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ABSTRACT Harmonics forecasting stands as a crucial approach in the development of devices aimed at
minimizing harmonics disturbances. The primary objective of this study is to create a hybrid forecasting
model that can deliver precise and dependable forecasts for harmonics in Renewable Energy Systems (RES).
To achieve this goal, the Adaptive Neuro Fuzzy Inference System (ANFIS) with the Long Short-Term
Memory Network (LSTM) are combined in two distinct structured models. In the first model, LSTM is
employed in the initial stage and ANFIS in the subsequent one, while the second model follows the reverse
order. Additionally, for the generation of harmonics, two renewable generator models are utilized. The first
model encompasses a grid-connected Double-Fed Induction Generator (DFIG) driven by a wind turbine and
integrated with a Solar Photovoltaic (PV)-based power generator. The second generator model combines
a Solar-PV generator with a wind turbine-linked Permanent Magnet Synchronized Generator (PMSG)
connected to a shared grid. The harmonics produced by these generator models are used to construct training
and testing datasets, which are subsequently employed for generating forecasts using the proposed hybrid
forecasting models. The accuracy of forecasting results is verified through a comparison with benchmark
studies in the literature. The findings reveal that the model employing ANFIS in the initial stage and LSTM
in the second stage (referred to as the ANFIS-LSTM model) consistently yields the best forecasts among all
the models tested in this study with RMSE of 0.0287, 0.0372, 0.0396 and 0.0311 for THD, h7, h11 and h13
respectively. Moreover, it exhibits a significant improvement over any of the techniques used in previous
literature. Ultimately, this research establishes that both hybrid models proposed outperform the individual
forecasting techniques used as benchmarks in terms of accuracy and precision.

INDEX TERMS Harmonics, renewable energy systems, power quality, artificial neural networks, advanced
neuro fuzzy inference system.

ABBREVIATIONS
DFIG Double Fed Induction Generator.
PMSG Permanent Magnet Synchronous Generator.
PV Photovoltaic.
RES Renewable Energy Systems.
EPS Electrical Power System.
PQ Power Quality.
PCC Point of Common Coupling.
VSC Voltage Source Converter.

The associate editor coordinating the review of this manuscript and
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THD Total Harmonic Distortion.
TDD Total Demand Distortion.
ANFIS Adaptive Neuro Fuzzy Interference Systems.
LSTM Long Short-Term Memory Network.
IEC International Electrotechnical Commission.
IEEE Institute for Electrical and Electronics

Engineers.
FFT The Fast Fourier Transform.
RMSE Root Mean Square Error.
MAE Mean Absolute Error.
MLPNN Multilayer Perceptron Neural Network

(MLPNN).
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NARX Nonlinear Autoregressive with Exogenous
inputs.

LMS Least Mean Square.
NLMS Normalized LMS.
VLLMS Variable Leaky Least Mean Square.
UDR Univariate Dimension Reduction.
JRC Joint Research Centre.

I. INTRODUCTION
The increasing demand for electrical power generated from
renewable sources has becomes a critical concern. The
widespread adoption of renewable energy technologies in the
Electrical Power System (EPS) has led to the emergence of
innovative concepts such as smart grids and microgrids [1].
One of the primary challenges in maintaining stability within
the EPS, which directly impacts its Power Quality (PQ),
arises from the unpredictable and uncontrollable nature of
Renewable Energy Systems (RES) in terms of power gener-
ation. RES differ from traditional power sources due to their
limited controllability, unfavorable power flow patterns, and
non-sinusoidal current and voltage waveforms. Additionally,
the integration of RES into the grid involves various power
electronics-based converters and inverters [2], which intro-
duce current and voltage harmonics into the grid [3]. These
harmonics can have adverse effects, such as overheating
transformers and causing issues in protection systems, among
other factors [4]. Meeting the recommendations of IEEE
519-2014 [5] and adhering to IEC 61000 standards [6] is
essential, with a particular emphasis on minimizing harmon-
ics to ensure high network power quality. For instance, IEEE
519-2014 specifies that voltage Total Harmonic Distortion
(THD) at the Point of Common Coupling (PCC) must not
exceed a 5% limit [6].
Harmonics forecasting is one of the techniques used to

design devices aimed at reducing harmonics [7]. Harmon-
ics forecasting involves predicting the future behavior of
time series data that exhibits periodic patterns or harmonics.
A review of the literature indicates ongoing efforts to forecast
harmonics, as it can significantly contribute to enhancing
power quality. Various methods have been employed by
researchers to achieve accurate predictions, including Adap-
tive Neuro Fuzzy Inference Systems (ANFIS) [8] and Long
Short-Term Memory (LSTM) Network [9]. This research
aims to develop and assess hybrid forecasting model capable
of effectively capturing the intricate harmonic patterns in
time series data and providing precise predictions. The study
will focus on integrating a forecasting model that combines
the strengths of ANFIS and LSTM to enhance the accu-
racy and reliability of harmonic forecasting. The integrated
ANFIS-LSTM model is expected to proficiently handle the
complex harmonic patterns in time series data and deliver
accurate predictions.

Furthermore, the significance of this work extends beyond
its immediate objectives and contributes to the broader con-
text of harmonic mitigation within the realm of renewable

energy systems. Harmonic mitigation is a critical aspect
of power system engineering, aiming to minimize undesir-
able harmonic distortions in electrical waveforms. Standard
techniques employed in harmonic mitigation include Passive
Filters, Active Filters, Variable Frequency Drives (VFDs),
Transformers with Low Harmonic Content or Power Factor
Correction devices.

The novel contribution of harmonics forecasting, as pre-
sented in this work, lies in its potential application as a
predictive tool to enhance the effectiveness of these stan-
dard harmonic mitigation techniques. By forecasting the
occurrence and characteristics of harmonics, power system
operators can implement preemptive measures to mitigate
harmonics before they significantly impact the system. The
role of harmonics forecasting in the harmonics mitigation
process can be outlined as follows:

1. Proactive Planning: Harmonics forecasting provides
insights into the expected harmonic content over time.
This information allows for proactive planning, enabling
the deployment of appropriate mitigation techniques in
anticipation of periods with heightened harmonic levels.

2. Optimized Resource Allocation: Armed with harmonics
forecasts, operators can allocate resources more effi-
ciently. For instance, they can optimize the deployment
of active filters or switch between different mitigation
strategies based on the predicted harmonics profile.

3. Early Detection of Anomalies: Harmonics forecasting can
serve as an early warning system by detecting deviations
from expected harmonics patterns. This allows for timely
investigation and intervention to address potential issues
before they escalate.

4. Integration with Smart Grids: Harmonics forecasting
aligns with the goals of smart grid integration. By incorpo-
rating forecasting capabilities into control systems, smart
grids can dynamically adapt to changing harmonic condi-
tions, enhancing overall system resilience.

In summary, the incorporation of harmonics forecasting
into the broader context of harmonics mitigation enhances
the adaptability and efficiency of conventional mitigation
techniques. This proactive approach aligns with the evolving
landscape of smart grid technologies and contributes to the
advancement of strategies aimed at ensuring the stability and
reliability of power systems in the presence of harmonics.

II. BACKGROUND
In the past, utility companies had a clear understanding of
which industry their customers belonged to, especially those
customers causing significant harmonic disturbances. Con-
sequently, they used passive harmonic filters at the PCC
for major distorting loads to address harmonic issues [10],
[11], [12]. However, with the increasing integration of
renewable energy sources into the grid, powered by var-
ious power electronics-based converters [13], [14], there
has been a noticeable rise in power system harmonics.
This has necessitated utilities to anticipate and mitigate the
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effects of harmonics, requiring them to forecast the expected
impact of these harmonics. To maintain power quality and
ensure that harmonic levels remain within acceptable limits,
researchers in the field have explored the concept of harmonic
forecasting.

Ray et al. [15] introduced a harmonic forecasting method
based on the Variable Leaky Least Mean Square (VLLMS).
Kamenetsky and Widrow [16] algorithm. To prevent param-
eter drift, their method employed a compensating leak
technique, and they also adjusted the step size to enhance
convergence. Furthermore, they conducted real-time power
system simulations using several examples to demonstrate
the superiority of their approach compared to other methods
mentioned in [15]. In [17], Ivry investigated how uncertainty
affected harmonic prediction in a power system with numer-
ous Voltage Source Converters (VSCs). They predicted the
level of harmonic distortion at the PCC from the VSCs using
the Univariate Dimension Reduction (UDR) approach. This
approach ensured comprehensive modeling of interactions
between the harmonic sources (VSCs) and the entire power
system for predicting THD at the PCC. In [18], Hussam
developed the concept of adaptive filters employing real-time
harmonic prediction algorithms, employing approaches such
as Least Mean Square (LMS), Normalized LMS (NLMS),
and Recursive Least Square (RLS). These algorithms were
used in an active filter to reduce the time delay associated
with collecting harmonic information.

Pablo et al. [19] introduced an approach to estimate volt-
age THD for Low Voltage busbars of residential distribution
feeders based on data from a limited number of smart
meters. Various voltage THD forecasting methods, including
feed-forward and autoregressive Artificial Neural Networks
(ANN) et al. McCulloch and Pitts [20], were applied. This
approach expanded the capabilities of existing monitoring
tools for future harmonic distortion prediction. The study
showed that a network of advanced smart meters, even with a
small number of them, was sufficient for accurate harmonic
estimations [18]. Furthermore, in [21], Mori and Suga pro-
posed a technique for forecasting power system harmonic
voltages using ANN, specifically Recurrent Neural Networks
(RNN) et al. Hopfield [22]. They utilized four RNN models,
including Jordan, Elman, Noda, and Nagao models, along
with a fourth model featuring a context layer between the
output and hidden layers as a separate recurrent network. The
study found that Elman’s technique outperformed the other
models [21].

To monitor the effects of current harmonics generated by
Photo-Voltaic (PV) systems, Žnidarec M. introduced pre-
dictive models for long-term current harmonic distortion in
his research [23]. These models utilize a Multilayer Per-
ceptron Neural Network (MLPNN) et al. Rosenblatt [24]
to forecast current harmonics. Training data for the models
included a year’s worth of power quality measurements from
the PCC of a 10-kW PV system and the distribution net-
work, as well as meteorological data (solar irradiance and

ambient temperature) collected at the test site. Six different
models were developed, tested, and validated, varying in the
number of hidden layers and input parameters. The fifth, sev-
enth, eleventh, and thirteenth harmonics were predicted using
thesemodels, which utilized a three-phase grid-connected PV
plant inverter along with MLPNN. The results indicated that
including the third input parameter (time of day) marginally
improved the MLPNN model’s performance [23].
In a study by Panoiu and Ghiormez [25], they focused on

modeling and predicting the THD of current in a medium
voltage installation associated with an electric arc1 furnace.
They employed ANFIS in MATLAB for modeling purposes.
The findings revealed that ANFIS effectively learned how
to adjust THD, achieving low error rates when extrapolating
THD variation for an additional 400 examples after being
trained on 800 data points. They also attempted to train the
system with varying sample sizes but found that it did not
perform well when the training data was smaller than the
testing dataset [25].
Shengqing et al. [26] proposed a harmonic current predic-

tion method using the Hybrid Active Power Filter (HAPF)
based on Empirical Mode Decomposition (EMD) and Sup-
port Vector Regression (SVR). Cortes and Vapnik [27] theory
to address microgrid power quality issues. This approach
initially decomposed harmonic currents using EMD for each
harmonic, then predicted the next-step harmonic currents
at different time intervals using SVR with various kernel
functions. Finally, they determined the weighted summation
of the predicted values for each harmonic. Simulation results
demonstrated the effectiveness of this EMD-SVR combina-
tion in accurately predicting harmonic currents at the next
time step, leading to minimal harmonic current errors [26].

Kuyunani et al. [28] employed LSTM deep learning for
voltage harmonics prediction. They utilized 8103 voltage
harmonics samples from the Jeffreys Bay Wind Farm in the
Eastern Cape Province to train their network. Their approach
involved two steps: first, they collected essential data from
voltage harmonics signals using moving window segmenta-
tion to determine the mean voltage amplitude. Then, based
on the retrieved voltage attributes, they predicted voltage har-
monic production using LSTM. The LSTM model achieved
lowest error when predicting mean values for the following
3800 samples [28].

In their research, Hatata and Eladawy [29] employed a
Nonlinear Autoregressive with Exogenous inputs (NARX).
Chen and Billings [30] neural network to predict the occur-
rence of load current harmonics within electric power
systems. They applied this technology in a microgrid located
at the Khalda – Main Razzak power station in western
Egypt, a facility associated with petroleum operations. The
non-linear load under examination was an Electrical Sub-
mersible Pump, driven by an induction motor and controlled
by a Variable Speed Drive. Their study outlined the process
of developing the suggested NARX network, which aimed
to replicate the behaviour of non-linear loads and compute
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their THD in current. To evaluate the proposed network’s per-
formance, they tested it using both simulated pure sinusoidal
voltage waveforms and actual measured voltage data, with
the objective of determining the actual harmonic current of
the load and assessing the nonlinearity of each load. Their
findings indicated that the recommended NARXmethod out-
performed the RNN-based approach, as they compared the
two [29].

In their study, Pang [31] devised a method based on Stack
Auto Encoder (SAE) Neural Networks for short-term har-
monic forecasting and assessment influenced by electrified
trains’ impact on the power grid. Their aim was to predict
harmonics and evaluate harmonic values using assessment
techniques. The results of their study not only successfully
achieved the goal of harmonic forecasting but also provided
a theoretical framework for analysing the impact of railroads
on harmonics. This framework holds the potential to enhance
power quality within the power network.

In his study, Zavala and Messina [32] introduced a statis-
tical framework for examining modal behaviour, extracting
trends, and making forecasts using Dynamic Harmonic
Regression (DHR). They evaluated the model’s performance
using both synthetic and observational data and applied it
to wind power generation measurements to assess its practi-
cal applicability under various data gathering scenarios. The
DHR model’s forecasting function was demonstrated to be
a valuable tool, capable of competing with other established
techniques. It exhibited low forecasting errors that could be
further reduced by selecting an appropriate moving window
size.

Building upon the previous literature review, the primary
aim of this research is to create an effective and depend-
able forecasting model for predicting harmonic fluctuations.
To accomplish this objective, two hybrid forecasting models
are proposed in this work, which are created by merging
LSTM and ANFIS. The hybrid models are designed in two
staged structures. First proposed model utilizes LSTM in the
first stage and ANFIS in the second, whereas the second
model is constructed the vice versa.

In the initial phase, two renewable generator models are
employed to generate current and voltage harmonics. The
first model utilizes a DFIG powered by a wind turbine
combined with Photovoltaic panels (referred to as Wind
DFIG-PV). The second model combines wind and photo-
voltaic sources using a PMSG. Subsequently, after obtaining
the output waveforms, the harmonics are extracted from the
data, which serve as the datasets for training and predicting
harmonics using the proposed forecasting models.

III. RATIONALE TO BUILD HYBRID MODEL COMBINING
ANFIS WITH LSTM FOR HARMONIC FORECASTING
The benefits and capabilities of each technique are the foun-
dation for why a hybrid model for harmonic forecasting
integrating LSTM and ANFIS should be constructed. It is
possible to increase the forecasting model’s accuracy and
robustness by combining these two approaches and taking

advantage of their respective benefits. Aspects for consider-
ing the hybrid strategy are presented as follows:

A. CAPTURING TEMPORAL DEPENDENCIES
LSTM is a powerful deep learning technique that excels in
capturing long-term dependencies in time series data. It can
effectively model the complex patterns and relationships
within a sequence. By using LSTM, the hybrid model can
leverage its ability to learn from historical harmonic data and
capture the temporal dynamics of harmonic components.

B. FUZZY LOGIC-BASED REASONING
ANFIS is a fuzzy logic-based inference system that can
handle uncertain and imprecise information. It combines the
advantages of fuzzy logic and neural networks to create a
hybrid model that can reason with linguistic rules and make
inference based on fuzzy logic principles. This makes ANFIS
suitable for handling complex, non-linear relationships and
incorporating expert knowledge into the model.

C. INCORPORATING DOMAIN KNOWLEDGE
ANFIS allows the integration of expert knowledge in the form
of linguistic rules. In the context of harmonic forecasting,
domain experts may have insights and expertise that can con-
tribute to accurate predictions. ANFIS can capture this expert
knowledge and incorporate it into the forecasting process,
complementing the data-driven approach of LSTM.

D. ENHANCED INTERPRETABILITY
ANFIS models are known for their interpretability. They pro-
vide linguistic rules that can be understood and analyzed by
domain experts. This can be particularly useful in harmonic
forecasting, where stakeholders may require explanations or
justifications for the predictions. The hybrid model can pro-
vide interpretable results while benefiting from the powerful
predictive capabilities of LSTM.

E. ROBUSTNESS AND GENERALIZATION
Combining different modelling techniques can enhance the
robustness and generalization ability of the model. LSTM
and ANFIS have different strengths and weaknesses, and by
integrating them, the hybrid model can potentially overcome
limitations and improve overall forecasting performance.

F. SUMMARY
A description of the model elements and their individual
contributions to developing a hybrid model based on fusing
LSTM and ANFIS for harmonic forecasting can be found in
Table 1.

IV. GENERATOR MODELS
The simulation of hybrid models with a total capacity of
3 MW (1.5 MW wind generator plus 1.5 MW PV array) was
performed in order to generate harmonics. To depict the real-
world response, the actual wind speeds and solar irradiance
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TABLE 1. Rationale for ANN-ANFIS based hybrid model summary.

data were used as inputs for both hybridmodels (Wind-DFIG-
PV and Wind-PMSG-PV). Figures 1 & 2 show the generator
models used in this work [33], [34].
The hybrid Wind-DFIG PV model combines the individ-

ual wind-DFIG model and PV model taken from MATLAB
library. The Wind-DFIG Model contains 1.5 MW wind tur-
bines using a wound rotor DFIG coupled with an AC/DC/AC
IGBT-based PWMconverter. The stator winding is connected
directly to the 60 Hz grid while the rotor is fed at vari-
able frequency through the AC/DC/AC converter. For low
and high wind speeds the maximum extraction of energy is
ensured by optimization of the turbine speed. In this model,
the wind speed signal is being generated by a signal generator
block. Furthermore, the PV model consists of a 1.5 MW
rated PV array containing 518 parallel strings. Each string
has 7 SunPower SPR-415E modules connected in series. The
individual models for Wind-DFIG and PV were combined
to be fed into the common grid. The grid is predefined in
MATLAB model and is modelled as a typical distribution
grid to add effect of a non-linear load. Thus, the grid acts
as a non-linear load and may have some effect on the output
harmonics of the model. Any variation caused by grid is not
considered in this work. The focus is to simulate harmonics
which are generated by the generator model and effects of
variation in the renewable sources (Wind speed and Solar
Irradiation) are studied.

Similarly, the hybrid Wind-PMSG PV model combines
the individual Wind-PMSG model and PV model taken from
MATLAB library. The Wind-PMSG model contains 1.5 MW
wind turbines directly coupled with a multipole PMSG with-
out a gearbox. The grid connection is established via an
AC/DC/AC converter consisting of diode rectifier, internal

DC-Link, and a Pulse Width Modulation (PWM) voltage-
source inverter. This Wind-PMSG model was combined with
a PV model and commonly fed into the grid as explained
in the previous paragraph. The timestep for simulation is
5 microseconds and the overall time is scaled where one
second in simulation represents 1 hour.

The wind speed, solar irradiance, and temperature read-
ings were taken as actual data for Halifax, Nova Scotia,
Canada, between June 1 and July 1, 2015, and logged into
the signal generators. The data was obtained from the Joint
Research Centre (JRC) of the European Commission [35].
The generator model was simulated for 31 days using the
real-world data for wind speed and solar irradiation as inputs
and producing output power. To store and use data for further
analysis, the overall data portraying the variations in wind and
solar parameters was split into datasets and the simulation
was done in parts. Figure 3 and 4 presents a snapshot from
the voltage waveform for Wind-DFIG PV generator with
markers on phase 1, 2 and 3. The waveform which starts from
0 seconds is zoomed and snapped between 25 to 26 seconds to
visualize the presence of harmonics in the voltage waveform:

Figure 3 shows the measurement markers on phase 1 and 2,
while figure 4 shows marker positioned at phase 1 and 3.
The voltage value is shown in the measurements window
where it can be observed that the voltages of all 3 phases are
balanced. The presence of harmonics can be observed from
figures 3 & 4. Furthermore, to log data into the workspace,
the MATLAB scope feature was used. Data was stored in
format structure with time to further analyses. Moreover,
a sample of the 3-phase current waveform is shown in
Figures 5 and 6 zoomed and visualized between 15 and
16 seconds to demonstrate and visualize the presence of
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FIGURE 1. Wind-DFIG PV generator model.

FIGURE 2. Wind-PMSG PV generator model.

FIGURE 3. Sample voltage waveform for Wind-DFIG PV (Phase 1 & 2).

harmonics in the waveform generated for Wind-DFIG PV
model. The presence of harmonics can be observed in current
and voltage waveforms. Figure 5 showsmarkers on phase 1&
2, whereas figure 6 points marker on phase 1 & 3. The value

of current at marker can be seen in measurement window
and appears to be equal. The focus will be kept on the
phase one voltage and current waveforms to proceed further.
All three-phase current waveforms are balanced, hence an
in-depth analysis and forecasting on one phase is sufficient
to realize the overall impact.

To extract harmonics, a Fast Fourier Transform (FFT) et al.
Cooley and Tukey [36] analysis was carried out on the data
procured from scope. The MATLAB command line was used
to extract harmonic information. The FFT window employed
consists of five cycles which extract the samples from voltage
and current waveforms. The FFT samples were extracted for
720 hours (30 days), a total of 7200 samples were recorded
with 10 samples logged per hour for both current and volt-
age waveforms. The following harmonic parameters were
extracted from the simulated signals:

1. Total harmonic distortion for each sample
2. Magnitudes of 3rd, 5th, 7th, 9th, 11th & 13th harmonic

component
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FIGURE 4. Sample voltage waveform for Wind-DFIG PV (Phase 1 & 3).

FIGURE 5. Sample current waveform for Wind-DFIG PV (Phase 1 & 2).

V. FORECASTING MODELS
A. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS)
In the early 1990s, the ANFIS was created because of Jang
Roger’s [8] proposal to combine ANN and Fuzzy Logic.
Based on the Takagi-Sugeno Fuzzy Inference System et al.
Takagi and Sugeno [37], ANFIS combines the durability,
ease of use, and convenience of implementing the rule
bases of the fuzzy system with the self-learning characteris-
tics of ANN. The ANFIS systems are particularly efficient
and straightforward to build, especially in circumstances
where non-linearity and data uncertainty are problems [38].
Eq. (1) demonstrates a typical fuzzy rule in a Sugeno fuzzy
model:

IF x is A and y is B, THEN z = f (x, y) (1)

where A and B are fuzzy sets, z = f (x, y) is a crisp function
defining the output. The function f (x, y) is typically a polyno-
mial which describes the output based on the input variables x
and ywithin the fuzzy region specified by the fuzzy sets of the
rule [38]. Considering a first order Sugeno Fuzzy Inference
System (FIS) which contains two rules expressed in (2) [38]:

Rule1 : IF x is A1 and y is B1, THEN f 1 = p1x + q1y+ r1

Rule2 : IF x is A2 and y is B2,THEN f 2 = p2x + q2y+ r2

(2)

FIGURE 6. Sample current waveform for Wind-DFIG PV (Phase 1 & 3).

The final output is a summation of all incoming signals
expressed as follows:

f =

∑
i
w̄ifi =

∑
i w̄ifi∑
i w̄i

(3)

where, fi is the output within the fuzzy region specified by the
fuzzy rule and wi is the assigned weight.

B. LONG SHORT-TERM MEMORY NETWORK (LSTM)
LSTM is a RNN architecture that was proposed byHochreiter
and Hochreiter and Schmidhuber in [9]. The core idea behind
LSTM is to have a memory cell that can store information
for a long time and selectively decide what information to
keep and what to discard. LSTMs have been successfully
applied to various tasks such as speech recognition, image
captioning, natural language processing, and time series
forecasting.

Recurrent neural networks, which form the basis of LSTM
networks, are effective because they can recognize long-
term relationships. Small weights are frequently multiplied
repeatedly through a few steps in an RNN, and as a result,
the gradients asymptotically approach zero. The vanishing
gradient problem is another name for this RNN flaw. Cells,
the memory units that make up the LSTM network, are
connected by layers. In these cells, the data is present in both
the cell state Ct and the hidden state ht. This information is
governed by gates through the sigmoid, and tanh acts as the
activation function. Integers between 0 and 1 are commonly
produced using the sigmoid function, with 0 denoting no
information flowing through and 1 denoting that this is the
focus. Long short-term memory networks can conditionally
add or remove information from the cell state as a result.
In essence, the gates take the input, the hidden states from
the previous time step (ht−1), and the current input (xt ),
multiplying them pointwise by weight matrices (ω), and then
adding bias (b) to the result. The three primary gates are the
forgetting gate, input gate and output gate. The forget gate,
which decides the data to be removed from a specific cell
state, outputs a number between 0 and 1, with 0 denoting
complete deletion and 1 denoting complete retention [9]. The
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following is provided in equation (4):

ft = σ
(
ωf [ht−1, xt ] + bf

)
(4)

The input gate which has a tanh activation layer that pro-
duces a vector of prospective candidates as shown in the
following equation:

Ĉt = tanh (ωc [ht−1, xt ] + bc) (5)

The sigmoid layer can then construct the following update
filter as a result:

Ut = σ (ωu [ht−1, xt ] + bu) (6)

The previous cell state, Ct−1, was then updated to:

Ct = ft ∗ Ct−1 + Ut × C∗
t (7)

The output gate, which filters the cell state going to the
output, is the last step. It has a sigmoid layer. The equation
provides the following:

Ot = σ (ω0 [ht−1, xt ] + b0) (8)

The numbers are then scaled to fall between [−1, 1] by
using the tanh function on the cell state Ct . According to
the equation, the new hidden state is made by multiplying
the scaled cell state by the filtered output and then being
transferred to the next cell.

ht = Ot × tanh (Ct) (9)

C. NOVEL HYBRID FORECASTING MODELS
There are two hybrid forecasting models proposed in this
work by combining ANFIS and LSTM techniques. The con-
cept design of these models is depicted in Fig. 7 & 8.

VI. METHODOLOGY FOR IMPLEMENTATION OF
FORECASTING MODELS
A. DATA GENERATION FROM GENERATOR MODELS
To generate harmonic forecasts using the proposed hybrid
models, the two generator models were simulated for 31 days.
Real-time data for wind speed and solar irradiation for Hali-
fax was used as recorded between June 1st and July 1st, 2015
[35]. The generator models produce output voltage and cur-
rent waveforms from which harmonics were extracted using
FFT. This harmonic data was further analyzed and stored to
be used as inputs for the forecasting models. The data for the
30 days (June 1st to 30th, 2015) was used for training and
formed the training set, while the data for 1 day (July 1st,
2015) was used as test set.

B. SELECTION OF INPUTS
The selection of input is crucial to achieve accurate fore-
cast. Inputs shall be carefully selected from the available
data by analyzing the trends for the target signal. To extract
harmonics, an FFT analysis was carried out on the data
procured from scope. The MATLAB command line was used
to extract harmonic information. The FFT window employed

FIGURE 7. LSTM-ANFIS model (Model-1).

FIGURE 8. ANFIS-LSTM model (Model-2).

consists of 5 cycles which extracts the samples from voltage
and current waveforms. The FFT samples were extracted for
720 hours (30 days), a total of 7200 samples were recorded
with 10 samples logged per hour for both current and volt-
age waveforms. The following harmonic parameters were
extracted from the simulated signals which after statistical
analysis were selected as parameters to be forecasted for both
voltage and current waveforms:
1. Total Harmonic Distortion (THD) / Total Demand Distor-

tion (TDD)
2. Magnitude of 7th (h7) harmonic component.
3. Magnitude of 11th (h11) harmonic component.
4. Magnitude of 13th (h13) harmonic component.

Additionally, the forecasting models employ various
amounts of parameters for input variables (predictors) which
are used as inputs to produce forecast. They are stated as
follows:
1. Wind Speed
2. Solar Irradiation
3. One Hour before observation of predicted parameter
4. One day before observation of predicted parameter
5. Two days before observation of predicted parameter

The selection of wind and solar irradiation was obvious
as the forecasted parameters (THD/TDD, 7th, 11th, or 13th

harmonic) directly depend on magnitude if wind or solar
irradiation. As for the historical parameters, the one hour,
one day and two days before observations, the predicted
parameter has no dependencies on these inputs but rather
related as at these time intervals the conditions were observed
to be similar. In order to illustrate the correlation, Figure 9
presents the plot for voltage harmonics forecasting parameter,
THD for Wind-DFIG PV generator model.

In figure the THD for day 5 is plotted against the THD
value for one hour before, one day before and two days
before. The patterns appear to be similar trajectory hence they
are selected as input for forecasting model. With the training
methodology adopted, the weight adjustment shall be able
to train the network to produce accurate forecasts. In further
analysis to inputs, day 5 and 4 wind speed and solar irradia-
tion are plotted against respective THD in figures 10 and 11.
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It can be observed that the change in both wind speed and
solar irradiation have proportionate effect on total harmonic
distortion. For instance, in figure 10 at 9 seconds the solar
irradiation and wind speed both start to increase which also
result in increasing the THD.

The increment in THDwith small increase in magnitude of
THD in figure 10. In figure 11, which shows the day 4 curves,
at time of 1 seconds the wind speed increases and then falls
resulting in a similar increment and dip in THD curve. Sim-
ilar changes can be observed in the trajectory of THD with
respective changes in wind speed and solar irradiation. Hence
these parameters are also selected as an input in forecasting
model to train it and adjust weights accordingly to produce
forecast.

C. DATA PRE-PROCESSING
Data pre-processing is a step in which all data points are
normalized between values of 0 and 1. This simplifies the cal-
culations and uniformly presents all input parameters under
one scale [9]. For ANN and ANFIS implementation, it is
necessary to normalize data this way for better convergence.
The following formula is used to normalize data:

xnorm =
x−xmin

xmax − xmin
(10)

where,
xnorm is the normalized data point
x is the actual data point
xmin the minimum data point in the series
xmax the maximum data point in the series
Furthermore, data standardization is the process of trans-

forming data into a common scale or format that involves
rescaling the data to have zero mean and unit variance. In the
context of LSTM models, data standardization is crucial to
ensure optimal performance and convergence during training
and prediction. Data standardization is done by subtracting
the mean value of the data and dividing by the standard
deviation, as explained in the following steps.
1. Compute the mean (µ) of the data: Calculate the average

of all data points in the dataset.
2. Compute the standard deviation (σ ) of the data: Calculate

the square root of the average of the squared differences
between each data point and the mean.

3. Subtract the mean from each data point: For each data
point (x), subtract the mean (µ) from it.

4. Divide the mean-adjusted values by the standard devia-
tion: Divide eachmean-adjusted data point by the standard
deviation (σ ).

This can be represented by the formula:

xstandardized =
x − µ

σ
(11)

where,
xstandardized = standardized dataset,
x = data set,
µ = mean value of the dataset, and

FIGURE 9. Total harmonic distortion curves for wind-DFIG PV model.

FIGURE 10. Total harmonic distortion vs wind speed and solar irradiation
curves day 5 for wind-DFIG PV model.

σ = standard deviation of the dataset.
Data standardization for LSTM is crucial for facilitat-

ing convergence, avoiding gradient-related issues, treating
features equally, and improving the generalization and per-
formance of the model. By standardizing the data, you ensure
that the LSTMmodel can effectively learn and make accurate
predictions on a wide range of inputs [9].

D. NETWORK TRAINING AND FORECASTING
1) APPLICATION OF ADAPTIVE NEURO FUZZY INFERENCE
SYSTEM (ANFIS)
ANFIS is a hybrid system that combines the advantages of
both ANN and the fuzzy system [39]. As a result, ANFIS is
more accurate at making predictions than ANN. To model
data uncertainty, ANFIS essentially combines the learning
capabilities of NNs with those of FIS, making it relatively
easy to train an ANFIS model without the need for detailed
subject-matter expertise. Furthermore, ANFIS has the benefit
of utilizing both verbal and numerical information. Thus, the
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FIGURE 11. Total harmonic distortion vs wind speed and solar irradiation
curves day 5 for wind-DFIG PV model.

flexibility, nonlinearity, and quick learning of ANFIS are its
benefits.

However, the system becomes exceedingly challenging
to execute when the number of inputs to the standard
ANFIS’s fuzzy system rises. Additionally, the more inputs
and membership functions are selected, the more training
time is needed, and increases in the number of membership
functions per input subsequently increases the fuzzy rules.
However, applying the ANFIS method for prediction, which
is based on clustering, makes it simple to overcome these
challenges.

Subtractive clustering is a prediction-making procedure
that determines the number of clusters and their centre. It is
also useful when data characteristics make clustering uncer-
tain. The subtractive clustering method is an extension of the
mountain clustering method proposed in [40]. In subtractive
clustering, each data point is first evaluated as a prospective
cluster centre candidate, after which each data point’s poten-
tial is determined by calculating the density of the data points
around it. This strategy is helpful in cases where it is unclear
how many data distribution centres will be needed.

This work uses subtractive clustering. Because the
approach is iterative, it assumes that any point could serve
as the centre of a cluster, depending on where it is in relation
to other data points. Subtractive clustering involves selecting
the point with the best likelihood of being the cluster centre,
then deleting every other point inside the first cluster centre’s
radius (the radius being defined by the neighbourhoods of
the centre). To find the next cluster’s centre, the potential
of the other spots is recalculated. The calculation proceeds
until all the data are contained within a cluster centre’s
radius [41]. A step-by-step overview of the process is given
below.

1. Based on the density of nearby data points, determine
the likelihood that each data point would define a cluster
centre. Measure density index Di corresponding to data xi

as expressed in (12) [41].

Di =

∑n

j=1
exp

(
−

∥∥xi − xj
∥∥2(ra/2)2
)

(12)

where,
ra = positive number that represents the radius where all
the data within it are considered neighbourhoods.

2. Pick the data point that has the best chance of becoming
the first cluster centre. Hence, the data point with the high-
est density measure is selected as the first centre cluster
denoted xc1 and its density is Dc1.

3. Eliminate all data points close to the first cluster cen-
tre. With the use of cluster influence range, the area is
identified.

4. Recalculate the density measurements for each data point
xi and select the final point with the greatest potential to
serve as the cluster centre expressed in (13) [41].

D′
i = Di − Dcl exp

(
−

∥xi − xc1∥2(rb/2)2
)

(13)

where,
rb = Kra (K is a positive number, usually K = 1.5 [41]).
All the points near to the first cluster centre xc1 will have

low-density degree and thus they will not be considered as the
next cluster centres. The next cluster centre xc2 is nominated
after the density measure for each data point is recalculated.
5. Keep going back and forth between steps 3 and 4 until a

cluster centre can affect all the data.
For optimization, the following parameters were changes

to improve the performance. Specify the following clustering
options:
- Squash factor - Only find clusters that are far from each
other.

- Accept ratio - Only accept data points with a strong poten-
tial for being cluster centres.

- Reject ratio - Reject data points if they do not have a strong
potential for being cluster centres.
In this work, the ANFIS is utilized using subtractive clus-

tering which is optimized by trial and error.

2) APPLICATION OF LONG SHORT-TERM MEMORY
NETWORK (LSTM)
The LSTMmodel employed within this study comprises five
sequential input layers, each dedicated to an individual input.
It also includes 100 LSTM layers, organized as 20 hidden
layers per input, and further incorporates a fully connected
layer and a regression layer serving as the output layer. The
input layer’s dimensions align with the number of inputs,
which is set at five. This configuration facilitates the deploy-
ment of a cumulative total of 100 LSTM layers, employed to
facilitate additive interactions and the acquisition of intricate
enduring relationships within sequence and time series data.
To adapt to varying input dimensions, the fully connected
layer employs an ‘auto’ setting to automatically discern the
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number of inputs received from the LSTM layer, executing
matrix multiplication and bias vector addition as part of its
operations. The regression layer is responsible for training
and computational tasks, ultimately yielding the network’s
output. Figure 12 presents a visual representation of the
LSTM network and the architecture utilized in this study.

E. K-FOLD CROSS VALIDATION
Cross-validation is a widely used technique for model eval-
uation, and its adaptation to time series data is crucial
due to the sequential nature of such data. K-fold cross-
validation et al. Ron [42] is a resampling method used to
assess how well a model performs on a certain dataset. The
dataset is divided into K folds of equal size. The model is
tested on the remaining fold after being verified on K-1 folds.
Each fold serves as the validation set precisely once during
the K-fold iteration of this process. The model’s overall
performance is then evaluated by averaging the performance
metrics received from each fold.

Furthermore, time series forecasting seeks to make future
value predictions using data from the past. Each observation
in a time series data set is influenced by earlier observations
due to its temporal dependencies. Applying cross-validation
techniques presents specific issues because of this sequential
nature. As a result, the typical cross-validation approach is
inapplicable to time series data since it implies that data
points are independent and equally distributed. Due to the
intrinsic temporal interdependence of time series, random
data splitting or rearranging can cause information leak-
age and produce unduly optimistic performance predictions.
Amodified form of K-fold cross-validation is utilized to over-
come the difficulties presented by time series data. The main
concept is to keep the data’s temporal order during cross-
validation. Utilizing an expanding window system, which
mimics the real-time forecasting scenario, is one popular
strategy. For time series data, the expanding window method
is a K-fold cross-validation variant. The training data window
is gradually expanded throughout each fold to make sure the
model is trained on historical data before generating predic-
tions for upcoming time steps [42].
The K-Fold cross validation is applied on all the proposed

models to improve training. The expanding window variation
of K-fold is used. In this work data for 30 days is used to train
the networks using K-fold cross validation with the value of
K selected as 5. The application of K-fold is explained in
following steps:

1. The initial training window size is set to 25.
2. Split the time series data into K (5) folds as shown in

figure 28. The value of K is selected based on the tests
performed by setting K between 5 and 10. With K equal
to 5, the training error achieved remains almost the same
with higher values of K. Also, with high K, the compu-
tation time is much longer with no significant advantage.
Hence K-5 was found to result in low training error with
lesser simulation time.

FIGURE 12. Structure of LSTM model.

3. For each fold:
a. The model is trained using the data from the start of the

time series up to the end of the current fold.
b. Predict the next time step (day) using the trainedmodel.
c. Evaluate the performance of the model for the current

fold.
d. Slide the training window forward by one time step

(day), incorporating the current fold’s data.
4. Repeat steps 3a to 3d for all K (5) folds.
5. Aggregate the performance metrics obtained from each

fold to assess the overall model performance. Using this
approach, all past data is assigned to the training set and
successively consider each day as the test set. Using the
30-day length of the dataset and 5 folds, five distinct
training and test divides are created, as illustrated in the
figure 13. With this method, a variety of train/test splits
are generated, and the error on each split is averaged to
obtain a reliable estimate of themodel error. In this way the
weights are adjusted to produce the most accurate forecast
and the model is trained and ready to be evaluated. The
approach is presented in figure 14.

6. The final step is to forecast for day 31. The trained model
with weights adjusted and improved via K-fold technique
is evaluated with test data to produce forecast. Figure 14
summarizes the whole process from steps 1 to 6 which is
adopted in this work to produce forecasting results using
the proposed hybrid models.

F. HYBRID FORECASTING MODELS: LSTM-ANFIS
MODEL & ANFIS-LSTM MODEL
The proposed LSTM-ANFIS uses LSTM for forecasting in
stage one and ANFIS in stage two. The five inputs are sent
to the sequence input layer of LSTM. The LSTMmodel con-
tains five input layers, a hundred hidden layers in the LSTM
layer, one fully connected layer and a regression layer as
output layer. K-fold validation is during training and the final
forecast produced serves as input for stage two of the LSTM-
ANFIS model. In stage two ANFIS received input from
LSTM model plus the five inputs used to predict day 31 har-
monics. K-fold technique us utilized for ANFIS training

50976 VOLUME 12, 2024



F. M. A. Hadi, H. H. Aly: Harmonics Forecasting of Renewable Energy System

along with subtractive clustering of the data. In this way
ANFIS stage produces the final forecast for LSTM-ANFIS.

Furthermore, ANFIS-LSTM model utilizes ANFIS model
in stage one and LSTM model in stage two. ANFIS pro-
duces forecasting results which are sent to LSTM model.
The LSTM network receives six inputs including the five
input parameters and sixth from output of ANFIS model.
In this way the LSTM network consist of six input layers,
120 hidden layers in LSTM layer, one fully connected layer
and a regression layer to produce the final output which is the
forecast for 31st day.

G. EVALUATION OF FORECASTING MODELS
The performance of forecasting models is evaluated using the
Mean Absolute Error (MAE) et al. Willmott and Matsuura
[43] and Root Mean Squared Error (RMSE) et al. Chai and
Draxler [44] indices. When a model’s MAE and RMSE are
both smaller, it performs better. With time step N, target
sequence denoted by ti while forecast sequence by fi, i denotes
the datapoint, (14) and (15) presents the formulas to calculate
the RMSE and MAE:

RMSE =

√
1
N

∑N

i=1
(ti − fi)2 (14)

MAE =
1
N

∑N

i=1
|ti − fi| (15)

Furthermore, MAPE et al. Myttenaere and Golden [45]
is also often used as measurement metric for forecasting.
It is a percentage-based metric that calculates the average
percentage difference between predicted and actual values.
It is particularly useful for expressing forecasting accuracy
in terms of percentage errors, making it interpretable and
comparable across different datasets. However, in this work
RMSE andMAE are used as forecasting performance indica-
tors. The choice of evaluation metrics in forecasting studies is
often influenced by the specific characteristics of the problem
and the goals of the research. In the context of harmonic
forecasting, the decision not to use MAPE (Mean Absolute
Percentage Error) may be attributed to several considerations.

1. Sensitivity to Outliers: MAPE and SMAPE can be sen-
sitive to outliers, especially in the presence of extreme
values. Harmonic forecasting, which deals with periodic
patterns, may involve data points that deviate significantly
from the average. An evaluation metric less sensitive
to outliers might be preferred to provide a more robust
assessment of forecasting accuracy.

2. Seasonal Patterns: The nature of harmonic forecasting
involves capturing seasonal or periodic variations. Tra-
ditional metrics like MAPE and SMAPE may not fully
account for the unique characteristics of harmonic pat-
terns, leading to potential inaccuracies in assessing the
model’s performance.

3. Assumption of Symmetry: SMAPE assumes symmetry
in percentage errors, which may not hold true in all
forecasting scenarios. In harmonic forecasting, where

FIGURE 13. K-Fold cross validation process for model training.

FIGURE 14. Forecasting using K-Fold cross validation for model training.

irregularities and asymmetries in the data may be com-
mon, a metric that does not make strict symmetry
assumptions might be more appropriate.

4. Research Objectives: The researchers may have specific
objectives or hypotheses guiding their study that necessi-
tate the use of alternative metrics. For instance, they may
be focusing on minimizing errors during peak periods or
emphasizing accurate forecasting for specific harmonic
components, which could warrant the use of specialized
metrics.

5. Comparison with Previous Studies: The decision to use
or not use certain metrics could be influenced by the
desire to compare results with previous studies in the field.
If other harmonic forecasting studies have demonstrated
the limitations of MAPE or SMAPE in this context, the
researchers might opt for more suitable metrics to ensure
consistency in the literature.

In the absence of specific information from the paper, these
points provide a general perspective on whyMAE and RMSE
are preferred over MAPE for harmonic forecasting.

VII. RESULTS AND ANALYSIS
In this section, the forecasting results are presented. To val-
idate forecasting results, they are compared with forecasting
techniques adopted in the literature by other authors. Three
Neural Networks are chosen from among the methods used
in [19], [21], and [23] to accomplish the forecasting for
this work. Cascaded Recurrent Neural Network with Local
Feedback (CRNNL), Cascaded Recurrent Neural Network
with Global Feedback (CRNNG), and Cascaded Recurrent
Neural Network with Local and Global Feedback (CRN-
NGL) are these networks. In addition, references [28] used
the LSTM approach for prediction, whereas reference [25]
uses ANFIS for forecasting. These 5 approaches are used to
draw a comparative analysis in which the same data used
in this work is utilized for all different forecasting methods
stated. RMSE and MAE are the indices used to compare the
results.
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FIGURE 15. THD – actual vs forecast curves Wind DFIG-PV.

FIGURE 16. Voltage 7th harmonic – actual vs forecast curves wind
DFIG_PV.

A. HARMONIC FORECASTING – WIND DFIG-PV MODEL
1) VOLTAGE HARMONICS
The actual versus forecast curves for all eight pro-
posed hybrid models for wind DFIG-PV are presented
in figures 15, 16, 17 & 18 along with the forecasting result
curves of all the forecasting techniques found in literature i.e.,
ANN – CRNNL, ANN – CRNNG, ANN – CRNNGL LSTM
and ANFIS. There are a total of four harmonic variables that
have been forecasted, the THD followed by the dominant
individual harmonics 7th (h7), 11th (h11) and 13th (h13).
To further analyze the error profile and accuracy of these

models and validate results, Table 13 presents the met-
rics calculated (RMSE & MAE) for eight proposed models
in this research and forecasting techniques employed by
other researchers in the literature. From Table 2 it can
be observed that ANFIS-LSTM model produces the best
results with the lowest RMSE & MAE for THD (0.0287 &
0.0076), h7 (0.0372 & 0.03), h11 (0.0396 & 0.0324) and h13
(0.0311 & 0.0250) forecast, while LSTM-ANFIS model pro-
duces the second-best results for all predictors respectively.
It is obvious that ANFIS-LSTM model is the most accurate

FIGURE 17. Voltage 11th harmonic – actual vs forecast curves wind
DFIG_PV.

FIGURE 18. Voltage 13th harmonic – actual vs forecast curves wind
DFIG_PV.

FIGURE 19. TDD – actual vs forecast curves wind DFIG-PV.

forecasting model for all the voltage harmonic forecasting
parameters as it produces the best performance.

Furthermore, the results produced by forecasting tech-
niques used in literature are also stated in table 2. By contrast-
ing the results with CRNNL, CRNNG, CRNNGL, LSTM and
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TABLE 2. THD, 7th, 11th and 13th voltage harmonics forecast results for wind DFIG-PV model.

FIGURE 20. Current 7th harmonic – actual vs forecast curves wind DFIG_PV.

ANFIS, the benefit of utilizing hybrid technique can be real-
ized. For THD and h13, LSTM produces the most accurate
forecasting result (RMSE – 0.0301 for THD & 0.0368 for
h13) as compared to all other forecasting techniques. More-
over, for h7 and h11, ANFIS appears to be the most accurate
individual forecasting model with RMSE 0.0423 for h7 and
0.0448 for h11 respectively. Even though LSTM and ANFIS
perform best among all individual models tested, the results
produced by hybrid models surpass the accuracy. Addition-
ally, the ANFIS-LSTM model manifests the best forecasting
results. Furthermore, LSTM (THD & h13) and ANFIS (h7
and h11) have been better performingmodels among the indi-
vidual forecasting techniques. A percent improvement that
ANFIS-LSTM model offers as compared to all the singular

models in literature tested in this work is presented in table 3
to validate the results and illustrate the benefit of utilizing
hybrid model over singular models.

It can be observed that ANFIS-LSTM Model offers
improvements over all the individual models. For instance,
for THD and h13 the model offers 4.46% and 15.51%
improvement over LSTM forecast respectively. Similarly,
for h7 and h11, 12.03% and 11.53% improvement are
recorded over ANFIS which is the best performing model
for h7 and h11. Likewise, the percent improvement
demonstrated by ANFIS-LSTM model over all other
models is evident and establishes the superiority of pro-
posed hybrid models over forecasting techniques used in
literature.
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TABLE 3. Best forecasting model comparison for voltage harmonics – wind DFIG-PV.

TABLE 4. TDD, 11th and 13th current harmonics forecast error for wind DFIG-PV model.

FIGURE 21. Current 11th harmonic – actual vs forecast curves wind
DFIG_PV.

2) CURRENT HARMONICS
This section presents the actual versus forecasted curves for
the individual forecasting methods in literature as well as the
eight proposed hybrid models used to predict the TDD, h7,
h11 and h13 harmonics. Figures 19, 20, 21 and 22 present
the forecast curves followed by Tables 4 summarizing the
performance of each model.

ANFIS-LSTM Model fits the actual curve better than
the other models for TDD, h7 and h11 forecasts, as seen
in Figures 19, 20 & 21. Table 4 shows that the lowest

FIGURE 22. Current 13th harmonic – actual vs forecast curves wind
DFIG_PV.

RMSE & MAE recorded for TDD (4.6585 & 2.6165), h7
(8.2918 & 5.9852) and h11 (8.4149 & 5.9852) respectively.
The ANFIS-LSTMModel is also the second-best performing
model for h13. The LSTM-ANFIS Model has the lowest
RMSE & MAE for h13 (6.4145 & 5.2047). Furthermore, the
LSTMhas produced best results among the individual models
for all current harmonic forecasting parameters. Moreover,
like the results in voltage harmonics, both the hybrid models
outperform the individual models in accuracy.
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TABLE 5. Best forecasting model comparison for current harmonics – wind DFIG-PV.

FIGURE 23. THDV – actual vs forecast curves wind PMSG-PV.

FIGURE 24. Voltage 7th harmonic – actual vs forecast curves wind
PMSG_PV.

Furthermore, table 5 presents the percent improvement
that ANFIS-LSTM model offers over the individual models
tested. It is evident that the ANFIS-LSTM Model produces
superior results over all other models. LSTM produces the
best forecast as compared to all individual models. Hence,
ANFIS-LSTMModel offers improvements over LSTM fore-
casts of 28.78%, 13.53%, 8.67% and 15.35% for THD, h7,
h11 and h13 respectively. Likewise, the superior performance
of model-8 over all other models is evident, it establishes that

FIGURE 25. Voltage 11th harmonic – actual vs forecast curves wind
PMSG_PV.

FIGURE 26. Voltage 13th harmonic – actual vs forecast curves wind
PMSG_PV.

the proposed hybrid models are superior to the forecasting
techniques used in the literature.

B. HARMONIC FORECASTING – WIND PMSG-PV MODEL
1) VOLTAGE HARMONICS
The actual versus predicted curves for all eight proposed
hybrid models and the individual forecasting methods in liter-
ature for wind PMSG-PV generator are shown in Figures 23,
24, 25 & 26 for Voltage THD, 7th, 11th, and 13th voltage
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TABLE 6. THD, 11th and 13th voltage harmonics forecast error for wind PMSG-PV model.

FIGURE 27. TDD – actual vs forecast curves wind PMSG-PV.

FIGURE 28. Current 7th harmonic – actual vs forecast curves wind
PMSG_PV.

harmonics (h7, h11 & h13). The forecast results are followed
by Table 6 summarizing the error profile of each forecast
made for each variable.

By observing Table 6, it can be concurred that the overall
performance of both proposed hybrid models has surpassed
the forecast produced by any other individual models adopted
in literature. It is obvious that the best performing model is
ANFIS-LSTM model with the lowest RMSE of 0.00421 for

FIGURE 29. Current 11th harmonic – actual vs forecast curves wind
PMSG_PV.

FIGURE 30. Current 13th harmonic – actual vs forecast curves wind
PMSG_PV.

THD, 0.0097 for h7 and 0.00767 for h11 respectively. Fur-
thermore, the LSTM-ANFIS model produces the best results
for h13 with RMSE of 0.007 and MAE of 0.00521. As for
the individual models, for THD, the best performing model
is LSTM, for h7 is CRNNG, for h11 ANFIS and for h13
CRNNL.
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TABLE 7. Best forecasting model comparison for voltage harmonics – wind DFIG-PV.

TABLE 8. THD, 11th and 13th current harmonics forecast error for wind DFIG-PV model.

TABLE 9. Best forecasting model comparison for voltage harmonics – wind DFIG-PV.

Table 7 shows the error outline and percent improvement
comparing the prediction of ANFIS-LSTM model and indi-
vidual models tested. For THD, ANFIS-LSTM model offers
3.39% improvement over LSTMwhich is the best performing
individual model. Similarly, for h7, the percent improvement
is 14.9% in contrast with CRNNG forecast, for h11, 8.97%
improvement over ANFIS and finally, for h13 there is 19.4%
improvement as compared to CRNNL.

2) CURRENT HARMONICS
The actual vs anticipated curves for eight proposed hybrid
models and five individual models adopted from literature

used to predict the TDD, h7, h11, and h13 for wind PMSG-PV
model current harmonics are presented in this section. The
curves are contained in Figures 27, 28, 29 & 30 whereas the
performance stats for forecast are presented in Table 8.

As observed in Table 8, the ANFIS-LSTMmodel produces
the best results with lowest RMSE for TDD (3.2011), h7
(1.5157), h11 (7.2851) and h13 (6.334). Among individ-
ual models, LSTM produces the best results for TDD with
RMSE 3.907, ANFIS for h7 (11.1411) and h13 (7.9227)
and CRNNGL for h11 (7.8883). Moreover, to further ana-
lyze results table 9 presents the percent improvement of
ANFIS-LSTM model results over all individual models.
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With reference to the results presented in table 9, the per-
cent improvement of ANFIS-LSTM model over individual
models is evident. Comparing the performance with best
performing individual model, for TDD ANFIS-LSTMmodel
performance provides 18.07% improvement over LSTM, for
h7 and h13 the percent improvement is 14.46% and 20.05%
over ANFIS and for h11, ANFIS-LSTM model produces
7.65% improved results over CRNNGL.

VIII. CONCLUSION
In this study, two hybrid forecasting models were introduced
for generating harmonic forecasts based on simulated data
from Wind DFIG-PV and Wind PMSG-PV systems. The
models predicted four voltage parameters (h7, h11, h13, and
THD) and four current parameters (h7, h11, h13, and TDD)
for each generator, resulting in sixteen distinct forecasting
cases. To assess forecast accuracy, a comparative analysis was
conducted by contrasting the proposed hybrid models with
established forecasting techniques.

The hybrid models, designed in a meticulous two-stage
configuration, incorporated a combination of LSTM and
ANFIS techniques in stage-1 and stage-2. Specifically, the
first model, LSTM-ANFIS, integrated LSTM in stage-1 and
ANFIS in stage-2, while the second model, ANFIS-LSTM,
followed a reverse structural arrangement. The evaluation
included five individual models used by prior researchers,
encompassing ANN variants (CRNNL, CRNNG & CRN-
NGL), ANFIS, and LSTM. Empirical findings revealed the
consistent outperformance of the ANFIS-LSTM model over
both the LSTM-ANFIS hybrid model and all individual mod-
els, emphasizing its superiority across the sixteen forecasting
cases, such as Wind-DFIG PV and Wind-PMSG PV. This
comparison effectively highlighted the distinct advantages of
employing hybrid models and the percentage improvement
they offer over traditional techniques.

The study provides an in-depth analysis of the advan-
tages and disadvantages associated with the proposed hybrid
forecasting models, particularly focusing on the ANFIS-
LSTM configuration. Through a comprehensive evaluation
of sixteen forecasting cases, the study clearly demonstrates
the superiority of the ANFIS-LSTM hybrid model over
individual models and alternative hybrid model, LSTM-
ANFIS. This finding highlights the innovative nature of the
proposed hybrid model in enhancing forecasting accuracy,
which is crucial for the advancement of literature in this
field.

One of the key advantages highlighted in the study is
the consistent outperformance of the ANFIS-LSTM hybrid
model across various forecasting scenarios. Specifically,
in cases involvingWind-DFIG andWind-PMSG systems, the
ANFIS-LSTM model exhibited superior performance in pre-
dicting parameters such as voltage THD and current TDD at
multiple time horizons. This consistent improvement under-
scores the effectiveness of hybrid approaches in forecasting
and emphasizes the innovation brought about by integrating
ANFIS and LSTM techniques.

Moreover, the study emphasizes the versatility of hybrid
models by showcasing the integration of LSTM and ANFIS
techniques in different configurations. This adaptability
allows for a more nuanced approach to forecasting, utilizing
the strengths of each technique in a complementary manner.
Additionally, the comparison with individual models effec-
tively highlights the clear advantages of employing hybrid
models, showcasing the percentage improvement they offer
over traditional techniques.

However, the study also acknowledges several limitations
that warrant attention for a more comprehensive evaluation.
It recognizes the need to ensure the consistency of model
performance across diverse contexts and datasets beyond
the specific conditions of the Halifax-NS, Canada dataset.
Addressing potential limitations related to the generalizabil-
ity of the proposed hybrid models is crucial for enhancing
their practical applicability. Furthermore, the study identifies
the lack of consideration for the impact of the grid in the
forecasting models as a major limitation. This suggests the
importance of incorporating grid modeling in MATLAB or
utilizing historical power system data to mitigate this limita-
tion and enhance the relevance of the models in real-world
applications.

In conclusion, the study makes a distinctive contribution
to the literature on harmonic forecasting by successfully inte-
grating ANFIS and LSTM techniques within a hybrid model,
resulting in enhanced forecasting accuracy. The innovation
exhibited by the ANFIS-LSTM hybridization, along with the
clear advantages demonstrated over individual models and an
alternative hybrid model, enriches the literature and under-
scores the potential benefits of employing hybrid forecasting
methodologies. However, the study’s acknowledgment of the
need for further research to address limitations and explore
additional hybridmodel combinations across varied scenarios
reflects a commitment to advancing the domain of harmonic
forecasting by utilizing the hybrid forecasting models in a
responsible and rigorous manner.
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