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ABSTRACT Concept detection in a radiological image involves the identification of biomedical semantic
entities within the given image. However, different modalities of radiological images make it difficult to
design a single suitable approach that can handle this heterogeneity. Such imaging data also suffers from the
problem of underrepresented sparse concepts where several concepts are present in very few training images
making it difficult to train machine learningmodels to correctly predict their occurrence. This paper proposes
a hierarchical approach for concept detection in radiological images using deep features extracted from the
layers of convolutional neural networks. At the first level, the modality of the radiological image is identified.
The second level of classification detects concepts present in the input image using multi-label classification
by considering only those concepts that are relevant to images belonging to the same modality as the
input image. This multi-label classification is performed using suitable classifiers that efficiently handle
underrepresented sparse concepts. The proposed hierarchical approach for concept detection in radiological
images outperforms state-of-the-art methods for different datasets.

INDEX TERMS Medical image modalities, radiological images, semantic concept detection,
underrepresented sparse concepts.

I. INTRODUCTION
Radiological images involve the use of different radiographic
techniques to visualize the internal structure of a human’s
body. A low dosage of radiation is given to the patient
to obtain such images that aid in the diagnosis of his/her
condition. However, a qualified radiologist is required to
correctly interpret the findings in the radiological images.
It will be helpful to radiologists if routine normal images
are automatically identified so that they can focus only on
the critical ones. This corresponds to automating diagnosis
using artificial intelligence techniques. Towards this, it is
imperative to identify the biomedical semantic concepts
in such radiographic images. This task is called concept
detection. Once such biomedical semantic concepts or
semantic entities are determined, they could also be used
to facilitate indexing for content-based image retrieval and
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search engines that attempt to retrieve medical images similar
to a given image [1]. The proposed work focuses on the
automatic detection of biomedical semantic concepts in
radiographic images.

Automating the task of concept detection in radiological
images is challenging due to the heterogeneous nature of such
images. Radiological images can belong to one of several
different imaging modalities that use different techniques
to obtain images [2], [3]. For example, X-ray scans use
X-rays while ultrasound scans use sound waves to produce
images. Computed tomographic (CT) scans use X-rays in
addition to the use of computing algorithms to produce
enhanced reconstructions of body parts. Magnetic fields
and radio frequency signals are used to produce magnetic
resonance imaging (MRI) scans. Even the intensity levels of
radiation vary for images belonging to the same modality.
Variations in the specifications of biomedical devices may
produce images that appear significantly different in terms
of their visual characteristics. These factors could confuse
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FIGURE 1. A chest radiographic image along with its associated biomedical semantic concepts.

a machine-learning model built to detect concepts in such
images. Another challenge with radiological image concept
detection is the presence of concepts that are not obvious
in the image. In Fig. 1, a chest radiograph is shown that
contains six concepts associated with the given image. One
of the associated concepts is ‘‘decreasing’’. Although the
picture indicates fluid in the lungs, it is difficult to ascertain
if the fluid has decreased unless the history of the patient is
provided. It is also important to note that concept detection
is different from object detection since concepts inherent to
the image may not be directly visible in the image. Such
concepts are called biomedical semantic concepts. Therefore,
segmentation-based approaches may not be of much help in
detecting these concepts.

Identification of biomedical semantic concepts in radiolog-
ical images suffers from two main issues, namely, (1) hetero-
geneity of images, and (2) underrepresented sparse concepts.
This heterogeneous nature of the images results in significant
intra-concept variability and inter-concept similarity. Intra-
concept variability means that images containing the same
concept may appear visually very different. Inter-concept
similarity indicates that images containing two different
concepts could have the same visual appearance. Automating
the task of predicting concepts in such heterogeneous data
can be difficult. It is also observed that images belonging
to the same radiological modality usually have several
common concepts. In situations of high inter-class similarity,
hierarchical approaches are found to be effective [4]. This
approach involves considering the classes exhibiting high
inter-class similarity collectively as a single class in the
first level of hierarchical classification, and in the second
level, to consider individual classes within the group formed
at the first level. Inspired by this, we propose to consider
a hierarchical approach for biomedical semantic concept
detection. It is also observed that certain unique biomedical
concepts are associated with every image captured using a
particular modality.

In the proposed hierarchical approach to biomedical
semantic concept detection, we propose to identify the

modality of a radiological image at the first level of hierarchy.
Once the modality is identified, the semantic concept
detection concerning a specific modality is proposed at the
second level of the hierarchy. This reduces the search space
for semantic concepts belonging to a particular modality,
which in turn reduces the ambiguity in concept detection.
We propose to consider support vector machine (SVM) based
classification of deep features extracted from the penultimate
layers of a convolutional neural network (CNN), to identify
the modality of the radiological image at the first level of
the proposed hierarchy. At the second level of the proposed
hierarchical approach, we need to have biomedical concept
detectors. We propose to have modality-specific concept
detectors. The concept detection is amulti-label classification
task since multiple biomedical semantic concepts are associ-
ated with a single medical image. There are different methods
to identify such biomedical semantic concepts in medical
images. Biomedical semantic concepts occurring in similar
training images can be associated with a test image. In some
approaches, biomedical semantic concepts are predicted as
words using a caption prediction approach [5]. However,
we propose to use multi-label classification since it is
effective in identifying common as well as rare biomedical
semantic concepts.

An important issue in biomedical semantic concept
detection is based on the observation that some biomed-
ical semantic concepts are found in very few training
examples. These are called underrepresented sparse con-
cepts. It becomes challenging for machine learning-based
approaches to predict the occurrence of such concepts due
to significant bias generated in the absence of sufficient
training data. These underrepresented sparse concepts still
hamper the performance of the multi-label classification
task. Such concepts occur in very few images but may be
highly clinically significant. Therefore, it is important for
the concept detection method to successfully annotate images
with these concepts if present. In this work, we propose to use
the Rakel algorithm to handle such sparse underrepresented
concepts [6]. This algorithm is found to work well for large
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datasets that have rare concepts. The contributions of this
work are as follows:
• A hierarchical approach to biomedical semantic concept
detection is proposed. At the first level of the hierarchy,
the deep features of the radiological image are used
to identify the radiological image modality using an
SVM-based classification approach.

• At the second level of the hierarchy, an approach to
biomedical semantic concept detection that involves
modality-specific biomedical concept detectors is
used to effectively handle underrepresented sparse
concepts.

This paper is organized as follows: Section II surveys the
recent work done in detecting concepts in medical images.
Section III outlines the proposed work. Section IV describes
the experimental results and provides an analysis of the
performance of the proposed approach. Section V concludes
the paper.

II. RELATED WORK
Conventionally, handcrafted features like scale-invariant fea-
ture transform (SIFT), local binary pattern (LBP), color and
edge directivity descriptor (CEDD), gray level co-occurrence
matrix (GLCM), and quad bag-of-colors (QBoC) were
popular for such machine learning applications that involve
medical images [7], [8], [9], [10], [11], [12]. However, there
are two main problems with the use of such features for
radiological images containing different imaging modalities.
Firstly, a given handcrafted feature may not be suitable for
capturing the visual characteristics of all the radiological
image modalities. Secondly creating different handcrafted
features for each modality is a cumbersome task. In contrast
to this, in recent times, most of the research work on medical
images suggests that deep features extracted from CNNs
prove to be more effective if the dataset has heterogeneous
visual features [13].
The main advantage of using CNNs is that they can

serve dual functions of feature extraction as well as
classification [14]. To maximize its performance, a CNN
must be trained on huge volumes of data. In the absence of
sufficient training data, a pre-trained CNN can be used [13].
A CNN that is already trained using huge amounts of data
for a specific classification task is called a pre-trained CNN.
The same CNN can then be used to perform classification
for a similar task by fine-tuning its weights to classify
data for another classification task. Obtaining a CNN that
is pre-trained on a similar dataset is crucial. Most deep
learning applications use CNNs that are pre-trained on the
ImageNet dataset [15] that contains natural images. In [17]
and [16], the authors used a DenseNet CNN that is pre-trained
on chest X-ray images to perform concept detection in
radiological images. This has shown significant improvement
in performance as compared to CNNs pre-trained on natural
images [18], [19].
The existing work in concept detection for radiolog-

ical images can be broadly classified into four major

categories based on the approaches followed: (1) multi-
label classification-based approaches, (2) similarity search-
based-approaches, (3) encoder-decoder based approaches,
and (4) caption prediction based approaches [5]. In multi-
label classification, the test radiological image is associated
with multiple labels or concepts [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30]. Most multi-label
classification approaches, fine-tune a pre-trained CNN to
predict if the images contain the given concepts present in
the dataset [31], [32], [33], [34], [35], [36], [37]. Other
approaches perform multi-label classification using deep
features extracted from transformers [38], [39], [40], [41].
Similarity-based retrieval techniques identify similar training
images and determine the concepts associated with these
training images [19], [43], [44], [45], [46], [47]. The
concepts that are most relevant to the test image are then
selected and assigned to the test image. The encoder-decoder-
based approach encodes images using a CNN and detects
entities using a recurrent neural network (RNN) or long
short-term memory (LSTM) decoder [48], [49], [50], [51],
[52]. Some methods predict the caption associated with
the image and then extract relevant biomedical entities as
concepts from these captions [48], [51]. Similarity-based
approaches are effective in identifying rare concepts. How-
ever, they perform poorly in detecting frequently occurring
concepts as compared to multi-label classification [7], [16],
[17]. Methods using an encoder-decoder-based approach
are effective in identifying correlated biomedical semantic
concepts. Approaches that extract biomedical semantic
concepts from predicted captions suffer from the problem
of caption prediction task errors propagating to the concept
detection task. Therefore, the multi-label classification-based
method outperforms the other approaches if common as
well as underrepresented concepts need to be correctly
identified.

Most of the research done in radiological image concept
detection is part of the ImageCLEF challenges that began
in 2017 [53]. Following the initial challenges, the organizers
concluded that it was better to restrict the number of medical
image modalities used in the challenge to maximize the
performance of the proposed solutions. It was also reported
that general concepts such as ‘‘relationship conjunction -
and’’ and ‘‘medical image’’ do not have any clinical relevance
to the task [54]. During subsequent challenges, such concepts
were dropped as they did not offer any medical utility.
Several concepts have very few training images annotated
with them as their ground truth. This introduces significant
bias in the learning model leading to incorrect predictions,
especially if CNNs are used. Due to this uneven distribution
of training examples for the concepts, several authors propose
different strategies to combat this bias. Some prune the
dataset to include only those concepts whose frequency
exceeds a minimum threshold value [54], [55]. The authors
in [56] propose to identify frequently occurring concepts
as major concepts and proceed to first detect them. Using
these predictions, they predict infrequently occurring minor
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TABLE 1. Details of the major concepts associated with some
radiological medical image modalities.

concepts. Other approaches reduce the number of concepts
to a manageable level by identifying the modality of the
radiological image and then training the classifiers to predict
only those concepts that are relevant to that particular
radiological imagemodality [17]. However, it is observed that
although this approach is successful in identifying biomedical
semantic concepts that are common to images belonging to
a single radiological image modality, the concept detection
model still finds it difficult to predict underrepresented sparse
concepts. Therefore, we propose to consider a hierarchical
approach in which the modality of a radiological image
is determined at the first level using the deep features of
the image. At the second level, multi-label classification is
performed using suitable classifiers that handle the problem
of underrepresented sparse concepts.

III. PROPOSED APPROACH
The proposed approach involves a hierarchical method
comprising modality identification followed by concept
detection. This is based on our observation on the Image-
CLEF 2020 concept detection dataset that images belonging
to different modalities have different sets of major concepts
associated with them. Upon observing the data, it is seen
that most of the images belonging to a single modality
have certain major concepts associated with them. Table 1
shows these major concepts present in the images belonging
to radiological image modalities. For example, two major
concepts occur in all the CT scan images which are
‘‘Tomography, Emission-Computed’’ and ‘‘X-RayComputed
Tomography’’. This also indicates that the name of the
modality to which the image belongs is one of the semantic
concepts associated with it. Hence, we propose to use a
hierarchical approach. At the first level of the hierarchy,
we propose to detect the modality of a radiological image.
At the next level of the hierarchy, we propose to detect
concepts in a radiological image based on the modality to
which the image belongs. If an image I belongs to a modality
m, the set of all q biomedical semantic concepts associated
with modality m given as Cm

= {cm1 , cm2 , . . . , cmq } are
considered as potential concepts for the concept detection
task. Here, Cm

⊆ C and q ≤ j where C is the set of all
biomedical semantic concepts C = {c1, c2, . . . , cj} in the
dataset.

In this section, we first present the proposed approach
for modality identification. Then, we present the proposed
approach for concept detection. Lastly, an approach to handle
underrepresented sparse concepts is elucidated.

A. RADIOLOGICAL IMAGE MODALITY IDENTIFICATION
Radiological image modality identification involves the
identification of the modality of imaging used for a given
radiological image [13]. This proposed approach is illustrated
in Fig. 2. Radiological image modality identification involves
first extracting suitable features from radiological images
and then using a suitable classifier to identify the modality.
A radiological image I is classified to belong to one of
the s radiological image modalities m, where m ∈ M =

{M1, . . . ,Ms}. As illustrated in Fig. 2, we propose to
represent a radiological image using deep features extracted
using convolutional neural networks (CNNs) as they were
found to be effective in [13]. When an image is passed
through a CNN, it undergoes a series of transformations at
each layer of the CNN. Therefore, an output of any layer of
the CNN can be used to represent the image [14].
We propose to consider support vector machine (SVM)

based classifiers for modality identification as shown in
Fig. 2. An SVM is a binary classifier that involves
transforming the data to a higher dimension space where
two classes can be easily separated by a linear boundary
and builds a classifier [57]. It determines a hyperplane
having the maximum margin that separates data of a pair
of classes. A binary classifier can be used for multi-class
classification using either the ‘‘one-versus-rest’’ approach or
the ‘‘one-versus-one’’ approach. In this work, we consider
the one-versus-rest strategy. It is important to use suitable
kernels for the effectiveness of SVM-based classifiers. In this
work, we consider two kernels, namely a linear kernel and a
Tanimoto kernel [58], [59].
Consider two images A and B where a = [a1 a2 . . . an]T

and b = [b1 b2 . . . bn]T are the d-dimensional deep features
extracted after passing images A and B through the CNN.
A linear kernel between images A and B is computed as:

KLIN(a,b) = a · b (1)

The Tanimoto kernel [59] is found to be effective while
performing medical image modality classification in [13].
It considers the visual features as molecules and compares
them. The Tanimoto kernel between images A and B is
computed as:

KTAN(a,b) =
a · b

∥a∥2 + ∥b∥2 − a · b
(2)

Once the modality of a radiological image is identified,
we propose to find the concepts associated with it. In the
next section, we present the proposed approach for concept
detection corresponding to a radiological image belonging to
a modality.
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FIGURE 2. Proposed approach to identify the modality of a radiological image.

B. CONCEPT DETECTION FOR A RADIOLOGICAL IMAGE
BELONGING TO A MODALITY
For a radiological image belonging to a modality m,
we propose to consider the q biomedical semantic concepts
associated with modality m, Cm

= {cm1 , cm2 , . . . , cmq }.
However, it is also necessary to decide a subset of t
biomedical semantic concepts Cm

I = {c1, c2, . . . , ct }where
Cm
I ⊆ Cm that are prominent and most suitable to the

image. To carry out this we need to use a suitable method.
The detailed algorithm for this is given in Algorithm 1.
This proposed approach to concept detection is illustrated in
Fig. 3. This involves first representing a radiological image
extracting suitable features and then building classifiers to
detect concepts. Here, we propose to extract deep features for
a radiological image from a chosen layer of a convolutional
neural network (CNN). A radiological image I belonging to
modality m is passed through a CNN. The d-dimensional
output of one of the penultimate layers of the CNN is
considered as the feature vector representation i of the input
image I .

Algorithm 1 Concept Detection Using Proposed Hierarchi-
cal Approach
Input: Image I with modality m
Output: r concepts C̃m

I = {c̃1, c̃2, . . . , c̃r } associated with
image I

1: i← d-dimensional output of an intermediate layer of the
CNN, given I as input

2: C̃m
I = φ

3: Identify the q concepts associated with images belonging
to m as Cm

= {cm1 , cm2 , . . . , cmq }
4: Generate ⌈ qk ⌉ random concept sets from Cm as Rl where

l = 1, . . . , ⌈
q
k ⌉ of size q, such that

⋂⌈ qk ⌉
l=1 Rl = φ

5: for each Rl do
6: Generate 2k possible combinations of the k concepts

in Rl
7: Perform classification with a base classifier using 2k

classes generated in the previous step, to find the most
probable combination of concepts as Ĉl

8: for each concept c in the combination Ĉl do
9: C̃m

I = C̃m
I ∪ {c}

10: end for
11: end for

An important issue for the concept detection method
proposed in this section is underrepresented sparse concepts.

TABLE 2. Frequency of images containing concepts in the ImageCLEF
2020 concept detection training dataset. Here, 1624 biomedical semantic
concepts belonging to the DRAN modality have 1-10 images associated
with them.

A biomedical semantic concept is said to be an underrepre-
sented sparse concept if only a few images in the training
data contain that concept [60]. Table 2 shows the frequency
of images containing the biomedical semantic concepts for
the ImageCLEF 2020 concept detection training dataset. The
frequency column indicates the number of images in which
a particular biomedical semantic concept occurs. The next
seven columns indicate the number of concepts having the
frequency mentioned in the first column for each modality.
For example, in the first row, 1624 concepts occur in less than
or equal to 10 angiographic images (DRAN) while 1561 out
of 1675 concepts occur in less than 11 combined modality
(DRCO) images. The last column shows the number of
concepts having the frequency mentioned in the first column
when the modality of the images is not considered. When
the modality of the radiological images is not considered,
i.e. if we do not classify the images as per their modalities
and consider the entire training dataset as a whole (i.e.
64753 images), it is seen that 1303 out of 3047 biomedical
semantic concepts, or rather 43% of the total concepts occur
in less than 100 out of 64753 training images. Such few
training samples are not sufficient to train a deep neural
network to make accurate predictions for underrepresented
sparse concepts. Even for the training images belonging to
a single modality, it is seen that most of the modalities
have less than 10 training images per concept. An approach
that specifically handles underrepresented sparse concepts is
needed.

The most common approach to handling unbalanced
datasets with underrepresented sparse concepts is the
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FIGURE 3. Proposed approach to determine the concepts associated with a radiological image belonging to
modality m.

augmentation of the training data [49]. However, this may
not work when there is a paucity of time and computational
resources. For multi-label classification, methods such as
binary relevance (BR) [61], and label powerset (LP) [62]
are popular. Given q concepts, the BR method creates q
binary classifiers where a classifier for concept c considers
all training examples annotated with concept c as positive
examples, and all other training examples that are not anno-
tated with concept c as negative examples. Using this, binary
classification is performed and only those test examples that
are predicted as positive are annotated with the concept c.
This method, however, does not consider the correlation of
concepts in the images [63]. Also, when the dataset contains
underrepresented sparse concepts, the number of negative
training examples is much more than the number of positive
training examples. This introduces significant bias in the
model. The LPmethod transforms a multi-label classification
problem into a multi-class classification problem. In a
multi-label classification problem, a given example can be
annotated with one or more concepts from a set of q concepts
where q ≥ 2. In a multi-class classification problem, a given
example is annotated with only one concept from a set of
q concepts where q > 2. The LP method considers every
possible combination of concepts in the training data as
a single class and performs multi-class classification. This
means that if the training data contains q concepts, the
multi-class classification problem will have 2q classes and
the classifier will predict only one out of the 2q classes.
The combination of concepts associated with that class will
indicate the predictions for the example. This is highly
computationally intensive [63]. In our work, we propose
to use the disjoint Rakel algorithm to perform multi-label
classification [6]. The Rakel algorithm considers k out of
q concepts at a time to form ⌈ qk ⌉ concept sets Rl , where
l = 1, . . . , ⌈ qk ⌉. If ⌈

q
k ⌉ is not an integer, then the Rth

⌈
q
k ⌉

concept set will contain less than k concepts. As shown
in Algorithm 1, a separate classifier is trained for each
of the Rl concept sets using the LP method. For each
classifier, 2k classes are generated using all the possible
combinations of the k concepts present in the concept set.
Then for each concept set Rl , a base classifier is trained
to predict one out of the 2k outputs, that contains the most

probable combination of concepts Ĉl relevant to the input
image. In this way, ⌈ qk ⌉ random disjoint sets of concepts are
generated, each containing k concepts, and the LP method of
multi-label classification is performed on each concept set.
The results of the individual classification tasks are merged
to predict the most probable concepts C̃m

I relevant to image
I across all the concepts in Cm. Although the grouping of
the concepts is done using the disjoint Rakel algorithm, the
method of classification depends on the base classifier. In [6],
Tsoumakas et. al have suggested that the ideal value of k is 3.
Therefore, we have initialized k = 3 for our experiments.
In this work, we have performed classification using the
Rakel algorithm with the following base classifiers:

1) Support vector machines (SVM): The SVM classifier
uses a maximummargin hyperplane to discriminate the
training examples belonging to different classes [57].
For each of the ⌈ qk ⌉ concept sets, a separate Tanimoto
kernel-based SVM classifier is trained to predict one
out of the 2k combination generated from the k
concepts using a one-versus-rest strategy as Ĉl . The
results obtained across all concept sets Rl are combined
to produce C̃m

I .
2) Gaussian naive Bayes classifier: A naive Bayes classi-

fier is trained for each concept set Rl . It uses the Bayes
theorem to calculate the probability of an example con-
taining each of the 2k combinations of the k concepts
in Rl . The combination of concepts with the highest
probability is determined as Ĉl . The concepts occurring
in this most probable combination are assigned to the
example. In a Gaussian naive Bayes classifier, the
features are assumed to be independent and the data is
assumed to follow a Gaussian distribution [64].

3) Logistic regression classifier: The logistic regression
classifier uses an ‘‘S’’ shaped sigmoid function fitted
to the input data and predicts the probability of a test
example belonging to a particular class [65]. The class
with the highest probability is assigned to the test
example. When used as a base classifier for the disjoint
Rakel algorithm, there are 2k classes or combinations
formed out of k concepts. The logistic regression
classifier performs this classification ⌈ qk ⌉ times for
each of the Rl concept sets. For each classification,
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TABLE 3. Details of the dataset used for radiological image concept
detection in the ImageCLEF concept detection challenges.

the most probable combination Ĉl is determined and
assigned to the test example. The results of each of the
individual classification tasks are combined to predict
the association of all the q concepts with the test
example.

4) Random forest classifier: The q concepts are divided
into ⌈ qk ⌉ concept sets. In a concept set Rl , 2

k combina-
tions of the q concepts present in Rl are created. These
are the classes used to classify the example using an
ensemble of decision trees. A majority vote is taken to
predict the class to be assigned to the test example [66].
The results obtained for each of the ⌈ qk ⌉ classification
tasks are combined to give the final result C̃m

I .

IV. EXPERIMENTAL STUDIES
In this section, the studies performed for the biomedical
semantic concept detection task are presented. The details
of the datasets used for the experiments are provided first.
Thereafter, the studies conducted are discussed.

A. DATASETS
The medical images used for studies in this work belong
to the ImageCLEF 2020, 2021, and 2022 concept detection
challenges [19], [67], [68]. ImageCLEF organizes a concept
detection challenge every year since 2017 [18], [18], [19],
[53], [67], [68]. After the initial challenges, it was decided
that the number of modalities in the dataset should be reduced
to improve the performance of the proposed approaches [53].
The later challenges focus on the concept detection task for
radiological images only. The images are taken from the
Radiology Objects in COntext (ROCO) dataset which are
obtained from various biomedical articles and literature in
the PubMed repository [70]. The details of the ImageCLEF
concept detection challenge datasets for the years 2020,
2021, and 2022 are provided in Table 3. Since the concepts
associated with the test images of the ImageCLEF 2022 con-
cept detection are not available, the training and validation
datasets were combined and 20% of this combined dataset
was randomly chosen for testing while the remaining 80%
of the images were kept for training purposes. Therefore,
we used 72733 training images and 18187 test images while
performing experiments on the ImageCLEF 2022 concept
detection dataset as mentioned in Table 8.
Each image in these datasets has a set of biomedical

semantic concepts associated with it. The ImageCLEF
challenge dataset for the year 2020 also has the modality label
for every radiological image. The details of these modalities

TABLE 4. Details of the dataset used for the ImageCLEF 2020 medical
image concept detection challenge [19].

for the ImageCLEF 2020 challenge dataset are given in
Table 4. As given in Table 4, the ImageCLEF 2020 dataset
consists of 84,257 radiographic images belonging to 7 classes
with 6 modalities and 1 class of multiple modalities in a
single image. Here, images having multiple modalities on a
single image correspond to compound images that comprise
multiple sub-images coming from different modalities.
As seen in Table 3, the ImageCLEF 2021 dataset was much
smaller in size with only 3,700 radiographic images while
the dataset used for the 2022 ImageCLEF concept detection
challenge had 98,565 radiographic images. One thing to
note is that both the ImageCLEF 2021 and 2022 concept
detection datasets did not have images annotated with their
modalities. We propose to build modality classifiers using
the ImageCLEF 2020 dataset and use those classifiers to
identify the modalities of images in the ImageCLEF 2021 and
2022 datasets. In the next section, we present the studies on
modality identification.

B. STUDIES ON MODALITY IDENTIFICATION FOR
RADIOLOGICAL IMAGES
We propose to build a modality identifier using the Image-
CLEF 2020 dataset that is comprised of radiological images
from seven modalities as given in Table 4. Every image is
represented using deep features that are extracted from the
penultimate layers of a pre-trained convolutional neural net-
work (CNN). In our proposed work, we use five pre-trained
CNNs. The first four CNNs are ResNet50 [71], NASNet-
Mobile [72], VGG16 [73], and EfficientNetV2L [74]. These
are pre-trained on natural images belonging to the ImageNet
dataset [15]. To observe the performance of features extracted
from a CNN that is pre-trained on radiographic images,
we have also used CheXNet [75], a 121-layer DenseNet CNN
that is pre-trained on a chest X-ray dataset [76]. The outputs
of the penultimate layers of these five CNNs are extracted,
and the details of the dimensions are presented in Table 5.
Let every radiological image be represented by a d-dimension
feature vector that is extracted from a chosen layer of a
CNN. To identify the modality of a radiological image,
it is necessary to build a suitable classifier. In this work,
we propose to build support vector machine (SVM)-based
classifiers [57]. For SVM-based classifiers to be effective,
it is important to use suitable kernel functions. In this
work, we propose to explore the linear kernel and Tanimoto
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TABLE 5. Details of the feature vectors obtained after feature extraction
from the layers of the CNNs.

TABLE 6. Accuracy (in %) of radiological image modality detection for the
ImageCLEF 2020 concept detection dataset.

kernel for building SVM-based classifiers. The binary
classification strategy of SVM is extended to multi-class
modality classification using the one-versus-rest strategy. The
performance of the modality classifier is measured using
accuracy as a metric. The accuracy of a classifier is measured
as given in Equation 3 [77]. The performance of the proposed
SVM-based modality identification for the ImageCLEF
2020 concept detection dataset is given in Table 6. In Fig. 4
and Fig. 5, the confusion matrices for each of the proposed
approaches to radiological image modality identification are
given.

accuracy

=
no. of images whose modality is correctly predicted

total no. of test images in the dataset
(3)

It is seen from Table 6, Fig. 4, and Fig. 5 that
SVM-based classifiers using image representations extracted
from the ResNet50 CNN perform better than those using
the representation extracted from the DenseNet-121 CNN.
It is also observed that the Tanimoto kernel-based SVM
classifier performs better than the linear kernel-based SVM.
Overall, it is seen from Table 6 that the proposed SVM-based
modality classifier that uses the Tanimoto kernel on fea-
tures extracted from the ResNet50 CNN gives the best
performance. The proposed approach to radiological image
modality identification is compared with existing approaches
that use the same test data in Table 7. The approach
that obtained an accuracy of 62.08% proposed to perform
k-nearest neighbour classification of features extracted from
a ResNet18 CNN [19]. From Tables 6 and 7, it can be seen
that the proposed approach to perform radiological image
modality classification gives better performance than other
existing approaches.

TABLE 7. Classification accuracy (in %) of radiological modality detection
for the ImageCLEF 2020 concept detection dataset.

TABLE 8. Distribution of images across radiological modalities for the
ImageCLEF 2021 and 2022 concept detection datasets.

It is also seen that SVM-based modality classifiers built
using features extracted from ResNet50 outperform the
SVM-based modality classifiers that used features extracted
from other CNNs. Features extracted from CheXNet, which
is theDenseNet-121CNNpre-trained on radiological images,
obtain the lowest accuracy for the modality classification
task. This leads to the observation that pre-training the
CNN model on radiographic images does not provide
any added advantage in terms of classification accuracy
as compared to a CNN model pre-trained on natural
images. We propose to use the Tanimoto kernel-based SVM
classifier on deep features extracted from the ResNet50
CNN for the identification of the modality of a radiological
image.

The images in the 2021 and 2022 ImageCLEF concept
detection datasets are not annotated with their respective
modalities. Therefore, the Tanimoto kernel-based SVM
classifier trained on the features extracted from the average
pooling layer after the last convolution layer of the pre-
trained ResNet50 CNN is used to classify the training and test
images of the 2021 and 2022 ImageCLEF concept detection
datasets. The distribution of images across the radiological
modalities after performing modality identification using the
proposed approach for both datasets is given in Table 8.
It is observed in Tables 4 and 8 that the distribution of
radiological modalities for both these datasets is similar to
the distribution of radiological modalities in the ImageCLEF
2020 concept detection dataset with CT scans being the
most common modality across all three datasets. In the next
section, we present the studies on modality-specific concept
detection.
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FIGURE 4. Confusion matrices for the approaches proposed for radiological modality identification using
linear kernel-based SVM classification performed on the radiological images of the ImageCLEF
2020 concept detection dataset.

C. STUDIES ON MODALITY SPECIFIC CONCEPT
DETECTION
In this section, we present the studies on the proposed
approach to concept detection specific to a modality. Once
the modality of the radiological image is identified, we build
multi-label classifiers to detect modality-specific concepts.

For this classification task, we have considered features
extracted from four different CNNs for semantic concept
detection, namely, ResNet50 [71], NASNetMobile [72],
VGG16 [73], and EfficientNetV2L [74]. Since the features
extracted from the CheXNet CNN did not obtain a high
accuracy for the modality identification task as compared
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FIGURE 5. Confusion matrices for the approaches proposed for radiological modality identification using
Tanimoto kernel-based SVM classification performed on the radiological images of the ImageCLEF
2020 concept detection dataset.

to features extracted from the other four CNNs, we did
not consider them to represent features for modality-specific
concept detection. To evaluate the performance of the
proposed approach for modality-specific concept detec-
tion, we consider precision, recall, and F1-score as the
metrics.

For a given concept c ∈ C , precision as shown in
Equation 4, indicates how many images that are predicted
to contain concept c have c in their ground truth. Recall as
given in Equation 5, for a concept c determines the number
of images that are correctly predicted to contain concept c in
their ground truth. The F1-score is computed for each unique
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TABLE 9. Mean F1-scores for the modality-specific concept detection task performed on the ImageCLEF 2020 concept detection dataset.

biomedical semantic concept c ∈ C found in the training data
as provided in Equation 6 [82]. It is the harmonic mean of
the precision and recall values for a concept c. The mean
F1-score is the average F1-score across all c ∈ C .
To evaluate the performance of the proposed approach, the
mean F1-score performance metric is used as shown in
Equation 7.

precisionc

=
no. of images correctly associated with concept c
no. of images predicted to contain concept c

(4)

recallc

=
no. of images correctly associated with concept c
no. of images that actually contain the concept c

(5)

F1 − scorec

=
2× precisionc × recallc
precisionc + recallc

(6)

mean F1 − score

=

∑j
i=1 F1 − scoreci

j
(7)

We now present the studies conducted for the con-
cept detection task on the ImageCLEF 2020, 2021, and
2022 datasets respectively.

1) STUDY ON MODALITY-SPECIFIC CONCEPT DETECTION
TASK FOR RADIOLOGICAL IMAGES OF THE IMAGECLEF
2020 DATASET
The mean F1-scores obtained for the modality-specific
concept detection task performed on the ImageCLEF
2020 concept detection dataset are presented in Table 9.
The corresponding box plot is given in Fig. 6. From

Table 9 and the box plot in Fig. 6, it is evident that
the Tanimoto kernel-based SVM classifier outperforms
the other three approaches. The Gaussian naive Bayes
classifier performs the worst among the four classification
methods. It is seen that the mean F1-score for the DRCT
modality (computed tomography) is the highest among all
the individual modalities. The second highest mean F1-score
is obtained for the DRXR (X-ray scan) modality. In the
training dataset of the ImageCLEF 2020 concept detection
challenge, 31% of the images belong to the DRCT modality
while 21% of the images belong to the DRXR modality.
The mean F1-scores for the remaining modalities follow
the pattern of being proportional to the number of training
images in the dataset. The only exceptions to this are the
DRAN (angiogram) and DRUS (ultrasound) modalities. The
number of training examples from the ultrasound modality
is almost twice that of the angiography samples. Despite
this, the concept detection task has a higher mean F1-score
for DRAN as compared to DRUS. If the mean F1-score
obtained for DRCO (combined modality) is compared with
that obtained for DRPE (PET scan), it is observed that the
number of training image to test image ratio is higher for
the DRCO modality as compared to the DRPE modality.
The DRCO modality has 1673 unique concepts while the
DRPE modality has 1491 unique biomedical concepts. The
highest mean F1-score for the DRPE modality is 0.2268,
while the highest mean F1-score for the DRCO modality is
only 0.0119. This indicates that detecting semantic concepts
in images that contain multiple radiological modalities is
more difficult compared to images containing a single
modality. For this dataset, concept detection performed on
features extracted from the VGG16 CNN gave the best mean
F1-scores.
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FIGURE 6. Box plots corresponding to the concept detection task performed on the ImageCLEF 2020 concept
detection dataset.

2) STUDY ON MODALITY-SPECIFIC CONCEPT DETECTION
TASK FOR RADIOLOGICAL IMAGES OF THE IMAGECLEF
2021 DATASET
The mean F1-scores obtained for the modality-specific
concept detection task performed on the ImageCLEF
2021 concept detection dataset are presented in Table 10. The
corresponding box plot is given in Fig. 7. The ImageCLEF
2021 dataset for the concept detection challenge is the
smallest dataset with only 3700 images in total as compared
to the 2020 and 2022 datasets. The mean F1-scores of the
individual modalities as seen in Table 10 and Fig. 7 are
much higher when compared to those obtained for the other
two datasets, with DRAN (angiogram) images obtaining the
highest mean F1-score of 0.6634 for the concept detection
task, despite having only 88 training images and 17 test
images. The second highest mean F1-score is observed
for the DRUS (ultrasound) modality which contains only
271 training images and 39 test images. Although the DRCT
(computed tomography) modality had the most training and
test images, it obtained the fifth highest mean F1-score of only
0.5720 when compared to the mean F1-scores obtained by the
other modalities. There are only 8 DRPE (PET scan) training
images and 1 test image. However, the DRPE modality
achieved a maximum mean F1-score of 1. On the other hand,
for the DRCO category (combined modalities), the proposed
approach is unable to predict the occurrence of even a single

semantic concept correctly. It is also seen in Fig. 7 that
the performance of the Gaussian naive Bayes classifier is
the worst as compared to the other classification techniques.
In Table 10, it is seen that the logistic regression classifier
performs significantly better than the random forest classifier
for modalities like DRAN and DRCT. The performance
of the logistic regression classifier is marginally better
than the Tanimoto-based kernel SVM for the DRCT and
DRUS modalities. However, when we consider the overall
performance as shown in Table 12, the SVM classifier
outperforms all the other methods.

3) STUDY ON MODALITY-SPECIFIC CONCEPT DETECTION
TASK FOR RADIOLOGICAL IMAGES OF THE IMAGECLEF
2022 DATASET
The mean F1-scores obtained for modality-specific concept
detection task performed on the ImageClEF 2022 concept
detection dataset are presented in Table 11. The corre-
sponding box plot is given in Fig. 8. As it is seen in
Table 11 and Fig. 8, except for the DRCO (combined
modality) category, all other modalities obtained mean
F1-scores greater than 0.4. DRXR (X-ray scan) images
achieved the highest mean F1-score of 0.5621 which is much
higher than the second highest mean F1-score obtained by
the ultrasound modality. The performance for the DRCT
(computed tomography) modality is ranked fifth with a mean
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TABLE 10. Mean F1-scores for the modality-specific concept detection task performed on the ImageCLEF 2021 concept detection dataset.

FIGURE 7. Box plots corresponding to the concept detection task performed on the ImageCLEF 2021 concept
detection dataset.

F1-score of 0.4106. However, there is not much difference
between the performance for the DRCT modality when
compared with the average performance obtained for the
other individual modalities across the dataset. The mean

F1-score for the DRCO modality is 0.1952 which is the
highest compared to the mean F1-scores obtained for the
DRCO modality in the other two datasets. However, there is
a huge difference between the mean F1-scores for the DRCO
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TABLE 11. Mean F1-scores for the modality-specific concept detection task performed on the ImageCLEF 2022 concept detection dataset.

FIGURE 8. Box plots corresponding to the concept detection task performed on the ImageCLEF 2022 concept
detection dataset.

modality and the other six modalities. It is seen in Table 11
that the Gaussian naive Bayes classifier exhibits the worst
performance. The performance of the logistic regression
classifier and the random forest classifier are similar. For this

dataset too, the Tanimoto kernel-based SVM classification
method outperforms the other methods.

The overall mean F1-scores for the modalities across all
three datasets show a similar trend. The results indicate the
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TABLE 12. Comparison of the mean F1-scores for the concept detection task using deep features extracted from different CNNs and multi-label
classification performed using different base classifiers for the Rakel algorithm with state-of-the-art methods.

relation between the number of training examples and the
performance of the multi-label classifiers. Images belonging
to modalities such as DRCT and DRXR that have more
training examples have higher mean F1-scores as compared
to those obtained for modalities like DRCO and DRPE
which have fewer training examples per concept. The mean
F1-scores for the DRCO modality are the lowest among
all modalities across the three datasets. This indicates that
the occurrence of multiple modalities within a single image
makes it difficult to predict biomedical concepts for such
images. A possible solution to this problem could be the
splitting of every single compound image belonging to the
DRCO modality into multiple sub-images where each sub-
image belongs to a different modality [5]. The proposed
hierarchical approach for concept detection could then be
applied separately for each sub-image. When considering the
feature extraction methods used in the proposed approach,
deep features extracted from the EfficientNetV2L CNN
give the best results for the concept detection task for the
2022 dataset which is the largest dataset. Deep features
extracted from the ResNet50 CNN give better results for the
2021 dataset which is much smaller and consists only of
3700 images. When the overall performance of the proposed
approach on the individual datasets is compared, it is
seen that deep features extracted from the EfficientNetV2L
CNN give the best results as compared to deep features
extracted from the other CNNs. Among the classification
techniques considered, the Tanimoto kernel-based SVM
classifier outperforms all the other techniques for all three
datasets. The Gaussian naive Bayes classifier obtains the
lowest mean F1-scores for all three datasets. The box
plots corresponding to the Gaussian naive Bayes classifier
given in Fig. 6, Fig. 7, and Fig. 8 show inconsistency
in performance. This could probably be because the data
does not follow a Gaussian distribution and the features are
not independent of each other. The random forest classifier
achieves a slightly better performance as compared to the
logistic regression classifier for the ImageCLEF 2020 and

2022 concept detection datasets. This could be due to the
ensemble nature of the random forest which takes a majority
vote while predicting the class labels.

Since concept detection in radiological images involves
underrepresented sparse concepts, we proposed to use the
Rakel algorithm over the base classifiers to effectively
detect the underrepresented sparse concepts. In Table 12, the
proposed approach using deep features and Rakel multi-label
classification is compared with the state-of-the-art methods.
The proposed approach that uses a Tanimoto kernel-based
classifier outperforms the state-of-the-art methods for all
three datasets. All three state-of-the-art methods are proposed
by researchers at the Athens University of Economics and
Business. The approach in [17] uses a feedforward neural
network that acts as a classification layer over CheXNet
which is a variation of the DenseNet-121 CNN. The CNN
is fine-tuned to the concept detection dataset and a separate
model is trained for each modality. This approach produces
a mean F1-score of 0.3940 while our proposed approach
obtains a mean F1-score of 0.3997. Although the approach
proposed by Karatzas et al. in [17] uses the modality of the
image to narrow down the search space for concept detection,
it does not consider any mechanism to handle the problem of
sparse semantic concepts. All proposed approaches that used
deep features with the Tanimoto kernel-based SVM classifier
performed better than the approach proposed by [17]. This
shows the effectiveness of using a suitable kernel-based
SVM for classifying the data. The approach that gives the
best results for the ImageCLEF 2021 concept detection
dataset uses 4 different encoders. The first encoder is the
state-of-the-art method for the ImageCLEF 2020 concept
detection challenge. The other 3 encoders are ResNet-50,
DenseNet-201, and EfficientNet-B0 which are pre-trained
on ImageNet and fine-tuned on the 2021 concept detection
training data. 5 models are trained for each encoder resulting
in 20 models. Image embeddings are extracted from the
last average pooling layer of each of these models and the
nearest 20 training images are retrieved using the cosine
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similarity between the image embeddings of the training
images and the test image. Each concept, if present in
the majority of the training images, is assigned to the
test image [31]. This method obtains a mean F1-score
of 0.505 while our proposed approach produces a mean
F1-score of 0.537. The proposed approaches to use deep
features with the SVM classifier and the logistic regression
classifier perform better than the approach proposed by [31].
However, unlike the other two datasets, the random forest
classifier performed worse than the logistic regression
classifier for the ImageCLEF 2021 dataset. The state-of-
the-art method proposed by Charalampakos et al. in [30]
for the ImageCLEF 2022 concept detection dataset uses
2 instances of an EfficientNetV2-B0CNN that are pre-trained
on ImageNet. The image embeddings are extracted from
the last convolutional layer followed by a generalized mean
global pooling layer and a sigmoid activation layer that
performs multi-label classification of the concepts in the
training dataset. The union of the concepts obtained by both
instances of the CNN is then assigned to the image. This
approach achieves an F1-score of 0.4511 while the proposed
hierarchical multi-label classification approach achieves a
mean F1-score of 0.4528. Although the approach proposed
in [17] considers the modality of the radiological image
before performing concept detection, the other state-of-the-
art methods do not consider the radiological image modality.
From Table 12, it is evident that the proposed approach
that performs hierarchical classification by identifying the
modality of an image and then performing multi-label
classification using the Rakel algorithm outperforms all the
state-of-the-art methods.

V. CONCLUSION
In this paper, the heterogeneity of radiological images is
exploited to identify biomedical semantic concepts in radi-
ological images. In the proposed approach, the radiological
modality of the input images is first determined by perform-
ing SVM-based classification using deep features extracted
from the penultimate layers of CNNs. Deep features extracted
from CNNs pre-trained on natural images perform better at
the modality identification task as compared to deep features
extracted from CNNs pre-trained on radiographic images as
well as other state-of-the-art methods. For the concept detec-
tion task, we propose to classify deep features extracted from
the penultimate layers of CNNs using the Rakel algorithm.
The Rakel algorithm is used with base classifiers such as
logistic regression classifier, random forest classifier, Gaus-
sian naive Bayes classifier, and Tanimoto-kernel based SVM
classifier. The mean F1-scores obtained indicate that deep
features extracted from the EfficientNetV2L CNN perform
better at the multi-label classification task. The proposed
approach that uses Taniomoto-kernel based SVM classifiers
outperforms the state-of-the-art methods for the ImageCLEF
2020, 2021, and 2022 concept detection datasets.

This indicates that determining the modality of a radio-
logical image before performing concept detection improves

the performance of concept detection approaches. As part
of our future work, we would like to explore other
possible applications in radiological image processing that
could be performed after detecting such semantic concepts.
These could include caption prediction, diagnostic report
generation, and image retrieval methods.
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