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ABSTRACT In real-world applications, face recognition, and person re-identification are subject to
image degradations such as motion blur, atmospheric turbulence, or upsampling artifacts—which are
known to lower performance. This work directly addresses challenges in low-quality scenarios with
1) practical, novel updates to training and inference, which improve robustness to realistic distortions in
face recognition and person re-identification and 2) new datasets for long-distance recognition. We propose
a method that progressively learns from images prone to soft and strong distortions caused mainly by
atmospheric turbulence. The method has a novel distortion loss to improve robustness, which is empirically
shown to be highly effective in low-quality scenarios. Two further strategies are proposed to integrate
distortion augmentation while also retaining the highest performance in high-quality scenarios. First,
during training, an adaptive weighting schedule, which leverages the construction of different levels of
distortion augmentation, is used to train the model in an easy-to-hard manner. The second, at inference,
is a magnitude-weighted fusion of features from the parallel models used to retain the highest robustness
across both high-quality and low-quality imagery. Different from prior work, our model does not leverage
any image restoration or style transfer technique, and we are the first to employ explicit distortion
weighting during training and evaluation. Our model achieves the best performances compared to prior
works on face recognition and person re-identification benchmarks, including IARPA Janus Benchmark-S
(IJB-S), TinyFace, DeepChange, Multi-Scene Multi-Time 2017 (MSMT17), and our novel long-distance
datasets.

INDEX TERMS Biometrics, face recognition, computer vision, person re-ID, deep learning.

I. INTRODUCTION recognizing multiple clocks or Lincoln, despite the distorted

Humans can recognize faces or objects before and after
considerable distortions. Consider Dali’s renowned works
Persistence of Memory and Lincoln in Dalivision shown in
part I of Figure 1 where the reader will have no trouble
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presentation. Comparatively, neural networks are brittle when
presented with even mildly distorted images. Within the
field of biometrics, the tasks of face recognition and person
re-identification can be subject to distortions at inference
time, such as atmospheric turbulence, motion blur, and
artifacts from upsampling. Such distortions are common
in security-sensitive settings such as energy infrastructure
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FIGURE 1. To overcome realistic distortions encountered by biometric
models operating in unconstrained scenarios, we propose Il.a) a novel
training procedure for distortion robust models and I1.b)
magnitude-weighted feature-fusion from high- and low-quality training
domains. To supplement evaluations on realistic distortions, 1ll) we
collect and provide an IRB-approved academic-use dataset at a range of
750+ meters.

security, surveillance systems, or counter-terrorism [27].
Thus, there is a significant social need for models that are
robust in these conditions.

This work proposes practical, novel updates to training
and inference to improve model performance in challenging
test-time scenarios. Additionally, to aid evaluation in such
scenarios, we collect and provide an IRB (Institutional
Review Board)-approved long-distance recognition dataset
from over 7504 meters. To demonstrate the generality of the
proposed method, we perform experiments with benchmarks
for both face recognition and person re-identification. Long-
distance data is also collected for both face recognition and
person re-identification.

The first contribution of this work is training with a mix
of clean (without distortions) images and novel atmospheric
distortion augmentations, which combines realistic spatial
distortion and blur. While prior work [33] has used aug-
mentations such as cropping and downsampling for face
recognition, our augmentation contains a more complex
transformation that is more closely matched to scenarios with
motion blur, atmospheric turbulence, and even upsampling
artifacts (see results on the TinyFace dataset in Table 4).
Thus, by introducing our augmentation in training, the
test-time domain shift is decreased in challenging scenarios
as we improve invariance to distortions, see Fig. 8. This is
especially true in the case of face recognition as the training
data [92] is scraped from the web and is predominated by
high-quality portrait images. By carefully tuning the strength
of the distortion augmentation, DALIFace significantly
improves performance on low-quality benchmarks such as
IJB-S [32] and TinyFace [8]. Thus, an insight of this work
is that carefully tuned augmentations are under-utilized
in unconstrained scenarios. While our augmentation alone
achieves the best performances compared to prior works on
low-quality benchmarks, further adaptations discussed below
allow us to achieve high performance on standard-quality
datasets such as IJB-C [50]. Our augmentation is performed
by leveraging the atmospheric turbulence image simulator
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proposed in [49]. It is important to note that the authors of the
simulator proposed an algorithm to generate simulated data
under different levels of atmospheric turbulence, however
they have not employed it as augmentation in any model
training. Conversely, we use the simulated atmospheric
turbulence data for training our new architecture.

To integrate the augmentation during training, we propose
an adaptive weighting mechanism that trains the model in
an easy-to-hard manner. Each sample in every batch is
reweighted as a function of the training iteration number
and the strength of the augmentation. The augmentation’s
strength (meaning severity) on any given image is sampled
from an empirically tuned distribution. In early training
iterations, images with higher distortion are assigned lower
weighting, and images with no distortion are assigned the
greatest weighting. The weighting of distorted samples
is increased throughout training such that by the end of
training, all samples have equal weighting. The proposed
weighting strategy is highly effective in combination with our
distortion augmentation, as shown in Section V. We refer to
a backbone trained with the distortion augmentation and the
adaptive-weighting schedule as a distortion-adaptive model.
For person re-identification, we additionally propose to use
multiple class centers and class proxies that allow the model
to better adapt to training distortions. The corresponding
proxy loss (see Section III-C) also follows the adaptive-
weighting schedule.

To further improve robustness at inference, two backbones
are run in parallel: a distortion-adaptive backbone and a
standard (or ‘clean’) backbone. The final distance between
samples for open-set evaluations is calculated with a
magnitude-weighted combination of feature distances from
each backbone, respectively. Feature magnitude is used since
itreflects the response of the learned features at the final layer,
which is known to be correlated with sample quality [13],
[33], [51]. Maybe surprisingly, this fusion approach is more
robust than more complicated learned fusions such as an
attention layer or full transformer encoder. Relative to a
single distortion-adaptive backbone, the parallel backbone
fusion improves performance on face recognition at low
false-positive thresholds (e.g., IIB-C TAR@FAR=1e-4) and
on all person re-identification benchmarks. The final result is
a method that is highly robust across evaluation scenarios for
both face recognition and person re-identification. We refer to
the entirety of our proposed strategy as DalilD: Distortion-
Adaptive Learned Invariance for Identification. The effec-
tiveness of DalilD is demonstrated empirically, showing it
achieves the best performance compared to prior works on
seven publicly available benchmarks: 1JB-S, IJB-C, Tiny-
Face, CFP-FP, Market1501, MSMT17, and DeepChange.

The final contribution of this work is the recapture of face
recognition data over long distances with high-end imaging
equipment and displays. At 7504 meters, our proposed
datasets have the longest range of any academic-use dataset
available. The collection process and hardware specifications
are discussed in detail in Section IV-A. In Section V, prior
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works are compared on our proposed evaluation datasets. The
datasets will be made available for academic use.

In summary, the contribution of this work includes:
o Propose a novel distortion-adaptive training strategy

in which we leverage the construction of distortion
augmentation for an easy-to-hard weighting scheme
with our novel distortion loss function to achieve
improved distortion invariance, see Figure 8.

« Show our distortion-adaptive training is better than sim-
ply training with added atmospheric distorted images.

« Design a novel weighted combination strategy based on
the feature magnitudes from both backbones from the
training phase, allowing us to exploit complementary
knowledge and reach the best performances compared
to prior works across evaluation scenarios.

o Provide identification datasets through long-distance
(750+ meters) to provide an assessment of the impact
of significant atmospheric turbulence.

Il. RELATED WORK

The problems of face recognition and person re-identification
have been extensively studied. Most related to this paper
are works that have studied low-quality conditions. For face
recognition, Probabilistic Face Embeddings (PFE) [59] pro-
poses representing faces with a Gaussian distribution in latent
space to account for uncertainty. Data Uncertainty Learning
(DUL) [3] builds on PFE by learning the mean and variance of
the Gaussian distribution during training. URFace [60] uses
data synthesis and a confidence-aware loss to learn universal
representations. Several quality-aware face recognition loss
functions have also been proposed. CurriculumFace [25]
changes the margin of the loss throughout training, and the
MagFace [51] and AdaFace [33] losses use adaptive margins
that are a function of feature magnitude, which is a proxy
for quality. Controllable Face Synthesis Model (CFSM) [45]
is a method that learns the style of a test environment
and uses a latent style model to modify training samples.
CAFace is a clustering-based method for multi-frame face
recognition [34]. In [56], the effects of atmospheric turbu-
lence on face recognition are studied, where atmospheric
distortions are found to significantly affect face recognition
performance. Other works have developed upstream image
restoration for atmospheric turbulence [39], [77], [78]. Image
restoration methods focus on image-based metrics, such as
PNSR, not recognition.

For person re-identification (PReID), CBDB-Net [64]
proposes the Batch DropBlock to encourage the model to
focus on complementary parts of the input image. CDNet [41]
improves architecture search for PReID. FIDI [76] proposes
a novel loss function to give different penalizations based
on distances between images to encourage fine-grained
feature learning. To deal with clothes-changing, Clothes-
based Adversarial Loss(CAL) [17] regularizes the model
learning with respect to the clothes labels to learn clothes-
invariant features. There are many other prior works that
leverage attention models [4], [6], [14], [15], [22], [24],
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[44], [55], [69], [79]1, [83], [84], [85], [89], neighborhood-
based analysis [69], auxiliary data [20], [28], segmentation-
based [31], semantics-based [30], [61], and part-based
learning [61], [63], [67], [68], [73], [79], [84], [86], [90], [91].
To directly deal with different resolutions and points of view,
some works leverage the camera information associated with
each identity [93], super-resolution strategies [7], [29], and
attention and multi-level mechanisms for cross-resolution
feature alignment [54], [81]. There is insufficient space
to compare orthogonally to all combinations of described
methods above for PReID. We limit our scope comparison to
the global feature representation learning model as described
in the taxonomy of the recent survey from Ye et al. [79],
in which we just perform global pooling operations over
the last feature map of a CNN without further mechanisms.
The core contributions of this paper are focused on learning
distortion-invariant feature spaces and a methodology for
dealing with distortion, which is demonstrated to be appli-
cable to both face recognition and person re-identification.
Future work should look at combining techniques such as
image restoration, super-resolution, part-based mechanisms,
or multi-frame aggregation with the improved feature spaces
developed herein.

Ill. APPROACH

We propose DalilD for learning models robust to realis-
tic test-time distortions such as motion blur, upsampling
artifacts, and atmospheric turbulence. We use strong levels
of distortion augmentation (Section III-A), which serves
the purpose of supervising the model to learn a feature
space that is invariant to distortions that have been shown
to considerably degrade model performance [56], [77].
To allow the model to adapt to strong levels of augmentation,
we propose an adaptive-weighting distortion-aware strategy
(Section III-C) where we dynamically change the weights
of different distortion levels throughout training. To get
the highest performance across the range of evaluation
scenarios, we train two models in parallel: one with clean
images and the other with clean and distorted images
(Section III-D). Then we perform a weighted combination of
the feature spaces from both models based on the magnitude
of the feature vectors from each, which yields the highest
performance. DalilD methodology is designed for general
identification scenarios such as face recognition and person
re-identification tasks. Figure 2 shows an overview of the
approach.

A. DISTORTION AUGMENTATIONS

Image augmentations allow better generalization by adding
variance to training data. A vast space of augmentations
can be performed on an image; many have been successful
for computer vision tasks. However, there is a bias-variance
trade-off. In this work, we leverage a new augmentation for
face recognition and person re-identification training based
on atmospheric turbulence to generate the different distortion
levels for the images. Atmospheric turbulence contains

VOLUME 12, 2024



W. Robbins et al.: DalilD—A Robust Technique for Face Recognition and PRelD

IEEE Access

Clean |
Backbone

Clean Clean ‘
\_ Batch of clean images

- _/ —ooL-10

DL=Distortion — J-=20

Level — oL=40

— bL=50

1.0
Distortion-
I8 >  Adaptive -
Clean pr, — 3.0 Backbone

Batch of clean and distortion @
images Z

Training

Evaluation
Clean 0

Query Piat
qu Backbone ¢l % gel c Rd
Gallery i | Distprtion- / .
| Adapt
X9 | szt 0| P 900 € R

Weiean = maac(quH, ngrlH)

Dy =

¢

4“

‘Cdistortion

Proxy Calculation
(just for RelD)

Waistortion = max(||qdall, [|gdal )

Wclean D(qcl7 9el )+ Wdistm‘tionD(qda: gda)
Wcleun"ﬂ‘ Wdistm’tiun

FIGURE 2. An overview of the DalilD pipeline for face recognition (DaliFace) and person re-identification (DaliRelD). Steps 1, 2,
and 3 are performed for training without distorted images, while steps 3, 4, 5, and 6 are distortion-adaptive training. In Step 4,
we create a batch of clean and distorted images; then a dynamically varied weight is assigned as a function of the distortion level
(DL) (Step 5). Then we extract the features and optimize the distortion loss (L gistortion)- Step 7 is applied just for DaliRelD training
due to the high intra-class variation to sample count ratio faced in the whole-body recognition task. On evaluation, both clean and
distortion-adaptive backbone decisions are weighted and combined based on the magnitudes of the query and gallery feature

vectors to obtain the final decision (distance) for retrieval.

random temporally and spatially variable distortions, which
are absent in Gaussian blur or down-sampling augmentations.
Atmospheric turbulence simulation code [49] is used to
implement the augmentation, which generates physically
realistic distortions. It is important to note that the author
of [49] proposed an algorithm to generate simulated data
under different levels of atmospheric turbulence, however
they have not employed it on any training or evaluation. Con-
versely, we propose to use the simulated atmospheric turbu-
lence data for training in order to achieve distortion-invariant
feature representation, which has not been done before by
any prior work. Our approach of simulated distortions is
of practical interest because it is not tractable to collect
real labeled data through atmospherics at a scale suitable
for training deep learning models. Experimentally, we find
training with our distortion augmentation yields the best
performances compared to prior works on long-distance and
low-resolution test sets. Distortion levels used herein are
based on different atmospheric turbulence conditions to train
our models. Since our base model is AdaFace [33] for face
recognition, we provide a brief background about it in the
next section.

B. BACKGROUND OF FACE RECOGNITION WITH
ADAPTIVE MARGIN

For face recognition, the AdaFace [33] loss is used, which
uses an adaptive margin as a function of the feature norm.
The adaptive margin includes both an angular margin gue/e
and an additive margin g,44 calculated as

angle = —m - ||Xill, gada = m - ||xi[| +m, ey

where ||’x,-\|| is the feature magnitude after normalizing the
magnitudes with batch statistics. m is a margin hyperparam-
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eter. The penalty for each sample can be represented with the
piece-wise function f:

SCOS(QJ‘ + gangle) — &add J =i

6. m) =
S G m) 508 6 J# i,

2
where 6; is the angle between the feature vector from the
backbone proxy class-center of the j# class. Scalar s is a
hyperparameter, and y; is the ground-truth. The final AdaFace
loss Ladaface is then calculated as follows:

N .
1 ef(gjvm))
Acadaface = - E 10g o 0,.m) " (3)
N 1 ef( )j, 1)) + z iy ef( )j,m)

The loss function 3 is closer to zero when the logarithmic
argument gets closer to 1. Since the numerator is also present
in the denominator, just the term Zj;ﬁy,— e/ @™ needs to be
zero. More specifically, 6; is the angle between the feature
vector of the input image and the proxy of the j” class,
as explained in the last paragraph. Then the mentioned
summation will be zero when f(6;, m) assumes the lowest
possible value, which means that the feature vector will be
encouraged to be the farthest possible from all class proxies
except its own class proxy. It turns out that, after optimization,
the feature vector will be close to its own class proxy and
farther away from the other class proxies, consequently
f(0;,m)) with j # y; will be lower, and the summation
Zj Ly, @™ will be closer to zero, turning Equation 3
also closer to zero. In summary, Equation 3 encourages an
input image feature vector to be close to its own proxy
class and apart from the other proxy classes, encouraging
the class’s separability and increasing model discrimination
ability.
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C. ADAPTIVE WEIGHTING
Different levels of distortion compress different degrees
of difficulty during training. Randomly sampling images
from different distortion levels can result in sub-optimal
performance since higher distortion levels (i.e., lower-quality
samples) dominate the gradient during training. In other
words, the mere use of atmospheric turbulence data as an
augmentation might deteriorate the performance in standard
(high-quality) datasets and cross-quality datasets (Table 9).
Therefore, a strategy needs to be designed to effectively
employ the distorted data based on simulated atmospheric
turbulence. In counterpart, hard-training mining strategies
have shown promising performance in PReID models [21],
[58] and face recognition [25]. In this context, we propose
an easy-to-hard training regime in which we start by
assigning higher weights for lower levels of distortion and
lower weights for higher levels of distortion. Different than
prior works, we directly leverage the construction of the
augmentation to assign weights. Weighting the loss as a
function of the distortion level allows the model to focus
on easier examples (by giving them higher weights). By
lowering the weighting of high-distortion samples, the model
becomes distortion-aware without allowing them to dominate
the loss in early epochs. As the training progresses, the
weights for all distortion levels increase according to a cosine
schedule. Step 5 of Figure 2 illustrates the weighting for each
distortion level and is formally described below.

The distortion-aware training considers a batch of images
B = (X }ﬁvz”l that is composed by a mix of clean
(without distortions) images X Cil and distorted images X él with
distortion levels randomly sampled from five possible values
dl e {1,2,3,4,5}), where Np is the batch size. A higher
dl value indicates a stronger distortion. We keep the same
number of clean and distorted images in the batch. Then
features ff, with ¢ € {cl, dl} are extracted from the backbone
(04q). During the loss calculation, the respective weight wi
is assigned to each image according to the cosine weighting
schedule. These steps are shown in Steps 4, 5, and 6 in
Figure 2. For the same distortion level, the weights increase
along the training following a cosine schedule (Step 5). After
that, the centers are obtained for each class (Step 3), and if
we are performing PRelD training, we also take the classes’
proxies in Step 7. The distortion loss is calculated as follows:

ecos(((ufq+m| )/T)+my

Leo(f,q, P) = —log

ecos((wfq+m1)/r)+m2 + Z e(coswfp)/r
peP.p#q
4)
G
Listortion = W Z Z W;Ece(ftl,]?% P), 5)
}

i=1 tefcldl

where p is the positive class-center (i.e., proxy), P is the set
of all class-centers, wy, is the angle between vectors f and g
(same definition for wg,), and W = Zl’i‘l > retel.an Wi+ For
hyperparameters, T is temperature, m] is angular margin, and
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my is the additive margin. For face recognition t = 1 and
m1, my are adaptive as proposed in AdaFace [33]. For person
re-identification, m1,my = 0 and t = 0.05. We highlight
that, different from the previous margin-based loss function
(Eq. 2), we do not employ the hyperparameter s relying just
on the margin and temperature parameters.

1) THE CLASS PROXIES FOR PREID
In this subsection, we present how we calculate the class
proxies for PRelID. To better adapt to distortions, we extend
the use of multiples proxies [71] to the supervised case. This
is necessary due to limited training samples and high intra-
class variance [67], [79], which occurs since the whole-body
images are captured from different cameras resulting in views
of the same person in different poses, illumination conditions,
backgrounds, occlusions, and resolutions. Step 7 of Figure 2
shows the multiple proxies with the circles with dark outlines.
Without loss of generality, consider a class C =
{c1, ..., cNe} in the dataset with N¢ examples. To calculate
the proxies set, we start by randomly selecting a sample
¢i € C (1 <1 < N¢) to be the first proxy, and we calculate
the distance between ¢; and each element in C and store these
distances in a cumulative vector V¢ € RVC. We call the first
proxy plc = ¢;. To calculate the second proxy, we consider
the element with the furthest distance to the first proxy (the
sample with maximum distance value in V). Formally:

p% := argmax V. (6)

After that, we calculate the distance of ch to all samples in
C to obtain the distance vector D(p%) € RNC. Then we update
V¢ considering its current values (the distances of the class
samples to the first proxy) and D(p%) (the distance of the class
samples to the second proxy) following the formulation:

Ve = min(Ve, D)), @)

where min(.,.) is the element-wise minimum operation
between two vectors. More specifically, the j# position of
Ve will hold the minimum distance of the sample ¢; € C
considering the first and second proxies. So the j* position
holds the distance of ¢; to the closest proxy, and the maximum
value in V¢ is from the farthest sample from both proxies.
We consider this sample as the next proxy p%. To obtain
p3C, we apply again Eq. 6 but considering the updated V¢
calculated from Eq. 7, and repeat the whole process again
for the new proxy. We write both equations in their general
formats:

Pl = argmax V5! (®)
VE = min(VEY, D@plL)). ©)
As explained before, we initialize VCl = D(plc) where

plc has been randomly selected from C to be the first proxy.
We keep alternating between Eq. 8 and 9 until # = 5 to get five
proxies per class. During training, for sample X; € B (where
B is the batch), we call P; by the proxies set of its class and N;
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by the set of the top-50 closest negative proxies and use them
to calculate £,y in Eq. 10.

Lorory = ZZ i
o

i=1 te{cl,dl}

LCE(}‘; 7q7P UN)
qeP;
(10)

After that, £,y loss is added in Eq. 5, obtaining the final
loss function in Eq. 11 for PRelD:

Edistortion =

Np
1 ; .
WZ D WiLeolf p+s P)+ MLy,

i=1 te{cl,dl}

Y

where A controls the contribution of £,y to the final loss.
Laistortion 18 applied for both distortion-adaptive and clean
backbones training. To train the clean backbone, we have
w; = 1 for all samples because no distortion augmentations
are applied. The class proxy calculation is used just for person
re-identification training.

To train the clean and distortion models, we employ the
Adam [37] optimizer with weight decay of 5 - 10~* and
initial learning rate of 3.5 - 107*. We train both models
for 250 epochs and divide the learning rate by 10 every
100 epochs. As explained, the number of proxies per class
is fixed in 5 (i.e., V;|P;] = 5) for all datasets. To create
the batch to optimize the clean model, we adopt a similar
approach to the PK batch strategy [21] in which we randomly
choose P identities and, for each identity, K clean images
(without distortion). To train the distortion model, we sample
K clean images and K distorted images randomly sampled
from five different levels of distortion strength. We also apply
random crop, random horizontal flipping, random erasing,
and random changes in brightness, contrast, and saturation
as data augmentation.

To improve the performance, we adopt the Mean-
Teacher [65] to self-ensemble the weights of the back-
bones along the training. Considering both clean and
distortion-adaptive backbones with parameters 6, and 64,
(which are initialized with weights pre-trained on Imagenet),
respectively, we keep another backbone for each one with
parameters ©. and ©4, with the same architecture to
self-ensemble their weights along training through the
following formula:

Ot = BOL+ (1 — B!, (12)

where s € {cl,da}, B is a hyper-parameter to control the
inertia of the weights, and ¢ is the instant of time. We set 8 =
0.999 for all models following prior person re-identification
works [16], [80]. We use the backbones ® and ®y, for the
final evaluation.

D. CROSS-DOMAIN FUSION
The distortion-adaptive backbone improves performance on
face recognition benchmarks and for person re-identification
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but not on all high-quality scenarios for face recognition at
low false-positive thresholds. In practice, we do not know the
test-time distortion level; thus, a good model should be robust
across all scenarios. Inspired by recent studies in magnitude-
based training [33] and the effects of atmospheric turbulence
in face recognition [56], we propose to employ the feature
magnitude also on evaluation to combine knowledge from
different backbones. More specifically, we train a backbone
without distortion augmentations, denoted 6. (which we
called ““clean model”), in parallel to the distortion-adaptive
backbone, denoted by 64,. To leverage knowledge from both
backbones, we apply magnitude-weighted fusion between the
backbones as shown in Figure 2. We call this cross-domain
fusion since the backbones were trained on different training
distributions. The main rationale is that since we do not know
the distortion level of images in testing scenarios, we can
use the magnitude of the feature vectors generated by each
backbone as a proxy for it. In other words, the stronger
the distortion the lower the magnitude of the output feature
vector from the clean model (since it has not been trained
with distorted data), and the higher the magnitude of the
output feature vector from the distortion-adaptive backbone.
Then we use the magnitude of the feature vectors to weigh
the decision from each backbone. The advantage of this
approach is evident in Table 9. At inference, for a query and
gallery image pair, we extract both feature vectors g, =
0c1(X7) and g¢ = 6.1(X¥) considering the clean model with
parameters 0.1, and the feature vectors gg, = 64a(X9) and
gda = 04a(X®) considering the distortion-adaptive model
with parameters 64,. For person re-identification we use the
respective self-ensembled weights ® and ®g, calculated
in Eq. 12. We calculate the distance between the query
and gallery considering each backbone to obtain distances
D(qc1, gc1) and D(qqda, gda), Which are weighted combined
considering the maximum feature magnitude for each pair
before L2 normalization as shown in the equation on the
lower half of Figure 2.

IV. DATASETS

Many datasets from two different modalities are used in our
evaluations. Table 1 is provided as a reference for the different
characteristics of the datasets, and well-known datasets are
only briefly described. Figure 6 shows samples from the LD
datasets and Figure 7 shows samples from the government-
use long-range-dataset.

A. LONG DISTANCE RECAPTURE DATA

As discussed in Section I, long-range recognition is relevant
in many applications. However, the collection of biometric
data is extremely expensive and time consuming. Currently,
the most related dataset, IJB-S [32], is not available for
common academic use, and an earlier dataset at 100M [18]
was withdrawn from public use. Furthermore, IJB-S is not a
strictly long-range dataset. To overcome the lack of available
long-range data, some prior works have used simulated atmo-
spheric turbulence as a proxy for real data [56], [77], [78].

55789



IEEE Access

W. Robbins et al.: DalilD—A Robust Technique for Face Recognition and PRelD

TABLE 1. Reference table of datasets. Six well known face datasets are used for direct comparison with prior work. The CFP-LD and LFW-LD datasets are
novel contributions of this work; see Sec.IV-A to support controlled long-distance evaluation. The LRD (Long-Range Dataset) is a government-use dataset.
For CFP-LD and LFW-LD, we use the same evaluation as standard LFW and CFP. For LRD, we use the same metrics as for 1JB-S because the dataset has the
same gallery/query format. “PRelD” holds for “person re-identification”. All other evaluation metrics follow standard practice from prior works. mean
Average Precision (mAP), Rank-1 (R-1), and Rank-5 (R-5) are retrieval metrics.

Dataset Reference

Dataset Modality  Evaluation Metric Characteristics
CFP-FP face 1:1 verification Relatively high-quality; frontal-profile pairs
LFW face 1:1 verification Relatively high-quality
AgeDB-30 face 1:1 verification Relatively high-quality; pairs with 30 year difference
1IB-C face TAR@FAR=1le-4 Mixed-quality
IJB-S face R-1, R-5, TPIR@FPIR=1e-1,1e-2  High-quality gallery; low spatial resolution faces in probe video
TinyFace face R-1,R-5 Low spatial resolution probe and gallery

" CFP-LD = face  [I:lverification ~ = Recapture dataset at 770m; strong atmospheric turbulence
LFW-LD face 1:1 verification Recapture dataset at 770m; strong atmospheric turbulence

"LRD face = R-1,R-5, TPIR@FPIR=1e-1,le-2 ~HQ gallery images; query images up to 500m. Government-use.
DeepChange ~ PRelD mAP, R-1 16-cameras low-resolution with 450 clothes-changing identities
Market PRelID mAP, R-1 6-cameras low/high-resolution with 751 same-clothes identities
MSMT17 PRelID mAP, R-1 15-cameras low/high-resolution with 1041 same-clothes identities

However, the effectiveness of simulated atmospherics for face
recognition has not been validated because, as mentioned
before, there is no real data for validation.

We recapture datasets through the atmosphere to facilitate
academic research on biometric recognition over long
distances. To perform the capture, we use three 4k outdoor
televisions, a 4k Basler camera, and an 800 mm lens with
a 1.4x adapter. Custom capture and display software are
developed for the collection, and custom mounting hardware
is built for stable capture. The displays are mounted to avoid
direct sunlight on the screens. The camera is directed at the
displays from a structure at a distance of 770 meters, and
videos of the displays are captured at 30 frames per second.
A video of the displays running is provided on the GitHub
site of the data, where considerable atmospheric effects can
be seen. Our collection setup yields significant atmospheric
distortions, which can be noticed between sequential frames.
Figure 3 shows two examples. The data collection process
went through IRB approval and is being distributed for non-
commercial use.

We refer to our recapture datasets as the original dataset
name followed by “-LD” (‘“‘the LD datasets’’), where LD
stands for long-distance. The evaluation datasets provided
are LFW-LD and CFP-LD. Twelve recaptured samples are
provided for each image in the original dataset because
atmospheric turbulence is temporally variable. For CFP-LD
and LFW-LD, two protocols are proposed: clean-to-long-
distance (C-to-LD) and long-distance-to-long-distance (LD-
to-LD). C-to-LD uses verification pairs where one image
is standard and thus higher quality. For LD-to-LD, all
samples are recaptured over long distances. The LD datasets
expand the evaluation of our methods in the following
section, where evaluations are made with a single frame
for each image. However, future work should consider
new protocols allowing frame fusion or frame selection
across frames. Previous unconstrained evaluation datasets
(e.g., IIB-S) have been distributed over a terabyte of raw
video, which is burdensome to process. In contrast, the LD
datasets are pre-processed and pre-aligned in the same format

55790

3x QLED 4K TV; 2,000 nit brightness

770m standoff LT

- ~~——
==
’_\/

Basler 4k camera
30ms integration
800mm lens

o
]
“
@
=

5 10 15 20

FIGURE 3. Top. Recapture specifications and a raw frame from our
recollection. Lower Left. Two consecutive frames (33.3 ms apart) for two
different identities from LFW-LD. Differences can be observed between
sequential frames, such as around the eyes or face outline. Lower Right.
Distribution of feature distances in degrees between sequential frames of
the same display image from LFW-LD and CFP-LD. Surprisingly, the
distances are not 0 - the effects of atmospherics from frame to frame are
considerable!.

as the original datasets, which streamlines evaluation and
comparison. The final release will include the recapture
of person re-identification datasets, plus a WebFace4M
recapture for training.

The collection setup went through IRB approval, and both
the LFW and CFP dataset licenses allow redistribution. Speci-
fications of imaging equipment and collection conditions are
shown in Table 2. Figure 4 shows the display and Figure 5
shows the camera used for recapture. The LD datasets contain
12 recaptured face chips for each original face as the capture
occurs continuously over time, and atmospheric turbulence
is temporally variable (atmospheric effects are shown in
Figure 6 and at https://youtu.be/cBcikSU7kfM). The nature
of the data allows for research uses such as frame selection,
frame aggregation, distortion robustness, quality prediction,
and direct feature comparisons to the same image with and
without real atmospheric turbulence.
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containers for recapture.

FIGURE 5. Lens and camera with custom mounting hardware for
recapture.

To post-process the images, fixed regions from the screens
are cropped, and then RetinaFace [10] face detector is used to
detect landmarks and realign the images. A non-local mean
denoising algorithm is used to reduce noise in the recaptured
images. Figure 6 shows samples from the LD datasets.

V. RESULTS

Our experiments are performed on face recognition and
person re-identification tasks with an emphasis on low-
image-quality scenarios. Common training and evaluation
procedures are followed for each task, respectively. We
start the evaluation of the face recognition models on five
low-image-quality datasets and four standard image-quality
datasets and then on recaptured and real-long distance
data. The low-resolution TinyFace [8] dataset has 2,569
probe identities and 157,871 gallery images. Following
previous work [33], 1:N Rank-1 and Rank-5 are presented
for TinyFace. The IJB-S [32] contains gallery images for
201 identities and over 30 hours of probe video. For 1JB-
S, we report the surveillance-to-booking and surveillance-to-
surveillance protocols. Additional details on IJB-S evaluation
can be found in Sec V-B. Our LFW-LD and CFP-LD
datasets (see Section IV-A) are evaluated with 1:1 accuracy.
Representing standard image quality scenarios, we report
on LFW [23], CFP [57], AgeDB [53], and IJB-C [50]
with standard metrics. Among them, we report the True
Acceptance Rate (TAR) at False Acceptance Rate (FAR) in
1% and 10% (TAR@FAR = 1% or 10%). Training is done on
the WebFace4M and WebFace12M datasets [92]. Training is
not performed on MS1Mv* datasets due to redaction.

For person re-identification (PReID), we used two same-
clothes datasets: Market1501 and MSMT17, and one clothes-
changing dataset: DeepChange. For PRelD evaluation, fol-
lowing prior work, experiments are run with predefined
train-test splits, and mAP and CMC metrics are reported.
Market1501 [87] has 12,936 images of 751 identities in
the training set. The test set is divided into 3,368 images
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TABLE 2. Camera, weather condition, and display settings for the
collection of LFW-LD and CFP-LD.

Parameter Value
Camera Basler acA2440-35uc
Lens focal length 800 mm +1.4x Extender

Capture distance 770 meters
Integration time 30 ps
Capture rate 30 fps
Wind speed 5-15 mph
Temperature 15°C

for the query set and 15,913 images for the gallery set.
MSMT17 [74] is the most challenging same-clothes RelD
dataset. It comprises 32,621 images of 1,401 identities in
the training and validation sets and 93,820 images of 3,060
identities in the test set. DeepChange [75] has lower-quality
images than MSMT17 and Market. It has 75,083 images of
450 identities on the training set. The validation and test sets
are divided into query and gallery sets.

In addition to the previous public data, a non-public
government-owned long-distance identification dataset is
used for added validation. For evaluation, we use a gallery
of 375 subjects with one high-quality image for enrollment.
These are compared with 1,219 probe images captured at
multiple distances up to 500m. Performance on the Real Long
Distance (RLD) provides another comparison under real
atmospheric turbulence and a comparison to our LFW-LD
and CFP-LD.

We also would like to point out that, despite our proposed
real long-range dataset, it is hard to get enough real
atmospheric turbulence data for training, and for this reason
we employ the simulated distortion data during feature
learning. We employ the real one just on evaluation as we
show in Table 4 and Table 5. We argue that the turbulence
effects on images can be diverse; it depends on the location,
temperature, weather, distance to the camera, specs of the
acquisition equipment, and so on, which can be hard to
quantify and qualitatively compare the simulated and real
imaging under all conditions. Besides, visual analysis is
subjective and subjected to the background and context of
the viewer. Even if the simulated data is not exactly the
same as real data, it can effectively be employed as a type of
distortion that, along with the other contributions, encourages
the models to learn distortion-invariant representation and
achieve top-tier performance outperforming prior work in
well-known face recognition and person re-identification
benchmarks as we will show in the next sections.

A. EXPERIMENTAL SETTINGS

Common experimental settings are used for face recognition
and person re-identification, respectively. For face recog-
nition, a ResNet100 [19] is used as the backbone model
with an embedding size of 512. Mixed precision floating
point training [52] is used, and the total batch size is
1,024. Stochastic Gradient Descent (SGD) is used as the
optimizer with polynomial weight decay of 5 - 10~* and
momentum of 0.9. A base learning rate of 0.1 is used with
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FIGURE 6. Sample images from the LD datasets. It can be seen that our recapture setup yielded
significant atmospheric turbulence effects (also see video at https://youtu.be/cBcik5U7kfM). These
datasets can facilitate research into 1) quality/confidence-aware models, 2) models that are robust to
face-feature distortion, and 3) frame aggregation under atmospheric turbulence (12 frames are

provided per display image).

FIGURE 7. Samples from the gallery set (top row) and query set (bottom two rows) from the
long-range dataset (LRD). Query images are taken at distances between 100-500 meters. All

subjects consented to image use in publication.

a polynomial learning rate scheduler. In addition to distortion
augmentations discussed in Section III-A, a horizontal flip
and crop are used as augmentations.

For fair comparison to the prior person re-identification
work, we adopt the ResNet50 [19] and OSNet [88] as
the model backbone. In ResNet50, following previous
works [48], [54], we change the stride of the last residual
block to 1 to increase the feature map size. Then we insert
a global average pooling and global max pooling layer after
the last feature map and sum their outputs element-wise [54].
After that, we add batch normalization and perform the L2
normalization to project them to the unit hyper-sphere.

B. COMPARISON TO STATE-OF-THE-ART METHODS

1) FACE RECOGNITION

The IJB-S [32] is a surveillance dataset that is distributed as
a set of gallery images for 202 identities and over 30 hours
of query videos. The dataset has 15 million face bounding-
box annotations. To process the data, we follow the following
steps:

1) Extract all 15 million annotated face regions from all
images and videos.

2) Run all extracted regions through MTCNN [82] face
detector. MTCNN detected 7.28M/15M face regions.

3) Use face landmarks from MTCNN for an affine
transformation to fixed positions on 112 x 112 image
— zero-padding is added if necessary.

Evaluation is performed with the surveillance-to-booking
and surveillance-to-surveillance protocols. Surveillance-to-
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booking protocols use videos with thousands of frames for
a query and a template of multi-view high-quality gallery
images. Surveillance-to-surveillance uses surveillance video
for both the probe and the gallery. Seven gallery images are
used for each of the 202 identities and 7,287,724 query face
detections are used.

In Table 4, DaliFace is compared to prior works on low-
image-quality benchmarks. In the WebFace4M regime, Dali-
Face improves over the prior state-of-the-art on TinyFace by
1.96% on Rank-1 and 2.55% on Rank-5. On IJB-S, DaliFace
achieves state-of-the-art on six out of eight metrics by an
average of 1.53%. On the long-distance datasets (LFW-LD
and CFP-LD), DaliFace averages 3.04% higher accuracy than
prior work. In the WebFacel2M regime, the prior state-of-
the-art is CFSM [45], which uses a latent-style model to learn
the domain of the testing data. In contrast, our work does not
use the testing data but still improves over CFSM on 8/8 [JB-S
metrics and 2/2 TinyFace metrics. DaliFace achieves state-of-
the-art in 12/14 metrics in the WebFace4M regime and 11/14
metrics in the WebFace12M regime. Those results show our
model is able to learn discriminative and distortion-invariant
features from low-quality data and achieve state-of-the-art
performance in most metrics in different face recognition
benchmarks.

Table 3 shows results on high-quality datasets IJB-C, LFW,
AgeDB, and CFP. Despite using significant distortions during
training, our DaliFace methodology achieves comparable or
higher performance on high-quality benchmarks. State-of-
the-art is reached on IJB-C with an accuracy of 97.40% and
on CFP-FP with an accuracy of 97.27%.
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TABLE 3. Performance comparisons between DaliFace and prior works
on relatively high-image-quality scenario benchmarks. Following the
most common protocols, 1:1 verification accuracy is reported for

LFW [23], CFP-FP [57], and AgeDB [53]; and TAR@FAR=1e-4 is reported for
1JB-C [50]. Despite our focus on low-quality scenarios (see Table 4,

Table 5), it can be seen that our models are competitive with or better
than state-of-the-art models on popular high-image-quality benchmarks.
Due to redaction, we do not perform training with MSTMv1,2,3 datasets.

Method [ LFW  CFP-FP
MSI1Mv* Training

CosFace [70] (CVPR18) 99.81 98.12 98.11 96.37
ArcFace [11] (CVPR19) 99.83 98.27 98.28 96.03

GroupFace [35] (CVPR20) | 99.85 98.63 98.28 96.26

AgeDB  1JB-C

CircleLoss [62] (CVPR20) | 99.73 96.02 - 93.95
DUL [3] (CVPR20) 99.83 98.78 - 94.61
CF [25] (CVPR20) 99.80 98.37 98.32 96.10
URFace [60] (CVPR20) 99.78 98.64 - 96.60
DB [2] (CVPR20) 99.78 97.90

Sub-center [9] (ECCV20) 99.80 98.80 98.31 96.28
BroadFace [36] (ECCV20) | 99.85 98.63 98.38 96.38

VPL [12] (CVPR21) 99.83 99.11 98.60 96.76

VirFace [43] (CVPR21) 99.56 97.15 - 90.54

DCQ [40] (CVPR21) 99.80 98.44 98.23 -

MagFace [51] (CVPR21) 99.83 98.46 98.17 95.97

Virtual FC [42] (CVPR21) | 99.38 95.55 - 71.47

CFSM [45] (ECCV22) - - - 95.90
WebFace4M Training

ArcFace [11] (CVPR19) 99.83 99.19 97.95 97.16
AdaFace [33] (CVPR22) 99.80 99.17 97.90 97.39
Partial FC [1] (CVPR22) 99.85 99.23 98.01 97.22
DaliFace (ours) 99.83 99.27 97.85 97.40

To show that the improvements hold for actual long-
distance data, we also compared DaliFace to various
algorithms on the Real Long Distance (RLD) dataset, with
the results in Table 5. It can be seen that our algorithm
significantly improves over prior works across metrics on
RLD data. DaliFace achieves TPR@FPR of 63.7% @ 1%;
the next best algorithm is AdaFace at 58.3%.

The above results show our model is able to learn
discriminative and robust features to varied quality data,
as it achieves state-of-the-art performance in low-quality
data scenarios (Table 4), keep the top-tier performance in
standard-quality scenarios (Table 3), and achieve the best
or second-best performance in real long-distance datasets
(Table 5).

2) PERSON RE-IDENTIFICATION

DaliRelD is compared with state-of-the-art methods in
PRelD for both the same-clothes scenario and the clothes-
changing scenario. We provide the main advances and
limitations from prior PRelD works compared to ours in
Table 6. For the same-clothes scenario, results are reported
in Table 7. Our method is orthogonal to the backbone, and
we show results with two backbones used in prior works:
ResNet50 and OSNet [88]. DaliRelD achieves the highest
performance on the Market dataset, outperforming FIDI [76]
by 0.8 in mAP, and the second position (along with FIDI)
with R1 = 94.5. In MSMT17, the most challenging PReID
benchmark, we reach the best performance by outperforming
CDNet by a margin of 5.9 and 3.2 in mAP and RI,
respectively, with ResNet50. With OSNet, we achieve the
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best performance in both datasets for both metrics. Our
method is able to rank ground-truth gallery images closer
to the query and outperforms prior work in mAP in all
setups. To show our model generalization ability, we trained
DaliRelD for DeepChange, in which subjects’ clothes differ
among views. The results in Table 8 show our method also
outperforms the state-of-the-art methods. We outperformed
the recent CAL [17] by 2.9 and 6.8 in mAP and RI,
respectively. Besides the clothes-changing, DeepChange has
more distortions and low-quality data than Market and
MSMT17. We obtain the highest gain on it for R1 and
the second highest gain for mAP (after MSMT17), showing
our method can better improve performance in low-quality
datasets. We do not employ any kind of part-based, alignment,
segmentation mask, or pose variation strategies, in order to
verify the performance improvement brought just by our
DaliRelID model.

Following the conclusions from the previous section, our
model is also able to achieve state-of-the-art performance in
three cross-quality person re-identification datasets, which
shows our model learns features robust to different levels of
distortions in two different biometrics tasks.

C. VISUALIZATION
In Figure 8, we visualize the feature activation obtained from
the clean and distortion-adaptive models.

Each of the five images in the middle depicts the same
person. The first one is a clean image, i.e. without distortions,
the second one was generated by employing the atmospheric
turbulence (AT) simulator used in our work with level 1 of
turbulence (AT = 1.0); the third one was generated by
employing the simulator with level 2 of turbulence (AT =
2.0) and so on, until the last image with level 4 of turbulence
(AT = 4.0). The upper left bars in the image show the
feature magnitudes sorted based on the average magnitude
feature value of the representations. For instance, the bar “ID:
G02058 Model: CL AT-Level: Clean” (the first one in the
top left) has 25 rows, and each one is a feature vector from
clean images from identity G02058. The columns are their
features sorted based on the average absolute value of the
magnitudes of the features over the 25 clean images. Those
feature vectors were obtained using the clean model trained
in our solution. The second bar, “ID: G02058 Model: CL
AT-Level: AT 1.0” also has 25 rows where each row is a
feature vector from images of identity G02058 under level
1 of atmospheric turbulence (AT = 1.0), and the columns
are also the features sorted based on the average absolute
value of the magnitudes of the features over the 25 clean
images. The same rationale applies to the other three bars
(AT = 2.0, AT = 3.0 and AT = 4.0). We see that the features
with stronger activations for the clean images (first bar) have
smaller and smaller activations when they are from images
under stronger atmospheric turbulence (from the second to
the fifth bar), and the features with weaker activations for
the clean images are stronger for images under different AT
levels. This is illustrated by the red arrows in the left part
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TABLE 4. Comparison of DaliFace to prior work on benchmarks containing distortions. Common metrics are reported for TinyFace [8] and for JB-S** [32]
protocols surveillance-to-booking and surveillance-to-surveillance. For LFW-LD and CFP-LD (Section IV-A), 1:1 verification accuracy with
clean-to-long-distance (C-to-LD) pairs and long-distance-to-long-distance (LD-to-LD) pairs. KEYS. Bold: First; Blue: Second. ** The 1JB-S dataset contains
over three million raw video frames and 15 million face annotations. Face recognition results are subject to detection and pre-processing steps. Using
official code and pre-trained model, all WebFace{4M,12M} comparisons are run with our pre-processing to ensure fair comparison.

Method Dataset TinyFace [0] TB-S S-t0-B [17] TUB-S 5-t0-5 [37] LFW-LD (Sec. IV-A) | CEP-LD (Sec. IV-A)
) Rank-1 Rank-5 | Rank-1 Rank-5 1% 10% | Rank-1 Rank-5 1% 10% | C-to-LD  LD-to-LD | C-to-LD  LD-to-LD
PFE [59] MSIMv2[11] - 53.60 61.75 35.99  39.82 9.20 20.82 0.84 2.83 - - - -
ArcFace [11] MSIMv2 [11] - - 57.36 64.95 41.23 - - - - - - - - -
URFace [60] MSIMv2 [11] 63.89 68.67 61.98 67.12 42.73 - - - - - - -
CF [25] MSIMv2 [11] 63.68 67.65 63.81 69.74 47.57 - 19.54 32.80 2.53 - - - - -
AdaFace [33] MSIMv2 [11] 68.21 71.54 66.27 71.61 50.87 - 23.74 37.47 2.50 - - - - -
ArcFace [11] WF4M [92] 71.11 74.38 68.38 73.64 52.47  60.69 27.20 38.36 4.30 15.95 87.80 84.65 78.12 71.17
AdaFace [33] WF4M [92] 72.02 74.52 69.52 74.41 54.92 62.82 27.90 40.11 4.20 14.44 89.20 86.10 79.87 72.57
DaliFace (ours) WEF4M [92] 73.98 77.07 72.21 76.77 54.07 63.10 30.65 42.33 4.21 16.73 93.91 88.15 83.21 74.61
AdaFace [33] WFI12M [92] 72.29 74.52 69.73 74.49 56.86 63.98 28.83 40.99 4.04 15.11 89.89 86.32 80.57 71.71
CFSM [45] WFI12M [92] 73.87 76.77 70.36 75.89 55.92  63.63 30.44 41.57 3.78 15.88 90.88 86.62 83.13 75.10
DaliFace (ours) WFI12M [92] 74.76 77.36 72.19 76.66 56.04 64.37 32.25 43.03 3.81 16.97 94.00 89.10 83.98 74.96

TABLE 5. Performance on the Real Long Distance (RLD) dataset, which
contains real images captured at up to 500 meters (see Section V for

details). The methods in italics have one or more of our contributions. All

models are trained on WebFace4M [92]. The improvement of DaliFace
over other prior state-of-the-art algorithms is more than the gaps
between previous algorithms and is consistent with other experiments.

TABLE 7. Comparison to the state-of-the-art models in same-clothes
Person Re-ldentification setup. Bold and Blue indicate the best and
second-best values. *CD-Net is not based on ResNet50, but the authors of
that paper mostly compared to ResNet50-based models, so we leave it
here for a fair comparison.

| Market MSMT17
Real Long-Distance (RLD) dataset Method [ Venue [ mAP R1 mAP R1
Method Rank-1  Rank-5 1% 10% OSNet-based models
ArcFace [11] 47.42 57.26  55.95 69.32 OSNet [33] ICCV19 849 948 | 529 787
MagFace [51] 45.69 57.67 56.52  69.73 DaliReID (OSNet) | This work 87.2 95.0 59.5 82.6
AdaFace[33] | 4996  59.15 58.24 71.21 ResNet50-based models
AdaFace + Distortion Aug 56.52 66.28 62.10 75.72 GCS [5] CVPRI18 81.6 93.5 - -
Distortion-Adaptive 56.77 67.27 63.17  76.13 SFT [46] ICCV19 82.7 93.4 47.6 73.6
DaliFace (Ours) 56.93 67.02 63.67 75.98 CBN [93] ECCV20 83.6 94.3 - -
STNRelD [47] TMM20 | 849 938 - -
CBDB-Net [64] TCSVT21 85.0 94.4 - -
TABLE 6. Comparison of the prior art and our method in terms of BAT—Nei[ | (I:CCVI; 85.5 94.1 0.4 74.1
advantages and limitations. CDNet(*) [41] VPR21 86.0 95.1 54.7 78.9
FIDI [76] TMM21 86.8 94.5 - -
Method Advances Limitations DaliReID (R50) This work 87.6 94.5 60.6 82.1
OSNet [£8] It proposes a data-driven feature scale It is not designed for cross-resolution and
weighting and lightweight archi o ! re-identificati
gather information from varied scales.
GCS [5] It calculates local and global similarities It needs to calculate the Conditional Ran-
at the batch level and employs them to dom Field (CRF) for each batch and esti- . . .
improve performance. mate similarites features are activated for recognition across different levels
SFT [46] It explores in-batch relations through Spectral clustering is done for each batch,
group-w‘ise learning and spectral cluster- and big batches might increase complexity. Of AT.
CBN 03] ncéffectively reduces the learning gap Tt requires a camera label for cross-domain
based on camera distributions. ig
STNReID [17] Tt deals wi‘&h pan‘ianyrvifh_]e fdenlilies Tt requires a two-stage training. VI. ABLATION STUDIES
through 2D affine transformations.
CBDB-Net [64] It employs a continuous drop block of fea- It considers just horizontal occlusions in A- FACE RECOGNITION
tures that regularizes training. the training data.
BAT-Net [15] It proposes a novel bilinear attention block It trains two coupled networks, which in- 1 1
(oli)mgrove feature learning. crease number otharamelers and does not TO demonStrate the lmpI‘OVCmentS Of the respeCtlve COmpO‘
allow parallel training. . . :
CDNet [41] It employs a Neural Architecture Search It requires setting the search space and nents Of DallFaCe, Table 9 ShOWS an ablatlon Wlth datasets
space and strategy along with a local pa strategy parameters, which brings more hy- : : : COR
Apace un Sy one with alocalpart | regy puramete nore hy representing three different evaluation scenarios: 1JB-S for
FIDI [76] It proposes a new fine-grained aware loss The proposed loss function brings two 1 1 5
furl:ctizn to highlight fine-grained features. more];lyger-paramelers to tune. ¢ Standard quallty’ CFP_LD for long dlStance’ and TlnyFace fOI’
o] It deals with long- F: R - It i the traini f two back- 1 1 1 1 ]
(Dl:lrl?ReID) niﬁoena :n:lPers(::]g l::llgdeentiaf::ati::‘oi bo::;l,l:::sil caen hrea:i':::eginopa:'vzﬁlel?c low Spatlal reSOhltlon' It can be seen that aggreSSIVG dlStortlon
does not rely on batch clustering, cam- augmentations create a significant performance improvement
era labels, attention models, or architec-
ture searching in low-quality datasets CFP-LD and TinyFace; however,

of the image. The bottom left bars follow the same idea as
the top left bars. However, the feature vectors were obtained
using the distortion-adaptive model (the same set of images
are used for comparison) of our DalilD solution. We see that
the DA features maintain more important high-magnitude
feature distortion and have far fewer incorrect low-magnitude
features introduced, as illustrated by the green arrows. The
bars on the right are non-matched images, i.e. images from
identities different from G02058, so we see that different
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performance drops significantly on IJB-C, which is a dataset
with relatively higher-quality images, showing that the use
of distorted data without any further strategy might harm the
performance in high-quality datasets. We argue that this is due
to the inability of the model to effectively learn from distorted
data, allowing it to dominate the optimization since the
beginning of the training. After adding adaptive weighing and
magnitude-based fusion, it can be seen that the final model
(i.e., DaliFace) is the best performing. In Table 5, which also
ablates different components of our model, a similar pattern
can be observed. An additional ablation of our distortion
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FIGURE 8. Visualization of features to highlight the learned invariance, best viewed in color. Each color bar has a feature in a
column, and the bar has 25 rows where each is an image. The features are absolute values mapped to colors with blue small, green
medium, and yellow high, with features sorted on the average absolute magnitude on the clean image. The top five bars are the
features from the “clean” branch, with different simulated atmospheric turbulence (AT) levels added, with a sample image shown
for each level. As highlighted by the red arrows, as AT increases, the originally large features lose magnitude while originally low
features see an increase - both of which reduce the matching score. The right column of bars shows that a non-matching person is
not well correlated. The bottom five bars are from the Distortion-Adapted (DA) trained branch. As the AT level increases, the DA
features maintain more important high-magnitude feature distortion and have far fewer incorrect low-magnitude features
introduced. These examples highlight that our DALI training approach produces greater invariance to distortion.

TABLE 8. Comparison to the state-of-the-art models in clothes-changing
Person Re-Identification setup. Bold and Blue indicates the best
second-best values. All methods, except ViT, consider ResNet50 as the
backbone.

DeepChange
Method Venue mAP R1
ReIDCaps [20] TCSVT20 113 395
ViT [75] ArXiv20 150 4938
ViT (with Grayscale) [75] ArXiv20 152 48.0
CAL [17] CVPR22 19.0 540
DaliReID (R50) This work | 21.9  60.8

augmentation compared to Gaussian blur and downsampling
is also provided in Table 11 and Section VI-C.

B. PERSON RE-IDENTIFICATION

We perform a set of ablation studies over the PRelD datasets
to measure the impact of different components. The results
are shown in Table 9. When we use distorted images
as augmentations without our adaptive-weighting strategy
(second line), we see a performance drop for both metrics
in MSMT17 and DeepChange, and for mAP in Market
when compared to the distortion-adaptive and DaliRelD
models. As the varied distortion images have the same
importance for training, the model does not effectively
learn from distorted data. For MSMT17 and DeepChange,
the results are also worse than the baseline showing that
just employing distortion as augmentations hinders model
performance. We face the same performance dropping when
we take out our proxy loss (A = 0 in Eq. 11), showing
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it is an essential contribution (third line of Table 9).
In contrast, just the distortion-adaptive backbone (fourth line)
yields performance improvements for both MSMT17 and
DeepChange and for mAP in Market, showing that it can learn
a distortion-invariant feature space to some extent. Our final
DaliRelID model combines both clean and distortion-adaptive
backbones (first and fourth lines), which leads to the best
performance for MSMT17 (an increase of 5.2 and 3.6 for
mAP and R1, respectively) and DeepChange (an increase
of 1.7 and 2.2 for mAP and RI1 respectively). This shows
that DaliRelD can effectively combine knowledge from both
backbones.

In the future, we aim to apply our methodology in
PRelD datasets considering moving cameras (e.g., UAV) with
distortion levels caused by distance and altitude [38].

1) PREID PARAMETER ANALYSIS

There are two hyper-parameters on the final loss function
(Eq. 11) for person re-identification: t value to control
the sharpening of the probability distribution in both terms
and A value to weight the contribution of Ly, term.
The impact of these parameters on the performance of the
Distortion-Adaptive backbone is shown in Figure 9.

For A in Figure 9a, we see stable performance for Market
along different values after A = 0.1, while for MSMT17 we
see a peak at A = 0.4, then a suitable decrease after this value.
For both datasets, we see a performance drop for A = 0.0
(no Lyoxy), showing the proxy-based loss term has a positive
impact on training. In contrast, an equal contribution of both
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FIGURE 9. Analysis of the impact of the parameters = and A on the final
loss function considering the training of the distortion-adaptive
backbone for PRelD.

TABLE 9. Ablation study for both Face and PRelD datasets. The respective
first lines show the performance of the baseline (clean) model (trained
without simulated distorted data). The second and third lines are for
backbones trained with distortion as augmentation and our adaptive
weighting strategy, respectively. For PRelD, line 4 ablates the proxy loss
(all other PRelD lines contain Lproxy): and the final line is the proposed
DaliRelD model. CFP-LD is reported as an average of the two protocols
shown in Table 4.

Face Ablation IJB-C  CFP-LD  TinyFace | Average
Baseline (0.;) 97.38 75.22 72.18 81.59
Distortion Aug 96.91 78.16 74.11 83.06
Distortion-Adaptive (64) 96.92 78.37 74.22 83.17
DaliFace 97.40 78.91 73.98 83.43
Market MSMT17 DeepChange
RelD Ablation mAP R1 mAP R1 mAP R1
Baseline (6.;) 86.6 942 57.6 803 205 593
Distortion Aug 863 947 554 785 202 586
Distortion-Adaptive (644) 86.6 943 583 813 207 592
Distortion-Adaptive W/o Lprozy 824 929 479 729 19.2 556
DaliReID 87.6 945 606 821 219 60.8

terms A = 1.0 hurts the performance mainly for MSMT17.
Since MSMT17 is more challenging, we select A = 0.4 as
the operational value. Further analysis of the impact of Loy
is presented in Table 9.

The impact of 7 is shown on Figure 9b. The performance
drops when t is lower than 0.04 for MSMT17 but has a stable
behavior for Market, while values greater than 0.06 deteri-
orate the performance for both datasets. To achieve a good
trade-off considering the dataset complexities, we choose
T = 0.05.

2) IMPACT OF POOLING OPERATIONS IN EVALUATION
(PREID)

As shown in Figure 2, the inference is performed by a
weighted combination of the decisions from clean and
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TABLE 10. Ablation of the pooling operation to calculate the magnitudes
for fusion in PRelD.

Market MSMT17 DeepChange
Setup mAP Rl mAP Rl mAP Rl
GMP 87.6 944 | 605 821 | 219 60.7
GMP+GAP 87.6 944 | 60.6 821 | 21.8 608
DaliReID (GAP) | 87.6 945 | 60.6 82.1 | 219 60.8

TABLE 11. A comparison between training augmentations. The distortion
augmentation performs better than using Gaussian blur and
down-sampling.

1JB-C CFP-LD TinyFace
DS+GB 96.48 77.13 73.39
Distortion Aug (ours) 96.91 78.16 74.11
DaliFace (ours) 97.40 78.91 73.98
Market MSMT17 DeepChange
mAP  RI mAP  RI mAP Rl
DS+GB 780 912 447 695 162 515
Distortion Aug (ours) 86.3 947 554 785 20.2 58.6
DaliRelD (ours) 876 945 606 821 219 608

DS+GB=down-sampling + Gaussian blur

distortion-adaptive backbones. The weights W ., and
Waiistortion are the maximum magnitudes of the feature vectors
for each query and gallery image pair for each backbone.
Among the different pooling strategies to get the final feature
representation, we choose Global Average Pooling (GAP),
Global Max Pooling (GMP), and a combination of both
(GAP+GMP) to check the impact on final performance.
The performances are reported in Table 10. Note that in
this case, the pooling operations are just to calculate the
magnitudes, since the final representation is always obtained
by the element-wise sum of the output of the GAP and GMP
layers for PRelD.

We see among GAP, GMP, and GAP+GMP, we have a
similar performance in evaluation, with a slight improvement
for GAP. All of them have similar performances over the
final result showing our proposed fusion strategy is robust to
different pooling operations.

C. DISTORTION AUGMENTATION

A key contribution of the paper is the use of distortion
augmentation inspired by atmospheric turbulence. This
ablation shows that the gains are not simply from data
augmentation. Table 11 shows a comparison to a combi-
nation of other similar augmentations used in computer
vision: down-sampling and Gaussian blur. Gaussian blur
and down-sampling are applied at equally challenging levels
as distortion augmentation (as measured by the loss).
In Table 11, it can be seen that distortion augmentation
performs better than data augmentation Gaussian blur and
down-sampling on both face recognition and person re-
identification benchmarks, but not near as well as DALI.

D. FEATURE FUSION METHODS.

Our DalilD method uses a magnitude-weighted fusion of
features from two backbones (see Figure 2). We also
performed experiments with learned fusion layers. The

magnitude-weighted fusion outperformed learned fusions as
shown in Table 12.
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TABLE 12. Experiments with three different learning methods to combine
the feature vectors from the clean and distortion-adaptive backbones.
Perhaps surprisingly, we get the best results without learning a final
representation but rather performing magnitude-weighted fusion.

Fusion IUB-C  CFP-LD TinyFace
magnitude weighted fusion | 97.40 78.97 73.98
linear layer 97.07 78.19 73.87
attention layer 97.20 78.26 73.84
transformer decoder 97.22 77.98 73.82

VIi. CONCLUSION

In this work, DalilD is presented as a methodology for
improving robustness to distortions common in real-world
applications. The proposed components include distortion
augmentation, distortion-adaptive weighting, and a parallel-
backbone magnitude-weighted feature fusion. While face
recognition and person re-identification have considerable
differences, DalilD is shown to be applicable in both tasks
with state-of-the-art performance on seven datasets. The
proposed LD datasets, captured over the longest distance of
any academic dataset, allow for further evaluation of realistic
distortions.

In the future we aim to explore self-paced curriculum
learning [72] to search for automatic curriculum criteria for
the loss of weighting. Also, we intend to explore different
backbone combinations (e.g., ResNet and Transformer [66])
to bring a diversity of learned knowledge by different models.
Finally, our solution can be extended to further image
recognition tasks operating in unconstrained scenarios where
distortion can affect image features.

CODE AND DATA RELEASE
The code and datasets can be found in this https://github.com/
Gabrielcb/DalilD repository.

ACKNOWLEDGMENT

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied,
of ODNI, TARPA, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints
for governmental purposes notwithstanding any copyright
annotation therein.

REFERENCES

[1] X. An, J. Deng, J. Guo, Z. Feng, X. Zhu, J. Yang, and T. Liu, “Killing
two birds with one stone: Efficient and robust training of face recognition
CNNs by partial FC,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2022, pp. 4032-4041.

[2] D. Cao, X. Zhu, X. Huang, J. Guo, and Z. Lei, “Domain balancing: Face
recognition on long-tailed domains,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 5670-5678.

[3] J.Chang,Z. Lan, C. Cheng, and Y. Wei, “Data uncertainty learning in face
recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 5709-5718.

[4] B. Chen, W. Deng, and J. Hu, “Mixed high-order attention network for
person re-identification,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2019, pp. 371-381.

[5] D.Chen, D. Xu, H. Li, N. Sebe, and X. Wang, ““Group consistent similarity
learning via deep CRF for person re-identification,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8649-8658.

VOLUME 12, 2024

[6]

[7

—

[8]

[9

—

[10]

(11]

[12]

(13]

(14]

[15]

(16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

T. Chen, S. Ding, J. Xie, Y. Yuan, W. Chen, Y. Yang, Z. Ren, and Z. Wang,
“ABD-net: Attentive but diverse person re-identification,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 8350-8360.

Z. Cheng, Q. Dong, S. Gong, and X. Zhu, “Inter-task association critic
for cross-resolution person re-identification,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 2602-2612.

Z. Cheng, X. Zhu, and S. Gong, “Low-resolution face recognition,”
in Proc. 14th Asian Conf. Comput. Vis. (ACCV). Perth, WA, Australia:
Springer, Aug. 2018, pp. 605-621.

J. Deng, J. Guo, T. Liu, M. Gong, and S. Zafeiriou, ‘“Sub-center ArcFace:
Boosting face recognition by large-scale noisy web faces,” in Proc. Eur.
Conf. Comput. Vis. Glasgow, U.K.: Springer, 2020, pp. 741-757.

J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, ‘RetinaFace:
Single-shot multi-level face localisation in the wild,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 5202-5211.
J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: Additive angular
margin loss for deep face recognition,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 4685-4694.

J.Deng, J. Guo, J. Yang, A. Lattas, and S. Zafeiriou, ““Variational prototype
learning for deep face recognition,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 11901-11910.

A.R. Dhamija, M. Giinther, and T. Boult, “‘Reducing network agnostopho-
bia,” in Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018, pp. 1-12.

H. Dong, Y. Yang, X. Sun, L. Zhang, and L. Fang, “Cascaded attention-
guided multi-granularity feature learning for person re-identification,”
Mach. Vis. Appl., vol. 34, no. 1, pp. 1-16, Jan. 2023.

P. Fang, J. Zhou, S. Roy, L. Petersson, and M. Harandi, “Bilinear attention
networks for person retrieval,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2019, pp. 8029-8038.

Y. Ge, D. Chen, and H. Li, “Mutual mean-teaching: Pseudo label refinery
for unsupervised domain adaptation on person re-identification,” 2020,
arXiv:2001.01526.

X. Gu, H. Chang, B. Ma, S. Bai, S. Shan, and X. Chen, ‘““Clothes-changing
person re-identification with RGB modality only,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 1050-1059.
M. Giinther, P. Hu, C. Herrmann, C. H. Chan, M. Jiang, S. Yang,
A.R.Dhamija, D. Ramanan, J. Beyerer, J. Kittler, M. A. Jazaery,
M. I. Nouyed, G. Guo, C. Stankiewicz, and T. E. Boult, “Unconstrained
face detection and open-set face recognition challenge,” in Proc. IEEE Int.
Joint Conf. Biometrics (IJCB), Oct. 2017, pp. 697-706.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778.

S. He, H. Luo, P. Wang, F. Wang, H. Li, and W. Jiang, “TransRelD:
Transformer-based object re-identification,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2021, pp. 14993-15002.

A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for
person re-identification,” 2017, arXiv:1703.07737.

R. Hou, B. Ma, H. Chang, X. Gu, S. Shan, and X. Chen, ‘“Interaction-
and-aggregation network for person re-identification,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 9309-9318.
G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, ““Labeled faces
in the wild: A database for studying face recognition in unconstrained
environments,” in Proc. Workshop Faces in’Real-Life’Images: Detection,
Alignment, Recognit., 2008, pp. 1-12.

Y. Huang, S. Lian, and H. Hu, “AVPL: Augmented visual perception
learning for person re-identification and beyond,” Pattern Recognit.,
vol. 129, Sep. 2022, Art. no. 108736.

Y. Huang, Y. Wang, Y. Tai, X. Liu, P. Shen, S. Li, J. Li, and F. Huang,
“CurricularFace: Adaptive curriculum learning loss for deep face recogni-
tion,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 5900-5909.

Y. Huang, J. Xu, Q. Wu, Y. Zhong, P. Zhang, and Z. Zhang, ‘“Beyond
scalar neuron: Adopting vector-neuron capsules for long-term person re-
identification,” IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 10,
pp. 3459-3471, Oct. 2020.

Biometric Recognition and Identification At Altitude and Range (Briar)
Program, IARPA Broad Agency Announcement: IARPA-BAA-20-04,
Bethesda, MD, USA, 2020.

M. Jia, X. Cheng, S. Lu, and J. Zhang, “‘Learning disentangled representa-
tion implicitly via transformer for occluded person re-identification,” IEEE
Trans. Multimedia, vol. 25, pp. 1294-1305, 2023.

55797


https://github.com/Gabrielcb/DaliID
https://github.com/Gabrielcb/DaliID

IEEE Access

W. Robbins et al.: DalilD—A Robust Technique for Face Recognition and PRelD

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

J. Jiao, W.-S. Zheng, A. Wu, X. Zhu, and S. Gong, “Deep low-resolution
person re-identification,” in Proc. AAAI Conf. Artif. Intell., vol. 32, 2018,
pp. 6967-6974.

X. Jin, C. Lan, W. Zeng, G. Wei, and Z. Chen, “Semantics-aligned
representation learning for person re-identification,” in Proc. AAAI Conf.
Artif. Intell., 2020, vol. 34, no. 7, pp. 11173-11180.

M. M. Kalayeh, E. Basaran, M. Gokmen, M. E. Kamasak, and
M. Shah, “Human semantic parsing for person re-identification,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 1062-1071.

N. D. Kalka, B. Maze, J. A. Duncan, K. O’Connor, S. Elliott, K. Hebert,
J. Bryan, and A. K. Jain, “IJB-S: TARPA Janus surveillance video
benchmark,” in Proc. IEEE 9th Int. Conf. Biometrics Theory, Appl. Syst.
(BTAS), Oct. 2018, pp. 1-9.

M. Kim, A. K. Jain, and X. Liu, “AdaFace: Quality adaptive margin
for face recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR). Jun. 2022, pp. 18729-18738.

M. Kim, F. Liu, A. Jain, and X. Liu, “Cluster and aggregate: Face
recognition with large probe set,” in Proc. Adv. Neural Inf. Process. Syst.,
2022, pp. 1-13.

Y. Kim, W. Park, M.-C. Roh, and J. Shin, “GroupFace: Learning latent
groups and constructing group-based representations for face recognition,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 5620-5629.

Y. Kim, W. Park, and J. Shin, “BroadFace: Looking at tens of thousands
of people at once for face recognition,” in Proc. Comput. Vis. ECCV,
A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds. Cham, Switzerland:
Springer, 2020, pp. 536-552.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

S. V. A. Kumar, E. Yaghoubi, A. Das, B. S. Harish, and H. Proenga, “The
P-DESTRE: A fully annotated dataset for pedestrian detection, tracking,
and short/long-term re-identification from aerial devices,” IEEE Trans. Inf.
Forensics Security, vol. 16, pp. 1696-1708, 2021.

C. P. Lau, H. Souri, and R. Chellappa, “ATFaceGAN: Single face
image restoration and recognition from atmospheric turbulence,” in Proc.
15th IEEE Int. Conf. Autom. Face Gesture Recognit. (FG), Nov. 2020,
pp- 32-39.

B. Li, T. Xi, G. Zhang, H. Feng, J. Han, J. Liu, E. Ding, and W. Liu,
“Dynamic class queue for large scale face recognition in the wild,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 3762-3771.

H. Li, G. Wu, and W.-S. Zheng, “‘Combined depth space based architecture
search for person re-identification,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 6725-6734.

P. Li, B. Wang, and L. Zhang, ““Virtual fully-connected layer: Training a
large-scale face recognition dataset with limited computational resources,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2021, pp. 13310-13319.

W. Li, T. Guo, P. Li, B. Chen, B. Wang, W. Zuo, and L. Zhang,
“VirFace: Enhancing face recognition via unlabeled shallow data,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 14724-14733.

Y. Li, J. He, T. Zhang, X. Liu, Y. Zhang, and F. Wu, “Diverse part dis-
covery: Occluded person re-identification with part-aware transformer,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 2897-2906.

F. Liu, M. Kim, A. Jain, and X. Liu, “Controllable and guided face
synthesis for unconstrained face recognition,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), Tel Aviv, Israel. Cham, Switzerland: Springer, 2022,
pp- 701-719.

C. Luo, Y. Chen, N. Wang, and Z.-X. Zhang, ‘“Spectral feature
transformation for person re-identification,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 4975-4984.

H. Luo, W. Jiang, X. Fan, and C. Zhang, “STNRelID: Deep convolutional
networks with pairwise spatial transformer networks for partial person re-
identification,” IEEE Trans. Multimedia, vol. 22, no. 11, pp. 2905-2913,
Nov. 2020.

H. Luo, W. Jiang, Y. Gu, F. Liu, X. Liao, S. Lai, and J. Gu, “A strong
baseline and batch normalization neck for deep person re-identification,”
IEEE Trans. Multimedia, vol. 22, no. 10, pp. 2597-2609, Oct. 2020.

55798

(49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Z.Mao, N. Chimitt, and S. H. Chan, “Accelerating atmospheric turbulence
simulation via learned Phase-to-Space transform,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 14739-14748.

B. Maze, J. Adams, J. A. Duncan, N. Kalka, T. Miller, C. Otto, A. K. Jain,
W. T. Niggel, J. Anderson, J. Cheney, and P. Grother, “TARPA Janus
benchmark—C: Face dataset and protocol,” in Proc. Int. Conf. Biometrics
(ICB), Feb. 2018, pp. 158-165.

Q. Meng, S. Zhao, Z. Huang, and F. Zhou, “MagFace: A universal
representation for face recognition and quality assessment,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 14220-14229.

P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, and H. Wu, “Mixed
precision training,” in Proc. Int. Conf. Learn. Represent., 2018, pp. 1-12.
S. Moschoglou, A. Papaioannou, C. Sagonas, J. Deng, I. Kotsia, and
S. Zafeiriou, “AgeDB: The first manually collected, in-the-wild age
database,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops
(CVPRW), Jul. 2017, pp. 1997-2005.

A. Munir, C. Lyu, B. Goossens, W. Philips, and C. Micheloni, ‘“Resolution
based feature distillation for cross resolution person re-identification,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshops (ICCVW), Oct. 2021,
pp. 281-289.

Y. Rao, G. Chen, J. Lu, and J. Zhou, “Counterfactual attention learning
for fine-grained visual categorization and re-identification,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 1005-1014.
W. Robbins and T. Boult, “On the effect of atmospheric turbulence in the
feature space of deep face recognition,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2022, pp. 1617-1625.
S. Sengupta, J.-C. Chen, C. Castillo, V. M. Patel, R. Chellappa, and
D. W. Jacobs, “Frontal to profile face verification in the wild,” in Proc.
IEEE Winter Conf. Appl. Comput. Vis. (WACV), Mar. 2016, pp. 1-9.

H. Sheng, Y. Zheng, W. Ke, D. Yu, X. Cheng, W. Lyu, and Z. Xiong,
“Mining hard samples globally and efficiently for person reidentification,”
IEEE Internet Things J., vol. 7, no. 10, pp. 9611-9622, Oct. 2020.

Y. Shi and A. Jain, “Probabilistic face embeddings,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 6901-6910.

Y. Shi, X. Yu, K. Sohn, M. Chandraker, and A. K. Jain, ‘“Towards universal
representation learning for deep face recognition,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 6816-6825.
V. Somers, C. D. Vleeschouwer, and A. Alahi, “Body part-based represen-
tation learning for occluded person re-identification,” in Proc. IEEE/CVF
Winter Conf. Appl. Comput. Vis. (WACV), Jan. 2023, pp. 1613-1623.

Y. Sun, C. Cheng, Y. Zhang, C. Zhang, L. Zheng, Z. Wang, and Y. Wei,
“Circle loss: A unified perspective of pair similarity optimization,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 6397-6406.

Y. Sun, L. Zheng, Y. Yang, Q. Tian, and S. Wang, “Beyond part models:
Person retrieval with refined part pooling (and a strong convolutional
baseline),” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 480-496.
H. Tan, X. Liu, Y. Bian, H. Wang, and B. Yin, “Incomplete descriptor
mining with elastic loss for person re-identification,” IEEE Trans. Circuits
Syst. Video Technol., vol. 32, no. 1, pp. 160-171, Jan. 2022.

A. Tarvainen and H. Valpola, ‘“Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep learn-
ing results,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 1-16.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 1-11.

G. Wang, S. Yang, H. Liu, Z. Wang, Y. Yang, S. Wang, G. Yu, E. Zhou, and
J. Sun, “High-order information matters: Learning relation and topology
for occluded person re-identification,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 6448-6457.

G. Wang, Y. Yuan, X. Chen, J. Li, and X. Zhou, “‘Learning discriminative
features with multiple granularities for person re-identification,” in Proc.
26th ACM Int. Conf. Multimedia, Oct. 2018, pp. 274-282.

H. Wang, J. Shen, Y. Liu, Y. Gao, and E. Gavves, “NFormer: Robust
person re-identification with neighbor transformer,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 7287-7297.
H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and
W. Liu, “CosFace: Large margin cosine loss for deep face recognition,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 5265-5274.

VOLUME 12, 2024



W. Robbins et al.: DalilD—A Robust Technique for Face Recognition and PRelD

IEEE Access

[71] M. Wang, B. Lai, J. Huang, X. Gong, and X.-S. Hua, “Camera-aware
proxies for unsupervised person re-identification,” in Proc. AAAI Conf.
Artif. Intell., May 2021, vol. 35, no. 4, pp. 2764-2772.

[72] X. Wang, Y. Chen, and W. Zhu, “A survey on curriculum learning,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9, pp. 4555-4576,
Sep. 2022.

[73] Z. Wang, F. Zhu, S. Tang, R. Zhao, L. He, and J. Song, ‘‘Feature erasing
and diffusion network for occluded person re-identification,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 4744-4753.

[74] L. Wei, S. Zhang, W. Gao, and Q. Tian, “Person transfer GAN to
bridge domain gap for person re-identification,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 79-88.

[751 P. Xu and X. Zhu, “DeepChange: A large long-term person re-
identification benchmark with clothes change,” 2021, arXiv:2105.14685.

[76] C. Yan, G. Pang, X. Bai, C. Liu, X. Ning, L. Gu, and J. Zhou, “Beyond
triplet loss: Person re-identification with fine-grained difference-aware
pairwise loss,” IEEE Trans. Multimedia, vol. 24, pp. 1665-1677, 2022.

[77] R. Yasarla and V. M. Patel, “Learning to restore images degraded by
atmospheric turbulence using uncertainty,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), Sep. 2021, pp. 1694-1698.

[78] R. Yasarla and V. M. Patel, “CNN-based restoration of a single face image
degraded by atmospheric turbulence,” IEEE Trans. Biometrics, Behav.,
Identity Sci., vol. 4, no. 2, pp. 222-233, Apr. 2022.

[791 M. Ye,J. Shen, G. Lin, T. Xiang, L. Shao, and S. C. H. Hoi, “Deep learning
for person re-identification: A survey and outlook,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 44, no. 6, pp. 2872-2893, Jun. 2022.

[80] Y. Zhai, Q. Ye, S. Lu, M. Jia, R. Ji, and Y. Tian, “Multiple expert
brainstorming for domain adaptive person re-identification,” 2020,
arXiv:2007.01546.

[81]1 G. Zhang, Y. Ge, Z. Dong, H. Wang, Y. Zheng, and S. Chen, “Deep
high-resolution representation learning for cross-resolution person re-
identification,” IEEE Trans. Image Process., vol. 30, pp. 8913-8925,2021.

[82] K.Zhang,Z.Zhang,Z.Li, and Y. Qiao, “Joint face detection and alignment
using multitask cascaded convolutional networks,” IEEE Signal Process.
Lett., vol. 23, no. 10, pp. 1499-1503, Oct. 2016.

[83] Z. Zhang, C. Lan, W. Zeng, X. Jin, and Z. Chen, ‘“Relation-aware global
attention for person re-identification,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 3183-3192.

[84] Z. Zhang, H. Zhang, and S. Liu, ‘“Person re-identification using
heterogeneous local graph attention networks,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 12131-12140.

[85] S. Zhao, C. Gao, J. Zhang, H. Cheng, C. Han, X. Jiang, X. Guo,
W.-S. Zheng, N. Sang, and X. Sun, “Do not disturb me: Person re-
identification under the interference of other pedestrians,” in Proc. 16th
Eur. Conf. Comput. Vis. (ECCV). Glasgow, U.K.: Springer, Aug. 2020,
pp. 647-663.

[86] F. Zheng, C. Deng, X. Sun, X. Jiang, X. Guo, Z. Yu, F. Huang, and R. Ji,
“Pyramidal person re-IDentification via multi-loss dynamic training,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 8506-8514.

[87] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable
person re-identification: A benchmark,” in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Dec. 2015, pp. 1116-1124.

[88] K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang, ‘“Omni-scale feature
learning for person re-identification,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 3701-3711.

[89] H. Zhu, W. Ke, D. Li, J. Liu, L. Tian, and Y. Shan, “Dual cross-
attention learning for fine-grained visual categorization and object re-
identification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 4682-4692.

[90] K. Zhu, H. Guo, S. Liu, J. Wang, and M. Tang, “Learning semantics-
consistent stripes with self-refinement for person re-identification,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 34, no. 11, pp.8531-8542,
Nov. 2022.

[91]1 K. Zhu, H. Guo, Z. Liu, M. Tang, and J. Wang, “Identity-guided human
semantic parsing for person re-identification,” in Proc. 16th Eur. Conf.
Comput. Vis (ECCV). Glasgow, U.K.: Springer, Aug. 2020, pp. 346-363.

[92] Z. Zhu, G. Huang, J. Deng, Y. Ye, J. Huang, X. Chen, J. Zhu,
T. Yang, J. Lu, D. Du, and J. Zhou, ‘“WebFace260M: A benchmark
unveiling the power of million-scale deep face recognition,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 10487-10497.

VOLUME 12, 2024

[93] Z.Zhuang, L. Wei, L. Xie, T. Zhang, H. Zhang, H. Wu, H. Ai, and Q. Tian,
“Rethinking the distribution gap of person re-identification with camera-
based batch normalization,” in Proc. 16th Eur. Conf. Comput. Vis. (ECCV).
Glasgow, U.K.: Springer, Aug. 2020, pp. 140-157.

WES ROBBINS received the Bachelor of Sci-
ence degree in computer science from Montana
State University and the M.S. degree in computer
science from the Vision and Security Technology
Laboratory, University of Colorado at Colorado
Springs, under the supervision of Prof. Terrance
Boult. He is currently pursuing the Ph.D. degree
in electrical and computer engineering with The
University of Texas at Austin. He received the
\ Outstanding Graduate Student Award.

GABRIEL BERTOCCO received the B.Sc. degree
in computing engineering with the Artificial Intel-
ligence Laboratory (Recod.ai), Institute of Com-
puting, University of Campinas, Brazil, in 2019,
where he is currently pursuing the Ph.D. degree in
computer science, with a focus on digital forensics
and machine learning. From 2022 to 2023, he was
a Visiting Scholar with the Vision and Security
Laboratory (VAST), University of Colorado at
Colorado Springs, USA. He has publications in top
venues, such as IEEE TRANSACTIONS ON INFORMATION FFORENSICS AND SECURITY,
IEEE Security and Privacy, and the IEEE International Joint Conference
on Biometrics. His research interests include machine learning, computer
vision, digital forensics, and biometrics. nn

TERRANCE E. BOULT (Fellow, IEEE) received
the B.S. degree in applied mathematics, the M.S.
degree in computer science, and the Ph.D. degree
in computer science from Columbia University,
New York, NY, USA, in 1983, 1984, and 1986,
respectively. He is currently a Distinguished
Professor and the El Pomar Endowed Professor
of Innovation and Security with the University of
Colorado at Colorado Springs, Colorado Springs,

- CO, USA, a Serial Entrepreneur, and an Interna-
tionally Acknowledged Researcher in machine learning, computer vision,
biometrics, and cybersecurity. He has issued 15 patents and more than
400 articles. He spent six years as an Assistant Professor and two years
as an Associate Professor with the CS Department, Columbia University.
He moved from Columbia to Lehigh, Bethlehem, PA, USA, working there
from 1994 to 2003. At Lehigh, he was an Endowed Professor and eventually
founded Lehigh’s CS Department. In 2003, he joined UCCS as an El
Pomar Professor. He is a member of the IEEE Golden Core and has been
an IEEE Distinguished Lecturer. He has won multiple teaching awards,
research/innovation awards, best paper awards, best reviewer awards, and
IEEE service awards. He was the Co-Founder of the Computer Vision
Foundation and was very active in organizing/managing computer vision
conferences. On the education side, he is the Founder, a Primary Architect,
and the Co-Director of the world’s first and only Bachelor of Innovation
Family of Degrees at UCCS. This awarding family of degrees combines a
core of innovation and entrepreneurship with a significant multiyear *“‘team
emphasis” and all the rigor of bachelor degrees in their fields, serving more
than 600 students per year across 22 different majors spanning four colleges.

55799



