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ABSTRACT Fast and highly accurate fire detection algorithms are crucial for production and daily life.
However, detecting fires in the early stages is challenging due to the lack of distinct features and fixed shapes
of flames and smoke. To address this issue, we propose a fire detection algorithm, DCGC(Dual Channel
Group Convolution)-YOLO, based on an improved YOLOv5 model. The DCGC-YOLO model introduces
a new layer structure and anchor algorithm to optimize original YOLOv5 model. Firstly, we introduce a
Cross Stage Partial (CSP) structure with a cascade of large convolutional kernels in the bottleneck layer.
This structure increases network’s receptive field, enhances feature extraction capabilities, and employs a
channel cleansing mechanism that combines various channels separated by group convolution, promoting
information exchange in the channel dimension and enabling better information encoding. Next, we integrate
the Effective Squeeze and Extraction (eSE) mechanism into the new layer structure, enhancing the model’s
ability for long-range modeling and focusing more on target areas. Finally, we utilize an Intersection over
Union (IoU)-based anchor generation algorithm to adjust the anchor sizes on custom fire dataset, enhancing
the model’s robustness and improving detection accuracy. Experimental results on our custom fire dataset
demonstrate that the proposed DCGC-YOLO algorithm effectively detects targets with mAP of 41.1%,
which is 2.9% higher than YOLOv5s, while reducing network parameters and computational complexity.
To further validate the effectiveness of our proposed algorithm, we conduct experiments on the COCO2017
dataset. The results show that DCGC-YOLO achieves mAP of 38.9%, demonstrating strong generalization
and competitiveness compared to state-of-the-art detectors.

INDEX TERMS Computer vision, object detection, fire detection, smoke detection, YOLOv5.

I. INTRODUCTION
Fire occurs frequently and in various locations, making
it being one of the most common and widespread dis-
asters that threaten public safety and social development.
According to a report from the National Fire Protection
Association in the United States [1], in 2021, there were
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approximately 1.35 million fires in the country, resulting in
3,800 deaths, 14,700 injuries, and property losses totaling
$15.9 billion. Basically, fire detection methodology can be
roughly organized the following two categories: one is based
on sensor detection [2], [3], [4], and the other is based on
vision detection. Traditional sensor detectionmainly includes
smoke sensors, heat sensors, and gas sensors. They sense
changes in the surrounding environment based on smoke,
temperature, and heat in the air. When these conditions
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reach a certain threshold, these sensors will trigger fire
alarms. Due to the limitations of the working principles
of traditional sensors, they cannot detect fires in the early
stages and have a high rate of false alarms. In addition, they
cannot determine the location of the fire source, and require
regular maintenance and replacement, which increases costs.
With the development of deep learning technology and GPU
computing power, the visual-based fire detection technology
has been rapidly advancing.

Generally, vision-based fire detection techniques can be
seen as a specialized form of object detection task. It captures
videos or images through cameras or other image acquisition
devices, and then uses algorithms for image processing
and analysis to achieve fire detection. Compared with
traditional sensor-based methods, visual-based fire detection
technology has the following advantages: High sensitivity,
Visualization, High precision, Low cost, High flexibility. Raj
and Prabadevi [5], [6]. improved YOLOv7 and improved
the detection accuracy of Steel Tube and Steel Strip. These
characteristics have attracted researchers, and a series of
flame and smoke recognition models have been developed
through research. However, there are many existing strategies
that pursue detection speed but result in a decrease in
accuracy. Balancing detection speed and accuracy is an urgent
problem that needs to be addressed. Many visual-based
fire detection models have been created by scholars, there
are still many problems, such as background environment
interference, changes in lighting intensity, diversity of flame
and smoke shapes, and a lack of large-scale real fire scene
data. These issues can all affect the detection results.

To address these issues, this paper proposes a lightweight
real-time detection algorithm suitable for fire detection. The
algorithm performs well not only on fire datasets but also
on general object detection tasks. We redesigned the network
structure based on the YOLOv5 network, taking inspiration
from ConvNeXt [7] and ShuffleNetV2 [8]. We designed
a large convolutional kernel cascaded dual-channel group
convolution residual structure to effectively capture features
for targets with significant scale variations like fire and
smoke, thus reducing false positives. To further distinguish
fine-grained features between targets and backgrounds,
we proposed a feature optimization module, which includes
the effective Squeeze and Extraction Block (eSEB) [9]
and Channel Shuffle module. The eSEB explicitly models
the inter-channel dependencies in feature maps to enhance
feature representation. The Channel Shufflemodule enhances
information exchange among groups of feature maps,
improving the model’s generalization capability. Addition-
ally, we re-clustered the anchor boxes of the dataset using
the IoU K-means clustering algorithm and accelerated model
convergence by using the CIoU [10] loss function. Finally,
we constructed a fire dataset that includes two categories: fire
and smoke.

In summary, the main contributions of this paper are as
follows:

1) We design a structure that captures target features using
a large convolutional kernel cascaded structure, taking
into account the wide range of target size distributions
in the dataset. Group convolution is employed to reduce
computational complexity.

2) We address the lack of long-range modeling capability
and weakened inter-group information flow in the
aforementioned structure by introducing the eSEB and
Channel Shuffle module. These components effectively
enhance the detection capability and robustness of the
model.

3) We propose an IoU-based K-means algorithm that
replaces Euclidean distance with IoU to measure the
overlap between anchor boxes and annotated boxes,
alleviating the issue of wide target size distribution in
the dataset.

The following section are arranged as follows: Section II
introduces the fire dataset and relatedwork on fire recognition
and datasets in recent years. Section III provides a detailed
description of the proposed algorithm. Section IV conducts
ablation experiments on different algorithms, and analyzes
the experimental results. Finally, the main content and future
research directions of this study are proposed.

II. RELATED WORK
A. TRADITIONAL METHODS FOR FIRE DETECTION
Traditional fire detection methods can be reviewed from
two aspects: literature on sensor devices and literature on
fire image processing techniques. The main types of fire
detection sensor technologies are Heat sensing [11], Gas
Sensing [12], Flame Sensing [13], Smoke Sensing [3], and
Miscellaneous Sensing [14]. Fire detectors based on heat
sensing are typically suitable for indoor environments with
low false alarm rates, but they may not be able to detect fires
in the early stages. Gas sensors detect gases such asCO2,CO,
and HCN that are produced during a fire. They have high
sensitivity but require stable operation in high-temperature
environments, which increases their cost. Flame sensors rely
on the visible light and infrared radiation emitted by flames to
detect the occurrence of a fire. However, they have distance
limitations and can be affected by infrared obstruction and
thermal reflection. Smoke sensors detect the level of smoke
particles in the air but have a higher false alarm rate. They are
generally used in combination with other detection methods.
Traditional fire detection methods struggle to achieve a good
balance between detection cost and accuracy.

Fire detection systems based on sensors are often limited
by the sensors themselves, leading to high false alarm rates
or detection distance limitations [15]. In contrast, methods
based on image processing demonstrate better accuracy.
Traditional visual-based fire detection methods typically
involve the following three steps: 1) fire area identification,
2) extraction of fire or smoke features, and 3) classification
using machine learning techniques. For the first step, several
methods are commonly employed, including: For static

VOLUME 12, 2024 65255



Y. He et al.: DCGC-YOLO: The Efficient Dual-Channel Bottleneck Structure YOLO Detection Algorithm

image detection, the main approach is based on color
methods, including based on color spaces [16], [17], HSV
[18], L*a*b [19], YUV [20], YCbCr [17], [21] and LUV
[22], and the method based on grayscale image [23]. These
methods utilize the distinct color of flames in different
color spaces to identify fire. However, they are susceptible
to lighting variations and can be affected by objects that
resemble fire, which are their limitations.

B. CNN-BASED METHODS FOR FIRE DETECTION
The convolutional neural networks(CNN)-based methods
have become increasingly popular in object detection and
image classification. Compared to traditional detection meth-
ods, CNN-based approaches require less manual intervention
and exhibit strong feature extraction capabilities and good
generalization. In the past few years, many researchers have
developed fire detection models based on CNN architectures.
Methods based on visual detection are generally divided into
two categories. The first is the one-stage detection model,
such as the You Only Look Once (YOLO) series [24], Single
Shot MultiBox Detector (SSD) [25], and RetinaNet [26].
The second is the two-stage detection model, represented
by models such as Faster R-CNN [27], Cascade R-CNN
[28], and Mask R-CNN [29]. Xue et al. [30]. improved
the YOLOv5 [31] algorithm by introducing the CBAM
[32] attention mechanism and adopting BiFPN [33], which
makes the network more focused on fire information.
Xu et al. [34]. used EfficientNet to guide YOLOv5 for
fire recognition to minimize false positives without adding
extra latency. Muhammad et al. proposed a lightweight and
computationally efficient CNN model using the SqueezeNet
architecture [35]. This model achieves a balance between
fire detection speed and accuracy. It has been validated for
deployment in closed circuit television (CCTV) surveillance
networks. Zhao et al. proposed an improved YOLOv4 model
by using EfficientNet as the backbone network and adding
a small object detection layer [36]. The results showed
that it outperformed Faster R-CNN and YOLOv3 in terms
of accuracy on their custom fire dataset. Jandhyala et al.
employed the CNN-based InceptionV3 model for classifying
aerial images and used the Single Shot Detector model to
detect smoke regions [37]. The model was pretrained on the
COCOdataset and fine-tuned on the aerial dataset. It achieved
a classification accuracy of 88% and a detection accuracy
of 91% on the aerial dataset. Wang et al. designed a more
efficient layer aggregation-based video fire detection network
to detect the brightness and chromaticity of flames. This
network improved the detection accuracy by 3.5% on public
datasets and 2.3% on their custom dataset [13].

C. FIRE DATASETS
A dataset is one of the foundations for deep learning models
to recognize patterns. Currently, there is no authoritative,
fully open and deep learning-compatible dataset available for
fire recognition in both academia and industry. Therefore,

constructing a fire dataset is a key element for fire recogni-
tion. So far, some of the mainstream fire datasets that have
been partially open-sourcedmainly containAVI-format video
data or low-resolution images. They include smoke images
with various background interference factors such as different
fire-like objects, long shots, close-ups, night scenes, and
more. The remaining self-built datasets are mostly labeled
with a single category, a single environment, or lack sufficient
data, resulting in limited scene diversity. These limitations
greatly affect the ability of deep learning algorithms to
recognize flames and smoke, leading to decreased accuracy,
poor generalization, and insufficient robustness. Therefore,
constructing a large-scale, multi-scene fire dataset is of great
significance for establishing an efficient fire safety system.
Some of the major fire datasets are shown in Table 1.

Due to the limited availability of open-source datasets for
fires, most existing datasets lack annotations, particularly
in video data, making them suitable only for detection
purposes. Therefore, we have constructured a fire dataset.
The dataset for this experiment is composed of images from
public datasets like ImageNet, VisFire, BoWFire, as well as
flame and smoke images obtained through online searches.
The dataset encompasses scenes such as forest fires, indoor
fires, factory fires, vehicle fires, building fires, outdoor
fires, drone aerial shots, and candle flames. As shown in
Table 2, the dataset consists of 28,260 images, including
22,407 fire images, 17,073 smoke images, 36,463 fire
bounding boxes, and 20,975 smoke bounding boxes. The
training set comprises 16,960 images, while the validation
and test sets each include 5,650 images. Given the non-rigid
nature of flames and smoke, lacking fixed shapes and being
susceptible to human factors during annotation, the experi-
ment employs maximum bounding rectangle annotation to
minimize background information for the targets. Thin edges
of fire and smoke are considered to a certain extent during
annotation.

III. METHODOLOGY
A. YOLOV5 OVERALL REVIEW
YOLOv5 is an excellent target detector with a good balance
between speed and accuracy. YOLOv5 has five different
versions, YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x, which are implemented by adjusting the width
and depth of the network. The backbone of YOLOv5 uses
CSPDarkNet53 and SPPF structure, and the FPN uses PANet
[57] and uses a 1×1 convolutional layer as the prediction head
of YOLOv5. Different network models are implemented by
adjusting the depth and width of the network.

B. THE FRAMEWORK OF DCGC-YOLO
We proposed the DCGCLayer module and modified the
original YOLOv5 specifically for fire detection. The overall
framework of DCGC-YOLO is shown in Figure 1. First,
the input image size is scaled to the interval [320, 960]
(an integer multiple of 32), and then, the input is fed to
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TABLE 1. Comparison of different fire datasets.

TABLE 2. Experimental dataset details.

the feature extraction network with DCGCBlock module,
which increases the perceptual field of the network. Then,
the three feature maps output from the feature extraction
network are input to the feature fusion network, which further
fuses different dimensional features and outputs three feature
vectors rich in semantic information. Finally, the CIoU loss
function is used for back propagation to speed up the model
convergence and improve the robustness of the model.

C. IMPROVE THE STRUCTURE OF DCGCLAYER
1) DCGCLAYER
The DCGCLayer, proposed by us, addresses these issues
by replacing the bottleneck module of the original network
with the DCGCBlock module, which concatenates smaller
convolutional kernels before larger ones. This modifica-
tion increases the network’s receptive field. The YOLOv5
network, enhanced with the DCGCLayer, is capable of
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FIGURE 1. The overall framework of the DCGC-YOLO network is based on YOLOv5, with the proposed DCGCLayer replacing the C3 layer.
CSB = Conv + BN + SiLU, the proposed DCGCLayer is introduced in Section III-C. The YOLO head consists of 1 × 1 convolutional layers.

TABLE 3. Comparison between ordinary convolution and group
convolution.

effectively recognizing smoke and flames with significant
scale variations. Compared to the YOLOv5’s C3 module,
the DCGCLayer exhibits a reduction of 30.6% and 8.4%
in computational and parameter complexity, respectively,
as shown in Table 3.

The schematic diagram of the DCGCLayer is shown in
Figure 2(b). Building upon the YOLOv5’s C3 structure,
we replaced the stacked Block structure and introduced
an additional eSE attention mechanism layer. The structure
of DCGCBlock is depicted in Figure 3(d), employing a
dual-branch CSP design. Branch one consists of a con-
catenation of convolutional BN layers with kernel sizes of
9×9, 3×3, and 1×1 (forming a CBS layer). Branch two is
composed of convolutional BN layers with kernel sizes of
3×3 and 1×1. Both the 9×9 and 3×3 convolutional layers
employ group convolution. This architecture significantly
enhances the network’s receptive field, enabling it to adapt
to objects with substantial size variations. Subsequently, the
two branches are concatenated along the channel dimension.
We avoided the use of addition here because element-wise
addition of feature maps would significantly decrease the
network’s computational speed. Next, the channel shuffle
mechanism is applied to reorganize the feature maps
separated by group convolution, enhancing information flow.
Finally, the output passes through a CBS layer and a residual
layer.

2) ESE ATTENTION
In object detection, the attention mechanism is used to
improve the accuracy and efficiency of the model by

FIGURE 2. (a) C3 model (b) DCGCLayer model.

selectively focusing on the most relevant parts of an image
for object detection.

There are different types of attention mechanisms used
in object detection, but one of the most common is spatial
attention, which focuses on specific regions of the image.
Spatial attention can be used in combination with CNNs,
which are commonly used for object detection, to identify
the most important regions of an image for object detection.
The attention mechanism is used to weight the importance
of different regions of the image based on their relevance for
object detection. Overall, the attention mechanism in object
detection helps to improve the accuracy and efficiency of the
model by selectively focusing on themost relevant parts of the
image for object detection, rather than processing the entire
image indiscriminately.

eSE attention mechanism refers to ‘‘Effective Squeeze
and Extraction’’ which is a type of attention mechanism
proposed in a research paper by authors Jianping He, et al.
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FIGURE 3. (a) BottenNeck (b) RepLK Block (c) ConvNeXt Block
(d) DCGCBlock. The unannotated branches in the diagram are all identity
mappings.

The eSE attention mechanism is designed to improve the
performance of deep CNNs by selectively emphasizing
informative channels in the intermediate feature maps of the
network.

In the eSE attention mechanism, a set of convolutional
layers are used to learn the channel-wise dependencies
between the feature maps of a CNN. The learned depen-
dencies are then used to compute a set of channel attention
weights that selectively emphasize informative channels
while suppressing uninformative ones. The channel attention
weights are multiplied with the feature maps to generate the
final output feature maps.

Compared to other attention mechanisms, eSE attention
is computationally efficient and can be easily integrated
into existing CNN architectures without adding significant
computational overhead. It has been shown to improve the
performance of various image recognition tasks, including
object detection, image classification, and semantic segmen-
tation.

The principle of the eSE attention mechanism is shown in
Figure 4. The input image is first fed into an average pooling
layer - Favg, and then into a 1 × 1 convolutional layer - Wc
(unlike the SE attention mechanism, there is no compression
of the channel dimension, allowing for the preservation of
as much feature map information as possible). Finally, the
output feature map with different weights is obtained through
a h-sigmoid activation function.

The calculation method for the eSE attention mechanism
is as follows:

Xout = XinAeSE (Xin) (1)

AeSE = σ
(
Wc

(
Favg (Xin)

))
(2)

h− sigmoid(x) = max
(
0, min

(
1,

2x + 5
10

))
(3)

FIGURE 4. eSE attention principle.

In Formula (1), Xin and Xout represent the input feature
map and the output feature map, respectively, and AeSE
represents the eSE attention operation. In Formula (2),
Xin represents the input feature map, Favg is the average
pooling layer applied to each channel of the feature map,Wc
is a 1×1 convolutional layer with the number of convolutional
kernels beingC /r (whereC is the input dimension, and in this
paper, r=1). σ represents the h-sigmoid activation function,
and its calculation method is shown in Formula (3).

3) VISUAL RESULTS
To validate the effectiveness of the proposed backbone,
we visualized the 4th, 6th, and 9th layers of both DCGCNet
and CSPDarkNet53, as these three layers serve as input
feature layers for the FPN. Figure 5 shows the visualized
heatmap results of feature extraction. The results indicate that
DCGCNet can extract more effective features. Specifically,
in the 4th and 6th layers, DCGCLayer can preserve more
low-level texture information. Moreover, in the overall output
feature map of the backbone (9th layer), DCGCNet can
generate more important features, whereas CSPDarkNet53
neglects some valuable information.

D. IOU KMEANS
Predefined anchors are crucial for the YOLOv5 detection
algorithm. The default anchors used by the YOLOv5
algorithm are based on the COCO2017 dataset, which
is suitable for general-purpose object detection. However,
in this study, we used a fire dataset where the aspect ratios
of the target sizes vary significantly. Using the default
anchors would lead to reduced detection accuracy. Therefore,
to improve the detection accuracy of flames and smoke,
we employed the IoU kmeans algorithm to calculate the
anchors specific to the fire dataset.

Predefined anchors are crucial for the YOLOv5 detection
algorithm. The default anchors used by the YOLOv5
algorithm are based on the COCO2017 dataset, which
is suitable for general-purpose object detection. However,
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FIGURE 5. The feature maps extracted from DCGCNet (top) and
CSPDarkNet53 (bottom) are visualized. From left to right, the
visualizations show the original image, Feature4, Feature6, and Feature9
heatmap(The feature map numbers are determined based on the Layer
Number specified in Table 4), respectively. In the lower-level feature
maps, DCGCNet can retain more spatial information, while in the
higher-level feature maps, it can extract more semantic information.

TABLE 4. Anchor box size.

in this study, we used a fire dataset where the aspect ratios
of the target sizes vary significantly. Using the default
anchors would lead to reduced detection accuracy. Therefore,
to improve the detection accuracy of flames and smoke,
we employed the IoU kmeans algorithm to calculate the
anchors specific to the fire dataset. The k-means algorithm is
a simple and effective method. When computing anchor sizes
for a dataset using the k-means algorithm, the commonly
used metric is the width and height of the target bounding
boxes (i.e., Euclidean distance), which groups boxes with
similar dimensions into the same cluster. However, this
approach may lead to larger errors in the clusters of larger
boxes compared to smaller boxes. Therefore, using IoU as
the box clustering metric is more reasonable. In this study,
we use 1-IoU as the metric, transforming the optimization
problem frommaximizing to minimizing. Since the YOLOv5
algorithm uses three feature detection layers and each
prediction grid uses three anchors, we have nine clustering
centers for this study. For the shallow feature maps, larger
anchor sizes are used, while for the deep feature maps,
smaller anchor sizes are used. The target boxes from the fire
dataset are used for clustering, and the anchor sizes are shown
in Table 4.

IV. EXPERIMENTS
A. TRAINING DETAILS AND RESULTS
1) TRAINING DETAILS
DCGC-YOLO was pretrained for 300 epochs on the
COCO2017 dataset using the YOLOv5s pretrained weights.
It was then fine-tuned for 300 epochs on the fire dataset.
The initial learning rate was set to 0.01, and cosine

Algorithm 1 IoU Kmeans Algorithm for Anchor Box Size
Input:

B = B1 . . . ,BN , K , n
B is a numpy array containing the width and height of the
bounding boxes in the dataset
N is the total number of bounding boxes in the dataset
K is the number of clusters in the k-means algorithm
n is the maximum number of iterations for the for loop

Output:
Ck

1: Initialization:Ck ∈ CN and LC = 0, count = 0
2: while True do
3: for Bi ∈ BN do
4: for Cj ∈ CN do
5: Di = 1 − IoU(Bi,Cj)
6: end for
7: NC ← min(Dj,k )

Assign each annotated box to the nearest cluster
center based on ‘‘distance’’

8: if (LC) == (NC) then
9: break
10: end if
11: end for
12: for Cj ∈ Ck do
13: Cj← median(Box[NC = k])

Update the cluster centers by using the median of
each class of boxes in the dataset as the new cluster
centers

14: end for
15: LC ← NC
16: count++
17: if count > n then

break
18: end if
19: end while

annealing was used for learning rate decay. The SGD
optimizer was used (AdamW optimizer was used on the fire
dataset). The network was implemented using the PyTorch
framework. The experiments were conducted on a Windows
11 platform environment with an i9-13900k@3GHz CPU,
32.0GB of memory, CUDA version 11.1, CUDNN version
8.0.5, Pytorch version 1.9.0, GeForce NVIDIA GTX4090
24G GPU model, and Python version 3.8.16.

B. COMPARISONS OF THE PROPOSED METHOD WITH
SOME STATE-OF-THE-ART ALGORITHMS ON THE FIRE
DATASET
We compared the performance of our proposed DCGC-
YOLO with several state-of-the-art methods on the fire
dataset. We evaluated the performance of these models using
various AP metrics, Model Parameter Count (Params), and
Floating Point Operations Per second (FLOPs). Table 5
presents the test results of all the involved models, where
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TABLE 5. Performance results of OUR METHOD with advanced algorithms on the fire dataset.

i

the metrics represent the best performance achieved by each
model. It is worth noting that Faster R-CNN [27], Mask
R-CNN [28], SSD [25], FCOS [58], RetinaNet [26], and
YOLOX [59] are implemented based on mmdetection3.0.0
[60]. Their respective backbone networks are shown in
Table 6. The backbone network of Mask R-CNN is based
on ConvNext-Tiny. To validate the effectiveness of DCGC-
YOLO detection, we compared it with other state-of-the-art
methods using different AP metrics, and DCGC-YOLO
achieved real-time high-precision detection compared to
these methods.

1) DETECTION PERFORMANCE
Due to the difficulty in defining the boundaries of smoke
and flames themselves, and our annotation method using
maximum bounding boxes, the detection accuracy may
not appear to be very high, even though the dataset is
not large. We use the classic evaluation metric AP in the
field of object detection to validate the effectiveness of the
method, withMask R-CNN using the bbox evaluation metric.
As shown in Table 5, DCGC-YOLO achieves the highest
AP in terms of average detection precision, with a value
of 40.5%. It outperforms the second-highest YOLOv7-Tiny
[61] by 1.4%, and the third-highest YOLOX-Tiny by 1.7%.
Compared to the baseline (YOLOv5s), our AP is 2.3% higher.
The two-stage algorithms, Faster R-CNN and Mask R-CNN,
only achieve 38.2% and 36.1% respectively. Compared to the
state-of-the-art algorithm YOLOv8n, the proposed algorithm
achieves a 1.3% higher mAP.

The YOLOv5s algorithm achieves an AP of 38.9% for
flame detection and 37.5% for smoke detection. It out-
performs most advanced methods in flame detection but
falls behind other methods in smoke detection. This may
be attributed to the strong generalization performance of
the YOLO series framework but relatively weaker feature
extraction capability of the C3 module when it comes to
smoke targets that are similar to the background.

We introduce the DCGCLayer module to improve
YOLOv5s, and the results show that this module has a

stronger ability to distinguish foreground and background,
making it well-suited for fire detection. In terms of detecting
large, medium, and small objects, DCGC-YOLO also out-
performs other advanced methods, achieving the highest AP
values.

2) FLOPS AND PARAMETERS
FLOPs and Parameters are important metrics that measure
the size and computational complexity of deep learning
models. In this paper, we chose YOLOv5s as the base-
line model, which is a lightweight model. It is of great
significance for subsequent model research and applica-
tion deployment. Therefore, we compared the FLOPs and
Parameters of existing methods and our proposed method,
as shown in Table 6. The experimental results show
that our proposed DCGC-YOLO model has lower FLOPs
and Parameters than YOLOv5s. In terms of parameter
count, it is higher than YOLOv4-Tiny, YOLOv7-Tiny, and
YOLOX-Tiny, YOLOv8n. In terms of FLOPs, it is higher
than YOLOv3-Tiny [62], YOLOv7-Tiny, and YOLOX-Tiny.
In the lightweight model category, our proposed method
can maintain detection accuracy while reducing model
parameters and computational complexity. This is because
we use large convolutional kernels and group convolution,
which can effectively increase the receptive field of the
network, extract deeper semantic information, and reduce
model complexity.

3) VISUAL RESULTS
In this section, we randomly selected 3 images from the
validation set for detection, and the results are shown in
Figure 6. In the detection of smoke, the original YOLOv5s
network exhibits weaknesses. When the background color
is similar to the color of smoke, the YOLOv5s network
faces issues of false negatives, which is particularly crucial
for early warning of fires. In the detection of flames,
the improved YOLOv5 network shows higher accuracy in
detection, more precise target localization, and enhanced
capability in extracting target texture features. This is
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TABLE 6. Computational complexity and parameter of different methods.

FIGURE 6. Visual detection results of various frameworks for the fire dataset.

of significant importance for achieving high-precision fire
detection. Overall, the YOLOv5 network improved in this
study demonstrates better adaptability to the requirements of
fire detection.

C. ABLATION STUDY ON DCGC-YOLO
We conducted a burning experiment on the fire dataset to
validate the effectiveness of the proposed module, and the
results are presented in Table 7. In models (a), (b), and (c),
we tested the IoU K-means, eSE attention, and DCGCBlock,
respectively. The baseline model was based on YOLOv5s,
and the evaluation metrics used were mAP at IoU thresholds
of 0.5:0.95 and 0.5. The experimental results are shown in
Table 7, In Model (a), we used the IoU K-means algorithm to
calculate the anchor sizes for the fire dataset, resulting in an
improvement of 0.8% in mAP for both thresholds. In Model
(b), we introduced the eSE attention mechanism into the
C3 module of YOLOv5s. This led to an increase of 0.9%
and 1.4% in mAP for the respective thresholds. However,
the parameter count increased by 0.7M, and the computa-
tional complexity increased by 0.8 GFLOPs. In Model (c),
we replaced the Bottleneck module in the C3 module with
the DCGCBlock module. This resulted in an improvement
of 2.2% and 2.5% in mAP for the respective thresholds.
Moreover, the parameter count decreased by 0.5M, and the
computational complexity decreased by 2 GFLOPs. This was

achieved by the DCGCBlock’s large convolutional kernel
in series mechanism, which greatly increased the receptive
field of the network. The introduction of group convolution
and the bottleneck-like structure increased the number of
channels without increasing FLOPs. Additionally, channel
shuffle operations were employed to enable information
exchange between different channels. These enhancements
made the proposed DCGCBlock module more powerful in
feature extraction compared to the C3 module.

In hybrid models (d) and (e), we tested different strategy
models, and the mAP of model (d) increased by 1.5% and
1.7% respectively, while the mAP of model (e) increased
by 2.3% and 2.8% respectively. Overall, compared to
the baseline, the parameter count reduced by 0.5M, the
computational complexity reduced by 2.0GFLOPs, and the
mAP increased by 2.8% and 3.3% respectively. Therefore,
the proposed method can effectively improve the detection
performance.

D. RESULTS ON THE MS COCO2017 DATASET
To further evaluate the generalization ability of the DCGC-
YOLO, we conducted testing on the MS COCO 2017 dataset.
Unlike the fire dataset, COCO 2017 consists of 80 different
object categories and is one of the most widely used publicly
available datasets for object detection. Table 8 presents the
testing results of DCGC-YOLO and other SOTA models.
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TABLE 7. Results of Ablation experiments.

TABLE 8. Performance comparison results in COCO 2017.

DCGC-YOLO achieves an mAP 0.5:0.95 of 38.9% and
an mAP 0.5 of 58.4% on the COCO2017 dataset, which is
1.5% and 1.6% higher than YOLOv5s, respectively. It has
lower Params by 0.5M and lower FLOPs by 2.0G compared
to YOLOv5s. It outperforms YOLOv7-Tiny-SiLU by 0.2%
and 1.7%. Compared to YOLOv8n, the proposed algorithm
achieves a 1.6% higher mAP, demonstrating superiority over
lightweight versions of the YOLO series. Compared to larger
models, DCGC-YOLOmay have lower mAP, but it performs
well on the fire dataset.

V. CONCLUSION
This paper proposes a lightweight object detection algorithm
based on the improved YOLOv5s, specifically designed
for fire image or video detection. Unlike YOLOv5s, the
proposed algorithm adopts the DCGCLayer instead of
the original C3 module. The DCGCLayer utilizes a CSP
cascaded large convolution kernel structure to increase the
network’s receptive field, significantly enhancing feature
extraction capabilities while reducing the model’s parameter
and computational complexity. Moreover, the eSE attention
mechanism is employed to focus the model on learning
relevant and informative features effectively. Lastly, the
anchor sizes of the network are adjusted using the IoU-based
k-means algorithm to better suit fire detection. Experimental
results demonstrate that the proposed algorithm outperforms
existing SOTA algorithms in terms of detection accuracy, and
it requires fewer computational resources, both on self-built
and public datasets.

Although the proposed algorithm achieves good detection
accuracy, there are still instances of missed detections and
false alarms. The robustness of the network may decrease
when detecting objects similar to flames and smoke. In future
work, we will further optimize the network and incorporate
more objects similar to smoke and flames to enhance the
network’s detection efficiency.
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