
Received 19 March 2024, accepted 1 April 2024, date of publication 8 April 2024, date of current version 16 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3385791

Item Storage Assignment Problem in Robotic
Mobile Fulfillment Systems With
Nonempty Pods
RUBO LI 1, XUDONG DENG 1,2, AND YUNFENG MA1,2
1School of Management, Wuhan University of Science and Technology, Wuhan 430065, China
2Research Center for Service Science and Engineering, Wuhan University of Science and Technology, Wuhan 430065, China

Corresponding author: Xudong Deng (dengxudong@wust.edu.cn)

This work was supported in part by the Department of Education of Hubei Province under Grant 22D022, in part by Wuhan Science and
Technology Bureau under Grant 2022010801010301 and Grant 2022010801020317, and in part by China Society of Logistics and China
Federation of Logistics and Purchasing under Grant 2022CSLKT3-130 and Grant 2022CSLKT3-132.

ABSTRACT This study examines the item storage assignment problem in robotic mobile fulfillment systems
(RMFSs), that determines the assignment of items to pods. Unlike previous studies on this problem that
generally considered an empty warehouse, the current study addresses the problem in RMFSs with nonempty
pods. The problem is formulated as a mixed-integer program with the goal of maximizing the correlation
degree among items. On the basis of the characteristics of the problem, an adaptive large neighborhood
search (ALNS) heuristic is designed for the solution. Numerical results show that the gap between the ALNS
heuristic and the Gurobi solver is less than 0.32% in small-scale instances. In medium- and large-scale
instances, the ALNS heuristic improves the objective value by at least 10% compared with the methods in
literature, and it outperforms commonly used storage assignment policies for traditional warehouses (e.g.,
random, dedicated, and class-based storage) by more than 30%. The ALNS heuristic can also be applied
to the special case where the initial state of the warehouse is empty. The computational study of the ALNS
heuristic in all instances shows that it can effectively solve this problem by providing high-quality solutions
and has good scalability.

INDEX TERMS Robotic mobile fulfillment system, storage assignment, adaptive large neighborhood
search, warehouse.

I. INTRODUCTION
E-commerce warehouses today are facing small orders, large
assortment, tight delivery schedules, and varying work-
loads [1]. These challenges place considerable pressure on
the order fulfillment process, which is considered one of the
most labor-intensive and costly operations in warehouses [2].
Many giant online retailers, such as Amazon, JD.com, and
Alibaba, have employed robotic mobile fulfillment systems
(RMFSs), also known as KIVA systems, to improve order
picking efficiency [3], [4].

Compared with traditional picker-to-parts order picking
systems, RMFSs do not require pickers to travel because

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

they adopt a parts-to-picker order picking pattern; they offer
excellent system scalability, flexible deployment, and high
order throughput to meet diverse customer demands [5]. Such
systems use a fleet of robots to transport inventory pods (also
called movable racks or shelves) between the pod storage
area and picking stations. The picker at the picking station,
assisted by a pick-to-light system, retrieves items in the pods
in accordance with the picking list [6], [7]. After the picking
operation is completed, the robot returns the pods back to the
storage area. Fig. 1 depicts the layout of a typical RMFS and
its operation processes.

In addition to order picking, replenishment transactions
that assign storage items to inventory pods are managed by
RMFSs. Such a decision is not only the basis for subsequent
decision problems, such as order batching, task assignment,

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 51463

https://orcid.org/0000-0002-4331-4013
https://orcid.org/0009-0006-4740-3677
https://orcid.org/0000-0001-8781-7993


R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

FIGURE 1. Operation processes of the RMFS warehouse.

and path planning, but also directly affects material handling
costs, inventory control, and warehouse space utilization [8],
[9], [10]. Given the wide variety of items and large number of
pods in RMFSs, how to assign these items to pods has become
one of the urgent challenges for e-commerce warehouses.

Items that frequently appear in the same order have strong
correlations, and customer order analysis can be used to
determine statistical correlation relationships [11]. This infor-
mation should be readily available from historical order data
in current information systems. In RMFS, a robot carries the
entire inventory pod to a picking station whenever items are
needed to fulfill a customer order. The robots can transport
reduced number of pods to satisfy orders by storing correlated
items in the same pods [12]. Given that RMFS generally uses
identical pods and items are not dedicated to pods [5], [13],
clustering correlated items in the same pods may improve
order picking efficiency.

Although some previous studies have investigated item
storage assignment in RMFS, they implicitly assumed that
the initial state of the warehouse (all pods) is empty, or the
number of empty pods is sufficient to store all replenish-
ment items. They only needed to consider the correlation
relationship between replenishment items, and the assign-
ment restrictions on storage locations were ignored. However,
in the daily operations of RMFS, the pods in the system
are often partially occupied or have limited empty storage
locations for replenishment items. On the basis of this fact,
we consider a nonempty warehouse in this study. Moreover,

given that occupied storage locations cannot be reassigned
(these storage locations are unavailable), we need to consider
not only the correlation relationship between replenishment
items, but also the correlation relationship between replenish-
ment items and the items already stored in the same nonempty
pod. This study answers the following research questions:

1) How can items be assigned to nonempty pods in RMFS
to improve order picking efficiency?

2) What improvements can be achieved by using the
adaptive large neighborhood search (ALNS) heuristic
designed in this study instead of the methods in litera-
ture?

3) How does optimization-based storage assignment per-
form compared with the storage assignment policies
commonly used in traditional warehouses?

In the replenishment operation of RMFS, only the items
that do not meet the required inventory levels (replenishment
items) need to be replenished. Each replenishment item can
be assigned to multiple pods, and the required inventory
level of each item varies depending on the turnover levels.
Therefore, the turnover level, scattered storage, and corre-
lation relationship of items are simultaneously considered.
First, we build a mixed-integer programming (MIP) model to
optimize the assignment of replenishment items to nonempty
pods, and use the maximization of the correlation degree
among items as the objective function. Second, we design
an ALNS heuristic for the solution. The ALNS heuristic can

51464 VOLUME 12, 2024



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

handle the problem under any replenishment rate level, and
is applicable to the special case of an empty warehouse.
Third, we test the performance of the ALNS heuristic by
numerical experiments. The results show that in small-scale
instances, the gap between theALNS heuristic and theGurobi
solver is less than 0.32%. In real-world medium- and large-
scale instances, the ALNS heuristic improves the objective
value by at least 10% compared with methods in literature.
In particular, it yields objective value increments of more
than 30% compared with commonly used storage assignment
policies for traditional warehouses (e.g., random, dedicated,
and class-based storage). Last, we consider the properties of
the items and the heterogeneous storage locations in the pods.
This study contributes in the following aspects:

1) The replenishment item storage assignment (dubbed
RISA) problem is studied in the nonempty RMFS.

2) A problem-specific ALNS heuristic is proposed.
3) The solution quality and efficiency of the ALNS are

numerically verified.

The rest of the paper is structured as into sections.
Section II provides a detailed literature review and dis-
cusses related studies on storage assignment of the RMFS.
Section III describes the RISA problem in RMFS and formu-
lates it as a MIP model. A detailed solution method for the
problem is presented in Section IV. Section V presents the
computational experiments that examine the performance of
the proposed method. In Section VI, we further consider the
properties of the items and the heterogeneous storage loca-
tions in the pods. The conclusions are given in Section VII.

II. LITERATURE REVIEW
The storage assignment decision in the traditional picker-
to-parts order picking system only needs to assign items
to the storage locations on the rack. Given that the rack
is static and fixed, the position of the items in the storage
area is determined when the items are assigned to the stor-
age locations. For individual items, commonly used storage
assignment policies include random storage, closest open
location storage, dedicated storage, full turnover storage and
class-based storage [2]. For different items, the relationship
between items must be considered, and the items that are
closely related (often appear in the same order) should be
stored in adjacent locations or in the same region of the
storage area, e.g., family-grouping, cluster-based assignment,
and data mining-based assignment [14], [15], [16], [17], [18].
However, the storage assignment decision in RMFS is differ-
ent from that in the traditional picker-to-parts order picking
system. It can be divided into two basic decision problems [1],
[19], [20], namely, item storage assignment and pod storage
assignment, as shown in Fig. 2.

For pod storage assignment, the robot needs to return
the pod to a storage position after the picking operation is
finished at a picking station. Weidinger et al. [13] formalized
the pod storage assignment problem as a special interval
scheduling problem and designed a suitable matheuristic

based on ALNS. They compared the approach with five
well-established storage assignment policies (Fig. 2) and
found that the shortest path storage can produce near-optimal
results. Zhuang et al. [21] integrated pod retrieval and stor-
age assignment decisions simultaneously and proposed a
matheuristic decomposition method. With regard to stor-
age policies, combined with the class-based storage policy,
Yuan et al. [22] examined the performance of a velocity-based
storage policy. Different from Yuan et al. [22], Li et al. [23]
proposed a new turnover-rate-based decentralized storage
policy that considers robot blocking and energy consumption.

With regard to item storage assignment, Kim et al. [24] and
Li et al. [23] studied the item storage assignment problem
with the goal of maximizing the correlation degree among
items in each group and considered the situation where the
correlation degree is altered. Mirzaei et al. [25] proposed
an integrated cluster allocation policy that considers the cor-
relation and turnover of items and decomposed the storage
assignment problem into two phases, namely, item clustering
and item assignment. Yang [26] investigated the interactive
effects of the storage assignment and order batching policies
in RMFS. They proposed the use of item similarity to assign
item storage locations. The abovementioned studies assumed
that each item can be assigned to only one storage location
or one group, which is equivalent to the dedicated storage
rule. However, some studies [27], [28], [29], [30] have shown
that adopting scattered storage, that is, each kind of items
can be distributed to several different pods, can improve
order picking efficiency and is suitable for RMFS ware-
houses. Using information from historical customer orders,
Xiang et al. [31] studied the small-scale item storage assign-
ment problem by considering item scattered storage and
solve it with the CPLEX solver. Mirzaei et al. [32] con-
sidered item correlation, turnover frequency, and inventory
dispersion concurrently and proposed a correlated dispersion
storage assignment policy. Ma et al. [33] further considered
item classification, namely, best-selling and general-selling
items. They proposed a new storage policy that covers
item classification, item correlation, and scattered storage.
Zhang et al. [34] considered human factors. They investigated
the item storage assignment problem by considering order
picking efficiency and the pickers’ energy expenditure.

For zone clustering and storage assignment classifica-
tion in RMFS, Keung et al. [35] proposed a data-driven
approach by performing a TO-BE analysis of robotic process
automation and cloud-based cyber-physical system frame-
work. Keung et al. [36] developed a model with different
storage location assignment rules and strategies under par-
ticular parties to minimize operation costs, by providing
a new three-tier Industrial Internet of Things architecture
that includes suppliers, RMFS, and the disposal center.
Jiang et al. [37] integrated the picking and replenishment
decisions and proposed a synchronization mechanism to bal-
ance the replenishment efforts and picking efficiency in a
forward area applied RMFS. They considered the situation
where the number of free pods (empty pods) is adequate.

VOLUME 12, 2024 51465



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

FIGURE 2. Storage assignment in the RMFS.

The difference between their work and ours is that our
work considers the assignment of replenishment items to
nonempty pods. Most existing scientific studies indirectly
assumed that the initial state of RMFS warehouses is empty
and that the storage locations in all pods can be assigned
(i.e., all these storage locations are available). Guo et al. [38]
studied the storage assignment problem for newly arrived
items in picker-to-parts forward areas with limited open loca-
tions, whereas we studied the parts-to-picker order picking
system.

The optimization objective of the item storage assignment
problem in RMFS is different from that in traditional picker-
to-parts order picking systems. Specifically, most of the
existing studies on storage assignment in traditional picker-
to-parts order picking systems aimed to minimize the total
travel distance of human pickers orminimize the overall order
picking time [23]. However, minimizing the number of pod
visits can be the main optimization objective in RMFS [5],
[37], [39]. Jiang et al. [37] justified the objective from two
aspects: the number of pod visits directly reflects the move-
ment of robots, and a reduced number of pod visits can
decrease the size of the required robot fleet.

ALNS is a metaheuristic algorithm based on the idea of
large neighborhood search [40], [41]. It has received con-
siderable attention in recent years and has been successfully
applied to many problem areas [42], such as vehicle rout-
ing problems [43], [44], scheduling problems [45], and pod
storage assignment in RMFS warehouses [13]. The ALNS
algorithm needs to design multiple destroy methods and
repair methods, so applying ALNS to a new problem domain
is difficult [13]. Nevertheless, by referring to the character-
istics of the RISA problem, we propose a problem-specific
ALNS algorithm for the solution.

In real-life e-commerce warehouses, replenishment and
order picking operations are performed sequentially in a peri-
odic manner [37], [38]. In particular, there are only some
empty storage locations available in the pods after an order
picking period, and the other storage locations are already
occupied. The warehouse needs to replenish the items that
do not meet the required inventory levels. To the best of our
knowledge, existing studies on the item storage assignment
problem in RMFS generally assumed an empty warehouse,
which is contrary to the daily status of RMFS. To resolve this
gap, this study focuses on the item storage assignment with

51466 VOLUME 12, 2024



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

FIGURE 3. The correlation among items during replenishment.

consideration of a nonempty warehouse in the replenishment
operation of RMFS. It considers not only the correlation rela-
tionship between replenishment items and the items already
stored in the same nonempty pod, but also the assignment
restrictions of storage locations. For the specified research
problem (i.e., RISA), an MIP model is built, and an efficient
ALNS algorithm is proposed based on the characteristics
of the problem. The model and algorithm are applicable to
empty warehouses.

III. ITEM STORAGE ASSIGNMENT PROBLEM OF RMFS
A. PROBLEM DESCRIPTION
We considerNI items stored in RMFS, and the given required
inventory level of each item is Di. These items are stored in
NM pods, and each of them has NC storage locations (also
denoted as layers or slots). Di can be obtained by analyz-
ing historical order data such as turnover levels, sales rates,
or demand frequency. When the replenishment rate reaches a
certain level, the system needs to perform the replenishment
operation. When Di is not met, the system needs to replenish
item i.

In such a system, we need to assign replenishment items
to the pods with empty storage locations. Each replenishment
item can be assigned to several different pods simultaneously,
and the required inventory level of each replenishment item
has to be reached. Furthermore, the items that frequently
appear in the same consumer orders can be assigned to the
same pod, which can improve order picking efficiency [46].
The number of pod visits can be effectively reduced if the
items ordered by many customers at the same time are stored
in the same pod [24]. The relationship between these items
can be measured by the correlation degree. RISA determines
the storage of replenishment items in the pods to maximize
the sum of the correlation degree among items.

Note that the occupied storage locations are unavailable.
Thus, as shown in Fig. 3, when we choose to replenish
the items, we need to consider not only the correla-
tion between replenishment items, but also the correlation

between replenishment items and the items already stored in
the same nonempty pod.

In addition, the RISA problem defined above follows sev-
eral assumptions:

1) Without loss of generality, we consider standard pods
in RMFS.

2) We use item to represent SKU and employ the total
number of storage locations required for each item i to
indicate the average inventory level Di it requires. The
detailed quantity of items is simplified by assuming
that only one unit of item i can be stored in each storage
location in the pod. For instance, if four small items i
are always stored together in one storage location, then
we can treat these items as one unit of item i in the RISA
problem.

3) The total remaining storage capacity is sufficient to
store all replenishment items.

4) The item storage assignment decision is generallymade
based on historical order data within a period (such as a
quarter) to analyze the correlation relationship among
items. It can effectively adjust the assignment of items
to adapt to seasonal changes in customer purchasing
preferences. Therefore, we assume that the correlation
degree of any pair of items can be obtained from his-
torical order data.

B. JUSTIFICATION OF THE OPTIMIZATION OBJECTIVE
Existing studies of RMFS generally used the number of pod
visits and the travel distance (time) of robots as the objective
function [5], [13], [47], [48]. However, we take themaximiza-
tion of the correlation degree among items as the objective on
the basis of the following considerations.

First, because RMFS uses mobile pods, the items do not
need to be assigned to a specific pod. Moreover, replenish-
ment operations are usually performed during off-peak hours,
so they are not time critical [28]. Compared with the picking
operation, the replenishment operation is item-oriented rather
than order-oriented. Therefore, the storage positions of pods

VOLUME 12, 2024 51467



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

and the travel distance of the robots that move the pods are
not considered in the RISA problem.

Second, correlated storage assignment looks for correla-
tion between items in a warehouse on the basis of their
demand structure [12]. Given that item storage assignment is
conducted before the order picking operation, the correlation
between items needs to be analyzed based on historical order
data. The higher the correlation degree is, the greater the
probability that the items in the same pod will appear in the
same order. In this way, the number of times that robots move
the pods during the order picking operation can be effectively
reduced (the travel distance of robots moving pods is also
reduced), leading to an efficient and cost-saving order picking
operation. This optimization objective ofmaximizing the sum
of the correlation degree was adopted by Xiang et al. [31],
Kim et al. [24], Li et al. [23], and Ma et al. [33].
The correlation degree of two items is defined as how fre-

quently the two items are ordered together. Correlation degree
is another important attribute of items that can be obtained
from demand forecasts and order history [25]. Similar to
Ma et al. [33], we calculated the correlation degree between
items i and j in RMFS as follows:

rij =


Oij

Oi + Oj − Oij
, if i ̸= j;

0, if i = j.
(1)

where Oi and Oj represent the number of orders that contain
items i and j, respectively, andOij is the number of orders that
contain both items i and j. The correlation degree between
items i and j ranges from 0 to 1. However, storing only one
type of item in each pod will increase the number of pod
visits at the picking stations. Therefore, we set the correlation
degree between each item and itself to 0, that is, rii = 0. This
item correlation measurement method indirectly classifies
the items. Given that Oij ≤ min {Oi,Oj}, the correlation
degree between items i and j is large only when Oi,Oj, and
Oij are close. For instance, best-selling item i is frequently
ordered (Oi is large), whereas the general-selling item j is less
frequently ordered (Oj is small); thus, the correlation degree
between them is small.

C. MATHEMATICAL MODELING
On the basis of the problem description and notations sum-
marized in Table 1, the MIP model of the RISA problem can
be formulated as follows.

Max

∑
m∈M

∑
i∈Ir

∑
j>i

rijximxjm +
∑
m∈M

∑
i∈Ir

∑
j∈I

rijximajm


(2)

s.t.
∑
i∈Ir

yim ≤ qm, ∀m ∈ M (3)∑
m∈M

yim = di, ∀i ∈ Ir (4)∑
m∈M

xim ≥ 1, ∀i ∈ Ir (5)

TABLE 1. List of notations.

xim ≤ yim, ∀i ∈ Ir ;m ∈ M (6)

yim ≤ ximqm, ∀i ∈ Ir ;m ∈ M (7)

xim ∈ {0, 1} , ∀i ∈ Ir ;m ∈ M (8)

yim ≥ 0, ∀i ∈ Ir ;m ∈ M (9)

The objective function (2) maximizes the sum of correla-
tion degree among items in each pod. the first part indicates
the correlation degree between replenishment items, and the
second part indicates the correlation degree between the
replenishment items and the items already stored in the pod.
Constraint (3) ensures that the number of empty storage
locations assigned to all replenishment items in each pod
is smaller than or equal to the number of empty storage
locations in the pod. Constraint (4) means that the number of
empty storage locations assigned to each replenishment item
in all pods is equal to the number of empty storage locations
required for that item, that is, each replenishment item must
be replenished in accordance with the required inventory
level. Constraint (5) indicates that each replenishment item is
assigned to at least one pod. Constraints (6) and (7) mean that
if replenishment item i is assigned to podm, it needs to occupy
at least one empty storage location, but the number of empty
storage locations occupied by it does not exceed the number
of empty storage locations in the pod. Finally, Constraint (8)
defines the binary variables, and Constraint (9) defines the
integer variable.

If some pods do not have any empty storage location
before replenishment, then we do not need to calculate the
correlation degree among the items in these pods, because

51468 VOLUME 12, 2024



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

the correlation degree among the items in these pods does
not change before and after replenishment. Therefore, during
the replenishment operation, we only need to calculate the
correlation degree among the items in the pods that have
empty storage locations.

We denote the set of pods with empty storage locations
as Me. The items already stored in the pods still need to be
replenished when the required number of storage locations
(inventory level Di) is not reached. Thus, in accordance with
Di, NC , and bim, di, Ir , qm, and Me can be obtained as
follows:

di = Di −
∑
m∈M

bim, ∀i ∈ I (10)

Ir = {i ∈ I |di > 0} (11)

qm = NC −
∑
i∈I

bim, ∀m ∈ M (12)

Me = {m ∈ M |qm > 0} (13)

In addition, we can linearize and rewrite the objective
function (2). Let zijm = xim · xjm ∈ {0, 1} denotes whether or
not replenishment items i and j are stored in podm. Given that
ajm is known in advance, we use jm to represent item j stored
in pod m. Therefore, we can rewrite the objective function
as (14) and add constraints (15), (16), and (17):

Max

 ∑
m∈Me

∑
i∈Ir

∑
j>i

rijzijm +
∑
m∈Me

∑
i∈Ir

∑
j∈I

rijmxim

 (14)

zijm ≤ xim, ∀i, j ∈ Ir ;m ∈ Me (15)

zijm ≤ xjm, ∀i, j ∈ Ir ;m ∈ Me (16)

zijm ≥ xim + x jm − 1, ∀i, j ∈ Ir ;m ∈ Me (17)

The storage assignment problem has been identified as NP-
hard [49], [50]. As an extension of the problem, the RISA
problem is also an NP-hard problem. On the basis of the
characteristics of the RISA problem, we propose a ALNS
heuristic in the following section.

IV. SOLUTION METHOD
This section presents the proposed ALNS for solving the
RISA problem. We next introduce its overall framework,
solution encoding, initial solution generation, neighborhood
search, adaptive mechanism, simulated annealing acceptance
criterion, and complexity analysis.

A. ALNS
The RISA problem aims to assign correlated items to
appropriate pods with the goal of maximizing the sum of
correlation degree among the items in the pods. Hence,
a solution in the ALNS heuristic is represented by the state
of item storage assignment. We use a greedy approach to
generate a feasible initial solution and employ the proposed
objective function to evaluate the quality of the solution.
Then, the initial solution is improved by alternately destroy-
ing and repairing the solution. The use of multiple large

neighborhoods within the same search allows us to find better
candidate solutions in each iteration and thus traverse a more
promising search path. The selection of neighborhood is con-
trolled dynamically by using the recorded performance of the
neighborhoods. The flow chart of the ALNS heuristic is given
in Fig. 4.

The pseudocode of the ALNS heuristic is shown in
Algorithm 1. A feasible initial solution, Sinit , is generated
by a greedy approach (Algorithm 2). Line 1 initializes the
parameters of the adaptive mechanism and simulated anneal-
ing (SA) acceptance criterion, namely, the weights of destroy
and repair methods wd and wr and temperature T . Line 2
initializes current solution Scurr and global best solution
Sbest . The ALNS is divided into several scoring intervals,
each of which consists of several iterations (lines 4 and 6).
At the beginning of each scoring interval, the scores for
destroy and repair methods, θd and θr , are initialized to zero
(line 5). Lines 7-10 are the most critical part of the heuristic.
On lines 7 and 8, several replenishment items need to be
removed from Scurr to generate destroyed solution Sd , and
the destroy method is determined by the roulette wheel. The
removed replenishment items are then inserted into Sd again
to generate a new repaired solution Sr . The repair method
is also determined by the roulette wheel (lines 9 and 10).
Lines 11-19 determine whether the repaired solution should
be accepted or not based on the solution quality and updates
the best solution. Particularly, to avoid falling into a local
optimum, we use a simulated annealing acceptance criterion
(line 17). The score of the destroy/repair method selected
in each iteration is increased by σ1, σ2, or σ3 in different
cases. At the end of each scoring interval, we update wd
and wr by using the recorded scores (Section IV-E, line 22).
The heuristic stops after performing a specified number of
iterations.

B. SOLUTION ENCODING
Fig. 5 shows the solution encoding of the RISA problem
and ALNS heuristic. A solution is encoded as a matrix with
NC rows and NM columns. Each column corresponds to an
inventory pod, and each row corresponds to a storage location
of the pod. The total number of storage locations is N =
NC ∗ NM . The status of each storage location is represented
by zero or i. Zero means the storage location is empty, and
i refers to item i stored in the storage location. Therefore,
before replenishment, we can derive information on the items
stored in each pod and the state of empty storage locations
in each pod (qm) from matrix Srep (the state of item storage
assignment before replenishment).

In the replenishment situation, some pods may have
multiple empty storage locations that need to be replen-
ished. Given that we encode the storage location sta-
tuses of all pods, the neighborhood search (for multiple
replenishment items) can cover multiple pods instead of
only two. Thus, the search range is large per iteration.
After the replenishment operation is completed, storage

VOLUME 12, 2024 51469



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

FIGURE 4. Flow chart of the ALNS heuristic.

FIGURE 5. Solution encoding of the RISA problem.

location assignment of the replenishment items can be
known.

C. INITIAL SOLUTION GENERATION
A greedy heuristic approach is used to generate the initial
solution. Algorithm 2 presents the pseudocode of the process
of feasible initial solution generation, which consists of two
parts. The item correlation degree matrix, R = (rij)NI×NI ,
is constructed based on the historical order data. For each
replenishment item i ∈ Ir , if di > 0, then we find item j
with the maximum correlation degree rij with item i (lines
3 and 4). Next, on line 5, we check if item j has been stored
in the pod. If yes, we return to Step 1 (lines 5-11); otherwise,
we proceed to Step 2 (lines 12-21).

Step 1:Wecheck if empty storage locations le are present in
the pods where item j is stored. If they are present, we com-
pare the number of empty storage locations qm of the pods
with di. If qm ≥ di, we randomly place di item i in le.
Otherwise, di− qm item i is randomly place in the other pods
that have le (represented by me). If no le is available in the
pods where item j is stored, then di item i is randomly placed
in the other pods me.
Step 2: If item j is not present in all the pods, then item

j is a replenishment item. This step checks if the pods have
qm ≥ 2. If yes, we compare the number of these pods nm with
di and dj. If nm ≥ di ≥ dj or di > nm > dj (nm ≥ dj ≥ di
or dj > nm > di), then we place dj (di) item i and j in pairs
in these pods, and put di − dj (dj − di) item i (j) in the other
pods me. If min

{
di, dj

}
> nm, then we place nm item i and j

in pairs in these pods and place di − nm item i and dj − nm
item j in the other pods me. If no pod has qm ≥ 2, item i and
j will be placed randomly in other pods me.

The algorithm ends with the condition that the number of
empty storage locations required for all replenishment items
is satisfied, that is, di = 0 for all i ∈ Ir .

D. NEIGHBORHOOD SEARCH
The performance and robustness of the ALNS heuristic
depend on the design and choice of destroy and repair

51470 VOLUME 12, 2024



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

Algorithm 1 Adaptive Large Neighborhood Search (ALNS)
Input: A feasible initial solution Sinit
Output: Global best solution Sbest
1: T ←− Tstart ;wd ,wr ←− 1
2: Scurr ←− Sinit ; Sbest ←− Sinit
3: outIter←− 1
4: while outIter ≤ MaxoutIter do

▷MaxoutIter is the number of scoring intervals
5: θd , θr ←− 0; inIter←− 1

▷ Initialize the score of destroy and repair methods
6: while inIter ≤ MaxinIter do

▷MaxinIter is the number of iterations
7: destroy←− Roulettewheel(destroy methods)
8: Sd ←− destroy(Scurr )
9: repair←− Roulettewheel(repair_methods)
10: Sr ←− repair(Sd )
11: if f (Sr ) > f (Sbest) then
12: Sbest ←− Sr
13: θd , θr ←− θd , θr + σ1
14: elseif f (Sr ) > f (Scurr ) then
15: Scurr ←− Sr
16: θd , θr ←− θd , θr + σ2
17: elseif Sr is accepted by e(f (Sr )−f (Scurr ))/T then
18: Scurr ←− Sr
19: θd , θr ←− θd , θr + σ3
20: Update T
21: inIter = inIter+ 1
22: Update wd ,wr
23: out Iter = outIter+ 1
24: return Sbest

methods. We introduce several destroy and repair methods
to improve the incumbent solution.

1) DESTROY METHOD
In this section, we introduce three destroy methods. All of
them use current solution Scurr as the input. A destroyed
solution Sd and a set of removed replenishment items Id are
the output of the destroy methods.

a: RANDOM DESTROY
The random destroy method selects L replenishment items
randomly and removes them from the current solution. The
procedure of random destroy is shown in Algorithm 3.
Lines 2 and 3 set the minimum (Lmin) and maximum (Lmax)
replenishment items that can be removed.Nm is the total num-
ber of pods with replenishment items. We randomly select L
replenishment items to be removed. ξ is a uniform random
number between zero and one (line 4). Next, we randomly
remove L replenishment items from Sd (lines 5 and 6).

b: POD DESTROY
The pod destroy method removes only one replenishment
item from each of the randomly selected L pods where

Algorithm 2 Initial Solution Generation
Input: Srep, Di, R
Output: Sinit
1: I ,M , di, Ir ←− Srep,Di
2: Sinit ←− Srep
3: for i ∈ Ir and di > 0 do
4: find j with the maximum rij with i
5: if j on pod m then
6: if m have le and (qm ≥ di) then
7: place di item i in pod m
8: elseif m have le and (qm < di) then
9: place qm item i in pod m and (d i − qm) item i in
the other pods me
10: else qm = 0
11: place di item i in other pods me
12: else j ∈ Ir
13: if the pods m have qm ≥ 2 then
14: if (nm ≥ di ≥ dj) or (di > nm > dj) do
15: pair dj item i and j place in nmm, place (di−dj)
item i in the other pods me
16: elseif (nm > dj > di) or (dj > nm > di) do
17: pair di item i and j place in nmm, place (dj−di)
item j on other pods me
18: else
19: pair nm item i and j in m, place (di− nm)i and
(dj − nm)j in the other pods me
20: else
21: place di item i and dj item j in other pods me
22: Update qm, di
23: return Sinit

Algorithm 3 Random Destroy
Input: Scurr
Output: Sd , Id
1: Sd ←− Scurr
2: Lmin ←− 2
3: Lmax ←− max(

⌈√
NM

⌉
, 10)

4: L ←− Lmin + ⌈(Lmax − Lmin) ∗ ξ⌉

5: Sd ←− randomly remove L replenishment items from Sd
6: Id ←− the L replenishment items that have been removed

replenishment items are stored. The procedure of the pod
destroy is shown in Algorithm 4. We count the number of
pods (Nm) with replenishment items and randomly select L
of them (lines 2-5). For each pod, we randomly remove one
of the replenishment items i from it and update Sd and Id
(lines 6-9).

c: WORST DESTROY
The worst destroy method selects the replenishment items
that appear to be assigned to the wrong pods. Given
replenishment item i assigned to a pod, we define the
correlation degree reduction of the replenishment item as
∇i = f (S) − f−i(S) where f (S) is the correlation degree
of the solution and f−i(S) is the correlation degree of the

VOLUME 12, 2024 51471



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

Algorithm 4 Pod Destroy
Input: Scurr
Output: Sd , Id
1: Sd ←− Scurr
2: Nm←− count the number of pods where replenishment
items are stored
3: Lmin←− 2
4: Lmax ←− max(

⌈√
NM

⌉
, 10)

5: L ←− Lmin + ⌈(Lmax − Lmin) ∗ ξ⌉

6: for m←− 1 to L do
7: randomly remove a replenishment item i from pod m
8: Sd ←− remove replenishment item i from Sd
9: Id ←− add replenishment item i to Id

Algorithm 5Worst Destroy
Input: Scurr
Output: Sd , Id
1: Sd ←− Scurr
2: The number of replenishment items Nr is divided into L
and (Nr − L)
3: for i←− 1 to L do
4: calculate the correlation degree reduction ∇i of the
replenishment item i
5: Sorting replenishment items in ascending order of ∇i,
and removing the first ⌈L/2⌉ replenishment items
6: Randomly remove L − ⌈L/2⌉ replenishment items
among the other (Nr − L) replenishment items
7: Update Sd , Id

solution without replenishment item i. Removing replenish-
ment items with a small correlation degree reduction and
placing them in other pods to obtain an improved solu-
tion value are feasible and reasonable. We introduce the
worst destroy method that removes replenishment items with
low ∇i.
The worst destroy method is shown in Algorithm 5.

On line 2, we divide the total number of replenishment items
(Nr ) into two parts L and Nr − L. For these L replenish-
ment items, we successively calculate the correlation degree
reduction of each replenishment item and remove the ⌈L/2⌉
replenishment items with the smallest correlation degree
reduction (lines 3-5). For the other Nr − L replenishment
items, we randomly remove L − ⌈L/2⌉ replenishment items
(line 6).

2) REPAIR METHOD
This section describes two kinds of repair methods. They
adopt a destroyed solution Sd and a set of removed replen-
ishment items Id as their input and a new repaired solution Sr
as their output. Given that L replenishment items have been
removed, we now have L empty storage locations, denoted by
the set �e.

Algorithm 6Max Correlation Repair
Input: Sd , Id
Output: Sr
1: Sr ←− Sd
2: while Id ̸= ∅ do
3: �e←− the set of empty locations
4: for i ∈ Id do
5: 1i,le←−i reinsert in each empty location of �e
6: αi←−max {1i,le}

7: i←−max {αi}
8: Sr ←− insert i at its maximum correlation location
9: Id ←− remove i from Id
10: return Sr

a: MAX CORRELATION REPAIR
The max correlation repair method is a greedy construc-
tion heuristic. The pseudocode of the max correlation repair
method is shown in Algorithm 6. It performs at most L iter-
ations as it inserts one replenishment item into each iteration
(lines 3-6). Let 1i,le denote the increment in the objective
value caused by assigning replenishment item i to empty
storage location le. We define αi = maxle∈�e{1i,le} as the
correlation degree increment of assigning replenishment item
i to its best storage location (increases the objective value the
most). This location is denoted by the maximum correlation
location. Then, we choose the replenishment item i that max-
imizes αi for i ∈ Id and insert it into its maximum correlation
location (lines 7 and 8). This process is repeated until all
replenishment items have been assigned or no more replen-
ishment items can be assigned. In each iteration, we only
choose one pod (the one we assign to). Thus, we do not
need to recalculate the correlation degree increment for all
other pods. This feature can be used to increase the speed
of the repair method during the actual implementation of the
algorithm.

b: REGRET REPAIR
Regret heuristics have been applied to the vehicle routing
problems with time windows [51] and pickup and delivery
problems with time windows [41]. It can also be used for
other combinatorial optimization problems such as the gen-
eralized assignment problem [41]. The regret heuristic can
be used for RISA because of the problem’s characteristics.
The pseudocode of the regret repair method is shown in
Algorithm 7.

The regret repair method improves the max correlation
repair method by adopting forward-look information during
the selection of the replenishment items to insert. Unlike
in the max correlation repair method, in the regret repair
method, regret value δi is defined as

δi = max
le∈�e

{
1i,le

}
− submax

le∈�e

{
1i,le

}
(18)

51472 VOLUME 12, 2024



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

Algorithm 7 Regret Repair
Input: Sd , Id
Output:Sr
1: Sr ←− Sd
2: while Id ̸= ∅ do
3: �e, ne←− the set of empty locations and the number
of the empty locations
4: if ne ≥ 2 do
5: for i ∈ Id do
6: 1i,le←−i reinsert in each empty location of �e
7: αi←− max {1i,le}

8: δi←−max {1i,le} − submax{1i,le}

9: i←−max {δi}
10: Sr ←− insert i at its maximum correlation location
11: Id ←− remove i from Id
12: else
13: Sr ←− insert i into the last empty storage location
14: Id ←− remove i from Id
15: return Sr

when the number of empty storage locations, ne, in set �e
is greater than 2 (lines 4-8). The regret value is the differ-
ence in the correlation degree increment between assigning
replenishment item i to its best storage location and its
second-best storage location. In each iteration, the regret
repair method inserts replenishment item i that maximizes
δi. Then, replenishment item i is inserted into its maximum
correlation location (lines 9-11). If only one empty storage
location is left, it inserts the last replenishment item directly
(lines 12-14).

E. ADAPTIVE MECHANISM
In Section IV-D, we defined three destroy methods (random,
pod, and worst destroy) and two kinds of repair methods (max
correlation and regret repair). During the iterative search
process of the heuristic, each destroy and repair method is
assigned a weight that determines its probability of being
selected. The destroy and repair methods that perform well
in the search process (they improve the solution many times)
have a large weight.

In accordance with Ropke and Pisinger [41], we assign
weights to the different methods and use a roulette wheel
selection principle. If we have k methods with weights
wi, i ∈ {1, 2, . . . , k}, then we select method iwith probability
wi

/
(
∑k

i=1 wi). The destroymethod is selected independently
of the repair method (and vice versa). The weights of the
destroy and repair methods can be automatically adjusted
using statistics from the previous iterations. When an itera-
tion of the ALNS heuristic is completed, the score for the
destroy and repair method used in the iteration is increased in
different cases, as shown in Table 2.
After we have finished a scoring interval, we recalculate

the weight for all methods to be used in the next scoring

TABLE 2. Score adjustment parameters.

interval as follows:

wi,j+1 =

wij
(
1− λ

)
+ λ

θi

µi
, if µi ̸= 0;

wij
(
1− λ

)
, if µi = 0,

(19)

where wij is the weight of method i used in scoring interval
j, θi is the total score of method i obtained during the last
scoring interval, and µi is the number of times method i was
used during the last scoring interval. λ ∈ [0, 1] is the reaction
factor that controls the reaction speed of weight adjustment.

F. SIMULATED ANNEALING ACCEPTANCE CRITERION
We only accept solutions that are superior to the current one.
This acceptance criterion entails the risk of falling into a
local optimum. To overcome this issue, we use a simulated
annealing acceptance criterion to increase search diversity.
It accepts solutions that are worse than the current one with
a certain probability. Given current solution Scurr , we accept
a new deteriorating repaired solution Sr with the probabil-
ity e(f (Sr )−f (Scurr ))/T (the RISA problem is a maximization
problem), where T > 0 denotes the current temperature. The
temperature starts from Tstart and decreases at a cooling rate
of ς ∈ (0, 1) until the freezing temperature, Tend , is met.

G. COMPLEXITY ANALYSIS OF THE PROPOSED
ALGORITHM
According to the pseudocode of the ALNS heuristic, the
time complexity of the initial solution generation is O(Nr )
(Algorithm 2), where Nr is the total number of types of
the replenishment item. The time complexities of the three
destroy methods, namely, Algorithms 3-5, are O(1), O(L),
and O(L × NC ), respectively, where L is the number of
replenishment items that need to be removed in each iter-
ation, and NC is the number of storage locations in each
pod. The time complexity of each repair method is O(L ×
L × NC ). Therefore, the time complexity of the ALNS
heuristic is

O
(
Nr + iter × (1+ L + L × NC + 2× L2 × NC )

)
,

where iter is the total number of iterations (MaxoutIter ×
MaxinIter). Given that L equals

√
NM at the maximum,

the time complexity of the ALNS heuristic can be simply
expressed as O (iter × N ), where N is the total number of
storage locations of all pods.

VOLUME 12, 2024 51473



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

TABLE 3. Parameter for instance generation.

V. COMPUTATIONAL EXPERIMENTS
This section verifies the performance of ALNS through
numerical experiments. We generate the instances because
the RISA problem has no available test data. The details of
the generated instances are presented in SectionV-A. The per-
formance of the ALNS heuristic is presented in Section V-B.
In Section V-C, we compare the storage assignment derived
by optimization (i.e., the RISA problem solved by ALNS)
with well-known storage assignment policies applied in tra-
ditional warehouses. We perform a sensitivity analysis in
Section V-D.
All computations are executed on a 64-bit PC with an Intel

Core-i7-8565U CPU (1.8 × 1.99 GHz) and 8 GB of RAM.
The procedures are implemented using MATLAB R2015a,
and theMIP model is solved using the standard solver Gurobi
(version 9.5.1).

A. INSTANCE GENERATION AND PARAMETERS
The performance of the proposed ALNS heuristic is evalu-
ated in small-, medium- and large-scale test instances. The
small-scale instances can still be solved to produce optimal
or reasonable results by the standard solver Gurobi, and the
medium- and large-scale instances are solved in realistic
scenarios where optimal solutions cannot be obtained. Table 3
summarizes the parameters inputted to our generator.

The settings of the instance generation and algorithm
experiments are elaborated as follows:

1) With reference to literature [31], [33], [48], we set the
parameters of the warehouse (NI , NM , and NC ) to gen-
erate different test instances, as shown in Table 3. Then,
we randomly generate the required inventory level of
each item Di and item correlation degree matrix R. The
state of item storage assignment before replenishment,
Srep, is randomly generated based on the warehouse
parameters.

2) The replenishment operation is based on the replen-
ishment rate η, which is the ratio of the total number
of empty storage locations Ne to the total number of
storage locations in all pods N . η = 0 means that the
pod has no empty storage location, and no replenish-
ment is required. η = 1 means all pods are empty.
If the replenishment operation is performed when η is
low, the warehouse needs to be replenished frequently.
Otherwise, an out-of-stock situation could arise in
the picking process [28]. Moreover, the replenishment
operation is usually launched by following the (s, S)

policy [52]. The replenishment operation is performed
when the replenishment rate η = 25% or Ne = 1000,
that is, Ne accounts for 25% of N or Ne = 1000 before
replenishment.

3) We tune the parameters of the ALNS heuristic by
referring to literature [40], [41]. We start with a good
range and then tune one parameter once. The process
is repeated until all parameters are tuned. As shown in
Table 4, the best parameters settings are selected for all
computational experiments.

4) Ten independent runs are performed for each instance
to make the numerical results reliable, and we
use the average result. In Gurobi, the CPU time
required to solve the small-scale instances is limited to
1800 seconds. The ALNS heuristic and other com-
parison methods have the same parameters. The gap
between the ALNS heuristic and the other methods is
calculated as

Gap =
f (ALNS)− f (X )

f (X )
× 100% (20)

where f (ALNS) represents the objective value of the
ALNS heuristic and f (X) is the objective value of
the comparison method. For comparison purposes,
we have marked the best results in bold.

B. ALGORITHM PERFORMANCE
In this section, we assess the efficiency and performance
of the ALNS heuristic. We also investigate the effects of
different destroy and repair methods.

1) COMPARISON WITH THE STANDARD SOLVER GUROBI
We set the small-scale instances to about the maximum
instance size that Gurobi can solve with reasonable resources.
The numerical results are shown in Table 5, where negative
values indicate that the results obtained by Gurobi are better
than those obtained by ALNS. The gap in the objective values
of ALNS and Gurobi varies from -0.32% to 3.37%. The
running time of Gurobi increases sharply as the problem size
increases, so in the slightly large cases, Gurobi cannot obtain
the optimal solution within a short time. ALNS can derive
the optimal solution in some small-scale instances. Although
Gurobi can obtain a good solution in some small-scale cases,
the gap between ALNS and Gurobi is smaller than 0.32%.
When the type of itemsNI exceeds 50 and the number of pods

51474 VOLUME 12, 2024



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

TABLE 4. Parameters for algorithm.

NM exceeds 40, the results of ALNS are better than those of
Gurobi.

We record the time during the performance compari-
son with Gurobi to show that ALNS solves fast and can
provide high-quality solutions. Order picking operations in
e-commerce retailer warehouses are performed under consid-
erable time pressure because of the tight delivery schedules
promised to the customers, but replenishment operations
(e.g., once a day or half a day) can be postponed to off-
peak periods [28]. The ALNS heuristic can still provide ideal
solutions within 40 minutes even in the large-scale instances.
Therefore, we do not record the running time of the ALNS
heuristic during the comparison with other heuristics and
storage assignment policies in the medium- and large-scale
instances.

2) COMPARISON WITH EXISTING HEURISTICS
Other general heuristic algorithms, such as greedy construc-
tion heuristic (GCH) [25], variable neighborhood search
(VNS) [37], and simulated annealing (SA) or hybrid opti-
mization algorithm [33], can also be used to solve the item
storage assignment problem. However, these methods are
developed for warehouses with an empty initial state or other
situations. They are not directly applicable to the RISA prob-
lem because some pods may have no empty storage locations,
whereas others may have multiple empty storage locations.
Therefore, we make some adjustments in these algorithms
to make them adapt to the RISA problem. In addition,
we test the performance of ALNS in an empty warehouse (see
Appendix).

GCH is similar to the greedy heuristic we used to find the
feasible initial solution, so we apply this framework to GCH.
For the VNS algorithm, we need to design different neigh-
borhood structures. Similar to literature [33], we exchange
single or many different replenishment items between two
pods or among multiple pods. However, we need to identify
the matching pods first. Pods without replenishment items
or those with a mismatched number of replenishment items
cannot be processed. We have to find these pods not only
to store replenishment items, but also to match the number
of replenishment items. Then, we apply the SA acceptance
criterion to VNS (i.e., VNS-SA). We also design an adaptive

VNS (AVNS) by using an adaptive mechanism (each neigh-
borhood structure, rather than individual methods, is assigned
a weight).

The numerical results of the medium- and large-scale
instances are shown in Table 6 and Table 7, respectively.
In all the medium-scale instances, ALNS outperforms the
four comparison algorithms in terms of solution quality. The
gap between GCH and ALNS ranges from 29.0% to 37.0%,
and the average value is 32.3%. The gap between VNS, VNS-
SA, AVNS and ALNS ranges from 11.8% to 15.9%, and the
average values are 14.3%, 14.7% and 14.4%, respectively.
In all the large-scale instances, ALNS also performs better
than the four comparison algorithms in terms of solution
quality. In particular, ALNS outperforms GCH with a gap
between 31.4% to 47.7%, where the average value is 38.6%.
The gap between VNS, VNS-SA, AVNS and ALNS ranges
from 14.7% to 22.1%, and the average values are 17.3%,
17.1%, and 17.2%, respectively.

The RISA problem aims to maximize the sum of correla-
tion degree among items in pods by assigning correlated items
to appropriate pods. A high correlation degree can reduce the
number of pod visits during order picking operations [33].
As a result, the travel distance of robots and the order retrieval
time can be reduced accordingly [23], [25], [32]. The high
performance of the ALNS heuristic in the RISA problem
has a considerable positive effect on the travel distance of
robots and order retrieval time. It will result in more effi-
cient and cost-saving order picking operations. This can help
e-commerce retailers meet growing customer demands and
maintain high-quality logistic service.

In conclusion, the ALNS heuristic shows a better perfor-
mance than GCH, VNS, VNS-SA, and AVNS in all instances.
The reasons for this result are as follows:

1) For GCH, although the replenishment items have the
maximum correlation degree with themselves, the cor-
relation degree with the other items in the same pod is
not considered. Meanwhile, we aim to maximize the
sum of correlation degree among all items in each pod.

2) Solution encoding and neighborhood search. VNS
approaches (VNS-SA, AVNS) encode the solution for
each individual pod. Even when multiple pairs of
pods are present, the neighborhood structure of VNS

VOLUME 12, 2024 51475



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

TABLE 5. Performance comparison between ALNS and Gurobi in small-scale instances.

TABLE 6. Performance comparison between ALNS and other algorithms in medium-scale instances.

(VNS-SA, AVNS) is limited to the exchange of
replenishment items between two pods. Therefore, the
solution space of each iteration by VNS (VNS-SA,
AVNS) is small, and the solution easily falls into a
local optimum. In the ALNS heuristic, each neigh-

borhood can be considered a unique combination of a
destroy and repair method. The design of destroy and
repair methods can effectively diversify and intensify
the search. The large neighborhood also allows the
ALNS heuristic to navigate the solution space eas-

51476 VOLUME 12, 2024



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

TABLE 7. Performance comparison between ALNS and other algorithms in large-scale instances.

ily. The problem-specific solution encoding and the
destroy/repair methods can cover multiple pods instead
of only two. The search range is large per iteration
and the overall search speed of the solution space is
fast. Thus, the ALNS heuristic can find high-quality
solutions with high convergence speed.

The time complexity of the ALNS heuristic is related to
the total number of storage locations in all pods, namely, the
size of the RMFS warehouse. In the small-scale instances,
the ALNS heuristic can obtain a good solution or even an
optimal one within a short time. In the medium- and large-
scale instances, the solutions obtained by the ALNS heuristic
are better than those produced by the comparison algo-
rithms. Moreover, although the replenishment operation is
not time-critical and can be postponed to off-peak hours [28],
the ALNS heuristic can still produce good solutions within
an acceptable time frame. The performance of the ALNS
heuristic in all instances shows that it has good scalability
and ensures a proper trade-off between solution quality and
time consumption.

3) EFFECT OF THE DESTROY AND REPAIR METHODS
To examine the effect of each destroy/repair method and
their combination with each other, we record how frequently
they are selected when solving the medium-scale instances
with ALNS. The three destroy methods (random destroy-
RD, pod destroy-PD, worst destroy-WD) and the two repair
methods (max correlation repair-MR, regret repair-RR) can
be merged into six combinations, i.e., RD-MR, RD-RR,

PD-MR, PD-RR, WD-MR, WD-RR. In the adaptive mech-
anism of ALNS, the probability of each combination being
selected is dynamically adjusted in accordance with to the
combination’s performance, and the combinations that lead
to a large improvement in the solution are selected more
frequently. In Table 8, we show the frequency percentages
(invoking times) of the destroy/repair methods and six com-
binations. The invoking frequencies of the three destroy
methods (RD, PD andWD) and two repair methods (MR and
RR) do not vary considerably. WD-RR (23.9%) is the most
promising among the combinations. WD (40.7%) with RR
(58.1%) frequently generates better solutions, so its proba-
bility of being selected is high.

C. COMPARISON OF TRADITIONAL STORAGE
ASSIGNMENT POLICIES
This section compares the RISA problem solved by ALNS
with well-known storage assignment policies for traditional
warehouses, including random storage, dedicated storage,
closest open location storage, full-turnover storage and class-
based storage [2].

Random storage randomly assigns items to fitting empty
storage locations with an equal probability. This policy (also
called RND) can be applied directly to RMFS by randomly
assigning replenishment items to pods with empty storage
locations.Closest open location storage assigns items to the
empty storage locations closest to the depot. This policy is not
directly transferable to the RISA problem. In order to apply
the basic idea of closest open location storage, we recommend

VOLUME 12, 2024 51477



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

TABLE 8. Frequency of selected destroy/repair method combinations.

a policy called largest correlation storage (LCS). It is similar
to the greedy rule we used to find an initial solution, so we
apply this framework to LCS.Dedicated storage (DS) stores
each item in the fixed storage locations. As mentioned before,
storing each type of item in dedicated pods will increase the
number of pods visits in RMFS. We also test DS where one
type of item is stored in only one pod. Full-turnover storage
assigns items to storage locations based on their turnover
rate. Items with high turnover rates are assigned close to the
depot. Class-based storage (CBS) divides items into several
classes, where each class is randomly stored in a dedicated
storage area. To transfer the basic idea of full-turnover stor-
age and CBS, we divide the items into two classes [33],
namely, best-selling items (Di > 3) and general-selling items
(Di ≤ 3). The items in each class are assigned to different
pods, and items of the same class are stored randomly.

We apply the medium- and large-scale instances, and
present the results of the comparison in Table 9 and Table 10.
The average performance gap between RISA and RND, LCS,
DS, and CBS is 44.5%, 32.2%, 198.1%, and 42.0% in the
medium-scale instances, respectively. Even the best among
them (i.e., LCS) leads to 32.2% lower correlation degree than
the results of the optimized storage assignment. In the large-
scale instances, the average performance gap between RISA
and RND, LCS, DS, and CBS is 45.6%, 38.6%, 161.6% and
44.3%, respectively. Among the four policies, DS has the
worst results in the medium- and large-scale instances. Stor-
ing each type of item in dedicated pods increases the number
of pod visits during order picking operations. Therefore, the
four storage assignment policies are unsuitable for the RISA
problem in RMFS warehouses.

D. SENSITIVITY ANALYSIS
This section analyzes the effects of various parameters,
including the number of pods, number of storage locations
in each pod, and average scatter level of items, on the perfor-
mance of proposed ALNS and RISA.

1) EFFECT OF THE NUMBER OF PODS
Experiments are performed on instances with NI = 1000,
NC = 5 and different NM (number of pods) to demonstrate
the effect of NM on the performance of RISA. The results
are given in Fig. 6. With the increase in NM , the heuris-
tics and storage assignment policies present approximately
linear increasing trends. In the RISA problem, the variants
of the VNS algorithm (VNS, VNS-SA, and AVNS) do not
differ considerably in performance. The performance of the

proposed ALNS and RISA is better than that of the other
heuristics and storage assignment policies.

2) EFFECT OF THE NUMBER OF STORAGE
LOCATIONS IN EACH POD
The change in the objective values regarding NC (the number
of storage locations in each pod) under a fixed type of items
(NI = 1000) and number of pods (NM = 500) is depicted
in Fig. 7. A large pod capacity means a pod can store many
different items at the same time. The objective values of all
the heuristics and storage assignment policies increase as the
number of storage locations in each pod increases. The results
also indicate that our RISA and the proposed ALNS have
excellent performance.

3) EFFECT OF THE SCATTER LEVEL OF ITEMS
This section examines the effect of items’ scatter level on the
RISAwith a fixed number of pods (NM = 500) and number of
storage locations in each pod (NC = 5). We define the scatter
level of items, s, as the average number of storage locations
to be assigned for each item:

s =
NC × NM

NI

The total type of itemsNI must not exceed the total number
of storage locations (NC×NM ) in the warehouse, that is,NI ≤
NC ×NM . s = 1 indicates that the total type of items is equal
to the total number of storage locations, namely, each item
corresponds to one storage location on the average. When the
total number of storage locations is determined, the larger s
is, the fewer the types of items are, and the more the storage
locations that each item occupies (i.e., the more scattered the
items stored in the pods are).

The type of items and expected results of RISA obtained
by varying the items’ scatter level are shown in Table 11
and Fig. 8. The scatter level of the items does not have
a considerable effect on RISA, suggesting that high inven-
tory dispersion is not always good. This result may be
good for warehouse managers because scattered storage
of items remarkably increases the replenishment workload.
Although the scattered storage strategy can effectively reduce
the distance to which robots move pods, with the increase
in the scatter level, the type of items stored in the ware-
house in the same storage area decreases correspondingly,
or many pods are needed to store the same number of item
types.

51478 VOLUME 12, 2024



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

TABLE 9. Performance comparison between RISA and storage assignment policies in medium-scale instances.

TABLE 10. Performance comparison between RISA and storage assignment policies in large-scale instances.

VI. EXTENSION
In this section, we further consider the different properties
of items and the heterogeneous storage locations in the pods.
In the real-world scenario, the storage locations in the pods in
RMFS may have different sizes. The properties of different

items (such as quantity, weight, size, fragility, etc.) also
vary [53]. The compatibility between replenishment items
and storage locations needs to be considered when making
decisions to replenish items. For example, heavy or large
items have to be stored at the bottom of the pods, and light

VOLUME 12, 2024 51479



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

FIGURE 6. The effect of number of pods: (a) Heuristics; (b) Storage assignment policies.

FIGURE 7. The effect of number of storage locations each pod: (a) Heuristics; (b) Storage assignment policies.

TABLE 11. The effect of the scattered level of items.

and small items can be placed in the middle or upper storage
locations of the pods. Furthermore, the quantity pairing of the

items should be considered in the calculation of the correla-
tion degree between the items in the pod.

By using the notations in Table 1 and Table 12, we can
rewrite the objective function as (21) and add constraints (22)
to (26) as follows:

Max
∑
m∈Me

 ∑
c∈Cme

∑
c′>c

∑
i∈Ir

∑
j∈Ir

rijvimcvjmc′

max{yim, yjm}

+

∑
c∈Cme

∑
c′∈Cma

∑
i∈Ir

∑
j∈I

rijvimchjmc′

max{yim, bjm}

 (21)

vimc ≤ xim, ∀i ∈ Ir ;m ∈ Me; c ∈ Cme (22)

51480 VOLUME 12, 2024



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

FIGURE 8. The effect of the scattered level of items.

TABLE 12. Additional notations.

vimc ≤ uimc, ∀i ∈ Ir ;m ∈ Me; c ∈ Cme (23)∑
c∈Cme

vimc = yim, ∀i ∈ Ir ;m ∈ Me (24)

∑
i∈Ir

vimc ≤ 1, ∀m ∈ Me; c ∈ Cme (25)

vimc ∈ {0, 1} , ∀i ∈ Ir ;m ∈ Me; c ∈ Cme (26)

The objective function (21) further considers the quantity
pairing of the items in each pod. Constraint (22) indicates
that if replenishment item i is assigned to an empty storage
location c in pod m, it must be assigned to pod m. Con-
straint (23) ensures that compatibility between replenishment
item i and empty storage location c. The number of empty
storage locations occupied by replenishment item i in pod
m is determined by Constraint (24). Constraint (25) ensures
that only one unit of replenishment items can be assigned
to each empty storage location. Constraint (26) defines the
binary variables.

When solving RISA problem in business practice (i.e.,
in consideration of the abovementioned factors), we need to
add a judgment condition for allocating replenishment items.
That is, we screen out the empty storage locations that are
compatible with the replenishment items and choose from
them. Notably, considering these conditions does not change
the essence of the RISA problem and does not affect the
performance of the proposed algorithm. Thus, our proposed
algorithm is a good choice for use in business practice.

RMFS is a kind of parts-to-picker system. Due to differ-
ent warehousing environment and system selection, different
parts-to-picker systems implement various technical compo-
nents, have different layout design, and organize the picking
process slightly different. However, they all have in com-
mon that the storage bins or moveable racks are transported
to the picking workstations by automated devices such as
autonomous mobile robots, shuttles, and conveyors. Then,
the human picker in the workstation picks items from bins
or racks into the corresponding customer bins [39]. Thus, the
findings of this study can also be applied to some other parts-
to-picker warehouses, such as some automated storage and
retrieval systems (ASRS).

VII. CONCLUSION
This study investigates the RISA problem in RMFS ware-
houses. In particular, some empty storage locations are
available in the pods after an order picking period, and the
other storage locations are already occupied. The items that
do not meet the required inventory levels need to be replen-
ished. When we decide to replenish these items, we need
to consider not only the correlation between replenishment
items, but also the correlation between replenishment items
and the items already stored in the same pod. Therefore,
we focus on the replenishment situation with simultaneous
consideration of item turnover level, scattered storage, and
correlation relationship in RMFS. We describe the problem
in detail and formulate it as a MIP model.

In consideration of the characteristics of the RISA prob-
lem, we propose a suited ALNS heuristic to solve this
problem. The heuristic can handle the problem at any
replenishment rate level and can be applied to the spe-
cial case where the initial state of the warehouse is empty.
The computational study shows that the ALNS heuristic
can effectively solve this problem and provide high-quality
solutions compared with the methods in literature. Further-
more, we compare the proposed optimization-based storage
assignment with commonly used storage assignment poli-
cies for traditional warehouses. Numerical results show that
our optimization-based storage assignment has remarkable
advantages over other policies.

The following part presents the limitations and scopes to
consider in further research:

1) Reliable historical order data can be used to obtain
the robust relationship between different items. This
study assumes that the correlation degree of any pair

VOLUME 12, 2024 51481



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

TABLE 13. Performance comparison between ALNS and other algorithms in medium-scale instances (empty warehouse).

TABLE 14. Performance comparison between ALNS and other algorithms in large-scale instances (empty warehouse).

of items can be derived from historical order data.
However, in some e-commerce warehouses, customer
demand fluctuates considerably in different sales peri-
ods. Future orders may differ from historical orders,
so the correlation between items may also change.

Therefore, the item storage assignment problem that
considers dynamic demand will be the direction of our
future research.

2) Some parameters of the warehouse setup in the compu-
tational experiments are referenced to actual warehouse

51482 VOLUME 12, 2024



R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

and relevant literature. However, this study does not test
out the proposed method in a real-life scenario or on
actual enterprise data. Future research could examine
how the proposed method performs in actual ware-
house environments.

3) Future research could also consider the cost of replen-
ishment operations, including the cost of item scattered
storage and correlated storage. Doing so will address
important research questions on how often and when
replenishment operations should be performed. In addi-
tion, studying the dynamic item storage assignment
problem in some warehouses where replenishment and
picking occur simultaneously remains difficult.

4) Although the trend toward automated processes is
continuing and robots are becoming increasingly intel-
ligent, the human advantage cannot be completely
replaced. In the foreseeable future, many technical
problems in robot picking are still expected to occur;
not all of them can be resolved, and human pickers will
remain an integral part of order picking [39], [54]. Fur-
thermore, human pickers are the bottleneck resource
in parts-to-picker systems. The working states of
human pickers considerably influence picking perfor-
mance [55], [56], [57]. Therefore, considering human
factors in the item storage assignment problem is an
interesting aspect to explore.

APPENDIX
In this appendix, we test the performance of ALNS heuristic
for solving the special case where the warehouse is empty
(η = 1).Mathematically, a larger replenishment rate ηmeans
a larger number of empty storage locations, and thus mak-
ing the problem more combinatorial and difficult to solve.
We adjust the scale of the test instances for the empty ware-
house to obtain a fair trade-off between solution quality and
search time.

The numerical results ofmedium- and large-scale instances
of the empty warehouse are shown in Table 13 and 14,
respectively. ALNS performs better than all four comparison
algorithms on all medium- and large-scale instances. Specifi-
cally, ALNS outperforms GCHwith an average gap of 54.6%
in the medium-scale instances and 47.8% in the large-scale
instances. The average gap between VNS, VNS-SA, AVNS
and ALNS is more than 10% and 14% in the medium-scale
instances and large-scale instances, respectively.

REFERENCES
[1] N. Boysen, R. de Koster, and F. Weidinger, ‘‘Warehousing in the

e-commerce era: A survey,’’Eur. J. Oper. Res., vol. 277, no. 2, pp. 396–411,
Sep. 2019, doi: 10.1016/j.ejor.2018.08.023.

[2] R. de Koster, T. Le-Duc, and K. J. Roodbergen, ‘‘Design and control of
warehouse order picking: A literature review,’’ Eur. J. Oper. Res., vol. 182,
no. 2, pp. 481–501, Oct. 2007, doi: 10.1016/j.ejor.2006.07.009.

[3] A. Bolu and Ö. Korçak, ‘‘Adaptive task planning for multi-robot
smart warehouse,’’ IEEE Access, vol. 9, pp. 27346–27358, 2021, doi:
10.1109/ACCESS.2021.3058190.

[4] W. Wang, Y. Wu, J. Zheng, and C. Chi, ‘‘A comprehensive framework for
the design of modular robotic mobile fulfillment systems,’’ IEEE Access,
vol. 8, pp. 13259–13269, 2020, doi: 10.1109/ACCESS.2020.2966403.

[5] N. Boysen, D. Briskorn, and S. Emde, ‘‘Parts-to-picker based order pro-
cessing in a rack-moving mobile robots environment,’’ Eur. J. Oper. Res.,
vol. 262, no. 2, pp. 550–562, Oct. 2017, doi: 10.1016/j.ejor.2017.03.053.

[6] P. R. Wurman, R. D’Andrea, and M. Mountz, ‘‘Coordinating hundreds of
cooperative, autonomous vehicles in warehouses,’’ AI Mag., vol. 29, no. 1,
pp. 9–20, 2008.

[7] E. Guizzo, ‘‘Three engineers, hundreds of robots, one warehouse,’’ IEEE
Spectr., vol. 45, no. 7, pp. 26–34, Jul. 2008.

[8] J. J. R. Reyes, E. L. Solano-Charris, and J. R. Montoya-Torres,
‘‘The storage location assignment problem: A literature review,’’ Int.
J. Ind. Eng. Computations, vol. 10, no. 2, pp. 199–224, 2019, doi:
10.5267/j.ijiec.2018.8.001.

[9] J. Gu, M. Goetschalckx, and L. F. McGinnis, ‘‘Research on ware-
house design and performance evaluation: A comprehensive review,’’
Eur. J. Oper. Res., vol. 203, no. 3, pp. 539–549, Jun. 2010, doi:
10.1016/j.ejor.2009.07.031.

[10] J. Gu, M. Goetschalckx, and L. F. McGinnis, ‘‘Research on warehouse
operation: A comprehensive review,’’ Eur. J. Oper. Res., vol. 177, no. 1,
pp. 1–21, Feb. 2007, doi: 10.1016/j.ejor.2006.02.025.

[11] I. G. Lee, S. H. Chung, and S. W. Yoon, ‘‘Two-stage storage assignment to
minimize travel time and congestion for warehouse order picking oper-
ations,’’ Comput. Ind. Eng., vol. 139, Jan. 2020, Art. no. 106129, doi:
10.1016/j.cie.2019.106129.

[12] M. S. Islam and M. K. Uddin, ‘‘Correlated storage assignment approach in
warehouses: A systematic literature review,’’ J. Ind. Eng. Manage., vol. 16,
no. 2, p. 294, Jun. 2023, doi: 10.3926/jiem.4850.

[13] F. Weidinger, N. Boysen, and D. Briskorn, ‘‘Storage assignment with rack-
moving mobile robots in KIVA warehouses,’’ Transp. Sci., vol. 52, no. 6,
pp. 1479–1495, Dec. 2018, doi: 10.1287/trsc.2018.0826.

[14] M. Wang, R.-Q. Zhang, and K. Fan, ‘‘Improving order-picking
operation through efficient storage location assignment: A new
approach,’’ Comput. Ind. Eng., vol. 139, Jan. 2020, Art. no. 106186,
doi: 10.1016/j.cie.2019.106186.

[15] R.-Q. Zhang, M. Wang, and X. Pan, ‘‘New model of the stor-
age location assignment problem considering demand correlation pat-
tern,’’ Comput. Ind. Eng., vol. 129, pp. 210–219, Mar. 2019, doi:
10.1016/j.cie.2019.01.027.

[16] K.-W. Pang and H.-L. Chan, ‘‘Data mining-based algorithm for storage
location assignment in a randomisedwarehouse,’’ Int. J. Prod. Res., vol. 55,
no. 14, pp. 4035–4052, Jul. 2017, doi: 10.1080/00207543.2016.1244615.

[17] J. Li, M. Moghaddam, and S. Y. Nof, ‘‘Dynamic storage assignment
with product affinity and ABC classification—A case study,’’ Int. J. Adv.
Manuf. Technol., vol. 84, nos. 9–12, pp. 2179–2194, Jun. 2016, doi:
10.1007/s00170-015-7806-7.

[18] Y.-F. Chuang, H.-T. Lee, and Y.-C. Lai, ‘‘Item-associated cluster assign-
ment model on storage allocation problems,’’ Comput. Ind. Eng., vol. 63,
no. 4, pp. 1171–1177, Dec. 2012, doi: 10.1016/j.cie.2012.06.021.

[19] M.Merschformann, T. Lamballais,M. B.M. deKoster, and L. Suhl, ‘‘Deci-
sion rules for robotic mobile fulfillment systems,’’ Oper. Res. Perspect.,
vol. 6, Dec. 2019, Art. no. 100128, doi: 10.1016/j.orp.2019.100128.

[20] K. Azadeh, R. De Koster, and D. Roy, ‘‘Robotized and automated ware-
house systems: Review and recent developments,’’ Transp. Sci., vol. 53,
no. 4, pp. 917–945, Jul. 2019, doi: 10.1287/trsc.2018.0873.

[21] Y. Zhuang, Y. Zhou, E. Hassini, Y. Yuan, and X. Hu, ‘‘Rack retrieval
and repositioning optimization problem in robotic mobile fulfillment
systems,’’ Transp. Res. E, Logistics Transp. Rev., vol. 167, Nov. 2022,
Art. no. 102920, doi: 10.1016/j.tre.2022.102920.

[22] R. Yuan, S. C. Graves, and T. Cezik, ‘‘Velocity-based storage assignment
in semi-automated storage systems,’’ Prod. Oper. Manage., vol. 28, no. 2,
pp. 354–373, Feb. 2019, doi: 10.1111/poms.12925.

[23] X. Li, G. Hua, A. Huang, J.-B. Sheu, T. C. E. Cheng, and F. Huang,
‘‘Storage assignment policy with awareness of energy consumption in the
Kiva mobile fulfilment system,’’ Transp. Res. E, Logistics Transp. Rev.,
vol. 144, Dec. 2020, Art. no. 102158, doi: 10.1016/j.tre.2020.102158.

[24] H.-J. Kim, C. Pais, and Z. M. Shen, ‘‘Item assignment problem in a robotic
mobile fulfillment system,’’ IEEE Trans. Autom. Sci. Eng., vol. 17, no. 4,
pp. 1854–1867, Oct. 2020, doi: 10.1109/TASE.2020.2979897.

[25] M. Mirzaei, N. Zaerpour, and R. de Koster, ‘‘The impact of integrated
cluster-based storage allocation on parts-to-picker warehouse perfor-
mance,’’ Transp. Res. E, Logistics Transp. Rev., vol. 146, Feb. 2021,
Art. no. 102207, doi: 10.1016/j.tre.2020.102207.

[26] N. Yang, ‘‘Evaluation of the joint impact of the storage assignment and
order batching in mobile-pod warehouse systems,’’ Math. Problems Eng.,
vol. 2022, pp. 1–13, Apr. 2022, doi: 10.1155/2022/9148001.

VOLUME 12, 2024 51483

http://dx.doi.org/10.1016/j.ejor.2018.08.023
http://dx.doi.org/10.1016/j.ejor.2006.07.009
http://dx.doi.org/10.1109/ACCESS.2021.3058190
http://dx.doi.org/10.1109/ACCESS.2020.2966403
http://dx.doi.org/10.1016/j.ejor.2017.03.053
http://dx.doi.org/10.5267/j.ijiec.2018.8.001
http://dx.doi.org/10.1016/j.ejor.2009.07.031
http://dx.doi.org/10.1016/j.ejor.2006.02.025
http://dx.doi.org/10.1016/j.cie.2019.106129
http://dx.doi.org/10.3926/jiem.4850
http://dx.doi.org/10.1287/trsc.2018.0826
http://dx.doi.org/10.1016/j.cie.2019.106186
http://dx.doi.org/10.1016/j.cie.2019.01.027
http://dx.doi.org/10.1080/00207543.2016.1244615
http://dx.doi.org/10.1007/s00170-015-7806-7
http://dx.doi.org/10.1016/j.cie.2012.06.021
http://dx.doi.org/10.1016/j.orp.2019.100128
http://dx.doi.org/10.1287/trsc.2018.0873
http://dx.doi.org/10.1016/j.tre.2022.102920
http://dx.doi.org/10.1111/poms.12925
http://dx.doi.org/10.1016/j.tre.2020.102158
http://dx.doi.org/10.1109/TASE.2020.2979897
http://dx.doi.org/10.1016/j.tre.2020.102207
http://dx.doi.org/10.1155/2022/9148001


R. Li et al.: Item Storage Assignment Problem in RMFSs With Nonempty Pods

[27] T. L. Tessensohn, D. Roy, and R. B. M. De Koster, ‘‘Inventory allocation in
robotic mobile fulfillment systems,’’ IISE Trans., vol. 52, no. 1, pp. 1–17,
Jan. 2020, doi: 10.1080/24725854.2018.1560517.

[28] F. Weidinger and N. Boysen, ‘‘Scattered storage: How to distribute stock
keeping units all around a mixed-shelves warehouse,’’ Transp. Sci., vol. 52,
no. 6, pp. 1412–1427, Dec. 2018, doi: 10.1287/trsc.2017.0779.

[29] R. Yuan, T. Cezik, and S. C. Graves, ‘‘Stowage decisions inmulti-zone stor-
age systems,’’ Int. J. Prod. Res., vol. 56, nos. 1–2, pp. 333–343, Jan. 2018,
doi: 10.1080/00207543.2017.1398428.

[30] T. Cezik, S. C. Graves, and A. C. Liu, ‘‘Velocity-based stowage policy
for a semiautomated fulfillment system,’’ Prod. Oper. Manage., 2022, doi:
10.1111/poms.13745.

[31] X. Xiang, C. Liu, and L. Miao, ‘‘Storage assignment and order batching
problem in kiva mobile fulfilment system,’’ Eng. Optim., vol. 50, no. 11,
pp. 1941–1962, Nov. 2018, doi: 10.1080/0305215x.2017.1419346.

[32] M. Mirzaei, N. Zaerpour, and R. B. M. de Koster, ‘‘How to benefit
from order data: Correlated dispersed storage assignment in robotic ware-
houses,’’ Int. J. Prod. Res., vol. 60, no. 2, pp. 549–568, Jan. 2022, doi:
10.1080/00207543.2021.1971787.

[33] Z. Ma, G. Wu, B. Ji, L. Wang, Q. Luo, and X. Chen, ‘‘A novel scattered
storage policy considering commodity classification and correlation in
robotic mobile fulfillment systems,’’ IEEE Trans. Autom. Sci. Eng., vol. 20,
no. 2, pp. 1020–1033, Apr. 2023, doi: 10.1109/TASE.2022.3178934.

[34] J. Zhang, N. Zhang, L. Tian, Z. Zhou, and P. Wang, ‘‘Robots’ picking
efficiency and pickers’ energy expenditure: The item storage assignment
policy in robotic mobile fulfillment system,’’ Comput. Ind. Eng., vol. 176,
Feb. 2023, Art. no. 108918, doi: 10.1016/j.cie.2022.108918.

[35] K. L. Keung, C. K. M. Lee, and P. Ji, ‘‘Data-driven order correlation
pattern and storage location assignment in robotic mobile fulfillment and
process automation system,’’ Adv. Eng. Informat., vol. 50, Oct. 2021,
Art. no. 101369, doi: 10.1016/j.aei.2021.101369.

[36] K. L. Keung, C. K. M. Lee, and P. Ji, ‘‘Industrial Internet of Things-driven
storage location assignment and order picking in a resource synchroniza-
tion and sharing-based robotic mobile fulfillment system,’’Adv. Eng. Infor-
mat., vol. 52, Apr. 2022, Art. no. 101540, doi: 10.1016/j.aei.2022.101540.

[37] M. Jiang, K. H. Leung, Z. Lyu, and G. Q. Huang, ‘‘Picking-replenishment
synchronization for robotic forward-reserve warehouses,’’ Transp. Res. E,
Logistics Transp. Rev., vol. 144, Dec. 2020, Art. no. 102138, doi:
10.1016/j.tre.2020.102138.

[38] X. Guo, R. Chen, S. Du, and Y. Yu, ‘‘Storage assignment for newly arrived
items in forward picking areas with limited open locations,’’ Transp.
Res. E, Logistics Transp. Rev., vol. 151, Jul. 2021, Art. no. 102359, doi:
10.1016/j.tre.2021.102359.

[39] N. Boysen, S. Schwerdfeger, andK. Stephan, ‘‘A review of synchronization
problems in parts-to-picker warehouses,’’Eur. J. Oper. Res., vol. 307, no. 3,
pp. 1374–1390, Jun. 2023, doi: 10.1016/j.ejor.2022.09.035.

[40] D. Pisinger and S. Ropke, ‘‘A general heuristic for vehicle routing prob-
lems,’’ Comput. Oper. Res., vol. 34, no. 8, pp. 2403–2435, Aug. 2007, doi:
10.1016/j.cor.2005.09.012.

[41] S. Ropke and D. Pisinger, ‘‘An adaptive large neighborhood search heuris-
tic for the pickup and delivery problem with time windows,’’ Transp. Sci.,
vol. 40, no. 4, pp. 455–472, Nov. 2006.

[42] S. T. Windras Mara, R. Norcahyo, P. Jodiawan, L. Lusiantoro, and
A. P. Rifai, ‘‘A survey of adaptive large neighborhood search algo-
rithms and applications,’’ Comput. Oper. Res., vol. 146, Oct. 2022,
Art. no. 105903, doi: 10.1016/j.cor.2022.105903.

[43] Z. Luo, H. Qin, D. Zhang, and A. Lim, ‘‘Adaptive large neighborhood
search heuristics for the vehicle routing problem with stochastic demands
and weight-related cost,’’ Transp. Res. E, Logistics Transp. Rev., vol. 85,
pp. 69–89, Jan. 2016, doi: 10.1016/j.tre.2015.11.004.

[44] V. C. Hemmelmayr, J.-F. Cordeau, and T. G. Crainic, ‘‘An adaptive
large neighborhood search heuristic for two-echelon vehicle routing prob-
lems arising in city logistics,’’ Comput. Oper. Res., vol. 39, no. 12,
pp. 3215–3228, Dec. 2012, doi: 10.1016/j.cor.2012.04.007.

[45] P. Bodnar, R. de Koster, and K. Azadeh, ‘‘Scheduling trucks in a cross-
dock with mixed service mode dock doors,’’ Transp. Sci., vol. 51, no. 1,
pp. 112–131, Feb. 2017, doi: 10.1287/trsc.2015.0612.

[46] E. A. Frazele and G. P. Sharp, ‘‘Correlated assignment strategy can
improve any order-picking operation,’’ Ind. Engineer, vol. 21, pp. 33–37,
Aug. 1989.

[47] A. Gharehgozli and N. Zaerpour, ‘‘Robot scheduling for pod retrieval
in a robotic mobile fulfillment system,’’ Transp. Res. E, Logistics
Transp. Rev., vol. 142, Oct. 2020, Art. no. 102087, doi: 10.1016/j.tre.2020.
102087.

[48] H. Qin, J. Xiao, D. Ge, L. Xin, J. Gao, S. He, H. Hu, and J. G. Carlsson,
‘‘JD.Com: Operations research algorithms drive intelligent warehouse
robots to work,’’ INFORMS J. Appl. Analytics, vol. 52, no. 1, pp. 42–55,
Jan. 2022, doi: 10.1287/inte.2021.1100.

[49] S. C. Graves, W. H. Hausman, and L. B. Schwarz, ‘‘Storage-retrieval
interleaving in automatic warehousing systems,’’ Manage. Sci., vol. 23,
no. 9, pp. 935–945, May 1977.

[50] W. H. Hausman, L. B. Schwarz, and S. C. Graves, ‘‘Optimal storage
assignment in automatic warehousing systems,’’ Manage. Sci., vol. 22,
no. 6, pp. 629–638, Feb. 1976.

[51] J.-Y. Potvin and J.-M. Rousseau, ‘‘A parallel route building algorithm for
the vehicle routing and scheduling problem with time windows,’’ Eur.
J. Oper. Res., vol. 66, no. 3, pp. 331–340, May 1993, doi: 10.1016/0377-
2217(93)90221-8.

[52] H. de Vries, R. Carrasco-Gallego, T. Farenhorst-Yuan, and R. Dekker,
‘‘Prioritizing replenishments of the piece picking area,’’ Eur. J. Oper. Res.,
vol. 236, no. 1, pp. 126–134, Jul. 2014, doi: 10.1016/j.ejor.2013.12.045.

[53] T. van Gils, K. Ramaekers, A. Caris, and R. B. M. de Koster, ‘‘Designing
efficient order picking systems by combining planning problems: State-
of-the-art classification and review,’’ Eur. J. Oper. Res., vol. 267, no. 1,
pp. 1–15, May 2018, doi: 10.1016/j.ejor.2017.09.002.

[54] R. de Koster, ‘‘Warehousing 2030,’’ in Global Logistics and Supply Chain
Strategies for the 2020s, R. Merkert and K. Hoberg, Eds. Cham, Switzer-
land: Springer, 2030, pp. 243–260.

[55] E. H. Grosse, C. H. Glock, and W. P. Neumann, ‘‘Human factors in order
picking: A content analysis of the literature,’’ Int. J. Prod. Res., vol. 55,
no. 5, pp. 1260–1276, Mar. 2017, doi: 10.1080/00207543.2016.1186296.

[56] E. H. Grosse, C. H. Glock,M. Y. Jaber, andW. P. Neumann, ‘‘Incorporating
human factors in order picking planning models: Framework and research
opportunities,’’ Int. J. Prod. Res., vol. 53, no. 3, pp. 695–717, Feb. 2015,
doi: 10.1080/00207543.2014.919424.

[57] Z. Wang, J. Sheu, C. Teo, and G. Xue, ‘‘Robot scheduling for mobile-
rack warehouses: Human–robot coordinated order picking systems,’’
Prod. Oper. Manage., vol. 31, no. 1, pp. 98–116, Jan. 2022, doi:
10.1111/poms.13406.

RUBO LI was born in Huangshi, Hubei, China,
in 1994. He received the M.S. degree in man-
agement science and engineering from Wuhan
University of Science and Technology, Wuhan,
China, in 2021, where he is currently pursuing the
Ph.D. degree with the School of Management. His
research interests include warehousemanagement,
optimization, and heuristics.

XUDONG DENG was born in Yunmeng, Hubei,
China, in 1964. He received the B.S. degree in
appliedmathematics fromHuazhongUniversity of
Science and Technology, Wuhan, China, in 1985,
and the M.S. degree in management science and
engineering from Wuhan University of Science
and Technology,Wuhan, China, in 1991. He is cur-
rently a Professor with the School ofManagement,
Wuhan University of Science and Technology. His
research interests include supply chain manage-

ment, logistics, and optimization.

YUNFENG MA was born in Jilin, China, in 1972.
He received the Ph.D. degree in management
science and engineering from Huazhong Univer-
sity of Science and Technology, Wuhan, China,
in 2005. He is currently a Professor with the
School of Management, Wuhan University of
Science and Technology. His research interests
include optimization, operations management, and
warehouse management.

51484 VOLUME 12, 2024

http://dx.doi.org/10.1080/24725854.2018.1560517
http://dx.doi.org/10.1287/trsc.2017.0779
http://dx.doi.org/10.1080/00207543.2017.1398428
http://dx.doi.org/10.1111/poms.13745
http://dx.doi.org/10.1080/0305215x.2017.1419346
http://dx.doi.org/10.1080/00207543.2021.1971787
http://dx.doi.org/10.1109/TASE.2022.3178934
http://dx.doi.org/10.1016/j.cie.2022.108918
http://dx.doi.org/10.1016/j.aei.2021.101369
http://dx.doi.org/10.1016/j.aei.2022.101540
http://dx.doi.org/10.1016/j.tre.2020.102138
http://dx.doi.org/10.1016/j.tre.2021.102359
http://dx.doi.org/10.1016/j.ejor.2022.09.035
http://dx.doi.org/10.1016/j.cor.2005.09.012
http://dx.doi.org/10.1016/j.cor.2022.105903
http://dx.doi.org/10.1016/j.tre.2015.11.004
http://dx.doi.org/10.1016/j.cor.2012.04.007
http://dx.doi.org/10.1287/trsc.2015.0612
http://dx.doi.org/10.1016/j.tre.2020.102087
http://dx.doi.org/10.1016/j.tre.2020.102087
http://dx.doi.org/10.1287/inte.2021.1100
http://dx.doi.org/10.1016/0377-2217(93)90221-8
http://dx.doi.org/10.1016/0377-2217(93)90221-8
http://dx.doi.org/10.1016/j.ejor.2013.12.045
http://dx.doi.org/10.1016/j.ejor.2017.09.002
http://dx.doi.org/10.1080/00207543.2016.1186296
http://dx.doi.org/10.1080/00207543.2014.919424
http://dx.doi.org/10.1111/poms.13406

