could serve as early indicators of bitcoin price
fluctuations.

INDEX TERMS LSTM, ARIMAX, GARCHZX, bitcoin, SHAP, bidirectional LSTM.

I. INTRODUCTION

Cryptocurrencies, unlike stocks which are underpinned by
the tangible assets and earnings of companies, lack inherent
value. This absence of intrinsic worth contributes to their
high volatility, as evidenced in 2021 when bitcoin’s value
plummeted by over half before making a remarkable recovery
a few months later. Despite these fluctuations presenting a
significant investment risk, the allure of decentralization, the
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opportunity for investment diversification, the potential for
high returns, and the convenience of 24/7 trading access
continue to draw an increasing number of investors to the
cryptocurrency market. Since its debut in 2009 as the inaugu-
ral decentralized currency, bitcoin has maintained its status as
the most prestigious cryptocurrency. Notable endorsements
such as electric car giant Tesla’s investment in bitcoin and El
Salvador’s groundbreaking move to adopt bitcoin as a legal
tender in 2021 have bolstered its reputation as a digital asset
and a viable currency. To minimize the risk and gain the high-
est return, a dependable and accurate forecasting model that
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encapsulates bitcoin’s unique characteristics, such as high
volatility, non-stationarity, non-linearity and dependency on
numerous factors, is vital.

The quest for effective price prediction models has led
to increased research into multivariate bitcoin price fore-
casting in recent years. Traditional multivariate statistical
time-series models, including the autoregressive integrated
moving average (ARIMA), generalized autoregressive con-
ditional heteroskedasticity (GARCH), and their variants [1],
[2], [3], have been explored owing to their straightforward
interpretation, ease of implementation, and fast computing
times. However, these models often fall short in capturing
the complex, non-stationary, and non-linear dynamics of bit-
coin prices. By contrast, deep learning (DL) models have
shown promising results in addressing these challenges. Long
short-term memory (LSTM) networks, in particular, have
gained popularity for their ability to overcome the diminish-
ing gradient problem, a common issue with recurrent neural
networks (RNNs). This is achieved through the inclusion of
a hidden memory layer that retains long-term dependencies,
allowing the model to more accurately learn patterns within
sequential data sets [1]. Other studied DL models that have
been investigated include adaptive neuro-fuzzy inference sys-
tems [2],; gated recurring units GRUs [3], [4], RNNs [5], [6],
and Multilayer Perceptron [5], [6].

Despite its advantages, LSTM faces challenges in process-
ing multiple features simultaneously. It treats each feature
independently, assigning separate weights and biases using
the same computational graph at a given timestep. Conse-
quently, it produces a hidden state for each feature, which are
then aggregated as input for the subsequent timestep. This
approach complicates the model convergence and extends
its processing time. To overcome these limitations and har-
ness the strengths of classical time-series models and LSTM
for predicting multivariate time-series data, we propose a
hybrid model that combines ARIMAX GARCHX with vari-
ous LSTM variants, including standard LSTM, bidirectional
LSTM, and attention-based layer LSTM. The scarcity of
studies on hybrid models in multivariate forecasting further
inspired our research.

In the context of multivariate forecasting, which requires
the consideration of multiple input variables, our study
emphasizes social and economic factors known to influence
bitcoin prices. This decision was driven by the widespread
availability and comprehensibility of data related to social
and economic factors, increasing the relevance and practi-
cality of this study. Past studies have explored social-based
factors such as Google search trends, tweet sentiments,
tweet volume, Wikipedia search trends, online community
comments [7], [8], [9], [10], [11], [12], [13], [14], [15]
while economic-based factors have included variables such
as the federal funds rate, stock market indexes, gold prices,
oil prices, foreign exchange rates, consumer price indexes,
US dollar indexes, general commodity indexes, US Dollar
supply, US GDP, bonds, producer price indexes, and employ-
ment rate) [7], [8], [9], [10], [11], [16], [17], [18].
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This paper makes several key contributions:

1) It offers an in-depth comparison and evaluation of hybrid
multivariate time-series models, specifically ARIMAX and
GARCHX combined with various LSTM variants (i.e., stan-
dard LSTM, BiLSTM, and attention-based layer LSTM).
To the best of our knowledge, this is the first study to provide
such an in-depth analysis of these models.

2) It utilizes Shapley additive explanation (SHAP) values
to comprehend the effects of exogeneous factors on bitcoin
price forecasting, thereby enriching our understanding or
reinforcing existing knowledge of bitcoin’s complex price
dynamics.

The remaining sections of this paper are structured as
follows: Section II provides a comprehensive overview of
the literature reviews related to our work. In Section III,
we introduce the methodology employed in our research.
Section IV presents the results and discussions. Ultimately,
in Section V, we offer our concluding remarks and explore
potential directions for future research.

Il. RELATED WORKS

A. HYBRID TRADITIONAL STATISTICAL MODEL OF
TIME-SERIES DATA

Hybrid models in time-series data analysis represent a
fusion of two or more forecasting methodologies, designed
to leverage the strengths of various modeling approaches,
while mitigating their individual limitations. These mod-
els have mainly been explored in univariate forecasting,
which, despite its simplicity and relative reliability, often falls
short when addressing complex econometric challenges. This
is primarily attributed to its reliance on a single variable,
underscoring the need for incorporating exogenous factors
to enhance modeling capability and predictive accuracy [19].
Multivariate models using DL generally require more pro-
cessing complexity and longer training times, rendering them
less practical for certain applications. Conversely, classical
time-series models such as ARIMAX and GARCHX, though
simpler and quicker to implement, typically exhibit lower
forecasting accuracy than their DL counterparts. A hybrid
model, therefore, that leverages the advantages of both
methodologies presents a desirable solution. Following [20],
our hybrid model assumes that a time-series y; consists of a
linear component L; and a non-linear component NV;, as spec-
ified in (1).

=L +N, (D

Using two-level forecasting procedures, the first level utilized
ARIMAX GARCHX model to forecast the linear component
of time-series data L, while the second level analyzed the
residuals of that model e; (2) using LSTM variants to forecast
the non-linear pattern Nt. Then, both linear and non-linear
forecasts were combined to obtain the final prediction (3).
Fig. 1 depicts our proposed model.

€t =Yt — it 2)
V=L + N, 3)
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FIGURE 1. Proposed hybrid model.

B. MULTIVARIATE HYBRID TIME-SERIES FORECASTING
MODEL

The ‘““Multivariate hybrid time-series forecasting model”
integrates multiple forecasting techniques and multiple vari-
ables (or series) simultaneously to predict one or more
outcomes effectively. For analyzing the historical impact
of external factors on bitcoin price, the ARIMAX model
has been explored. The general form of ARIMAX (p,d,q)
model [6] can be written as:

¢ (B) (1 — B Y, =00+ 0B + D _aixy  (4)

i=1

where B is the backward shift operator; (1 — B)? is the dif-
ferencing operator of order d to produce stationarity of the
dth differenced data; ¢ (B) = (l — ¢B—¢,B> — ... — ¢,,Bp)
is a moving average polynomial with order p; 6 (B) =
(1 —0,B—0,B> — ... — QqB‘l) is an autoregressive polyno-
mial with order q; ¢1...¢, = the parameters of the
autoregressive part of model; 6y .. .0, = the parameters of
the moving average part; d is a number of times of order
differencing; ¢, is error term; x; is the value of the independent
variable X at time t; a, ¢, 6 = coefficients of the factors,
autoregressive terms, moving average terms; and r refers to
number of factors.

As ARIMAX linearly models the data, the GARCHX
model [21] was added to capture heteroscedastic variances
of highly volatile bitcoin prices. The addition of X on the
standard GARCH model in both the mean and variance of the
model has been reported to improve model forecasting [22].
The mean and variance model can be written as (5) and (6).

1 r
¢ B (1—B Y, =0B)e + > D> Yixeyes (5

s=0 k=1

P q
2 2 2
of =ap+ E a €;_1 + E bjo;_

i=1 j=1

I r
+ Z Z Yksxk,t—s (6)

s=1 k=1
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where r is the number of exogenous variables; / is the lag
length of the exogenous variables; a, b = coefficients of the
autoregressive terms, moving average terms; and Y are the
effects of the exogenous variables on the conditional variance
of the residuals.

C. DEEP LEARNING MODEL: LSTM, BiLSTM, AND
ATTENTION-BASED LAYER LSTM

DL models outperform traditional statistical models in han-
dling complex non-linear patterns and capturing long-term
dependencies within data sets. However, despite their popu-
larity in DL studies, RNNs cannot preserve long sequences
of input, leading to the well-documented issue of long-
term dependency loss [23]. To overcome this, LSTM net-
works were introduced by Hochreiter and Schmidhuber [24].
LSTMs are designed with a three-gate mechanism alongside
memory cells C; within the hidden layers, which significantly
enhance their capacity to preserve information over extended
sequences. The process starts with the update of the candidate
for the new cell states C;. This update is a function of the
hidden state from the previous timestep /;_1, and the input
vector at the current timestep x;, calculated using (7)

Cr = tanh (Weh;—y + Uex; + be) (N

where W,, U, represent the weights of networks and b, are
bias variable value. Then, it computes forget f; and input
i; gates to determine how much contents from the previous
cell C;_; will be erased and how much of values of the new
candidate cell states C‘, combined into the new cell state C;,
using (8), (9) and (10) respectively.

fi =0 (Wrhi—1 + Upxy + by) ®)
ir =0 Wihi—1 + Uix; + b)) ®
Co=fi-Co1+ir- G (10)

where Wy, W;, Uy, U; are the weights of networks; and by,
b; represent the bias variable values. Output hidden states 4,
will then be filtered by output gate o; using (11) and (12) to
decide the value of cell state C; that will go to the output.

0r = 0 (Wohi—1 + Usxs + by) (11)
h[ = O¢ X tanh (C[) (12)

where Wy, are weights of the networks; and b, are bias
variable values. Two activation functions were used here,
namely the sigmoid (o) and the tanh. The prediction of the
next event x;y can be calculated using:

X1 =g (V.hy) (13)

where V is output layer weight matrix and g can be any
activation function that matches the type of the target in data.
A two-layer stacked LSTM (Fig. 2) was proposed as the first
model, based on findings that a two-layer LSTM structure
improves the accuracy of model predictions [25].

The second proposed model is a two-layer stacked
BiLSTM (Fig. 3). The BiLSTM model utilizes two separate
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FIGURE 2. Proposed first model: A two-layer stacked standard LSTM (LSTM).
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FIGURE 3. Proposed second model: A two-layer stacked bidirectional
LSTM (BiLSTM).

hidden layers, each processing data in opposite directions
to account for both past and future data [26]. The output
values from each hidden layer are calculated independently
and subsequently merged to produce the final output. Using
this approach, both past and future information contained in
the data set can be preserved.

The accuracy of LSTM models tends to decrease as the
length of input and output sequences increases. This decline
is attributed to the model’s hidden state being overwritten
repeatedly, which reduces the influence of initial inputs on
subsequent outputs within the sequence. Attention mecha-
nisms [27] seek to correct this by weighting the hidden states
of all available time steps 4y, ..., h; instead of solely relying
on the last hidden state /4, [28]. By assigning different weights
to different hidden states, the model can prioritize the most
relevant parts of the input sequence for making predictions.
Consequently, the output o, can be computed as a weighted
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sum of hidden states, as shown in (14):

t
=Sl (14)
i=1
where attention weight af is computed as follows:
¢ _elscore (i, qr) as)

>y exp(score (hi, q))

while the following (16) for the score function used
Dot-product attention algorithm, selected owing to its com-
puting efficiency and popularity

score (hi. i) = hWag, (16)

where W, represents the weight matrix and the previous
timestep’s output o,_; serves as the query term g;. For our
proposed third (Fig. 4) and fourth models (Fig. 5), an addi-
tional LSTM and application layers were added above the
first and second models. The architecture facilitates a com-
bination of the attention-based layer o, and the LSTM output
h;—1 as the next layer’s input for the current timestep, results
in

7)

X; = concat(os, hy—1)

D. LSTM PARAMETERS OPTIMIZATION: GREY WOLF
OPTIMIZER

To optimize LSTM parameters, the grey wolf optimizer,
a bio-inspired computing algorithm (BIC) influenced by
the natural behavior of animals, birds, insects, and other
organisms, was used. Although BIC algorithms can be
resource-intensive owing to the need for parameter opti-
mization and iterative processes, they excel at uncovering
unknown patterns with less dependence on mathematical
modeling or exhaustive training [29]. The grey wolf opti-
mizer algorithm, inspired by the social structure and hunting
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FIGURE 5. Proposed fourth model: A two-layer stacked attention BiLSTM
(ATT-BiLSTM).

strategies of grey wolves, was selected from among various
BIC algorithms for its proven effectiveness across different
fields and its relative simplicity [30], [31], [32]. In the hier-
archy of a wolf pack, the alpha («) wolf leads and makes
decisions, followed by the beta (8) wolf, who acts as the advi-
sor and enforces discipline. The delta (§) wolf holds a position
above the omega (£2) wolf, who is the lowest-ranking member
and submits to all others. The grey wolf optimizer algorithm
operates through the following steps: 1) each wolf measures
its distance from ¢, B, and § wolves using equations (18)
to (23); and 2) updates its position according to equation (24)
[33].

Dy = 2r.Xy — Xil (18)
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conjunction with the proposed LSTM models.

Dg = ’2?‘2.X}3 —Xl'| (19)
Ds = 2r.Xs — Xi| (20)
X1 =Xy — Ra-ri—a) Dy 21
X =Xg—2a-r1—a)-Dg (22)
X3=Xs —Qa-ri —a)-Ds (23)
X 41 XX +)§2 + X 24)

where X, Xg, and X; are the positions of the search agents
(grey wolves); Dy, Dg, and Ds are distances between the
current position i and the search agents («, B8, 6); r/ and r2
are randomly generated numbers for boundary search space.
Fig. 6 depicted GWO used in our study.

E. SHAPLEY ADDITIVE EXPLANATIONS (SHAP)

Another important contribution of this paper is the usage of
SHAP for model explanation, aimed at identifying the factors
affecting bitcoin price. SHAP was chosen for its three distinct
advantages. First, SHAP is a local interpretable machine
learning (IML) technique that offers flexibility for adaptation
into constant global explanations [34]. This dual capability
allows for both the analysis of specific operational points
and the identification of general trends. Second, the compu-
tation of Shapley values, derived from the average marginal
contribution of each feature across all possible combinations
(or coalitions) including that feature, provides deep insights
into how a particular feature influences the model outcome.
This is invaluable for model refinement and adjustment.
Third, SHAP’s additive feature attribution method fosters
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integration with other IML techniques, such as LIME and
DeepLIFT. The SHAP model can be represented as a linear
combination of the binary variables as follows (25):

M
g(@) =00+ D ¢ (25)
i=1
where g is an explanatory model, z'¢{0, 1}¥ is the coalition
vector, and M is the maximum number of features. The ith
feature either contributes (7 = 1) or does not contribute
(z = 0) to the model. The SHAP value ¢ is of the ith
feature quantifies its contribution and is calculated using the
following formula (26):

S!M — |S| — 1)!
¢i<f,x>=2' P T2 D g (s Ui — £ (51

M!
SCN

(26)

where N is the set of all features, |S| represents the number
of features in feature subset S excluding the ith feature; and
fx (S) represents the result of the machine learning model f
training in feature subset S.

Iil. METHODOLOGY
Research methodology consists of data life cycle manage-
ment, extending to the application of forecasting models.

A. DATA EXTRACTION

As in [2], historical Twitter volume was obtained from bitin-
focharts.com using the keyword “Bitcoin’ (case insensitive).
Google search volume was gathered using the Gtrends library.
The daily closing prices of Bitcoin, oil price, gold price,
and U.S. stock market indexes (S&P 500, NASDAQ, and
Dow Jones Industrial Average) were collected using either
the Quantmod or Quandl libraries. Following prior research
(Chen, 2023) to consider less than four-year date range limit
and Bitcoin price bubbles, the data were collected for the
period between 01/07/2019 and 31/12/2022.

Using Twitter API, we collected 2,000 tweets four times a
day with keyword ““Bitcoin.” HyVADRF (Hybrid VADER-
Random Forest) and GWO algorithms [4] (Fig. 7) was used
to pre-process and classify sentiments of the tweets. The
VADER algorithm eliminates the need for laborious, time
intensity, error prone, and costly manual labeling while the
TF-IDF implementation in this algorithm restricts the terms
used for classification calculations to those relevant to the
data context, resulting in a simpler and faster processing
model. The GWO-Random Forest in the model is appropriate,
considering the advantages of supervised over unsupervised
sentiment analysis [5]. HyVADREF algorithm is divided into
three distinct processes: 1) generating data labeling, 2) select-
ing the best machine learning model, and 3) performing
model optimization using the grey wolf optimizer (Fig. 7).

These sentiments were then converted into continuous data

for the daily Twitter sentiment using (27), following [36].
N ..
SENTI — posmve (27)
Npositive +N

negative
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Algorithm: HyVADRF (Hybrid VADER Random Forest)
Inmput: Twitter dataset T

Outpat: Optimized classifying machine leaming model
Process:

To generate data labelling:
fortel
Clean r from URL links, hasfrag symbols, and irrelevant tweets using RegEx.
Calculate sentiment Compound Value (cv) using VADER library
if cv=>0.05
class = “positive”
elseif cv <= 0.05 and cv >= -0.05
class = “neutral”
else
class = “negative”
end if
end for

To select the best machine learning model:
Create Vector Corpus (1) from the labelled tweets
Clean v by removing punctuations, numbers, stopping words, and stemming
Create a Document Term Matrix (Af) from " using TF-IDF.
Clean M by removing sparse terms using a 98% term sparsity threshold.
Divide A into 70% for train set (\) and 30%: for the test set (D).
for j € (NB,DT RF,SVM)
Train N using f model.
Test the trained model using D
end for
Select the best performance-trained model based on accuracy, precision, recall, and F-score.

To perform model optimization using Grey Wolf Optimizer GWO):

Initialize GWO parameters (i.e. maclieration).

while {=0 < maclteration
Get minnode.size, num. trees, miry and sample fraction values from GWO.
Execute ML train model with min. node. size, num.trees, miry and sample fraction
walues using NV,
Execute ML with D to get accuracy.

end while

Get optimum result of min node size, num. trees, miry and sample fraciion values.

Execute min node size, mum trees, miry, and sample fraction values with & and D,

FIGURE 7. Algorithm for hybrid VADER-random forest.

where Npsirive 1s the total positive tweets on day ¢ and
Nyegarive 18 total negative tweets on day . The daily Twitter
sentiments were then combined with other data (Fig. 8).

B. DATA PREPROCESSING

Preprocessing of the original data set was essential to
address varying data recording methods, missing values, and
non-uniform scales among the features. Given that these daily
data would be used for future time-series predictions, which
largely rely on historical data, missing or incomplete were
handled using linear interpolation from the imputeTS$ library
of R. This method has been shown to yield better results than
the mean substitution method for handling missing values in
time-series data [37]. The data underwent a decomposition
process to observe its seasonality. Outliers are commonly
occurred in time-series data, especially in cryptocurrency,
commodity, and finance [38]. To identify extreme outliers,
descriptive statistics of the data were computed. These out-
liers were retained to preserve the dynamics of each series
caused by exceptional events [38]. However, as dominant
patterns from variances of significant outliers can hide trends,
the logarithmic transformation was used to normalize the
data.

The data set was split into two parts: approximately 85%
for the training data set, 20% of which was used as an LSTM
validation test, and 15% for the test set. Given that the data
sets feature different types of measurements and contain no
negative values, they were scaled to fall within the range
of (0,1). Considering the significant influence of stationarity
on the efficiency of a time-series model [39], it was nec-
essary to confirm the data stationarity using the augmented
Dicker—Fuller (ADF) test for unit root testing. If cases where
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FIGURE 8. Process for data collection.

non-stationarity was detected, differencing was conducted to
de-trend the data. The degree of differencing d was deter-
mined based on the ACF plot pattern. A pattern indicative
of a first-order moving average process with a parameter
of —0.5 suggested over-differencing. Once stationarity was
achieved, data correlations were tested using the Pearson
correlation coefficient. Our analysis included factors that
have been identified in previous studies as influencing bitcoin
price. Principal component analysis (PCA) was utilized to
evaluate the possibility of merging highly correlated factors
into one factor, rather than removing them (Fig. 9).

C. FORECASTING MODELS

The development and validation of the proposed model was
separated into two levels: linear and non-linear components
(Fig. 10). At level 1, the process started by finding the
most suitable ARIMAX (p, d, g) models. The selection of p
and g parameters involved iterating through values pe (0, 5)
and ¢ € (0,5). The best candidates ARIMAX models
were then selected based on their Akaike information crite-
rion (AIC) and Bayesian information criterion (BIC) scores.
These selected models underwent further evaluation using
test data, where the optimal ARIMAX model was determined
by its performance, specifically the RMSE, MAE, and MAPE
scores. Afterward, an ARCH Lagrange multiplier (LM) test
on the residuals of the best-performing ARIMAX model was
conducted. Should an ARCH effect be detected, incorpo-
rating a GARCHX model with the ARIMAX model could
overcome the non-stationarity in the residuals and improve
model performance.

The p and g parameters of the GARCHX (p, ¢) model
were obtained by iterating pe (0, 5) and g € (0, 5). Level 2
utilized the fitted ARIMAX GARCHX model as inputs for
LSTM models. The identification of lags for LSTM, BiL-
STM, ATT_LSTM, and ATT-BiLSTM was achieved using
the partial autocorrelation function (PACF) plot [25]. Differ-
ent combinations of hyperparameters, namely epoch, hidden
nodes, dropout rate, learning rate, and batch size, were
selected through the grey wolf optimization algorithm. The
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FIGURE 9. Data preprocessing.
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FIGURE 10. Methodology.

final forecast was obtained by combining forecasted residuals
from the LSTM model with forecasted values based on the
ARIMAX GARCHX model. Moreover, the SHAP algorithm
was applied to provide global and local explanation of the
ARIMAX GARCHX model predictions.

D. PERFORMANCE MEASUREMENTS

The preliminary data analysis began with assessing the
normal distribution of the data through descriptive statis-
tics, specifically skewness and kurtosis. Subsequently, the
non-stationarity of the data was examined using ADF tests.
A p-value from the ADF test less than 0.05 would indicate a
stationary series. Candidates for the ARIMAX and GARCHX
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models were selected based on their lowest AIC and BIC
values using equations (28) and (29):

-2
AIC = N * (log—likelihood) + 2 x k /N (28)
BIC = =2 x (log—likelihood) + In(N) * k (29)

where k is the number of model parameters; N is the number
of examples in the training data set, and log-likelihood is a
measure of model fit. The optimal ARIMAX, GARCHX, and
LSTM were selected according to their lowest MAE, RMSE,
and MAPE. Lower values in these metrics indicate that the
model’s predicted values are closer to the true values [40].
MAE, RMSE, and MAPE were calculated using the follow-
ing formulas:

1 n
MAE = — 21: i = il (30)

1=
RMSE = lzn] =5l (31)

= | ne 1 Yi — )i
=
2 |vi = i

MAPE = Z—_ (32)

Vi

i=1

where y; is the actual value, y; is the predicted value, Veqn is
the mean of actual value, and n is a total number of data
points. For the ARIMAX model demonstrating the best per-
formance, residual diagnostics were conducted to evaluate the
assumption of non-autocorrelated random stationarity using
the Ljung—-Box Q-statistic test. A returned p-value greater
than 0.05 indicates that the residuals are independent, sug-
gesting a good model fit. Additionally, an ARCH LM test
was performed to detect any ARCH effects. A p-value less
than 0.05 would imply variance heteroscedasticity, indicating
that adding a GARCHX model could improve ARIMAX
performance. The residuals from the best-performing ARI-
MAX GARCHX models served as input data for various
LSTM configurations (LSTM, BiLSTM, ATT-LSTM, and
ATT-BiLSTM) to create a hybrid model. The best hybrid
models were chosen based on the lowest MAE, RMSE,
and MAPE scores. Finally, SHAP values were calculated
to explain the model predictions. For global explanations,
the average absolute SHAP values of a factor were used,
with larger SHAP values indicating greater importance of the
factor to the model. Local explanations used individual obser-
vational data to analyze its effect on the model predictions.

E. MACHINE SPECIFICATION

The system utilized for this study is equipped with a Lenovo
IdeaPad S1145-141IL, featuring a Processor Intel™Core™
15-1035G1 CPU operating at a frequency of 1.00 GHz, which
can reach 1.19 GHz. It boasts 20.0 GB of installed RAM
(19.8 GB usable). This set-up operates on a 64-bit Win-
dows OS, powered by an x64-based processor. The analytical
framework was conducted using RStudio version 1.4.1717,
leveraging various R libraries including Keras, TensorFlow,
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metaheuristicOpt, fastshap, dplyr, imputeTS, rugarch, fore-
cast, Quantmod, Quandl, and Gtrends.

IV. RESULTS

The data collection spanned from July 1, 2019, to December
31, 2022. Using the Quantmod library, we collected 1,280
records of bitcoin’s closing price. Similarly, records for major
stock indexes were collected: 884 for Dow Jones, NASDAQ
(NA), and S&P 500 (SP) each. The Quandl library facil-
itated the acquisition of 906 records of OPEC oil prices,
886 records of gold prices, and 1,280 records of the federal
funds rate. Additionally, data regarding Bitcoin tweet vol-
umes and Google search trends were compiled, amounting to
1,280 records each, sourced from Bitinfocharts.com and the
Gtrends library, respectively. 2,000 tweets were collected for
each date using the Twitter API and binary labeled using the
HyVADRF methodology [30]. These binary labeled tweets
for each date were then transformed into continuous values
to derive a daily sentiment index. In total, 2,131,900 tweets
were collected and pre-processed to construct daily sentiment
index for bitcoin tweets. The final total data set was 1,280
records.

A. DATA INTERPRETATION

The decomposition of the bitcoin price time-series was con-
ducted to analyze its seasonality and trends price (Fig.11).
The monthly average bitcoin price plot revealed no dis-
cernible monthly (a) or yearly (b) seasonality. Furthermore,
the plot of bitcoin’s closing price indicated an absence of
any significant trend. As depicted in Fig 11a, the data curve
for 2019 starts in July, aligning with our data set range from
July 1, 2019, to December 31, 2022.

In contrast to gold prices and stock indexes, the skewness
values for most of the data were positive suggesting longer
right tails compared to their left tails (Table 1). Twitter vol-
ume and the federal funds rate, exhibiting kurtosis greater
than three, are characterized by leptokurtic distributions with
fat tails. This suggests a relatively high occurrence of extreme
values. Conversely, other variables displayed platykurtic dis-
tributions with thinner tails, indicative of fewer extreme
values. Prior to splitting the data into 1,096 records for the
training set and 184 records for the testing set (Fig. 12), alog-
transformation was applied to achieve a more normalized data
set. Given the importance of maintaining the chronological
order of data points in time-series analysis, the data was not
randomized. Such randomization could disrupt the temporal
sequencies and dependencies, causing misleading inferences
about future trends. Both data sets underwent min—max scal-
ing to transform the values into a uniform range (0-1).

Analysis of the original bitcoin price sequence revealed a
unit root across three models, while the first-order difference
sequence of these models successfully passed the ADF test
(Table 2 ). Similarly, all the exogenous factors successfully
passed the ADF test after the first-order difference series
(Table 3).
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FIGURE 11. (a) Monthly average bitcoin price; (b) yearly bitcoin price.
TABLE 1. Dataset descriptive statistic.
Statistics Twitter Sentiment Index Twitter Volume (TV) Google Trends (GT) Oil Price (OIL) Gold Price (GO)
(TSI)
Mean 0.3239 84,421 52.11 69.24 1,745
Median 0.3100 88,890 49.00 66.72 1,780
Maximum 0.5500 363,566 100.00 128.27 2,067
Minimum 0.2100 445 22.00 12.22 1,389
Skewness 0.7636 0.6347 0.6339 0.1472 —0.6466
Kurtosis 2.8637 3.1988 2.6588 2.5293 2.6091
Statistics Dow Jones stock index NASDAQ stock S&P 500 stock index Federal Funds Bitcoin Price
(DI index (NA) (SP) Rate (FFR) (BTC)
Mean 30,679 11,687 3,741 0.8873 26,069
Median 31,063 11,622 3,822 0.1000 19,979
Maximum 36,800 16,057 4,797 4.3300 67,567
Minimum 18,592 6,861 2,237 0.0400 4,971
Skewness —-0.4079 —0.0868 —0.1404 1.2275 0.5788
Kurtosis 23177 1.8535 1.9022 3.5381 1.9790
8 TABLE 2. ADF test results of BTC price.
R /m :
E 5 : T M ‘M M‘LJW"‘- i original sequence first-order difference
g3 il 'w 3 : Model settings Sequence
o / ) ; i ADF p-value ADF p-value
s | Vi w“w\“’”Lr statistic statistic
S e sa | i No intercept term, —0.158 0.598 -10 0.01
T T T T
no trend
e o R e Intercept term with ~ —0.982 0708 -10 0.01
no trend
FIGURE 12. Dataset proportion. Intercept term with —0.656 0.974 -10 0.01
a trend

The ACF plots for both first-order and second-order dif-
ferences in the original data were analyzed to determine the
appropriate d parameter (Fig. 13). The second-order differ-
ence exhibited a pattern similar to that of a first-order moving
average process with a parameter of —0.5 that signifies over-
difference [41]. As a result, the first-order difference was
selected for further analysis.

A correlation test was conducted to explore the relationship
among exogenous factors, revealing that DJI, NA, and SP
stock indexes exhibit high correlation matrixes (Fig. 14).
To eliminate information redundancy arising from these
highly correlated data, PCA was employed to identify uncor-
related variables known as principal components (PCs),
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which are obtained through linear combinations of the origi-
nal variables [42]. This technique allows for the identification
of significant items within these PCs, offering the opportu-
nity to consolidate them in a composite variable if deemed
appropriate. The first PC (PC1) is the most significant, encap-
sulating nearly 32.76% of the total information contained
within the data set (Fig. 15a). The variables contributing most
significantly to PC1 were DJI, NA, and SP, each with loadings
exceeding a threshold of 0.50. This threshold is commonly
used to identify significant items in the components (Fig. 15b)
[43]. Consequently, a composite variable (STO) was created
using the PCA loading values for these indexes. Further PCA
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FIGURE 14. Correlation test before PCA.

analysis revealed that, aside from PC1 and PC2, all other PCs
demonstrated higher variances than observed in the initial
PCA analysis (Figl5a). This increase in variance suggests
that, by assuming PCs with low variance represent noise, the
new data set with the composite variable could enhance the
signal-to-noise ratio. Such enhancement aids in uncovering
underlying patterns within the data more effectively. Mul-
ticollinearity testing, with a variance inflation factor score
below 4.0 [44] was also satisfied (Fig. 16b). The primary
aim of PCA in this context was to address multicollinearity
rather than to reduce its dimensionality. Therefore, once mul-
ticollinearity concerns were alleviated, further examination of
other PCs was deemed unnecessary. Furthermore, all corre-
lation test values of exogenous factors remained below 0.90,
signifying no multicollinearity issues in the data (Fig. 17).
The strongest correlations with bitcoin prices were observed
with stock indexes (—0.33) and gold price (0.16).

B. FITTING MODELS WITH ARIMAX GARCHX

Using a function that traverses p € (0,5) and g € (0,5), various
combinations of p and g orders for ARIMA and ARIMAX
models were explored, with ARIMAX(1,1,1) demonstrating
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TABLE 3. ADF test results of exogenous factors*.

original sequence first-order difference

Exogenous sequence
factors ADF p-value ADF p-value
statistic statistic

TSI -3.791 0.194 —13.398 0.01
vV —4.699 0.010 —13.357 0.01
GT —5.783 0.010 —12.649 0.01
DIJI —-1.857 0.639 —9.134 0.01
NA —0.135 0.990 —9.537 0.01
SP -1.319 0.867 —9.141 0.01
GO -2.011 0.574 —-11.060 0.01
OIL -2.214 0.488 —8.500 0.01
FFR —0.267 0.990 —9.049 0.01

*based on the intercept term with a trend

the best performance among these models (Table 4 ). This
result was supported by ACF and PACF plots. Specifically,
the ACF plot in Fig 18a suggested potential influences from
the first- and fourth-order moving averages, while the PACF
plotin Fig 18b hinted at the likelihood of the first- and fourth-
order autoregression. The adequacy of the ARIMAX(1,1,1)
model was further confirmed by the Ljung—Box test on the
residuals, which indicated satisfactory results for lags at 10,
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FIGURE 17. Correlation test after PCA.

15, and 20. The ARCH LM test, conducted to justify the
inclusion of GARCHX in our model, revealed the presence
of an ARCH effect (Table 5 ). This evidence prompted fur-
ther examination of various GARCH and GARCHX models,
integrated with the ARIMAX(1,1,1) model, by simulating p
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and g values within the same range (0,5). The result using
train data indicated that ARIMAX(1,1,1) sGARCHX(1,3)
yielded the lowest AIC and BIC scores. Similarly, when
evaluated using test data, this model combination resulted in
the lowest RMSE, MAE, and MAPE (Table 6 ). Furthermore,
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TABLE 4. Tentative models.
Models AIC BIC Error Forecasting

RMSE MAE MAPE
ARIMA(1,1,1) —5,22427 —-5174.86  2894.99 2346.00 11.44
ARIMAX(1,1,1) —6,217.40 -6,162.15  2150.79 1924.29 9.92

Note: AIC & BIC are using training data (n = 1,096); MAE, RMSE, and MAPE are using the test data (n = 184)

TABLE 5. Residual tests for arimax (1, 1, 1) model.

Lags Ljung—Box Q Test ARCH LM Test
g Statistic p-value Statistic p-value

Up to lag 10 9.80611 0.4574421 43.078 0.00000482

Up to lag 15 11.611583 0.7081592 45.904 0.00005508

Up to lag 20 16.150464 0.7072469 48.654 0.00034410

TABLE 6. Result of tentative models.
Error Forecasting
Models AIC* BIC*
RMSE** MAE** MAPE**

ARIMAX(1,1,1) sGARCH(1,1) —5.7593 —5.7000 2202.93 2011.85 10.94
ARIMAX(1,1,1) sGARCH(1,3) —5.7686 —5.7001 2204.96 2037.87 10.98
ARIMAX(1,1,1) sGARCHX(1,1) —5.8208 —5.7296 2190.53 2016.68 10.61
ARIMAX(1,1,1) sGARCHX(1,3) —5.9142 —5.8138 2129.75 1961.95 10.47

Note: AIC & BIC are using training data (n = 1,096); RMSE, MAE, and MAPE are using the test data (n = 184)

. 1 I| |_||II I" L

pacf

lag

FIGURE 19. Partial autocorrelation plots of ARIMAX GARCH residuals.

confirming previous findings [42], the inclusion of exogenous
factors in ARIMA and GARCH models enhances their pre-
diction accuracy.
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C. FITTING MODELS WITH LSTM

Using the residuals from the ARIMAX GARCHX model
as the input layer and bitcoin daily closing price as the
output layer, we constructed four LSTM models. Follow-
ing the methodology outlined in [45], the window size
for each LSTM model was determined based on lags that
exceeded the 95% confidence interval in the PACF plot.
From the PACF plot of our model residuals (Fig. 19), a lag
value of 4 was used as the window size. Following [46],
our LSTM model used the ReLU activation function in
their hidden layers and a linear activation function in the
final dense output layer, while Adam was used as LSTM
optimizer.

To optimize the LSTM hyperparameters, a GWO with
80 iterations and a pack of 10 wolves was deployed [47] on
the training data set. The results of this optimization pro-
cess are comprehensively presented in Table 7. Compared to
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TABLE 7. LSTM hyperparameters tuned using the grey wolf optimizer.

Hyperparameter Range Optimized value
LSTM BiLSTM Att-LSTM Att-BiLSTM
Ir.rate [0.00001, 0.1] 0.0002 0.0003 0.0003 0.0003
batch size [1,2,4,8,12,16, 36] 36 1 1 1
nodes [1,128] 50 54 42 33
epochs [35, 50] 47 30 40 44
dropout.rt [0.1,0.9] 0.39 0.37 0.39 0.46
RMSE MAE
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FIGURE 20. Comparison chart results using test data.
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FIGURE 21. Forecasting plot using test data.

the standalone ARIMAX GARCHX (AG) model, the hybrid
models, namely ARIMAX GARCHX LSTM (AG-LSTM),
ARIMAX GARCHX BiLSTM (AG-BiLSTM), ARIMAX
GARCHX ATT-LSTM (AG-ATT-LSTM), and ARIMAX
GARCHX ATT-BiLSTM (AG-ATT-BiLSTM), demonstrated
better predictive performance (Fig. 20). This signifies the
ability of multivariate LSTM to extract features from
non-linear components of time-series data, given that the data
has undergone thorough preprocessing.

Among the evaluated models tested (Table 4, Table 6, and
Fig. 20), the ARIMAX GARCHX BiLSTM model emerged
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as the most accurate, showcasing significantly lower RMSE
and MAE values compared to its counterparts.

As depicted in Fig. 21, the forecasting accuracy deterio-
rated following a sudden drop around day 128 of the test
data. Traditional econometric models, such as ARIMA, typ-
ically assume linear fluctuations in time-series data without
structural breaks. This assumption falls short of capturing the
reality of financial markets. Consequently, the performance
of the ARIMAX GARCHX model, and by extension, the
LSTM models that relied on its residuals, was negatively
affected by extreme events.
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FIGURE 23. Dependence plot of (a) Stock price, (b) Twitter volume, (c) Gold price, and (d) Twitter sentiment index.

D. MODEL EXPLANATION USING SHAP

SHAP values were calculated using the ARIMAX GARCHX
model, with the LSTM model utilizing the residuals. The
global explanation highlighted stock indexes, Twitter volume,
gold price, and Twitter sentiment index as the most influ-
ential factors (Fig 22a). Contrary to previous studies that
emphasized the effect of economic factors on bitcoin price,
our analysis found that federal funds rate, and oil price had
minimal impact on the model output, ranking from positions
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6—7 with mean SHAP values close to 0. This insight led to a
model refinement proposal, suggesting the potential removal
of these factors in future iterations. A detailed breakdown
of how each feature’s specific value influences the model
predictions is illustrated in Fig 22b. For stock indexes, Google
trends, and federal funds rate, high values correlate with
high negative SHAP values, indicating an inverse relationship
with bitcoin price. Conversely, high values of gold price and
Twitter sentiment index correspond to positive SHAP values,
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reflecting their positive association with bitcoin price. The
trends for Twitter volume and oil price were less definitive.
The observation that low values of stock index and federal
funds rate lead to higher model outputs aligns with the notion
that investors might turn to bitcoin when traditional invest-
ments and saving options appear less profitable. However, the
positive correlation between high gold prices and high SHAP
values warrants further investigation owing to its seemingly
contradictory nature.

The dependence plot for a specific factor reveals the impact
that a single factor has on the model predictions. Owing
to its space constraints, we delve into only the four most
important factors. In Fig 23a, stock index is identified as the
primary factor, with its SHAP values plotted on the y-axis
and GO, the secondary factor, represented on the color axis to
highlight interaction effects between stock indexes and gold
prices. When the stock index value is below 0, its impact on
the model estimation of bitcoin price is positive. Conversely,
when stock index exceeds 0, the impact turns negative, indi-
cating a negative correlation between stock prices and bitcoin
price. Furthermore, the presence of high positive gold prices
alongside low stock values intensifies this relationship, and
vice versa. High Twitter volume generally exhibits a positive
correlation with bitcoin price, yet this trend may reverse in
scenarios of significantly high oil prices (Fig. 23b). Depen-
dence plots for both gold prices and the Twitter sentiment
indexes reveal similar patterns, indicating their positive rela-
tionships with bitcoin price (Fig. 23c-d). The relationship of
gold prices and prediction outputs are mostly influenced by
positive oil price values, while the relationship between the
Twitter sentiment index and prediction outputs are primarily
influenced by negative Twitter volume values.

V. CONCLUSION

This paper presents a methodological approach aimed at
predicting the closing price of bitcoin by leveraging both
classical time-series models (ARIMAX, GARCHX) and
advanced DL techniques (various LSTM variants). Among
the tested models, the hybrid ARIMAX GARCHX BiLSTM
model emerged as the most effective in forecasting bitcoin’s
closing price. To further validate and possible enhance the
reliability of this selected model, future research could inves-
tigate alternative model selection methods, such as the model
confidence set procedure. Additionally, a comprehensive
evaluation of the model performance would be invaluable.
Further research might compare forecasts from tentative
models using the Diebold—Mariano test.

It is important to acknowledge the limitations of our
model, notably its exclusion of certain exogenous factors
that could potentially influence bitcoin price. Future studies
could refine the model accuracy by incorporating addi-
tional factors highlighted in previous research. Despite these
limitations, our study benefits from data preprocessing proce-
dures designed to address non-stationarity, a straightforward
predictive methodology, and successful tuning of LSTM
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TABLE 8. Acronyms.

Symbol Description

ACF AutoCorrelation Function

ADF Augmented Dickey—Fuller

ARIMA Autoregressive Integrated Moving Average

AIC Akaike Information Criterion

ARMA Autoregressive Moving Average

BIC Bayesian Information Criterion

BiLSTM Bidirectional LSTM

BTC Bitcoin

DIJI Dow Jones Index

FFR Federal Funds Rate

GARCH Generalized Autoregressive Conditional
Heteroskedasticity

GT Google Trends

GWO Grey Wolf Optimization

LSTM Long Short-Term Memory

NA NASDAQ Index

PACF Partial AutoCorrelation Function

R R is a programming language and open-source
environment that is utilized for traditional
statistical, machine learning, and deep learning
computing and graphics

SHAP Shapley Additive exPlanations

hyperparameters. These strengths contribute to the model
ability to generate accurate predictions, particularly in sce-
narios devoid of sudden, unexpected events.

The observed vulnerability of our model following a struc-
tural break event provides a clear direction for future research.
It underscores the necessity to identify structural breaks in
time-series data by using techniques, such as the iterative
cumulative sum of squares algorithm and the Chow tests.
Incorporating these structural breaks into forecasting models
is crucial for enhancing their predictive accuracy. A recent
study highlights the growing interest among investors in alter-
native cryptocurrencies, such as Ethereum, Ripple, Litecoin,
Stellar, and Dash. This trend underscores the importance
of developing a versatile model that is not limited to a
single cryptocurrency. Future research should explore the
application of systematic processes and algorithms across
a broader range of cryptocurrencies. Additionally, given
the effectiveness of the grey wolf optimizer in fine-tuning
LSTM hyperparameters, it would be insightful to inves-
tigate its potential in optimizing other aspects of LSTM
hyperparameters, such as the number of layers, window
size, optimizer, activation function, and loss function). Ulti-
mately, enhancing our understanding of how exogenous
factors influence model predictions is vital. Exploring alter-
native techniques for assessing factor importance, such as
DALEX and LIME, could provide deeper insights into the
significance of these factors and their implications on model
predictions.

APPENDIX
See Table 8.
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