
Received 29 March 2024, accepted 4 April 2024, date of publication 8 April 2024, date of current version 15 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3385860

A Survey on Non-Orthogonal Multiple Access for
Unmanned Aerial Vehicle Networks: Machine
Learning Approach
MEYRA CHUSNA MAYARAKACA AND BYUNG MOO LEE , (Senior Member, IEEE)
Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, South Korea
Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, South Korea

Corresponding author: Byung Moo Lee (blee@sejong.ac.kr)

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by Korean Government Ministry of Science and ICT (MSIT) under Grant NRF-2023R1A2C1002656; in part by MSIT,
South Korea, (ICT Challenge and Advanced Network of HRD Program), under Grant IITP-2024-RS-2022-00156345; and in part by the
Faculty Research Fund of Sejong University, in 2024.

ABSTRACT The rapid evolution of wireless communication has affected unmanned aerial vehicles (UAV),
which are expected to be used in diverse applications in smart cities, military operations, and cellular
networks. To address the significant impacts of rapid wireless communication advancements, along with the
escalating demand for user equipment (UE), multiple access technique approaches, such as non-orthogonal
multiple access (NOMA), have been proposed. NOMA has the key distinguishing feature of supporting more
UE, particularly UAV-enabled communication networks. Moreover, the successful implementation of such
enhancements relies on the acquisition of high-quality predictions. These predictions, driven by in-depth
insights derived from data, are facilitated by machine learning (ML). The integration of ML further enhances
UAV capabilities to pave the way for optimized wireless communication. In this paper, we present a survey
on the potential of NOMA techniques applied to UAVs using ML methods to enhance UAVs in wireless
communication networks. Specifically, a basic overview of UAV and NOMA will first introduced. The role
of NOMA in UAV networks is then divided into two categories: the principles and application of NOMA in
UAV networks. Finally, implement ML on NOMA for UAVs by representing the diverse applications of ML
systems. In addition, we highlight several open research problems as possible directions for future research.

INDEX TERMS Aerial networks, machine learning (ML), non-orthogonal multiple access (NOMA),
unmanned aerial vehicles (UAV).

NOMENCLATURE
Acronym Meaning
3GPP 3rd Generation Partnership Project
5G Fifth Generation
A2G Air-to-Ground
aBSs Aerial Base Stations
ACN Airborne Communication Network
AF Amplify-and-Forward
AI Artificial Intelligence
ATIS Alliance for Telecommunications

Industry Solution
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BS Base Station
CD-NOMA Code Domain Non-Orthogonal

Multiple Access
CDMA Code Division Multiple Access
CSI Channel State Information
D2D Device-to-Device
D-OMA Delta-Orthogonal Multiple Access
DF Decode-and-Forward
DL Deep Learning
DOA Direction-of-Arrival
DRL Deep Reinforcement Learning
EH Energy Harvesting
FANET Flying ad hoc Network
FD Full-Duplex
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FDMA Frequency Division Multiple Access
FSPL Free Space Path Loss
GBSM Geometry-Based Stochastic Model
GS Ground Station
HD Half-Duplex
IEEE Institute of Electrical and

Electronics Engineers
IoT Internet of Things
KPI Key Performance Indicator
KL Kullback-Leibler
LoS Line-of-Sight
ML Machine Learning
MIMO Multiple Input Multiple Output
NLoS Non-Line-of-Sight
NOMA Non-Orthogonal Multiple Access
OFDMA Orthogonal Frequency Division

Multiple Access
OLS Ordinary Least Squares
OMA Orthogonal Multiple Access
OP Outage Probability
PD-NOMA Power Domain Non-Orthogonal

Multiple Access
PS Power Splitting
QoS Quality of Service
RAN Radio Access Network
RB Resource Block
RF Radio Frequency
RL Reinforcement Learning
SC Superposition Coding
SIC Successive Interference Cancellation
SIM Stacked Intelligent Metasurface
SINR Signal-to-Interference-Noise Ratio
SL Supervised Learning
SNE Stochastic Neighbor Embedding
SNR Signal-to-Noise Ratio
SSL Semi-Supervised Learning
t-SNE t-Distributed Stochastic

Neighbor Embedding
TDMA Time Division Multiple Access
TS Time Switching
UAV Unmanned Aerial Systems
UAV Unmanned Aerial Vehicle
UE User Equipment
UP User Pairing
USL Unsupervised Learning

I. INTRODUCTION
As wireless communication has evolved and matured, shap-
ing the demand for unmanned aerial vehicles (UAV). In recent
years, UAVs have been used inmany applications. UAVs have
the potential to facilitate the establishment of smart cities
in urban areas, which can be categorized into monitoring,
inspection, delivery, and intervention missions [1]. The
stealthy, intelligent, and autonomous technology of UAVs
can also be used in military applications. UAVs also emit

radio frequency signals that can be captured and converted
into usable energy sources for the user equipment (UE) [2].
UAVs can act as flyingmobile units within a cellular network,
and facilitate various applications ranging from live video
streaming to items delivery [3].

UAVs also enable wide-ranging wireless connectivity
across large geographical areas. They are equipped with
specialized communications sensors or devices that enable
collaborative swarms of UAVs to establish flying ad hoc
networks (FANET) [4]. UAVs are expected to play a
significant role in wireless communication networks in
the future. Using airborne communication networks (ACN)
UAVs can serve as aerial base stations (aBSs) to deliver
wireless connectivity to ground and aerial devices in various
scenarios [5]. UAVs are also equipped with apparatus for
communication to provide wireless connectivity. UAVs are
expected to provide ground UE with line-of-sight (LoS)
through air-to-ground (A2G) communication. UAVs have
shown promising prospects for new applications.

In terms of various access strategies, wireless communi-
cation systems have undergone a ‘‘revolution’’ throughout
the last few decades and multiple access strategies have
advanced over the generation of wireless communication
systems. Multiple access techniques have evolved to the
fifth generation (5G), including frequency division multiple
access (FDMA), time divisionmultiple access (TDMA), code
division multiple access (CDMA), and orthogonal frequency
division multiple access (OFDMA) [6]. To assist UAVs,
existing studies have explored various multiple access tech-
niques for next-generation wireless communication systems,
such as orthogonal multiple access (OMA), non-orthogonal
multiple access (NOMA), and delta-orthogonal multiple
access (D-OMA) [7].
Wireless communication systems employ a variety of

multiple access techniques to enable multiple UEs or devices
to make efficient use of the available frequency spectrum
and time slots. Multiple access techniques, such as the
NOMA scheme, allow simultaneous access by multiple
UEs. In [8], NOMA was employed to serve a large
number of UEs. The advantages of NOMA render it a
promisingmechanism for communication usingUAVs. These
multiple access techniques are essential for ensuring reliable
and effective communication in UAV operations, which
is crucial for the diverse needs of various applications.
NOMA can be broadly classified into two categories: code-
domain NOMA (CD-NOMA) and power-domain NOMA
(PD-NOMA). In CD-NOMA, code-spreading sequences are
used to serve different UEs. In PD-NOMA, multiple UEs are
served opportunistically based on channel conditions using a
common orthogonal resource block (RB).

Machine learning (ML) is a highly effective approach that
has been successfully applied to a wide range of fields. It is
a subfield of artificial intelligence (AI) that involves the
development of algorithms and models that enable computers
to learn from data and make predictions or decisions. There
are four main categories of ML algorithms: 1)supervised
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learning (SL); 2)unsupervised learning (USL); 3)semi-
supervised learning (SSL); and 4)reinforcement learning
(RL) [9], [10]. In SL, the algorithm is trained on a labeled
dataset, in which the input data are paired with the correct
output. USL algorithms focus on grouping sample sets into
categories based on unlabeled data. SSL combines elements
of SL and USL, whereas RL is concerned with training
agents to make a series of decisions within an environment
to maximize the cumulative reward.

The growth of UAVs has been greatly aided by extensive
research on integrating various communication networks,
including space-based, air-based, and ground-based com-
munication systems [11]. Furthermore, utilizing diverse 5G
communication techniques, such as shifts in architecture
related to planning radio network layouts, smart antennas, air
interfaces, cloud integration, and heterogeneous radio access
networks (RAN) [12], can significantly enhance wireless
communication performance, improve spectrum efficiency,
and reduce latency. With the ability of NOMA to allow
multiple users to share the same frequency and time resources
and serve multiple UEs simultaneously, NOMA can increase
the connectivity efficiency for both ground devices and
UAVs. Applying NOMA in UAV-enabled communication
networks can contribute to optimizing wireless communica-
tion by improving spectral efficiency, supporting a variety
of UEs, enabling dynamic trajectory optimization, serving as
relays, incorporatingML for predictive modeling, facilitating
flexible deployment in emergencies, and mitigating interfer-
ence challenges. Therefore, incorporating 5G communication
techniques such asNOMA inUAVs usingMLmethods can be
developed to improve wireless communication performance,
improve spectrum efficiency, and reduce latency.

A. EXISTING SURVEY
Some surveys and tutorials related to UAV have been
published over the past several years, along with surveys and
tutorials on NOMA and ML techniques [3], [6], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26].

In, particular [3], [13] provided a tutorial on the potential
advantages and benefits of UAVs in wireless communication.
Likewise, in [3] UAV potential applications are presented,
while in [13], the performance of UAV communication
systems is analyzed across various metrics. Subsequently,
in [14], MLmethods have converged with mobile networking
to address escalating volumes of data, adapting deep learning
(DL) models within typical mobile networking applications
driven by algorithms.

Later, in [16], DL was utilized to acquire remarkably
precise channel state information (CSI) to improve NOMA
performance. Meanwhile, in [24], the application of ML
in UAV networks was presented, enabling the creation of
simpler solutions for optimizing the overall network with
varying capabilities in UAV processing.

In [15] the advantages and limitations of NOMA that
allow different UEs to share the same frequency/time RB
were discussed. In [17], NOMA was deliberated from a
grant-free standpoint, allowing devices to transmit data at
their discretion without scheduling requests. Similarly, [18]
enhances the collective sum rate across various Internet of
Things (IoT) applications by optimizing distributed power
and coordinated schedules, leveraging an RL algorithm for
this purpose.

To satisfy future demands, 5G wireless communication
networks are being developed. In [6], multiple access
schemes were considered for potential applications in next-
generation wireless communications. According to [21],
NOMA is the most promising scheme for addressing the
needs of an increasingly large number of UEs for future
wireless communication networks. Additionally, in [22],
both the benefits and limitations of NOMA challenges were
highlighted by applying DL while outlining the primary
applications of NOMA.

The works of [20] and [23] utilized AI-aided solutions
for better beyond 5G generation by discovering that the
ML-based paradigm enables cost-effective UAV network
deployment through resource management, routing, and
access protocols. Different AI systems were presented within
three classification schemes: applications, algorithms, and
training [25]. Subsequently, [19] demonstrated that AI algo-
rithms play a crucial role in addressing various challenges
related to UAVs by providing potential applications for AI in
UAV-based networks. Moreover, [26] delves into the realm
of ML, exploring numerous applications, challenges, and
techniques within ML, including image recognition, natural
language processing, and recommendation systems.

The above mentioned related surveys are also presented
to verify the applicability of NOMA for UAVs using the
ML approach, which is not discussed in the existing related
surveys. To support this survey, we provided comprehensive
insights into UAVs, NOMA, and ML by showcasing an
application that implements NOMA for UAVs using an
ML approach. This survey provided a more comprehensive
overview of the field, including new dimensions, perspec-
tives, or applications. This survey presents the dynamic inter-
play of NOMA and ML in UAV communication networks
and uncovers how ML models adapt to the complexity of
UAV-enabled environments in NOMA systems. Additionally,
this perspective could contribute to the design of more
efficient and adaptive communication systems for UAVs in
NOMAsystems, presentedwith theML integration approach.
This demonstrates the actual implementation of each scope.
Table 1 summarizes the highlighted related surveys and
shows the main contributions of each survey.

B. PAPER CONTRIBUTION AND ORGANIZATION
Although prior research has provided various perspectives
on UAV, NOMA, and ML, it is valuable to review current
achievements to guide future research directions. This
reflection aims to shed light on the emerging trends in this
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TABLE 1. Related survey.

field. The objective of this paper, is to illustrate the use of
NOMA for UAVs through the application of ML. In addition,
we aimed to highlight a range of open research challenges.

In Section II, we provide an overview of UAV and
NOMA including a summary of UAV networks and the
foundational NOMA architecture. Section III focuses on the
practical application of NOMA in aerial networks, examining
the channel model used in UAVs, combining multiple
UEs in NOMA, allocating limited resources to different
UEs, selecting and grouping UEs, adaptive modulation and
decoding rates, and FANET-based UAV. Section IV explores
the application of NOMA to aerial networks and investigates
various use cases. We provide a thorough analysis of all the
relevant contributions to NOMA in aerial networks.

Section V discusses the types and evaluation of ML
methods. We provide an in-depth explanation of several
techniques used for each category in the ML domain. Finally,
Section VI outlines the potential paths for future research in
this promising field. Section VII provides a comprehensive
summary and conclusions. The overall structure of this paper
is shown in Fig. 1.

II. BASIC OVERVIEW OF UAV
A UAV is an aircraft that functions without a human pilot on
board. Commonly known as drones, UAVs can be controlled

remotely or operate autonomously through pre-programmed
flight plans or dynamic automation systems. They vary in
size, ranging from small recreational drones to larger military
or commercial UAVs. These aircraft are equipped with a
comprehensive system that oversees flight, incorporating
sensors, communication devices, and navigation systems.
In addition, they featuremechanisms for either remote control
or self-directed navigation.

The growth in UAVs has been remarkable in various
industries and applications. UAVs are popular because of
their versatility and capability to execute diverse tasks, such
as industrial integration by real-time remote monitoring,
wireless coverage, and remote sensing. UAVs are constantly
being determined in industry, leading to a continuous
assessment of their functionalities across various industry
sectors [27]. UAVs typically communicate by exchanging
data or signals, and communication and data link attributes
are elements that influence their performance and abilities.
In addition to optimizing the UAV parameters to minimize
energy consumption, the goal is to optimize the achievable
data rate of the systems [28].

UAVs commonly function within the LoS of the ground
or base station (BS) [29] and are typically equipped with a
single antenna for several reasons such as range limitation,
avoidance of signal blockage, and real-time communication
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FIGURE 1. Organization of the paper.

and control. Therefore, single-antenna UAVs are often
preferred because of their improved scattering in downlink
communication scenarios [30]. It is not uncommon to
encounter instances in which the LoS component exhibits
much greater power than the reflected multipath compo-
nent [6]. UAV also offer a channel estimation for operational
cellular networks optimized to serve high-mobility vehicles,
extending coverage for terrestrial vehicles with high-mobility
or low altitude close to the cell-edge [31], [32].
UAVs rely on robust systems to detect and navigate

wireless interference and environmental factors to ensure safe
operation. Advanced sensing technologies can identify dis-
ruptions and minimize accident risks. Reliable and seamless
operation of a UAV during long-distance operations involves
maintaining a steady communication link between the UAV

and its designated ground station (GS). Hence, to ensure
the safe operation and effective air traffic management of
UAVs, government agencies have established regulations for
the use of the essential range of frequencies within the
electromagnetic spectrum.

By mandating these regulations, the government aims
to prevent any interference or disruption to the UAV
communication systems, which could pose a significant risk
to public safety. These regulations are defined in technical
documents that also help to ensure that UAVs operate within
designated airspace and follow proper protocols. These
documents are produced by several different organizations,
including the 3rd Generation Partnership Project (3GPP),
Institute of Electrical and Electronics Engineers (IEEE),
and the Alliance for Telecommunications Industry Solution
(ATIS). These documents collectively address various aspects
of unmanned aerial systems (UAS) and their integration
into communication networks. 3GPP TR 23-754 focuses
on supporting UAS connectivity, specifically addressing
identification and tracking. 3GPP TR 23-755 explores ways
to support applications that utilize UAS. IEEE Standard
1936.1 establishes a framework for drone usage across
diverse applications, whereas IEEE Standard 1939.1 defines
a framework for structuring low-altitude airspace, which is
crucial for drone operations. ATIS I-0000069 discusses the
utilization of cellular services by UAS, and ATIS I-0000071
delves into the UAS’s roles in restoring communications
during emergencies. ATIS I-0000074 explores the use of
cellular communication to support UAS flight operations.
A list of UAV operating regulations is presented in Table 2.

The bandwidth defines the amount of data that can
be transferred over a given period. This ensures that the
bandwidth meets the specific requirements for the intended
data transfer. An insufficient bandwidth can lead to slow data
transfer rates and poor UE. Therefore, the UAVmust evaluate
the available bandwidth and allocate resources accordingly
to optimize the data transfer rates. Various approaches
are used to allocate bandwidth efficiently, including the
utilization of blockchain [33], ensuring an efficient quality
of service (QoS) [34], and strategically placing UAVs using
mathematical techniques to address optimization problems
with non-convex structures [35].
While a higher bandwidth can facilitate faster data trans-

mission and potentially reduce queuing delays, it does not
inherently reduce the time it takes for data to travel, or latency,
caused by physical distance or network congestion. Latency
is influenced by various factors, including the network
infrastructure, distance, routing, and congestion. In addition,
UAV height, traffic size, and the contribution of the channel’s
LOS and non-line-of-sight (NLoS) components can affect
latency [36]. In real-time or interactive scenarios, latency can
significantly affect the responsiveness and performance of an
application or service.

Maintaining strong signal strength is critical for consistent
connections. The type of communication link can vary,
with some UAVs relying on a direct LoS to the GS,
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TABLE 2. UAV operating regulation.

whereas others use NLoS scenarios, such as relay stations or
satellite communication. In interference or NLoS scenarios,
ensuring reliable connections is challenging. To ensure
UAV performance, UAVs use different frequency bands
such as 2.4 GHz, 5.8 GHz, and 5030-5091 MHz for
communication to ensure UAV performance. The specific
frequency bands employed by UAVs can affect their data
transmission and navigational capabilities that allow for
strategic optimization, leading to less interference and spatial
diversity by providing more accurate positioning information
based on environmental conditions, regulatory requirements,
and the specific characteristics of the positioning system
employed [37]. Adaptive modulation adjusts the transmission
parameters to optimize the data rates and reliability in
fluctuating channel conditions. This technique can increase
the average transmission rate while saving energy, which
is particularly useful in ensuring operational efficiency and
reliability in UAVs amid varying environmental factors and
regulatory demands [38].

As technology continues to advance, the capabilities of
UAVs continue to increase, making them an important asset
for businesses and organizations worldwide. Understanding
the concept of communication using UAVs, operating
regulations, and optimizing performance is addressed in this
section by explaining factors such as bandwidth, latency,
signal strength, and frequency bands specific to UAV
communication.

III. NOMA ARCHITECTURE
NOMA is a non-orthogonal multiple-access technique used
in wireless communication systems, in contrast to other
orthogonal schemes. In NOMA, nonorthogonality allows
multiple UEs to share the same time-frequency resources
simultaneously. In NOMA, multiple signals are transmitted
simultaneously at the same time and the same frequency,
with each signal intended for a specific user. This enables
the simultaneous transmission of multiple signals in a non-
orthogonal manner. The diagrammatic explanation of basic
NOMA is shown in Fig. 2. In this section, we discuss the
architecture and detailed concepts of NOMA by dividing it
into two categories types of NOMA and signal processing
in NOMA. Types of NOMA are divided into two types,
such as PD-NOMA and CD-NOMA. Furthermore, signal

processing is a fundamental attribute of NOMAby employing
two techniques: SC and SIC.

FIGURE 2. Basic NOMA explanations.

A. TYPES OF NOMA
In this section, we will discuss this configuration that
involves different approaches to handling the simultaneous
transmission of multiple users over the same time-frequency
resources. CD-NOMA focuses on utilizing code domain
techniques, while PD-NOMA operates in the power domain,
each offering unique advantages and considerations within
the NOMA paradigm.

1) PD-NOMA
In this section, we discuss the initial category of NOMA,
known as PD NOMA. PD-NOMA operates in a relatively
new domain in NOMA, which holds recency that unlike other
multiple access techniques reliant on time, frequency, code
domains or their combinations, PD-NOMA integrates user
signals directly at the transmitter through standard coding
and modulation, allowing multiple users to share the same
time-frequency resources. Identification occurs at receivers
using SIC. The use of non-orthogonal multiplexing through
SC at the transmitter and SIC at the receiver is recognized to
outperform traditional orthogonal methods and is optimal for
achieving the downlink broadcast channel capacity region.

In PD-NOMA, the difference in the channel gain between
users is used to create multiplexing gains by combining
the transmit signals of multiple users with different channel
gains. NOMA leverages the diversity in channel gains
to simultaneously benefit both UEs with high and low
channel gains. UEs with higher channel gains sacrifice
some received power but gain significantly more bandwidth.
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Conversely, UEs with lower channel gains also experience
a slight reduction in received power but are allocated more
bandwidth, because of interference from signals intended for
UEs with higher channel gains [39].

The UEs adapt their transmission power based on the
power levels assigned by the BS, ensuring that their signals
can reach the BS reliably. PD-NOMAuplink power allocation
involves UEs adjusting their power levels based on the
assigned power resources to establish reliable communication
with the BS. The BS adjusts power levels based on the UEs’
channel conditions to exploit the differences in their received
signal strengths, allowing for concurrent transmission within
the same RB. PD-NOMA downlink power allocation aims to
maximize the system capacity by allocating unequal power
levels to UEs, enabling them to transmit simultaneously. The
varying transmit powers and differences in the power levels
assigned to different user signals within the same subcarrier.
The downlink and uplink scenarios of PD-NOMA are shown
in Fig. 3, in which each sub-figure provides a graph of power
over the frequency that is assigned in every UE.

2) CD-NOMA
By contrast in this section, we will discuss the following
part, namely CD-NOMA. The concept of CD-NOMA is an
advanced version inspired by the classic CDMA systems.
Building on the principles of classic CDMA systems,
CD-NOMA involves multiple UEs sharing common time-
frequency resources while employing unique but individ-
ualized spreading sequences for each UE [40]. However,
the fundamental distinction from CDMA lies in NOMA’s
utilization of spreading sequences that are limited to sparse
sequences or non-orthogonal sequences with low cross-
correlation.

In CD-NOMAuplink transmission, UE devices adjust their
transmitted power based on their assigned spreading code.
The UEs modulate their data using the allocated spreading
codes and adjust their transmission power to reach the BS.
The UEs maintain transmission power according to their
allocated codes, ensuring that their signals can be reliably
received by the BS without causing excessive interference
to others. CD-NOMA uplink power allocation involves UE
devices that adjust their power levels to transmit their signals
efficiently using assigned spreading codes.

Meanwhile, in CD-NOMA downlink transmission, the
BS assigns power levels to multiple UEs based on their
spreading codes. Each UE is assigned a unique spreading
code, and the BS allocates power levels according to the
QoS requirements and channel conditions of the UE. The
BS adjusts the power to ensure reliable communication with
multiple UEs, considering orthogonal or nearly orthogonal
codes to minimize interference among the UEs. Power
allocation in the CD-NOMA downlink ensures that UEs
with weaker channels receive sufficient power for reliable
reception while maintaining orthogonality between codes to
enable simultaneous transmission [41]. The downlink and

uplink scenarios of PD-NOMA are shown in Fig. 3, in which
each sub-figure provides a graph of code over the frequency
that is assigned in every UE within the same subcarrier.

B. SIGNAL PROCESSING
1) SC
SC is a key technique used in NOMA to enable simultaneous
transmission and reception of multiple UEs’ signals within
the same frequency-time resource. The SC multiplexes the
UEs’ signal on the transmitter side. SuperimposingmanyUEs
at the transmitter enables the simultaneous transmission of
data from multiple UEs [42]. This SC method can improve
the total data rate, ensure fairness among UEs, and provide
more flexibility in scheduling [43].

The SC principle involves a source generating a composite
signal and involves multiple UEs denoted as k UEs. This
signal is simultaneously transmitted to all UEs. The source
combines signals from two UEs to create a superimposed
signal. The superimposed signal at the source can be
represented as,

Sc =
k∑

k=1

√
Pkxk , (1)

where Sc is the superimposed signal containing the combined
signals of UE1 up to UEk . Pk is the total power levels of
the source allocated to each UE. xk is the signal to every
UE, that may carry its data or information. This equation
represents the linear combination of the signals of different
UEs, scaled by the square root of their respective power
allocations. The superimposed signal forms the composite
transmission within the same RB, allowing multiple UEs to
transmit simultaneously.

In downlink NOMA, the BS applies SC to combine
signals for multiple UEs with different power levels and
allocates higher power. It then allocates higher power to UEs
with higher channel conditions and transmits the combined
signal over the same frequency bands. Meanwhile, in uplink
NOMA, the UEs apply SC to transmit with different power
levels. The concept of SC in uplink and downlink is shown in
Fig. 3b and Fig. 3c, in which each sub-figure provides a graph
of combined signal from every UE in terms of PD-NOMA or
CD-NOMA.

2) SIC
SIC decodes signals from multiple users sequentially and
subtracts each decoded signal’s contribution from the overall
received signal to decode subsequent users. NOMA’s ability
to improve channel quality differences among UEs and its
use of advanced SIC receivers makes this scheme the most
promising technique [44]. This operation was performed
on the receiver side. This system guarantees the best
performance of key performance indicators (KPI) in terms
of throughput, energy efficiency, and the best low-latency
indicator [45]. Furthermore, because each NOMA utilizes
the entire bandwidth resource, it is widely anticipated that
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FIGURE 3. Transmission on NOMA.

NOMA will boost the system throughput. To guarantee this
performance, the NOMA technique superimposes numerous
UEswith varying transmission power levels on the same radio
resource.

In the context of NOMA, SIC plays a crucial role in
enabling the simultaneous transmission and reception of
signals from multiple UEs sharing the same time-frequency
resource. This contributes to the high spectral efficiency
and increased system capacity of NOMA systems. SIC
is a signal-processing technique used in communication
systems to address interference from multiple transmissions
in the same frequency band. SIC requires knowledge of the
channel conditions and the order of interference cancellation.
The basic idea behind SIC is to decode and remove the
contribution of each UE signal one at a time in a successive
manner. The process involves decoding the signal of the UE
with the strongest received power, subtracting that signal
from the total received signal, and then moving on to
decode the signal of the next strongest UE. This iterative
process continues until all UEs’ signals have been decoded.
By successively canceling the interference caused by stronger
signals, SIC allows the receiver to retrieve signals with
weaker UEs that would otherwise be masked by interference.
The SIC process shows that the received signal at the receiver
containing the signal from k UE can be represented as
follows,

SIC =
k∑

k=1

xk + n, (2)

where xk represents the signals to every k-th UE and n
represents the noise in the received signal. Then, the signals
of the individual UEs are decoded sequentially, starting from
the UE with the least impact on the other signals. SIC can
shape the signal-to-noise ratio (SNR) into high power offsets
and array gains [46].

In downlink NOMA, UEs combine the signal to perform
SIC, which decodes the signal meant for itself by considering
the power levels and decoding order. Subsequently, the
decoded signals were canceled to remove interference

for decoding the remaining signals. Meanwhile, in uplink
NOMA, the BS performs SIC to decode the individual
signals. The concept of SIC in uplink and downlink is shown
in Fig. 3b and Fig. 3c, after receiving a combined signal from
the transmitter, the receiver decodes each signal sequentially.
TheUEk+1 attempts to decode its signal first by treatingUEk
signal as interference. To obtain another signal, the received
signal is subtracted to cancel its impact during subsequent
decoding, which can be represented as follows,

xk+1 = x −
√
Pkxk , (3)

where x represents the original received signal.

IV. NOMA IN AERIAL NETWORKS
UAVs typically communicate independently with the base
station, and resources such as time, frequency, or code,
are allocated orthogonally to different users. This widely
used approach, may face challenges in terms of spectrum
efficiency and support many simultaneous users. NOMA
introduced a paradigm shift in UAV communication, which
offers several advantages. Noma allows non-orthogonal
resource sharing, enabling multiple users to use the same
frequency band and time slot to improve the overall network
capacity, efficiency, and ability to support a diverse range
of applications for UAV communication. The principle
of NOMA on aerial networks involves enabling multiple
users to utilize the same frequency/time resource blocks,
despite potential inter-user interference, by serving several
users on a single time-frequency resource block, employ-
ing SC at the transmitter, and implementing SIC at the
receiver [15], [47].

This section examines the functioning of NOMA in
aerial networks by thoroughly investigating the channel
model, UE multiplexing techniques, resource allocation
mechanisms, user pairing strategies, adaptive modulation,
and FANET-based UAV. It aims to comprehensively explore
and elaborate on the operational framework and technical
aspects employed within NOMA systems operating within
aerial networks.
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A. A2G CHANNEL
It is currently common for aircraft to rely on satellite links for
internet connectivity and additionally assist communication
between aircraft and GS via A2G communications. A2G
communication has a lower delay than satellite communica-
tion and is reliable for emergency and control signals [48].
An overview of A2G for UAVs in aerial networks is shown
in Fig. 4.

There is a path probability prediction on the A2G channel
that may be described by two models: the deterministic
method and the stochastic method. In the deterministic
method, the LoS path is determined using a geometric
operation. This method is only suitable for a specific
scenario by considering well-defined parameters without
considering randomness or variability using ray tracing or
analytical models [49]. Meanwhile, the stochastic method
involves using measurement and simulation-based empirical
approaches to analyze large amounts of data, divided by the
geometry based stochastic model (GBSM) and non-GBSM
(Markov model) [49].
The phenomenon of multipath propagation in mobile

communications is characterized by fading of the received
signal, which arises from the combined effects of reflection,
scattering, diffraction, and shadowing, in addition to the
direct LoS path. This fading is caused by the constructive
and deconstructive superposition of signal components that
travel along different paths. To design and optimize wireless
communication systems that can operate reliably in complex
environments, it is essential to understand the nature of
multipath propagation. Furthermore, the building height,
width, and location in scattering propagation influence
the prediction results of the LoS [50]. The A2G channel
predominantly operates in a LoS-dominant mode, which
empowers UAVs to offer dependable and adaptable wireless
connections, opening doors for a multitude of applications
and enabling them to perform diverse and intricate tasks,
offering substantial benefits to various enterprises and
entities.

The main path corresponds to the LoS or reflected path.
Therefore, the LoS path may be calculated based on the
free-space Path Loss (FSPL) model, which depends on
the distance between antennas. The reflected path may be
calculated by employing the principles of geometry and
physics of the propagation environment and predicting the
exact characteristics of the reflected paths owing to various
factors.

The FSPL in wireless communication is described as
the attenuation or weakening of a radio frequency signal
as it travels through free space, without encountering any
obstacles or reflections. The FSPL is calculated according to
the formula taken from the 5G standard, that is,

PLFSPL = 32.44+ 20 log10(d)+ 20 log10(f )+ σ 2, (4)

where d and f are the distance between the antennas and
the carrier frequency, respectively. σ 2 represents the zero
mean and variance. However, in real-world situations, various

factors, such as obstacles, terrain, buildings, and atmospheric
conditions significantly affect the actual signal loss. The
general path loss model is shown as follows,

PL = PL(d)+ 10γ log
d
d0

, (5)

where the reference path loss PL(d) is evaluated at a
reference distance d0 and includes a logarithmic term for the
propagation effects over the distance. And, γ represents the
path loss exponent, as indicated in Table 3.

TABLE 3. Path loss exponent for different environment.

FIGURE 4. A2G channel.

B. UE MULTIPLEXING
UE multiplexing in NOMA refers to the simultaneous
transmission of multiple UEs’ data over the same frequency
resource, thereby allowing efficient use of the spectrum. Both
PD-NOMA and CD-NOMA employ UE multiplexing but
through different mechanisms.

In PD-NOMA, the allocation of varying power levels to
the UEs within the same frequency-time resource allows
for simultaneous transmission. This strategy leverages differ-
ences in channel conditions among UEs, ensuring efficient
resource utilization. In PD-NOMA, the UEs are multiplexed
in the power domain by allocating different power levels to
the UEs within the same RB [51]. The spectral efficiency
is optimized by overlaying signals at different power levels
within the same RB. At the receiver end, UE devices employ
sophisticated decoding techniques, such as SIC, to decode
and recover their respective signals from the multiplexed
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transmission received from the UAV. The receiver employs
SIC to iteratively decode the signals, starting with the
weakest-power UE, reducing interference as it progresses.
The receiving UEs decode their information successfully by
employing SIC so that UEs with good channel conditions
can extract their information by eliminating other UEs’
information according to the allocated power [52]. Overall,
PD-NOMA’s UE multiplexing enhances spectrum efficiency
by accommodating diverse channel conditions.

Conversely, CD-NOMA achieves multiplexing by using
orthogonal or nearly orthogonal codes for the UEs within
the same frequency-time resource. This method enables
multiple UEs to utilize the same resources concurrently
while maintaining low interference. Features of CD-NOMA
include low inter-correlation, grant-free access, and efficient
spectrum usage.

Both PD-NOMA and CD-NOMA employ UE multi-
plexing strategies to improve spectral efficiency. While
PD-NOMA adjusts the power levels, CD-NOMA uses
orthogonal or near-orthogonal codes to enable the simul-
taneous transmission of multiple UEs. However, in PD-
NOMA multiplexing, different power levels are allocated
to the UE within the same resource block. Meanwhile,
traditional methods rely on orthogonal resource allocation,
where the UE is allocated an exclusive resource block.
These distinctive approaches efficiently accommodate the
UEs while minimizing interference and setting the stage for
advanced wireless communication systems.

C. RESOURCE ALLOCATION
An innovative and effective approach for resource allocation
in NOMA on aerial networks is to utilize multi-cluster
configurations. UAV can be deployed as mobile BS and
jointly optimize the transmission power, hovering location,
and transmission duration of the UAV, and the maximum
throughput can be achieved [53]. The aim is to meet QoS
requirements despite resource limitations. This approach
optimizes various aspects of a network to maximize its total
throughput.

In a NOMA disposition, the allocation and distribution
of various resources such as power, time slots, frequency
bands, or codes among several UEs share a common
communication channel or RB. Overall, NOMA allows the
stacking of distinct message signals from the UEs within
an NOMA cluster. The work of [54] and [55] maximizes
the average throughput by optimizing the UAV trajectory
and power allocation [54] or resource allocation [55].
Similarly, in [56], a power allocation algorithm utilizing
NOMA was proposed to maximize the total throughput.
To increase energy efficiency, in [57], resource management
and allocation were carried out step-by-step. Each equivalent
problem is optimized over individual variables while keeping
the other variables fixed.

UAVs allocate specific time slots and frequency bands
to simultaneously serve multiple UE. NOMA allows for

the sharing of resources among UE. UAVs in NOMA
systems can dynamically adjust resource allocation based
on changing network conditions, UE requirements, or UAV
mobility. This flexibility allows the system to respond in
real-time to varying factors, optimizing the allocation of
resources to meet the evolving demands of the network,
specific UE needs, or the dynamic movement of the UAV.
By continuously adapting to changing environments, systems
can enhance performance, maximize efficiency, and address
the dynamic nature of wireless communication scenarios.
Advanced optimization algorithms are employed by UAVs
to allocate resources effectively. These algorithms may
consider factors such as channel quality, UE priority, inter-
ference levels, and system capacity constraints to optimize
resource allocation. UEs optimize their power levels to
ensure that their signals are reliably received by the BS,
considering the power allocations provided by the BS for
transmission [58].

Suitable resource allocation, such as scheduling and
power control will ultimately lead to more efficient and
robust communication systems. Scheduling algorithms can
exploit multi-user diversity by selecting the most appropri-
ate UE pairs based on channel conditions, QoS require-
ments, or other criteria. Power control in NOMA plays
a crucial role in managing interference levels among
UEs, especially in scenarios where multiple users share
the same resources. Both optimizations enhance overall
system capacity, reliability, and fairness. NOMA-applied
UAV networks involve adaptative allocation of resources,
considering UE locations, channel conditions, and commu-
nication requirements. Difference from traditional methods
that used fixed resource allocation schemes. To address
resource allocation in NOMA on aerial networks, Fig. 5
illustrates the resource allocation process in NOMA on aerial
networks.

D. USER-PAIRING
In NOMA, the differences in the UE channel conditions
owing to the near-far effect are leveraged to enhance the
performance of the system. User-pairing (UP) involves
selecting and pairing UEs based on their channel conditions
and communication requirements. SIC is used for UEs with
stronger channel conditions to decode their messages first
and then eliminate the signals intended for the UEs with
weaker channel conditions before decoding the messages of
the stronger UEs.

To obtain the best solution for the two-UE network,
the work of [59] provides a streamlined yet less complex
algorithm to handle multi-UP networks using a heuristic
pairing algorithm. In addition, [60] involved a location-
based UP scheme aiming to optimize the transceiver asso-
ciation specifically for multiple UAV-aided NOMA uplinks.
Strategically utilizing UP schemes aims to enhance spectral
efficiency, improve throughput, and manage interference,
thereby optimizing the overall performance of aerial com-
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FIGURE 5. Resource allocation process in NOMA on aerial networks.

munication networks. The work of [61] suggested that a
distance-based model can be utilized to establish NOMA-UP
with stable channel differences.

During transmission, the channel gain primarily relies on
the beam and link fading gains. In UP, based on their distance
range, the UE at various distances does not have to arrange
the channel gain. Within a designated region, denoted as
Q, the maximum radius is represented as dmax , and the
minimum radius is represented as dmin, where it is assumed
that (dmin ≤ dmax). The distance interval between every UE
and BS is determined by the parameter d , which is divided
into subintervals denoted by i, where (1 ≤ i ≤ q) means that
d1,1 is the distance of UE1 in subinterval 1. And q denotes the
number of partitions. The concept of UP division is shown in
Fig. 6.

E. ADAPTIVE MODULATION AND DECODING
Adaptive modulation involves dynamically changing the
modulation scheme based on the channel conditions to
optimize the data rates and reliability. By adjusting between
higher- and lower-order modulation schemes depending
on the channel quality, this technique aims to enhance
communication efficiency. This adaptive approach boosts
spectral efficiency and overall capacity by tailoring the
modulation to current conditions and efficient transmissions,
even in the presence of dynamic channel disparities [62].
Real-time monitoring and advanced algorithms are crucial

for this modulation adjustment, ensuring improved perfor-
mance in wireless communication, particularly in UAV-
assisted NOMA scenarios. The adaptive modulation system
diverges from existing SIC-based systems by relying solely

FIGURE 6. UP UAV on NOMA.

on instantaneous CSI rather than the received power, ensuring
better system performance under fluctuating channel condi-
tions.

For instance, users experiencing favorable channel condi-
tions might benefit from higher-order modulation schemes
(e.g., 16-QAM), whereas users in poorer channel envi-
ronments might utilize simpler schemes (e.g., QPSK) to
maintain reliable communication. To achieve a successful
transmission, it is recommended to use a threshold-based
SNR [63]. {

SNR ≥ γn(i) scheme m,

SNR ≥ γm(i) scheme n,
(6)

where γn and γm denote the threshold for different schemes,
assume two modulation schemes, a higher-order modulation,
n and a lower-order modulation m for all i pairs of users
in NOMA systems. Modulation schemes usually found in
5G networks are considered to involve intricate designs and
advanced techniques.

F. FANET-BASED UAV
The FANET architecture enables communication between
UAVs and the base station without relying on fixed infras-
tructure [64]. This allows instant data delivery to the base
station and information sharing among connected UAVs.
Even if some UAVs are disconnected because of weather
conditions, they can still connect to the network through
other UAVs. Additionally, ad hoc networking among UAVs
solves problems that arise in single UAV systems, such
as short range, network failure, and limited guidance [65].
FANET can be used to achieve high-level goals and to support
several applications, such as improved routing protocols and
mobility [66], cooperative communication and diversity [67],
and maximizing throughput on NOMA-assisted routing [68].
Likewise, in [69], a swarm of UAVs was used to improve
wireless connectivity in NOMA systems, leading to high
resource efficiency.
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FIGURE 7. Architecture FANET-based UAV.

The FANET architecture comprises a central GS, to which
all other UAVs are directly linked. Therefore, data commu-
nication between any two UAVs is performed through the
GS. This method is called a centralized network. Meanwhile,
in UAV ad hoc networks, the gateway in FANET-based UAVs
possesses dual wireless communication capabilities, enabling
it to operate in both short-range, low-power modes for UAV
communication and long-range, high-power modes for GS
communication.

The multi-group UAV ad hoc network integrates mul-
tiple UAVs within groups, linked by backbone UAVs to
the GS. Intra-group communication occurs autonomously,
whereas inter-group communication involves at ground
station. Meanwhile, a multi-layer UAV ad hoc network
comprises heterogeneous UAV groups that form ad hoc
connections within each group. The lower layer manages
intra-group UAV communication, whereas the upper layer
handles communication between the backbone UAVs and
the GS. This design minimizes GS involvement in inter-
group communication and reduces the communication load
and computation, making it ideal for one-to-many UAV
operations. The network architecture type is shown in Fig. 7.

NOMA was designed to adapt to the dynamic topology
and mobility of UAVs in a FANET. NOMA allows multiple
UAVs to share the same frequency band or time slot within
a communication spectrum. Signals from different UAVs
were transmitted simultaneously and stacked on top of each
other within the same RB. On the receiver side, UAVs
decode their respective signals successively by canceling
out interference from the signal of other UAVs. UAVs
employ SIC techniques to decode signals by treating other
signals as interferences. UAVs decode their intended signals
while mitigating interference from other user signals, thereby
optimizing the overall system throughput.

V. NOMA APPLICATION IN UAV COMMUNICATIONS
Advances in manufacturing technology have made UAV-
aided communication a recognized emerging technique for
next-generation wireless networks [70], [71]. Equipped with
communication devices, UAVs can serve as BS, relays,
and UEs in wireless networks. The basis of the NOMA

implementation matches the goals of achieving a high
spectrum efficiency by using SIC at the receivers and SC
at the transmitter by UAV. To date, many studies have
contributed to the adoption of NOMA in aerial networks [8],
[72], [73], [74]. As evidenced by many studies, NOMA is a
valuable tool for UAV-assisted communications, particularly
in emergencies with more UEs.

NOMA enables the efficient transmission of data to many
UEs with diverse traffic patterns. It allows UAVs to serve
numerous ground UEs, each with varying power levels,
by using the differences in their signal strengths. This section
thoroughly investigates the utilization of NOMA in various
UAV scenarios, including UAVs acting as relays, aBSs,
energy-harvesting UAV networks, and MIMO-NOMA-aided
UAV systems.

A. UAV AS RELAY
Therefore, it is important to find a suitable NOMA system
model for UAV-aided systems. UAVs can function as relays
in wireless communication systems using various relaying
techniques to enhance connectivity, coverage, and overall
network performance. Because UAVs can act as relays
for both uplink and downlink communication, deploying a
NOMA model is appropriate for UAV systems.

The work of [75] used UAVs as relays in maritime IoT
networks and implemented NOMA with dynamic decoding
ordering at the UAVs. This approach enables UAVs to
receivemultiple signals simultaneously frommaritime nodes,
thereby enhancing communication efficiency inmaritime IoT
networks. Likewise, in [76] and [77], NOMA is used for the
simultaneous data transmission from the BS to the ground
UEs and the UAV. Both proposed UAVs act as relays to
maximize throughput and extend the coverage of the BS.
In [78], the authors used NOMA to establish A2G downlink
communications. To transmit data from a remote base station
to multiple ground UEs, they employed a UAV as a relay.
In [79] the NOMA technique and UAV-aided relay networks
were combined to improve the efficiency of cell edge UEs in a
macrocell network. The location of the UAV and transmission
power of the UAV were optimized to minimize its power
consumption. Further, a cooperative NOMA system using
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dedicated UAVs as relays operating in half-duplex (HD)
helps connect a BS with several UE simultaneously [80].
In addition, [81] showed that D2D cooperative transmission
pairs of users are simultaneously served through NOMA
from the UAV, which acts as an aerial base station to
improve overall communication quality. Furthermore, [82]
employed ML to optimize a MIMO NOMA system with a
UAV as a relay by optimizing the transmission power, UAV
coordinates, and power allocation.

Network performance can vary significantly based on the
relay protocol employed. UAV relays might use different
protocols, such as amplify-and-forward (AF) or decode-
and-forward (DF) when transmitting messages from the
base station to NOMA UEs. The choice of the protocol
can substantially influence the overall performance of the
network. The protocol is selected to achieve optimal network
performance and should be based on careful consideration of
the specific requirements and constraints of the application.
It is imperative to note that the suitability of a protocol
depends on a range of factors, including the SNR, interference
level, and target data rate. NOMAprovides reliability through
simultaneous relay transmissions, by involving dynamic relay
decisions. ML models can learn from data to make relay
decisions and optimize relay operations. The networks can
contribute to the overall optimization of UAV relay operations
in diverse and dynamic scenarios. Several papers contributing
to UAVs as relays are listed in Table 4.
In the case of the DF relaying protocol, the UAV relay first

decodes the data and then forwards it to distant UEs. During
the first phase, the superimposed signal, y1 is transmitted
to the UAV relay from the BS. In the second phase, the
superimposed signal, y2 forwards the message to the NOMA
UEs from the UAV relay. In particular, the transmitted signal
with the DF relaying protocol for the NOMA UEs can be
written as,

y1 =
k∑

k=1

√
Pkxkx1, (7)

y2 =
k∑

k=1

xkx2 + σ, (8)

where x1 and x2 are the transmitted signals in the first
and second phases, respectively. While Pk ,xk is the power,
original message and σ is the noise variance.
In the case of AF protocol, the UAV relay amplifies the

received signal before transmitting it to the UEs. In the first
transmission phase, the superimposed signal, y1 is transmitted
and remains unchanged because it is independent of the
relaying protocol. In the second phase, the superimposed
signal, y2 the original message, is multiplied by a variable
gain, which is a function of the transmit power of the UAV
relay. The variable gain is defined as, G = 1√

P|hBS−UAV |+σ 2

where, P, |hBS−UAV | and σ represents the power, channel
gain BS to UAV, and noise variance. The transmitted signal
from the relay to the destination with the AF protocol for the

NOMA UE can be written as,

y1 = hsrxs + nr , (9)

y2 = y1G, (10)

where hsr , xs, and nr are the channel gains between the source
and relay and the signal transmitted from the source and noise
at the relay, respectively.

B. aBS
UAVs can support standard communication networks by
serving as flying base stations or aBSs—a new paradigm for
UAVs to be used in natural disaster management. In recent
literature, extensive exploration of employing UAVs in
disaster management for wireless communication support has
been thoroughly investigated [83], [84]. In emergency and
public safety circumstances, UAVs can act as aBSs to supply
additional capacity to hotspot locations and provide network
coverage [85]. Moreover, [86] discovered that employing
NOMA to intelligently integrate aBSs benefits terrestrial UEs
by increasing the spectrum efficiency and system sum rate.

The study of [87] focused on cellular-connected UAVs
employed for surveillance, considering a trajectory-based
movement in PD uplink aerial-terrestrial NOMA to enable
simultaneous uplink transmissions. The work of [88] presents
UAVs as aBS in the NOMA environment to enhance network
performance, reduce transmission delays, and utilize deep
reinforcement learning (DRL) to allow UAVs to interact
with their environment. Furthermore, [89] provided an ML-
based framework for the predictive deployment of UAVs
as aBS utilizing a long short-term memory-based algorithm
and comparing multiple access techniques, including rate-
splitting multiple access (RSMA), FDMA, TDMA, and
NOMA. UAVs as aBS can be supported by several sources,
such as satellites or BS. Several studies that contributed to EH
are presented in Table 5.

The versatility of UAVs can be utilized for positioning
at particular spots or relocated as necessary to areas that
require stronger connectivity. As adaptable aBSs, UAVs carry
communication equipment similar to traditional ground-
based stations, including antennas and signal processing.
Positioning UAVs closer to ground UEs, can provide better
signal strength and quality, reduce interference, and increase
the total network capacity. Depending on the network
limitations, external factors, or particular communication
requirements, UAVs can modify their parameters and
positions. The UAV acts as an aBS, providing broader
connectivity to ground users. Traditional methods typically
involve a fixed ground-based infrastructure. UAV-enabled
systems introduce dynamic and flexible aerial platforms that
can be strategically positioned to improve coverage, mobility,
and efficient resource utilization. The improved coverage by
the aBSs is shown in Fig. 8.

In a NOMA environment that can serve many UEs,
UAVs serve as flexible and mobile BS that can dynamically
position themselves for improved coverage. To optimize
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TABLE 4. UAV as relay contribution.

TABLE 5. aBS contribution.

UAV trajectories ML algorithms can predict based on
user locations, communication demands, and interference
patterns. In addition, UAVs can operate as intelligent and
adaptive aerial base stations, providing efficient, reliable, and
dynamically optimized wireless communication services to
ground users in a variety of scenarios.

FIGURE 8. UAV as aerial base stations.

C. ENERGY HARVESTING UAV NETWORKS
There has been a recent interest in implementing radio
frequency (RF) for energy harvesting (EH)/scavenging or
radio frequency-energy harvesting (RF-EH). The RF-EH

is a promising technique for powering energy-constrained
wireless networks. The RF-EH converts the received RF
signals into electricity and provides a power solution for
energy-constrained wireless networks. It has a sustainable
power supply from a radio environment and is used in various
applications, such as wireless sensor networks [90], wireless
body networks [91], and wireless charging systems [92].

UAVs are utilized as power sources for RF-EH by
transmitting RF signals from the UAV to be captured and
converted into electrical power by specialized devices on
the ground. The UAV was equipped with a high-power
RF transmitter capable of emitting RF signals toward
designated RF EH devices on the ground. By integrating EH
into UAVs in NOMA systems, these aerial platforms can
overcome energy limitations, operate for extended periods,
and enhance their overall performance and reliability in
wireless communication networks. By reducing reliance
on conventional power sources, EH enhances the overall
performance and capabilities of UAVs operating in NOMA-
enabled wireless communication networks.

To minimize the total energy consumption, in [93] UAV-
enabled wireless communication systems with EH were
investigated. In particular, the UEs can harvest energy for data
transmission, and the UAV transfers energy to the UEs in the
HD or full-duplex (FD). To serve more users at the systems,
in [94], an uplink and downlinkNOMA systemwas examined

VOLUME 12, 2024 51151



M. C. Mayarakaca, B. M. Lee: Survey on NOMA for UAV Networks: Machine Learning Approach

using EH, uplink NOMA for EH in the wireless system while
multiple users are served in the downlink. The work of [95]
shows the EH capabilities of NOMA by dividing UEs into
several groups and employing SIC to overcome issues and
determine the design parameters. Including the capabilities
of minimum power needed to fulfill both the minimum rate
and harvest energy requirements for each user.

However, the UAV-enabled NOMA system in [96] inves-
tigated the system performance of EH on UAV-enabled IoT
and applied NOMA to both hops to improve throughput.
Additionally, [97] proposed a cooperative communication
model in which the UAV acts as a relay, using AF and DF
protocols to evaluate outage and ergodic capacity in NOMA
systems.

The study in [98] utilized deep reinforcement learning
(DRL) to identify the optimal solution for EH time schedul-
ing. In addition, [99] explored the integration of UAV-
assisted NOMAwithin IoT systems, in which the UAV serves
as a relay. The focus is on a scenario with several IoT
device clusters that cannot independently process their tasks
according to the RF-EH. Similarly, [100] employed an EH-
based IoT-inspired UAV-assisted overlay cognitive NOMA
system for a cooperative spectrum-sharing transmission
scheme. Simultaneously, in the context of UAV-assisted
device-to-device (D2D) communication.

Additionally, in UAV networks, where resources are often
limited, NOMA allows multiple users to share the same time-
frequency resources simultaneously, leading to improved
spectral efficiency, increased user capacity, and optimized
resource allocation for EH. NOMA enables a more efficient
utilization of the available spectrum, leading to increased
throughput and better overall network performance. UAVs
operate in dynamic and unpredictable energy environments,
NOMA flexibility in resource allocation can be leveraged to
prioritize users with higher energy requirements, ensuring
efficient utilization of harvested energy. ML-based rate-
splitting models can adapt to changing energy conditions,
optimizing NOMA parameters for energy-efficient commu-
nication. UAVs can operate more efficiently, which enhances
the sustainability and autonomy ofUAVmissions in scenarios
where EH is a consideration.

In NOMA-based UAV networks, the received signal is split
for EH and data transmission, using three approaches: power
splitting (PS), time switching (TS), and a hybrid protocol. The
PS, TS, and hybrid methods vary in power and time allocation
between EH activities and data transmission. Several studies
that contributed to EH are presented in Table 6.

1) TS PROTOCOL
In this protocol, the receiver switches between information
processing and EH. The TS protocol uses a time-separation
mode in which energy and information transfer are assigned
to two separate time slots in each time block and operate in
the network area for the same time block T. A block diagram
of the TS protocol is presented in Fig. 9a. Thus, the received

power from the EH process using the TS protocol is expressed
as,

ETS = ηαPhT , (11)

PTS =
ETS

(1− α)T
, (12)

where α represents the time switching factor, indicating the
proportion of time or duration within a designated time slot
devoted to EH. In the first αT time slot, the UE harvests
energy from the RF-signal UAVs transmitted in TS protocol,
where 0 ≤ α ≤ 1. Then, in the (1 − αT ) time slot, the UE
transmits information in the form of data using the harvested
energy. Where, η, P, h represent the harvesting efficiency
factor, power, and channel gain.

2) PS PROTOCOL
This protocol allows for the simultaneous use of received
signals for both EH and information decoding or data
transmission. The power splitting protocol enables the UE
to harvest energy while simultaneously decoding information
from the received signals in a single time slot. A block
diagram of the PS protocol is shown in Fig. 9b. Thus, the
received power from the EH process using the PS protocol is
expressed as

EPS = ηβPhT , (13)

PPS =
EPS
T

, (14)

where β represents the power splitting factor, indicating the
ratio or division of the power of the received signal between
EH and information decoding or transmission. In the first
part, βP is used to harvest energy, whereas the second part
(1 − βP) is used to transmit information in the form of data
transmission using the harvested energy, where 0 ≤ β ≤ 1.
This process is performed in a one-time slot, T.Where, η, P, h
represent the harvesting efficiency factor, power, and channel
gain, respectively.

3) HYBRID PROTOCOL
This protocol is a combination of existing EH protocols (PS
and TS). A block diagram of the hybrid TS-PS protocol is
shown in Fig. 9c. Thus, the power received from the EH
process using the hybrid protocol is expressed as,

Eh = ηαPhT + ηβPh(1− α)
T
2

, (15)

Ph =
ηαPhT + ηβPh(1− α)T2

(1− α)T2
, (16)

= η

(
α

(1− α)/2

)
Ph+ ηβPh (17)

In the first αT time slot, the UE harvests energy in the TS
protocol. Then, in (1 − αT ) UE harvests energy in the PS
protocol, and during this period, the UE transmits information
in the form of data transmission using the harvested energy.
Subsequently, the UE forwards the information to the
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TABLE 6. EH contribution.

destination.Where, η, P, h represent the harvesting efficiency
factor, power, and channel gain, respectively.

D. MIMO-NOMA AIDED UAV
MIMO systems employ multiple antennas at both ends
of a communication link to transmit and receive several
data streams using the same frequency channel. MIMO
enhances reliability and improves data rates, whereas NOMA
is employed to cater to a large number of users with
limited spectrum resources. Incorporating MIMO-NOMA-
assisted UAVs has shown latency reduction [101], for optimal
resource allocation. In [102], UAV-assisted MIMO-NOMA
was utilized to maximize sum capacity while meeting the UE
QoS requirements, impacting transmission rates and power
allocation. Additionally, concerns arise with errors in cases
where the interference power aligns with the UAV power
in [103].

On the other hand, massive MIMO systems significantly
increase the number of antennas at both the transmitting and
receiving ends compared to conventional MIMO systems,
making massive MIMO-NOMA are promising technology
for future mobile networks. Massive MIMO technology
enhances spectral efficiency and energy efficiency by
effectively managing interference and noise through large-
scale antenna deployment and appropriate power scaling
laws [104], as well as by combining scheduling, power
control, and dropping techniques on the IoT [105]. Further-
more, in [106], the capacity of a Massive MIMO-backed
IoT system was evaluated, suggesting that increasing the
number of service antennas or reducing IoT device numbers
can enhance system performance, specifically in reducing
blocking probability. Several studies about massive MIMO
have been conducted in [105], [106], [107], [108], and [109].
The study of [110] introduced MIMO systems that employ

ML to generate hybrid beams based on channel parameters
and user feedback by addressing challenges such as minimiz-
ing pilot overhead, improving channel estimation accuracy,
and reducing power consumption and hardware complexity

through antenna selection and reinforcement learning-based
hybrid beamforming. In [111], a large number of UAVs
were investigated, with one UAV leading and employing
a NOMA beam and a DL-based NOMA-grouping-aware
fast transmit beamforming optimization scheme. In [112],
NOMA and spatial modulation were combined, utilizing
MIMO to employ UAVs as connectivity services to enhance
energy efficiency. In addition, [113] presented a DL-based
approach for modeling a UAV communication channel with
MIMO and NOMA in urban areas. Furthermore, [114]
explored a UAV-enabled network and multiple UAVs acting
as aerial base stations, employing NOMA in a MIMO
architecture and utilizing anML-based algorithm for efficient
and low-complexity optimization.

In contrast, a base station with multiple transmit antennas
catering to more than one UE as much as i to receive antenna,
ri where the range from m to n, each with ri(i = m, n)
receives antennas, even when rm = rn = 1. However,
in the context of NOMA, where each user treats its signal
as noise, and then calculates the signal-to-interference-noise
ratio (SINR), incorporating interference might lead to an
overestimation of co-channel interference effects. To manage
this, SIC eliminates their signal interference and decodes
their signals with SINR, which introduces an added constraint
Rn−→m > Rm−→m. This prerequisite guarantees that after
successfully decoding m UE messages, UE n can effectively
demodulate and cancel the transmission of the UE. MIMO
is considered to be aligned when the number of transmitting
antennas matches the number of receiving antennas, which
is represented as t = rm = rn. In addition, all channel gain
matrices are identity matrices in this scenario.

The work of [115] principally divided the applications of
MIMO-NOMA into two categories, beamformer-based and
cluster-based. In MIMO-NOMA cluster-based structures,
each UE group (cluster) is formed for the NOMA operations.
To implement the signal alignment strategy, given the
maximum number of clusters, Q. Consequently, the UAV
transmits Q x 1 signals vector to UE. In beamformer-based
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FIGURE 9. RF-EH protocol.

structures, the matrices can be designed to ensure zero inter-
cell and inter-cluster interference, the transmit beamformer,
vk and assume that ||vik ||2 = 1 with UE i in k resources.
Implementing MIMO-NOMA in UAV communication

systems requires addressing challenges such as hardware
complexity, signal processing intricacies, and synchroniza-
tion issues. However, the potential benefits in terms of
spectral efficiency, multi-user connectivity, and improved
throughput make MIMO-NOMA a promising technology
for enhancing communication in UAV networks, enabling
efficient and reliable data transmission in various opera-
tional scenarios. NOMA involves dynamic beamforming and
grouping users for efficient communication in simultaneous
transmissions for UAVs. Meanwhile, ML algorithms can
facilitate intelligent user grouping and optimize beamforming
using NOMA parameters for efficient communication. This
can benefit from enhanced spectral efficiency, dynamic
resource allocation, and adaptive power control. Several
studies that contribute to MIMO are listed in Table 7.

VI. ENABLING ML
ML’s ability to learn and adapt is proven through its
application of algorithms that enable systems to analyze data,
recognize patterns, and make predictions or decisions [116].
By dynamically adjusting their behavior, improving perfor-
mance, and making informed decisions based on evolving
patterns and data, making it a viable paradigm for next-
generation networks. ML is a method for machines to learn
patterns and make predictions or decisions without being
explicitly programmed for each task. As several articles have
reported [117], [118], once the training phase of an ML
system is completed, the system can swiftly and efficiently
perform a diverse range of tasks within milliseconds. This
rapid execution is a result of the ML model learning from
the training data, enabling it to make quick and accurate
predictions or decisions in real-time applications. The trained
model captured the patterns and relationships in the data, can
seamlessly processed new inputs, and provided outputs with
minimal delay.

ML stands as a robust and pioneering domain in the field
of AI. ML has surged remarkably owing to technological
advancements, enhanced computational capabilities, and
the abundance of data. Its ability to enable machines to

learn from and identify patterns in data has revolutionized
data processing, making it more efficient and accurate.
Consequently, it has become a pivotal tool across diverse
sectors, offering valuable insights from data analysis for
informed decision-making.

The core idea of ML is to build models that can identify
patterns in data and make predictions or decisions based on
those patterns. Instead of being explicitly programmed to
perform a task, an ML system is trained using large amounts
of data, allowing it to generalize and make predictions or
decisions regarding new, unseen data. ML is employed for
predictive modeling of user behavior, channel conditions, and
resource demand. Traditional methods often lack predictive
capabilities, whereas NOMA with UAVs leverages ML for
proactive resource management, improving efficiency and
responsiveness.

Virtually every industry has begun to integrate ML into
its operations. The Industry 4.0 paradigm encourages the
use of intelligent sensors, devices, and machines to establish
smart factories that continuously collect data on production.
ML techniques can be utilized to process collected data and
generate actionable intelligence that can improve manufac-
turing efficiency without requiring significant changes to
the resources being used. This approach enables real-time
monitoring, predictive maintenance, and adaptive production
strategies, thereby fostering a more agile and responsive
manufacturing ecosystem. The seamless integration of ML
in Industry 4.0, not only enhances operational efficiency
but also opens avenues for innovation, optimization, and
data-driven decision-making across diverse industrial sectors.
It has applications in various fields, including healthcare,
finance, autonomous cars, natural language processing, and
recommendation systems [119]. Furthermore,ML techniques
offer predictive insights that enable the recognition of
intricate manufacturing patterns and aid in creating intel-
ligent decision support systems for tasks such as ongoing
inspections, predictive maintenance, quality improvement,
process optimization, supply chain oversight, and task
scheduling in manufacturing [120]. Additionally, ML has
been applied in the monitoring of complex systems, such as
fault detections [121], [122].
The work of [123] introduced a three-stage joint chan-

nel decomposition and prediction framework for CSI
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TABLE 7. MIMO contribution.

acquisition, surpassing traditional algorithms, and demon-
strated resilience to estimation errors, by noise elimina-
tion using deep learning through extensive data train-
ing. Similarly, [124] introduced a location-aware imitation
environment-based DRL algorithm to optimize joint beam-
forming and enhance signal transmission quality in wireless
communications.

As discussed in [81], a UAV placement strategy is aimed
at improving an integrated UAV-D2D NOMA cooperative
network, employing SSL techniques that integrate both
SL and USL techniques. Likewise, in [125] the outage
performance of a NOMA-enabled UAV network using
various ML techniques was conducted on a generated dataset
incorporating multiple network parameters.

It is possible to train SL and USL to obtain a new
model representation [126]. As demonstrated by the DL
task revolution, RL is effective in obtaining useful repre-
sentations using multi-layered neural networks to extract
advanced data features [127], [128]. These cover several
categories and Fig. 10 shows a basic representation of
the broad ML categories. The main purpose of most ML
techniques is to create an optimizationmodel that can identify
the parameters needed to optimize the objective function.
Robust optimization methods for big data are essential to
the performance of these models. These techniques carry
ML forward, improving efficiency and opening up new
avenues for research in a variety of domains. Generally,
optimization methods are essential for AI applications. The
adaptability and learning capabilities of ML contribute to
the effectiveness of NOMA in addressing the challenges of
UAV communication networks. ML provides an accurate
prediction regarding the UAV-NOMA environment, data rate
requirements, trajectories, UE demands, and communication
networks. The potential benefits of integrating ML with

NOMA in UAV communication networks can optimize
overall system performance. In this section, we describe four
primary types of ML, SL, USL, SSL, and RL. Moreover,
we explored the specific methods related to each group,
providing comprehensive explanations.

FIGURE 10. ML categories.

A. SL TECHNIQUES
SL is a type of ML where the model learns from labeled
training data, meaning that the data used for training have
input output pairs. The primary goal is to learn a mapping
function from input to output. This learned function can then
be used to predict or classify new unseen data.

SL gathers a dataset with the inputs and their corre-
sponding outputs. Preprocessing was performed by cleaning,
normalizing, and preparing the data for training. Choose an
appropriate algorithm or model based on the nature of the
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problem. The labeled data were then used to train the model.
The model adjusts its parameters to minimize the difference
between predicted and actual outputs. The performance of the
model was assessed using a separate dataset (validation or test
data) that was not used during training. Once the model is
trained and evaluated, it can make predictions or classify on
new, unseen data. SL has also been applied in academia [129],
health [130], management [131], and network security [132].
SL can be classified into two types: regression and

classification. Both types of networks can be used in wireless
networks. The potential of the ML approach lies in its
ability to extract knowledge from operational UAVs and
swiftly predict design parameters during the conceptual
phase of UAV development. In [133], frameworks were
formulated based on five different regression models using a
UAV database. In [134], a dynamic communication network
for UAVs was generated by modifying the classification.
In [135], UAVs were used to select the optimal BS to enhance
the overall performance by training the SL techniques.

Through SL, UAV-NOMA systems can enhance the
efficiency. Labeled data can be utilized to learn and discern
patterns, allowing for dynamic resource allocation within
NOMA systems. Predict and adapt to interference patterns
by adjusting the transmission parameters, ensuring the
reliability of communication. Optimize signal reception and
QoS parameters, including anticipation and assurance of
low latency, high throughput, and dependable connectivity
based on historical performance data. Implementing resource
optimization strategies to effectively extend UAV flight time.

1) REGRESSION
Regression is typically used for predictive analysis. The
simple linear regression for a simple input feature represents
a linear relationship between input variables x, and output
variables ŷ. Here,m is the slope and b is the y-intercept. It can
be expressed as,

ŷ = mx + b, (18)

During the training process, the objective is to determine the
optimal values for the coefficients m and intercept b that
minimize the difference between the predicted values (ŷ) and
actual target values y. This is typically achieved by utilizing
optimization techniques such as ordinary least squares (OLS)
or gradient descent to adjust the coefficients andminimize the
error between the predicted and actual values.

The coefficients or parameter θ of the linear model
are calculated. Using the closed-form solution of the OLS
method in linear regression, can be expressed as

θ = (XTX )−1XT y⃗, (19)

where X denotes the input feature, XT denotes the transpose
of the matrix X , and y⃗ is the vector of the target values. Using
the gradient descent, can be expressed as

θj = θj − α∇J (θ ), (20)

θj = θj − α
1
m

m∑
i=1

(h0(x i)− yi)x
(i)
j , (21)

where h0 represents the predicted value for the ith training
example, x i and yi denotes the actual target value and feature
value with ∇J (θ ) measure the difference between predicted
and actual values, then repeat simultaneously for all j, where
α denotes the learning rate that specifies the step size for each
iteration, m denotes the number of training. The regression
result are shown in Fig. 11a.

2) CLASSIFICATION
In the classification, is used to predict the discrete values. The
classification result are shown in Fig. 11b. The classification
is explained below.

1) Naïve Bayes
Naïve Bayes utilizes labeled data to measure probabil-
ities and perform classifications using the principles of
Bayes’ theorem. It determines the likelihood of a par-
ticular event occurring on the basis of the probabilities
associated with other related events. From [129], the
Bayes rule can be defined as

P(A|B) =
P(A|B)P(A)

P(B)
, (22)

where A and B represent the classes and features,
respectively. P(A|B) signifies the conditional prob-
ability of class A, given the features within B.
Conversely, P(A) is the prior probability of event A
and P(B) signifies the probability of the comprehensive
set of features, which is used as a normalization
factor.

2) K-nearest
In K-nearest, new data are classified based on the
majority vote of their nearest neighbors. The distance
function determines the distance between neighbors.
Parameter K signifies the number of neighbors con-
sidered. Lower K values tend to yield less consistent
outcomes, while higher K values increase stability, but
might also lead to higher error rates. It can also be
used to identify a subset of the group and implement
a synchronization or consensus technique.
Because k-nearest stores the complete training dataset,
there is no explicit training process. Because there were
no computing operations during this stage, the training
time complexity was effectively zero or constant. The
size of the dataset, quantity of features, and value of K
affect the k-nearest prediction process. The process can
be computed as

d(x, xi) =

√√√√√ k∑
j=1

(xj − xij)2, (23)

where k represents the number of features, xj is the j-th
feature value of test point x, and xij is the j-th feature
value of the i-th point in the training set.
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3) PATH PROBABILITY PREDICTION
In the NOMA environment, to finely tune and optimize
the intricate dynamics of aerial networks to achieve more
efficient and robust performance, path probability prediction
introduces potent tools for the analysis, optimization, and
enhancement of NOMA performance within dynamic and
complex aerial networks. This approach harnesses the
predictive capabilities of anticipating and assessing the
probability of signal paths, thereby enabling an understanding
of the communication environment. The path probability
prediction can be generated using two models: the stochastic
geometry model and the Markov model, which is explained
in this section.

1) Stochastic Geometry Model A new three-dimensional
UAV framework for providing wireless services to
randomly roaming NOMA users using probabilistic
spatial models to analyze and optimize communica-
tion systems. Stochastic geometry helps model the
spatial distribution of UAVs and ground users. The
models incorporate realistic channel characteristics
considering UAVs’ heights, locations, and effects of
the A2G communication channels. Factors such as path
loss, shadowing, and multipath fading due to UAV
movement were considered.
Stochastic geometry models can aid in optimizing
resource allocation strategies for NOMA-based com-
munication in UAV networks. This involves deciding
on UP, power allocation, and subchannel assignment,
considering the spatial distribution of UAVs and users.
In addition, it can optimize the spatial deployment of
UAVs to maximize coverage and throughput by con-
sidering the benefits of NOMA in enhancing spectral
efficiency. Thus, the probability can be expressed as,

PGi = exp
(
−
PL
γ

)
, (24)

where PGi is the probability of the ith building in
the ground’s specular propagation path, incident path,
reflection path, and Fresnel reflection zone. Then PL is
the path loss calculated using the path loss model based
on the channel condition, and γ is the SNR threshold.

2) Markov Model Markov chains are leveraged to predict
the likelihood of different propagation paths or channel
states between the UAV and the GS. The Markov
chain assumes the Markov property, where the future
state depends only on the present state and not on
the past states. The transition probabilities between
different channel states were determined based on
historical data, channel measurements, or statistical
models. By analyzing the current state and transition
probabilities, the Markov model predicts the likelihood
of future channel states as the UAV moves or the
communication scenario evolves.
Applying a Markov model to predict path probabilities
in A2G communication for UAVs in NOMA scenarios
enables proactive decision-making regarding resource

allocation and transmission strategies based on antic-
ipated channel conditions. This aids in controlling
UAVs, accounts for the effect of wind disturbance
on UAVs, avoids collisions and obstacles among
UAVs, and tracks targets while evading threats [136].
As in [137], a Markov model was proposed to capture
mobile characteristics in realistic scenarios.

B. USL TECHNIQUES
The USL is an ML paradigm in which models are trained on
unlabeled data without explicit guidance or labeled outcomes.
USL is an ML technique used to uncover patterns, structures,
or relationships within data that lacks explicit labels or
predetermined outcomes. USL is crucial for examining and
comprehending raw data, offering valuable insights and
preparation that can be applied across different domains,
spanning from initial data exploration to crafting features.

In the context of UAV for NOMA, USL techniques can
identify hidden structures and clusters at communication
environment by enabling the autonomous discovery of
patterns and relationships within the data without explicit
guidance. These algorithms can autonomously detect and
adapt to changing network conditions, thereby uncovering
insights that may not be apparent through manual analysis.
USL techniques lie in itheir ability to optimize network
performance and adapt to dynamic conditions of UAVs in the
NOMA environment autonomously and effectively.

The work in [86] proposed an innovative cooperative
network scheme incorporating aBS integration within the
satellite framework by efficiently combining unsupervised
ML algorithms. Similarly, in [138], USL was developed to
extract aBS data to model the features for the clustering
process in NOMA-enabled aerial networks. USL can be
used in other industries; for example, in [139], a system
for classifying research articles that can group them into
relevant groups. Data points that belong to the same cluster
are assumed to belong to the same class. Consequently, one
can determine whether two points are part of the same cluster
based on how similar they are to one another and other points.
The clustering result are shown in Fig. 11c.

1) K-MEANS CLUSTERING
K-means clustering relies on centroids, computed as means,
to represent the cluster centers. These centroids marked the
central points of each cluster. Initially, K data points were
randomly chosen from the existing dataset to serve as the
initial centers for K clusters. The obtained value helps assign
a data point to the cluster with the shortest distance. As new
data points join a cluster, the similarity within the cluster is
enhanced by recalculating a new mean from objects already
assigned to that cluster. This updated mean reassigns the data
objects. This process is iterated until stability is reached. The
sum of the square functions for the k-means algorithm is
given by,

d =
m∑
j=1

(xij − ckj)2, (25)
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where xij is the j-th data point of i-th cluster and ckj is the
centroid of the j-th cluster.

2) STOCHASTIC NEIGHBOR EMBEDDING
Stochastic Neighbor Embedding (SNE) is an ML method
for reducing dimensions and understanding data patterns,
and adopts a probabilistic method. It treats each data point
as potentially connected to others with certain probabilities
to maintain these probabilities in the embedding space.
Distributions around each data point define the likelihood
of the other points being neighbors. The SNE relies on
Gaussian distributions for probabilities in both the original
and embedding spaces, and t-distributed SNE (t-SNE) for
combining Student-t and Gaussian distributions in these
spaces [140].

t-SNE embedding is a model based on probability distri-
butions that maps high-dimensional data to lower dimensions
while maintaining the closeness of neighboring data points.
This method aims to conserve the original data structure
but does not emphasize the discriminatory aspects of the
data [141].

However, embedding high-dimensional data into a lower
dimensional space poses challenges in maintaining the
proximity between all points. The Student’s t-distribution
utilizes the low dimensional embedding space, which features
heavier tails compared to the Gaussian distribution, making
it able to fit the accommodation of high-dimensional data
information within a lower-dimensional embedding space.
The similarity between data points i and j in high-dimensional
space is computed using a Gaussian kernel or Student’s
t-distribution. In high-dimensional space, the conditional
probability is calculated based on their similarity using a
Gaussian kernel, which can be expressed as

pij =
exp(−dij)∑
k ̸=i exp(−dij)

, (26)

where,

dij =
||xi − xj||2

2σ 2
i

. (27)

For a pair of data points xi and xj in high-dimensional space,
||xi−xj|| represents the Euclidean distance between xi and xj,
and σ 2 is a bandwidth parameter that determines the width
of the Gaussian distribution at point xi. Similarly, in lower-
dimensional space, the conditional probability is calculated
based on a Student’s t-distribution, which can be expressed
as

qij =
exp(−zij)∑
k ̸=i exp(−zij)

, (28)

where,

dij = ||yi − yj||2. (29)

The distances between yi and yj represent the similarity
between points,

SNE aims to reduce the disparity between the conditional
probabilities pij in high-dimensional space and qij in lower-
dimensional space. This is often accomplished using a
cost function, such as Kullback-Leibler (KL) divergence,
as follows,

C =
∑
i

KL(Pi||Qi) =
∑
i

∑
j

pijlog
pij
qij

, (30)

where pij and qij are (26) and (28), respectively. The
optimization process involves adjusting the positions of
points yi in the lower dimensional space to minimize the cost
functionC , usually through gradient descent or other iterative
optimization techniques.

C. SSL TECHNIQUES
An ML algorithm that is between SL and USL is called SSL.
The subfield of ML seeks to integrate these two objectives.
Using this algorithm, the model improves the performance
by learning from both labeled and unlabeled data. The SSL
combines a small set of labeled data with a larger set of
unlabeled data to train the models. The model aims to exploit
the underlying structure or patterns of unlabeled data to
improve its learning and generalization.

This approach combines the strengths of both SL and
USL, making SSL utilize labeled data to train models on
specific tasks such as resource allocation or interference
management. Simultaneously, the model learns at broader set
of unlabeled data to discover patterns and adapt to dynamic
network conditions. By efficiently leveraging both types of
data, SSL contributes to improved performance, adaptability,
and robustness in UAV-NOMA communication systems.

The work of [142] utilized the MIMO-NOMA concept
to enhance efficiency by employing a limited subset of
existing labeled data generated through numerical iterative
algorithms for training using SSL techniques. Meanwhile,
in [143], the difficult issues of user grouping and power
allocation problems in NOMA systems were addressed by
invoking SSL to group users using consequent groupings.
The work of [144] performs an approach for semi-supervised
reconstruction that breaks down distorted image sequences
into their basic components. SSL is primarily associated with
pseudo-labelling. Pseudo-label techniques often use model
predictions to assign labels to unlabeled data. This approach
to improving current algorithms involves training classifiers
initially using data. These classifiers then generate additional
labeled data by leveraging their predictions. Recent studies
have proven that pseudo-labelling is a simple yet effective
approach for semi-supervised learning [145], [146], [147].
The iterative process comprises two fundamental steps:

training and pseudo-labelling. In the training phase, one
or more supervised classifiers undergo learning using
labeled data, and can potentially incorporate pseudo-labelled
data sourced from prior iterations. Subsequently, in the
pseudo-labelling phase, these classifiers extrapolate labels
to previously unlabeled instances. Specifically, this involves

51158 VOLUME 12, 2024



M. C. Mayarakaca, B. M. Lee: Survey on NOMA for UAV Networks: Machine Learning Approach

FIGURE 11. ML models.

assigning labels to data points where classifiers exhibit the
highest confidence in their predictions. These augmented
pseudo-labelled datasets were subsequently integrated into
the following iteration for further refinement and enhance-
ment of the learning process.

Instead of repeatedly retraining the entire algorithm,
pseudo-labelling occurred continuously during the training
process. As the pseudo-labels generated earlier tend to be
less dependable, their influence gradually strengthens over
time. This pseudo-labelling method shares similarities with
self training but diverges in the aspect that the classifier
is not retrained after each pseudo-labelling step. Rather,
it undergoes fine-tuning using fresh pseudo-labelled data,
thus differing from the wrapper method paradigm in a
technical sense.

The work of [148] proposes an approach that combines
labeled and unlabeled data to create meaningful represen-
tations by expanding self-supervised contrastive learning,
which is formed by distinguishing between two samples:
whether they represent the same underlying data positive
or negative. According to [148] pseudo-label, yj can be
computed as,

yj = modeys (̃z
a2
s,t , ys)

k
s=1, (31)

where mode is the mode of the set and obtains the most
frequent class in the k-nearest neighbors.

D. RL TECHNIQUES
RL is an ML approach, in which an agent learns by
interacting with an environment to achieve predefined
objectives or goals. Unlike supervised or unsupervised
learning, RL involves the learning from feedback received in
the form of rewards or penalties as it navigates through this
environment.

By enabling UAVs to learn optimal strategies through
interactions with their environment, RL can be applied to
enhance resource allocation, interference management, and
decision-making processes. The UAV, acting as an agent,
learns by receiving feedback from the environment, based
on its actions. The continuous learning process of RL allows

UAVs to make informed decisions in real-time. This adaptive
capability is crucial for UAV-NOMA systems, particularly in
scenarios with varying user demands, mobility patterns, and
interference levels.

An agent that engages in the environment facing different
states and possible actions. It is empowered to make
decisions in this environment, receiving instant feedback
after each action, indicating the quality of the action taken
in a specific state. RL helps agents learn the best actions
through trial and error, allowing them to adjust different
environments to reach specific goals. This is used in many
fields where learning from interactions and decision making
matters.

Several studies have been conducted on RL applications
in NOMA on aerial networks, in [149] an RL algorithm
was applied to transform a UAV into a learning agent
that serves an IoT area within the NOMA-UAV network
to create a dynamic and responsive system for resource
allocation in UAV networks. The work of [150] RL can
be used as the UAV trajectory and power allocation
design, whereas NOMA enhances the spectrum efficiency
of the entire network, particularly in scenarios where UEs
move randomly. In [151], RL was used for aerial data
collection in NOMA-IoT networks by utilizing UAVs as
remote terminals and NOMA to solve massive access
problems.

At fundamental formula in reinforcement learning is the Q-
learning algorithm, which updates the Q-values representing
the expected cumulative future rewards for taking a specific
action in a particular state. The Q-value for a state action pair
Q(s, a) is updated based on the observed reward r and the
maximumQ-value of the next state s′ considering all possible
actions. Q-learning can be expressed as

Q(s, a)← Q(s, a)+ α[r + λmax
a
Q(s′, a′)− Q(s, a)] (32)

where Q(s, a) and maxaQ(s′, a′) denote the Q-value and
maximum Q-value achievable for taking actions a and a′

in states s and s′. Then, a denotes the learning rate and s′

denotes the next state reached after taking action a. λ denotes
the discount factor that balances immediate rewards against
future rewards.
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VII. FUTURE RESEARCH DIRECTION
In this section, we shed light on new opportunities in
emerging network architectures and highlight interesting
research topics for future research direction.

A. GRANT-FREE ACCESS
Grant-free NOMA is a communication technique used in
wireless networks to allow multiple UEs to share the same
frequency resources simultaneously without requiring a pre-
defined allocation of time slots or resources (hence, ‘‘grant-
free’’). Utilizing NOMA for grant-free access can enable
more efficient and dynamic resource utilization, especially in
scenarios involving multiple UEs or devices accessing shared
communication channels simultaneously without requiring
explicit grants for access. Grant-free NOMA is considered a
promising technology for future wireless networks, including
5G and beyond, aiming to improve spectrum efficiency and
accommodate diverse communication needs.

B. HARDWARE IMPAIRMENT
Owing to NOMA’s inherent physical characteristics,
RF transceivers are known to suffer from hardware impair-
ments such as PA non-linearity, I/Q imbalance, and phase
noise [152]. Hardware impairments inNOMA refer to various
limitations or imperfections in the hardware components of
a communication system that can affect the performance
and reliability of NOMA-based communication systems.
In NOMA, where multiple UEs’ signals are superimposed,
non-linearities can cause inter-modulation distortion, leading
to signal degradation and reduced performance. Accurate
signal reception is crucial for SIC in NOMA. Phase
noise can disrupt the decoding process and reduce the
SIC performance. However, a combination of advanced
signal-processing techniques, improved hardware design, and
innovative algorithms can mitigate the impact of hardware
impairment, leading to enhanced performance and reliability
in NOMA based communication systems.

C. HYBRID MULTIPLE ACCESS
NOMA relies on SC and SIC at the receiver to separate
and decode multiple UEs’ signals. However, owing to non-
orthogonal links, accurately estimating each connection is
challenging or even unfeasible. Consequently, this procedure
may introduce interference, particularly when decoding
signals with varying power levels. Consequently, the NOMA
scheme may encounter limitations such as reduced capacity
and higher error rates. To address this issue, a hybrid multiple
access approach was devised with the aim of optimizing
the overall throughput of the system. Hybrid multiple
access refers to a communication method that combines
different access techniques within the same network. The
idea behind hybrid multiple access is to tailor the access
method based on UEs’ requirements, network conditions, and
specific application scenarios. This adaptive approach seeks
to improve the network capacity, enhance throughput, and

efficiently manage diverse communication needs within a
unified framework.

D. UAV FLIGHT CONTROL AND TRAJECTORY ML BASED
It is important to ensure that UAVs navigate optimally. Poor
flight can disrupt resources and hinder adaptation, thereby
affecting the reliability and effectiveness of aerial commu-
nication networks. Enhancing UAV-based communication
networks in NOMA involves adjusting the UAV trajectory to
achieve better connections and manage interference. Owing
to advancements in ML, UAVs can significantly enhance
network performance, even in complex scenarios, by moving
independently.

For instance, techniques such as DRL [153] help UAVs
distribute resources efficiently and reduce data losses.
Additionally, neural networks [154] aid in controlling
UAVs, predicting UE behaviors, optimizing flight paths and
connections to make the network run smoother.

E. ADAPTIVE BEAMFORMING
Considering the difficulties of UAV on NOMA, there is a
need for robust optimization methods to precisely address
the beamforming issue and decrease the computational
load [155]. Adaptive beamforming for UAVs in NOMA
networks adapts to changing conditions and ensure consistent
and reliable connectivity across a dynamic and diverse
UE landscape. Utilizing ML for adaptive beamforming
techniques can optimize signal transmission, direct beams
toward the UEs, and dynamically adjust beam directions
based on changing network conditions. By presenting a
robust beamforming design considering imperfect CSI at the
transmitter under the constraints of information receivers and
total transmit power.

F. AUTOMATED ML
Automated Machine Learning (AutoML) represents a rev-
olutionary approach for streamlining and enhancing the
ML process. Its primary objective is to automate the end-
to-end ML workflow, thereby significantly reducing the
need for extensive manual involvement and domain-specific
knowledge. The increasing popularity of AutoML solutions
stems from their potential to make ML accessible to individ-
uals without specialized expertise in the field. As AutoML
techniques advance, they are expected to play a crucial
role in democratizing ML, allowing a broader audience to
harness their power for innovation across various domains.
The key functionalities of AutoML include automatically
selecting the most suitable ML model or algorithm for
a given dataset and task, fine-tuning model hyperparame-
ters to optimize performance without manual intervention,
selecting or generating relevant features from raw data
to enhance model performance, and constructing compre-
hensive ML pipelines that encompass data preprocessing,
model selection, and evaluation. This approach holds great
promise for simplifying and democratizing the application
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of ML, fostering innovation, and advancements in diverse
industries.

G. SECURITY ENCHANCEMENT
The frequency of privacy attacks on UAVs has increased
significantly, and their potential impacts can be immensely
destructive. Consequently, various industries and standard-
ization are actively investigating strategies to secure UAV
systems and networks.

ML techniques fortify UAV-NOMA networks by anomaly
detection and intrusion to ensure secure communication.
This real-time detection minimizes damage from cyber-
attacks, protects sensitive data, automates threat responses,
and enhances the overall operational efficiency. The network
behavior and flagging deviations or anomalies that deviate
from the learned normal patterns are continuosly analyzed.
Techniques such as USL (e.g., clustering) or SSL can be
employed for anomaly detection without requiring labeled
datasets.

Implementing ML-driven security in UAV-NOMA net-
works enhances resilience against emerging cyber threats,
ensuring the integrity, confidentiality, and availability of
communication while also preserving data privacy within the
network. It is crucial to safeguard the critical operations and
sensitive information transmitted over these networks.

H. FURTHER INTERESTING RESEARCH
Apart from the previously discussed topics, several unre-
solved issues remain concerning the practical implementation
of UAV, NOMA, and ML. For instance, in UAV-based
multi-UE NOMA systems, managing the high density of
low-altitude UAV traffic requires the implementation of
new unmanned aircraft traffic management systems [156].
These systems are crucial for coordinating path planning and
preventing collisions between multiple UAVs. In multiple
UAV systems, knowing the direction of incoming signals
allows for better allocation of resources, such as power
and bandwidth, to improve the overall efficiency of the
communication system. Thus, estimation direction-of-arrival
(DOA) is used to determine the angles from which signals
arrive at an antenna array [157]. Furthermore, in NOMA
systems, accurate estimation of the DOA using advanced
ML is a robust future study. Utilizing a stacked intelligent
metasurface (SIM) for extensive parallel computation and
analog signal processing involves employing an array of
programmable metasurface layers [158], [159].
With the advancement of ML, there is a growing need

for enhanced privacy protection, particularly when analyzing
personal and sensitive data. Consequently, it is essential
to ensure that no analysis compromises individual privacy.
To ensure the privacy of UAV communication and maintain
data integrity, the emergence of blockchain technology,
specifically aerial blockchains, is anticipated. This technol-
ogy securely upholds privacy preference. Hence, software-
defined multiple-access technology and ML are anticipated

to facilitate the adaptable configuration of multiple-
access schemes, accommodating diverse services and
applications.

Integrating NOMA and ML in UAV communication
encounters challenges such as dynamic resource alloca-
tion and demanding sophisticated models adapted to the
unique characteristics of NOMA-enabled UAV network’s.
To address these challenges, there is a need for specific
solutions such as exploring advanced algorithms for dynamic
resource allocation, enhancing security and privacymeasures,
optimizing computational efficiency for UAVs with limited
resources, and developing scalable approaches for large-scale
UAV networks. Further investigation is crucial for proposing
and implementing targeted solutions in each of these areas.
Addressing security, privacy, computational complexity in
resource-constrained UAVs, and scalability issues in large-
scale networks are additional challenges that require care-
ful consideration for achieving seamless integration. It is
expected that constraints such as dynamic wireless channels,
limited battery capacities, and computational resources of
UAVs make traditional methods inefficient in UAV networks.
Examining and proposing solutions to DOA concerns associ-
ated with multiple UAVs in NOMA networks, focusing on
integrating SIM as computation and blockchain technology
for enhanced data security and confidentiality.

Additionally, incorporatingML in NOMA-based UAV net-
works encompasses inherent limitations, particularly compu-
tational complexities. UAV communication environments are
dynamic and unpredictable. The effectiveness of ML models
often depends on the availability of diverse and representative
training data. Obtaining such data for NOMA-based UAV-
specific scenarios might be challenging. ML models trained
on historical data may struggle to adapt to rapidly changing
conditions, limiting their robustness.

To address these challenges, there is a need for specific
solutions, such as exploring advanced algorithms for dynamic
resource allocation, enhancing security and privacymeasures,
optimizing computational efficiency for UAVs with limited
resources, and developing scalable approaches for large-scale
UAV networks. Further investigation is crucial to propose and
implement targeted solutions in each of these areas.

VIII. CONCLUSION
The increasing demand in various fields necessitates innova-
tive solutions, and UAVs have gained research attention to
address these needs. This study provides an introduction to
UAVs, NOMA, and ML, along with key insights. To over-
come these demands and utilize ML as a tool to support
NOMA in aerial networks, NOMA is used. An overview of
NOMA in aerial networks and each application that allows
aerial networks are also provided. By adding ML as support,
these three schemes form a comprehensive approach. These
schemes are expected to play an important role as a starting
point in the next wireless connectivity application.
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