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ABSTRACT Water quality degradation has turned out to be of crucial importance due to various factors
over the past decade. Pollution, climate change, and population growth are the factors that affect water
quality. Contaminations such as microorganisms, heavy metals, and excessive nitrogen and phosphorous
disrupt water pH levels, posing significant health risks. Despite the innovation in the Internet of Things(IoT),
allowing balancing the pH by adding chlorine and fluoride after the disinfection step, several security
issues(e.g., distributed denial of service, datamanipulation, and session hijacking)manoeuvre the operational
performance of the water treatment plants. This causes people to consume polluted water, which has many
adverse effects on human health and reduces life expectancy. To address this critical concern, we propose a
novel approach integrating artificial intelligence(AI) and blockchain technology into water treatment plant
management. Our methodology utilizes a standard water quality dataset, which has features such as pH and
total hardness, which is used for binary classification, indicating water as potable or not potable. We employ
various AI classifiers such as stochastic gradient descent classifier (SGDC), decision tree (DT), Naive
Bayes (NB), K nearest neighbours (KNN), and logistic regression (LR). Furthermore, an InterPlanetary File
System(IPFS)-based public blockchain is integrated to resist the data manipulation attack, where the potable
water sample is securely stored in the blockchain’s immutable ledger. The proposed model is evaluated
using various performance metrics such as confusion matrix analysis, learning curve assessment, training
accuracy, and blockchain scalability. Notably, the DT model emerges as the best-performing classifier with
an accuracy of 99.41% and scalability of 35 with 120 data transactions.

INDEX TERMS Artificial intelligence, water treatment plants, water profiling, blockchain, Internet of
Things (IoT), IPFS.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mueen Uddin .

I. INTRODUCTION
Water is an essential need for all living beings. Apart from
drinking, household, cooking, and industrial water usage,
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drinking is the most essential. It is crucial for the survival
of human beings. Water not only quenches your thirst but is
also an important functional unit of life. About 60-70% of
the human body is made up of water, which regulates body
temperature and moistens tissues of body organs. It helps
in blood circulation as it can carry nutrients and oxygen.
It can lessen the burden on kidneys, livers, and other parts
of the human body and also removes toxins from our bodies.
These benefits exist only if the quality of water we drink
is good; otherwise, it causes diseases, which signifies the
crucial role of water potability in improving life expectancy.
The Composite Water Management Index Report 2018 of the
National Institution for Transforming India Aayog stated that
about two lakh people die every year due to inadequate access
to safe water, which shows the adverse effects of impurewater
on human life expectancy. NITI Aayog (India) estimated that
by 2030, around 600+ million people will face water stress,
which is almost 40% of India’s population [1].

The paper [2] explored the challenges of understanding
and managing the potential impacts of climate change on
India’s water resources. Human activities, such as those in
the energy, land, water, and climate nexus, complicate these
assessments, as they can either amplify or mitigate climate
change effects. To develop effective policies, a holistic
approach is crucial, recognizing these interconnections and
differentiating between local human actions and global
climate impacts.

The [3] highlights the importance of access to clean water,
sanitation, and hygiene (WASH) for human health and well-
being. It notes that chemical pollution poses a significant
threat and that contaminated water can lead to various health
problems, particularly diarrheal diseases. Over a million
deaths from diarrhoea occur annually due to poor WASH
conditions, and these conditions also hinder the prevention
and treatment of malnutrition and neglected tropical diseases.
However, studies demonstrate that improvingWASH services
can drastically reduce diarrheal deaths, emphasizing the
urgent need for interventions to address these challenges.
A study [4] found serious problems with the quality of
drinking water in Thulamela, South Africa. While water
from the source (dam) was safe, water from taps and
storage containers in homes had bacteria. This shows that
contamination is happening while water is being moved and
stored. The study [4] found that many households don’t
treat their water before drinking it, which increases the risk
of getting sick from waterborne diseases. Water shortages
also increase the risk of contamination because the water
can become stagnant and less protected. The research also
suggested that lead in the water may be linked to cancer,
which highlights the importance of tighter regulations and
better monitoring of trace metals in our drinking water. Hence
it is crucial to tackle water quality issues because they pose
a serious risk to health and lifespan. Contaminated water
can spread diseases and cause multiple health problems,
endangering the well-being of individuals.

As per the review [5], non-portable water is a major
cause of mortality globally. A WHO report revealed that
poor drinking water quality contributes to over 50% of
diseases and alarmingly accounts for 80% of global illnesses.
Its impact is particularly devastating for children, as it
is responsible for half of childhood deaths worldwide.
Research [6] has also connected swimming in contaminated
water to a higher risk of illness, with children under the age
of ten showing the highest rates of infection. Furthermore,
the use of drinking water contaminated with arsenic has
been connected to bladder, kidney, and skin cancers as
per the article [7]. The author of [8] deduced that the
chance of developing various types of cancer is increased by
carcinogens added during water treatment procedures, such
as chlorine treatment.

Water quality is affected by many factors, including pH,
minerals (sodium, magnesium, calcium, chloride, potassium,
carbonate, sulfate), total dissolved solids (TDS), electrical
conductivity (EC), total hardness (TH), and theWater Quality
Index (WQI). These factors influence whether water is safe
to drink and affect human health. Unbalanced levels of
these factors can cause digestive issues, kidney problems,
heart disease, and brain disorders. Improving water quality
is crucial for public health and life expectancy by providing
access to clean, safe drinking water. Altering water quality
data can dramatically harm human health. Inaccuracies in
reporting can cause consumption of contaminated water,
leading to stomach problems, lack of hydration, and serious
long-term health issues. In areas with limited water supply,
these problems become even more concerning, especially
in cities with growing populations and pollution issues.
To address this, it’s crucial to accurately monitor water
quality and implement sustainable practices that guarantee
access to clean drinking water for everyone.

Water pollutants pose serious threats to human well-
being, the natural environment, and the variety of life on
Earth. The authors of [9] drew attention to the study that
used polyethene particles as a typical type of microplastics
and analyzed their behaviour in comparison to dissolved
substances, using energy loss, residence time distribution, and
mixing models, which emphasize the need for understanding
how microplastics move through city water systems.ies like
carbon nanotubes and graphite oxides. Emphasis is placed
on in-depth studies that consider not only the original
pollutants but also their byproducts. These efforts encompass
identifying, measuring, and evaluating the risks associated
with these contaminants.

The researchers of [10] examined pollution in drinking
water caused by nitrate contamination and its possible health
risks. The presence of nitrate in water poses a significant
obstacle to ensuring clean and safe drinking water, with the
World Health Organization (WHO) [11] setting a safety limit
of 50 mg/L. Water samples were collected from different
areas of Tehran during wet and dry seasons. Nitrate levels
were higher in the dry season because of groundwater with
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high nitrogen levels. The study in the paper [10] showed that
nitrate contamination in Tehran’s drinking water poses a high
cancer risk, especially for children. Over half the samples
collected during the dry season showed a risk of cancer for
different groups of people, even though only a few samples
had nitrate levels above the safety standards for drinking
water.

The study in the paper [12] examined the movement of
microplastics in sewer systems, specifically in manholes,
which are crucial junctions in these networks. The study
used polyethene particles as a typical type of microplastics
and analyzed their behaviour in comparison to dissolved
substances, using energy loss, residence time distribution, and
mixing models, which emphasize the need for understanding
how microplastics move through city water systems. This
knowledge is vital for reducing the risks of contamination
and improving the design and management of wastewater
infrastructure. The results of ref. [12] showed that most of
the plastic particles move through the system like dissolved
substances, but a portion gets trapped in manholes with high
water levels. The longer these particles stay trapped, the
greater the risk of contamination.

The quality of water also depends on the sources from
where the water comes. Usually, the water sources include
ground and surface water. The water from these resources
must be treated first before being used for drinking.
Preserving water quality is vital, especially as climate change
intensifies water scarcity. Ensuring the quality of accessible
water is crucial for human health, environmental stability,
and economic sustainability, especially as water resources
become scarcer. Climate change can affect water quality
by altering precipitation patterns, disrupting hydrological
cycles, and increasing extreme weather events. The study
in the paper [13] showed that unsustainable practices and
climate change are the main causes of the notable statewide
drop in groundwater recharge. According to the authors
of [13], more than 80 million people might not have
access to water as a result of this reduction, highlighting
the urgent need for innovative management strategies and
policies to lessen the effects of diminishing water supplies.
The results highlight the need for precise monitoring and
long-term management plans to maintain water quality in the
face of rising hydroclimatic swings and intensifying water
shortage issues. The Water Treatment Plant (WTP) collects
water from different resources and uses different methods
such as coagulation/flocculation, sedimentation, filtration,
disinfection, sludge drying, fluoridation, and pH correction.
To perform all these methods, theWTP is classified into three
main categories: a pretreatment plant, a post-treatment or
demineralized water plant, and a waste treatment or effluent
treatment plant.

The authors of [14] proposed a process for getting
clean water using coagulant from locally abundant kaolin
clays. Alum is a coagulant that is used for raw water
treatment plants. They identified that a dosage of 40mg/L

of the extracted alum showed effective coagulant prop-
erties with great potential to treat raw water. Ref. [15]
proposed a lab-scale experiment with a coconut-shell-based
granular activated carbon column that showed the possibly
different mechanisms of removal between perfluorohexyl
sulfonate and perfluorooctanoic acid, indicating that the
sulfonate-based perfluorinated compounds may be a limiting
factor in the granular activated carbon replacement cycle for
perfluorinated compounds removal.

Numerical modelling plays a vital role in optimizing water
treatment plants. These models simulate various scenarios
and conditions, enabling engineers to predict potential
issues and refine the treatment processes. By accurately
estimating water flow, energy consumption, and pollutant
removal efficiency, models guide resource allocation and
operational decisions. Furthermore, by forecasting the impact
of operational changes on water quality and offering insights
into the facility’s performance, numerical modelling helps
ensure compliance with regulatory standards.

Researchers [16] developed an improved turbine design for
Micro Hydroelectric Plants. The design focused on extracting
energy from Wastewater Treatment Plants, which have a lot
of unused low-energy water flow. The design used numerical
modelling and a special algorithm to refine the shape of
the turbine blades and other parts. The result is a propeller
turbine that can extract up to 76% of the available energy,
making it a promising option for generating renewable energy
from WWTPs.

The study [17] used numerical modelling to investigate
how water temperature impacts disinfection in tanks that
use chlorine. The simulation considers the movement of
substances, chlorine breakdown, and how temperature affects
water’s density and thickness. The results of the study [17]
showed that even small temperature changes can significantly
alter the amount of chlorine in the water and the effectiveness
of the disinfection process, potentially affecting water treat-
ment operations. The model’s accuracy had been rigorously
tested against real-world data, demonstrating its reliability in
optimizing temperature settings for efficient water treatment
and reducing the creation of disinfection byproducts.

By examining the physical-chemical hydrodynamics of
activated sludge reactors and their effect on N2O emissions,
this research [18] seeks to bridge knowledge gaps in the
design of these reactors. The paper examined variables
influencing the accuracy of aeration and N2O emission pre-
dictions in surface-aerated oxidation ditch-type reactors using
computational fluid dynamic simulations. The study [18]
emphasized the importance of design, operational circum-
stances, and biokinetic factors in forecasting N2O emission
by comparing laboratory results with actual observations in a
water treatment facility.

Numerical modelling in water treatment lacks automation,
leading to a labour-intensive and time-consuming process.
It involves manual steps at every stage, such as setting up
the model, entering data, and interpreting findings. The smart
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sensors employed in the WTP ecosystem apply numerical
approaches that will significantly raise the computations, and
eventually, the solutions become computationally expensive.
Since it also relies on human interaction, mistakes and biases
can creep in, compromising the precision and dependability
of the results. WTP could, therefore, find it difficult
to maximize their performance and effectively adjust to
changing circumstances.

Traditional water treatment facilities struggle with lengthy
processes, expensive operations, poor monitoring systems,
obsolete equipment, and unreliable record-keeping. These
problems hinder efficiency, compromise water quality, and
pose potential health hazards. However, Artificial Intelli-
gence(AI) offers solutions that automate tasks, enabling a
more efficient and adaptable approach to modeling and
optimizing processes. AI can improve water treatment
plants by making them more efficient. AI systems can
automate monitoring, maintaining equipment, and keeping
records. This frees up human workers and improves plant
performance. AI algorithms can also analyze large amounts
of data to optimize water purification processes, making them
more effective, less expensive, and faster. By harnessing AI,
water treatment plants can deliver clean, safe water to
communities more efficiently.

The authors of [19] proposed an IoT and machine
learning-based solution to have an automatic, cost-
effective WTP. The proposed system used Thing Speak
to monitor all the data using the ESP8266 Wi-fi module.
Biochemical oxygen and chemical oxygen demand sensors
have been integrated to measure the quality of water
accurately. Then, the ML algorithm is applied to the sensor
information to extend the exactness of the sensor information.
The study [20] used machine learning techniques like
Support Vector Regression and Regression Trees to estimate
wastewater quality indicators from urban catchment data,
which can be helpful for wastewater management. Support
Vector Regression performed better than Regression Trees in
predicting total suspended solids, total dissolved solids, and
chemical oxygen demand, while both models were similar
in predicting biochemical oxygen demand. These results
showed that machine learning could be useful for planning
wastewater treatment plants, managing wastewater in real-
time, and addressing environmental challenges related to
wastewater.

The articles [19] and [20] explored the application of
AI and machine learning algorithms in WTPs to monitor
and assess water quality. However, there are higher chances
of security attacks in the approaches mentioned in the
papers [20] and [19]. So in this scenario, security is the
biggest concern. To overcome the problem of data security,
we proposed an AI and blockchain-based approach. In this
paper, we have used various ML algorithms such as the
Stochastic Gradient Descent classifier (SGDC), Decision
Tree (DT), Naive Bayes (NB), K Nearest Neighbours (KNN),
and Logistic Regression (LR) to classify the water sample
into drinkable and non-drinkable water. Also, to confront the

data manipulation attack and data storage cost, we integrated
the InterPlanetary File System (IPFS) protocol to store the
water-related data securely.

A. MOTIVATION
The motivation for the proposed approach is as follows.

• The profiling of water is a necessary aspect of
streamlining operations and providing clean water.
To make this process simpler, more accurate, and safer,
multiple approaches have been researched and deployed,
such as numerical modelling, IoT-based solutions, and
automated solutions using AI.

• In the existing state-of-art works, References [16],
[17], and [18] have explored the numerical modelling
approach for the water treatment applications which
lacks automation in the applications that may lead
to human errors and biases. Moreover, smart sensors
are resource-constrained devices; applying numerical
optimization on such resource-constrained devices can
degrade the operational performance of the smart
grid environment. This motivated us to search for
methodologies that are more accurate and automated,
like AI.

• The approach used by [19] and [20] discovered the
application of machine learning techniques for forecast-
ing water quality. Their approach helps with accurate
results and with minimal human biases and errors. Still,
their approach fails to secure the predicted data from
data tampering attacks. This led us to leverage machine
learning techniques blended with a blockchain-based
approach to make accurate results, keeping data secure
and immutable.

• Furthermore, the aforementioned approaches rely on
a single technology, such as either AI or blockchain,
to offer security enhancement in WTP. We want to
state that amalgamating two technologies, i.e., AI +

blockchain, can substantially strengthen the security
of WTP. In addition, the existing works related to
blockchain have not adopted the essential benefits of
IPFS in their proposed solutions, thereby increasing the
latency and reducing the scalability of their solutions.

Novelty: Limited literature exists for securing WTP from
adversaries aiming to deteriorate the operational performance
of smart sensors and contaminate the water supply with
hazardous chemicals or pollutants, thereby endangering the
health of the nation’s citizens. Already available literature
relied on simple AI modules or blockchain technology to
offer security in WTP. Nevertheless, they have not blended
two technologies, such as AI and blockchain, to provide more
robust and resilient security features in the WTP profiling
systems. In the proposed work, we used AI models to solve
a binary classification problem wherein the class labels are
potable and not potable water data. In the non-potable water
data, the attackers have manipulated the smart sensors so that
they can release high amounts of chemical compounds in the
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treatment plants. Consuming such high chemical water can
reduce human life expectancy.

Hence, the utilized AI model in the proposed work
efficiently classifies the water potability data based on each
feature’s threshold. Further, there is a severe possibility
that the attackers can perform data manipulation attacks
on the predicted data (from AI models), thereby raising
data integrity concerns. To respond to this challenge,
we adopted an IPFS-based blockchain technology that
provides secure data storage for the predicted data in the
blockchain’s immutable ledger. Integrating IPFS in the
blockchain improves the response time and thus increases the
scalability of the proposed solution. DT model emerges as
the best-performing classifier, which classifies the portable
and non-portable water with an accuracy of 99.41%, and
blockchain offers scalability of 35 with 120 data transactions.
The existing works have not considered the aforementioned
approaches and staggering benefits of AI and blockchain
amalgamation; thus, their solutions are not end-to-end secure
and fail to demonstrate the full potential of safeguarding
WTPs from adversaries aiming to compromise operational
efficiency and endanger public health with contaminated
water.

B. RESEARCH CONTRIBUTIONS
The following are the research contributions of this paper:

• We proposed a blockchain and AI-based water profil-
ing framework that classifies water into potable and
non-potable water to increase human life expectancy.

• Further, to secure the predicted data from data tampering
attacks, we adopted IPFS-based blockchain technology
that offers secure data storage to the predicted potable
data.

• The proposed framework is assessed by considering
different evaluation metrics, such as training time, log-
loss score, training accuracy, blockchain response time,
and scalability.

We have organized this paper as follows. Section II gives
an overview of the existing schemes for profiling the water
from different water treatment plants. Section III describes a
module for predicting the potability of water for enhancing
human life expectancy. Section IV illustrates the proposed
framework using an AI layer and a blockchain layer.
Section V discusses about the results we obtained. Section VI
concludes the paper.

II. RELATED WORKS
A lot of research has been carried out on water treatment
by researchers to help determine whether drinking water is
safe. Across the globe, researchers used different techniques
and algorithms to classify drinking water. The authors
of [29] proposed the hydroclimatic modelling approach for
recognizing and reducing how climate change affects water
supplies and related processes. Hydroclimatic modelling
investigates how climate variations affect water resources
and events like floods. To handle these issues, the research

introduces a new method that combines surrogate modelling
and physics-based machine learning. Surrogate modelling
uses simplified yet effective models to mimic complex
systems, improving computational efficiency. The authors
proposed a Physics-informed neural network-based surrogate
model that incorporates physical principles into the neural
network structure. This integration enhances themodel’s abil-
ity to capture crucial physical behaviours, ensuring greater
accuracy and interpretability in hydroclimatic simulations.
Using this approach in flood simulators based on Shallow
Water Equations, the study shows substantial enhancements
in predicting floods better than existing data-driven methods.
This progress is critical in hydroclimatic modelling, where
accurate flood prediction is vital for comprehending and
minimizing the effects of climate change on water sources
and connected systems.

Researchers [30] developed a numerical model to study
a dam-controlled river system, balancing the need for water
for human use and the health of the river ecosystem. They
used the model in a section of China’s Jinjiang watershed.
The performance of the model was tested by comparing
predicted water levels and water quality measurements
(Chemical Oxygen Demand and NH3 -N) with real-life
data. The model’s predictions were generally close to the
actual measurements, with relative RMSE ranging from 5.5%
to 28.4%. The model was then used to develop plans for
managing dam operations during drought conditions and
water contamination events. In the dry scenario, the dam
release plan was successful in meeting minimum water
flow requirements for the environment. However, in the
contamination scenario, the plan was only able to limit the
spread of pollution, but it did not fully meet water quality
standards.

The authors of [31] proposed mathematical frameworks
to optimize the design of water treatment systems. The
need for water is growing due to population growth and
climate change. The first model, Mixed Integer Nonlinear
Programming, aimed to minimize the water system’s cost.
However, it can be unstable due to its complex nature.
To address this, two enhanced models were introduced: a
partially linearized Mixed Integer Nonlinear Programming
and a Mixed Integer Linear Fractional Programming model.
These models were more stable and could handle the
complexities of water treatment processes. The models
were tested on case studies involving seawater desalination
and surface water treatment for drinking water production.
The mixed integer linear fractional programming model
outperforms other methods of designing water treatment
systems. It provides better solutions in less time. This
approach aligns with industry standards. The study shows
that using optimization techniques improves the efficiency of
designing water treatment processes.

The research [32] presented a control system for wastew-
ater plants using an optimization algorithm called a Non-
dominated sorting-based multi-objective cuckoo search opti-
mization algorithm. This algorithm optimized the parameters
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TABLE 1. Comparative analysis of the proposed work with existing works.

of a controller used to regulate the amount of oxygen in the
water, which is crucial for efficient wastewater treatment.
The system considered two goals: one focusing on improving

effluent quality and reducing operating costs, and the other on
reducing nitrogen and ammonia levels. By using the model
given by [32] to find the best parameters for the controller,
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the study helps optimize wastewater treatment. Simulations
demonstrate that their approach reduces pollution levels and
flow instability in all weather conditions, with reductions
ranging from 0.63% to 1.3%.

The authors in [21] proposed an intelligent scheme for
wastewater treatment plants using AI and deep learning mod-
els for predicting the effluent concentration of total nitrogen
a few hours ahead. They proposed a multistep-ahead effluent
total nitrogen prediction framework at wastewater treatment
plants under dynamic variational data using several ML
and recurrent neural network models, including partial least
squares regression, multiple linear regression, multilayer
perceptron, long-short termmemory, gated recurrent unit, and
multihead-attention-based gated recurrent unit. The multi-
head-attention-based gated recurrent unit method reported the
most accurate and selective predictive performance among all
introduced models in predicting the total nitrogen present in
the water.

The authors of [22] proposed an ML-based water pota-
bility prediction model by using the synthetic minority
oversampling technique and explainable AI, which showed
the comparative analysis of different machine learning
approaches like support vector machine (SVM), DT, random
forest (RF), gradient boost, and ada boost, used for the
water quality classification. In this analysis, they got the
highest accuracy of 0.80 using the RF classifier. Later,
[23] presented the comparison of individual supervised ML
models, such as gene expression programming and artificial
neural network, with that of an ensemble learning model, i.e.,
RF, for predicting river water salinity in terms of electrical
conductivity and dissolved solids. In terms of accuracy, the
RF model outperforms other models on the training and
testing datasets, followed by gene expression programming
and artificial neural network models. The highest R2 value
and lowest root mean square error value were both attained
by the RF model.

The authors of [24] presented a water quality monitoring
system using machine learning techniques. The algorithm
used was DT and SVM. The linear SVM, Fine tree, and
Medium tree for the full samples give similar precision.
On the other hand, for 1

4 of the samples, the linear SVM gives
better precision. Then, Wongburi and Park [25] proposed
an intelligent scheme for wastewater treatment plants using
recurrent neural networks and explainable AI to predict
sludge volume index over the time series data. They collected
data from 1996 to 2020. After creating the appropriate
datasets and training the datasets, the prediction model had
a root mean square error of 4.161 and a mean absolute
error of 3.284 for the first dataset (data from 1996 to 2000).
The second dataset(data from 2001 to 2020) has a root
mean square error of 3.360 and a mean absolute error
of 2.156, which is analogous to the third dataset (data
from 2010 to 2020).

The authors of [26] proposed an overview of artificial
neural networkmodels that have been developed over the past
two and a half decades for membrane procedures that are

used in the management of wastewater and the purification
of water. The artificial neural network-extreme learning
machine (ANN-ELM) model, chemical oxygen demand, and
biological oxygen demand models each have an accuracy
value of 82.17%, 85.68%, and 88.31%, respectively, while
the deep convolutional neural network- sine cosine algorithm
has an accuracy value of 90.11% for 100 data points from the
dataset. In comparison, the suggested ANN-ELM approach
has an accuracy value of 93.14%. Although the ANN-ELM
model did the best, with an accuracy of 94.17%, the accuracy
for the ANN-ELM, chemical oxygen demand, and biological
oxygen demand models, as well as the accuracy for the deep
convolutional neural network- sine cosine algorithm model,
is, respectively, 83.77%, 86.82%, 89.24%, and 91.77% for
300 data points from the dataset. The ANN-ELM model has
shown the maximum performance with less root mean square
error for 600 data points at 30.66%, while the ANN-ELM,
chemical oxygen demand, biological oxygen demand, and
deep convolutional neural network- sine cosine algorithm
models have root mean square error of 44.82%, 40.74%,
37.18%, and 32.85%, respectively.

The authors of [27] proposed a machine learning approach
for the prediction of contamination of water considering
factors such as water body location, latitude, longitude,
and elevation. They used multivariable linear regression,
support vector regression, decision tree regression, and lasso
regression. For temperature, multi-variable linear regression
showed the best result with an R2 score of 40.94 in training
and 52.51 in testing. For pH, support vector regression
outperformed with an R2 score of 92.09 in training and
46.97 in testing. For biological oxygen demand, multivariable
linear regression demonstrated the best results with R2 score
of 99.99 in training and 99.99 in testing. For dissolved
oxygen, multivariable linear regression reported the best
results with an R2 score of 69.58 in training and 54.83 in
testing. For turbidity, hardness, and alkalinity, the authors
were unable to conclude which model is better because of the
low correlation among the data. For chlorides, support vector
regression showed the best results with anR2 score of 33.53 in
training and 71.188 in testing. For chemical oxygen demand,
multivariable linear regression outperformedwith anR2 score
of 12.01 in training and 9.02 in testing. Ref. [28] presented
the use of an artificial neural network (ANN) algorithm to
enhance the performance of wastewater treatment plants.
Their proposed system predicted the influential and effluent
chemical oxygen demand for effluent treatment procedures
with an accuracy of 92.67%with one model and 89.23%with
another model.,

The researchers [29], [30], [31], and [32] explored the
mathematical approach for maintaining water treatment pro-
cesses. The smart sensors are resource-constrained devices in
the WTP ecosystem; applying numerical-based approaches
significantly raised the computations, and eventually, the
solution became computationally expensive. With that delib-
eration, we focused on ML-based approaches in WTP. The
authors [21], [23], [25], [28] incorporated ML into their
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solution. In some of their research work, the authors have
not focused on the water potability prediction and their
effects on human life; rather, they have discussed how
different components of water affect the quality of water,
such as authors of [21] predicted the effluent concentration
of total nitrogen a few hours ahead, authors of [28] predicted
the input and effluent chemical oxygen demand, authors
of [25] predicted sludge volume index and authors of [23]
predicted water salinity. However, some of the researchers
have not considered the effects of poor-quality water on
human life expectancy and security aspect. Table 1 shows the
comparative analysis of the existing work with the proposed
framework.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we describe a system model that predicts the
potability of water from the WTP for enhancing human life
expectancy. The system comprises different water treatment
plants {w1,w2,w3, . . . ,wm} ∈ W . Here, each wi is
equipped with sensors, such as the potential of hydrogen
(pH) analyzer, conductivity analyzer, oxidation-reduction
potential analyzer, and dissolved oxygen analyzer, which are
represented as {s1, s2, s3, . . . , sn} ∈ S. Each si collects
water-related data {δ1, δ2, δ3, . . . , δn} ∈ 1 from wi and sends
to a real-time water profiling application F .

wi( sj)
sends
−−−→

δj
F

∀i i ∈ {1, 2, . . . ,m}

∀j j ∈ {1, 2, . . . , n} (1)

where i denotes Water profiling applications use different
methods to check the potability of water, whether the water
is drinkable or not.

F =

{
δi, drinkable
δ′
i, not drinkable

(2)

AI models are used to predict the potability of water from
WTP to maximize human life expectancy. However, some
attackers K ∈ {k1, k2, . . . , kk} can manipulate δi collected
from si, which will lead to change in predicted results.

K (δi)
si

−−−→
sends

Performance ↓ δ′
i /∈ 1 (3)

Therefore, there is a need for blockchain networks to
restrict such data manipulation attacks. In the blockchain
network, the data is stored in blocks {b1, b2, b3, . . . , bm} ∈

Blockchain1. We considered Ai as the max accuracy of the
wi plant. X denotes the summation of Ai obtained from each
wi. We inferred ω as the human life expectancy parameter,
which is based on water potability, and Xthr is the threshold
value of the accuracy of WTP.

X ↑ H⇒ ω = high (4)

X ↓ H⇒ ω = low (5)

Ai = maxaccuracy

( n∑
j=1

(δj)
)

(6)

IV. PROPOSED FRAMEWORK
FIGURE 1 shows the proposed blockchain and AI-based
water profiling framework for enhancing human life
expectancy. The proposed framework is divided into two
layers WTP and AI layers. The description of each layer is
given as follows.

A. WATER TREATMENT PLANT LAYER
In this layer, we integrate an AI-based classification algo-
rithm to maximize human life expectancy by predicting the
potability of water in the WTP. The data is collected using
different sensors designed to find the nutritional content in
the water. In this layer, we have different WTPs, each having
a set of sensors installed that collect data on the nutritional
content of the water. Therefore in each plant, we have a set of
sensors si, where {s1, s2, s3, . . . , sn} ∈ S. Each si collects
water-related data {δ1, δ2, δ3, . . . , δn} ∈ 1. This data
represents various parameters and characteristics of water,
such as pH level, conductivity analyzer, oxidation-reduction
potential analyzer, dissolved oxygen analyzer and many
more. We have also incorporated blockchain technology,
which ensures the security and integrity of the data and that
the data remains unaltered throughout its lifetime.

B. AI LAYER
1) DATASET DESCRIPTION
The data has been taken from IEEE data port [33]. Once
the data is collected from the sensors in the water treatment
plants, it is integrated and stored in comma-separated-
values (CSV) file format. This process involves merging
data from different sensors and making a unified dataset,
which contains comprehensive information about the water
in each water treatment plant. This integrated data is then
organized into a tabular format, where each row corresponds
to a specific data entry, and each column represents different
characteristics of water. Finally, the data is stored in CSV
file format, which provides a structured and easily accessible
format for further analysis.These features serve as the basis
for predicting the potability of water, with various ML
techniques utilized to analyze and classify the data. The
potability of water is predicted based on these features,
as listed in Table 2. For the analysis of the dataset, we used a
box plot to visually inspect the distribution of values for each
of the 11 numeric features. FIGURE 2 shows the box plots
of all the features. It makes it easier to interpret the data and
detect outliers. The box plot is plotted on scaled data because
the range of all the data varies in terms of magnitude. This
helps compare the number of outliers and measures such as
the median and quartiles. The use of box plots proved to be a
valuable exploratory tool in our data analysis.

2) DATA PREPROCESSING
To prepare the collected data and gain insights into its
characteristics Exploratory Data Analysis (EDA) techniques
are employed. EDA involves various methods to understand
the dataset’s structure, patterns and relationships. EDA helps
us visualize the data in the form we want.
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FIGURE 1. Proposed model.

FIGURE 2. Box plot of all features.

In the current context, EDA techniques used are statis-
tical analysis, data visualization, and feature engineering.
Statistical analysis played a vital role in understanding the
characteristics of the collected data and gaining insights into
the water parameters that are relevant in water potability
prediction. Since we have a classification problem here,
we first conducted a chi-square test for independence to
determine if there was a significant association between
variables. It provided us with chi-squared statistics and
corresponding p-values. However, to gain a deeper under-
standing of the association’s magnitude, we also calculated
Cramer’s V. Cramer’s V is a measure of association that

TABLE 2. Description of dataset features.

considers the chi-squared statistic, the total number of
observations, and the dimension of the contingency table. The
highest value we got by associating each attribute with the
potability was the water quality index (WQI), which was very
close to 1.

The data visualization techniques were employed to
understand the data better visually. Histograms and density
plots were used to visualize the range, shape, and spread
of the data attributes. Scatter plots were used to explore the
relation between numerical relations.

To enhance the performance and predictive power of our
model for the water treatment plant, feature engineering was
also used. First, relevant information was extracted from the
existing features. Numerical features like pH, conductivity
and Total dissolved solids(TDS) were scaled and normalized
to ensure equal contributions to the model. Missing values
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in the dataset were handled through imputation. Feature
interactions were explored by creating combinations of
features, such as multiplying pH and conductivity, to capture
potential interactions affecting water potability. Additionally,
domain-specific features like water hardness and alkalinity
were calculated based on known relationships. Through these
feature engineering steps, our model was able to leverage
attributes, which led to improved performance and accurate
predictions.

3) MODEL TRAINING
After performing the EDA, the next step involved training
the dataset. We took the ratio of the train to test at 80:20,
and then we applied the AI algorithms to the train data. The
algorithms used are LR, BN, KNN, SGDC, and DT. For each
algorithm, the hyperparameters were fine-tuned using grid-
search. Grid-search is a systemic method that exhaustively
searches through a predefined set of hyper-parameters values
to identify the combination that yields the best performance
for a given metric, such as accuracy. For example, in LR,
some of the hyper-parameters used are regularization param-
eter(c), penalty, random-stat, andmax-iter. Similarly, we used
different sets of parameters for different algorithms. This
approach helped to maximize the performance of the models
by selecting the hyperparameters that yielded the best results
for the water potability classification task. FIGURE 3 shows
the flow of the AI layer in the proposed model.

Upon evaluating the models, it was observed that DT
yielded the highest accuracy, surpassing 0.9944. The algo-
rithm’s ability to create hierarchical decision rules based
on attribute thresholds proved effective in predicting water
potability accurately. Learning curves and ROC curves were
plotted to gain a deeper understanding of the performance
of the models across the training time frame. They allowed
a comprehensive analysis of the model and helped identify
the optimal threshold for classification. These evaluations
contributed to a robust understanding of the AI models’
performance and guided further refinements in the water
potability prediction system.

The overall combination of EDA, statistical analysis,
feature engineering, and the application of AI algorithms
provided an extensive framework for addressing the water
treatment plant problem. The findings and insights derived
from this process contributed to a strong understanding of
water potability prediction and informed decision-making in
ensuring that human life expectancy is enhanced.

The DT graph consists of a node in the tree that
corresponds to a decision or a feature test. DT make
predictions by traversing down the tree, where it evaluates
the features at each internal node until it reaches the leaf
node. Here, each leaf node decides the final predicted
decision class. In our case, the feature responsible for
deciding the first split in the decision tree is WQI. This is
because it gives the lowest gini-index. Upon plotting the
decision tree, a threshold of 49.87 is derived, above which
the water is classified as non-potable and below which it

FIGURE 3. Working of AI layer.

is potable for drinking. This approach to decision-making
allows for the accurate classification of water samples based
on their quality, facilitating informed decisions regarding
their potability and suitability for consumption.

C. BLOCKCHAIN LAYER
Blockchain is a technology that consists of records of blocks,
and these blocks are used to record transactions across mul-
tiple entities of the proposed framework. Blockchain offers
a digital, decentralized and immutable ledger that helps to
provide security to data stored in blocks. The data from the AI
layer is forwarded to this layer, where we implement a digital
smart contract that validates the incoming predicted data.
The smart contract ensures trust and reliability by eradicating
third-party intermediaries from the proposed framework, thus
improving the performance of the WTPs. The validated data
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Algorithm 1Water Treatment Plant Profiling Algorithm
1: Data Collection:
2: Collect data from different water treatment plants:

{w1,w2,w3, . . . ,wm} ∈ W
3: Each plant wi has sensors {s1, s2, s3, . . . , sn} ∈ S
4: Each sensor si collects data {δ1, δ2, δ3, . . . , δn} ∈ 1

from wi
5: Water Profiling Application:
6: Define a real-time water profiling application F
7: for all wi ∈ {1, 2, . . . ,m} do
8: for all sj ∈ {1, 2, . . . , n} do

9: wi(sj)
sends
−−−→

δj
F

10: end for
11: end for
12: Potability Prediction and AI-Based Classification:
13: DT = PredictPotabilityAndClassify(1)
14: Pass the data (1) to DT to get the predictions.
15: If water is drinkable:
16: F = δ

17: Else if water is not drinkable:
18: F = δ′

19: Blockchain Integration:
20: Utilize blockchain for secure data storage.
21: Security Measures:
22: Implement security measures to resist attacks.
23: Evaluation:
24: Evaluate the proposed model based on performance

metrics.
25: Results:
26: Proposed model outperforms with accuracy

(99.41%).

Algorithm 2 Predict Potability and Classify
1: function (PredictPotabilityAndClassify Data δ)
2: Initialize a Decision Tree classifier DT
3: Choose the feature that results in the lowest Gini

index for the first split
4: Set a threshold value based on the chosen feature
5: Split the node based on the threshold value
6: Recursively repeat the process for each child node

until a stopping criterion is met
7: Make predictions at the leaf nodes
8: return DT
9: end function

is forwarded to the IPFS (on-site storage), where it computes
the hash and is associated with a unique content identifier.
Next, the hash is relaid to the blockchain’s immutable ledger;
this improves the response time of the blockchain network.
The rationale behind this is that the raw WTP data is not
stored inside the immutable ledger; instead, only the hash is
stored. The blockchain members can retrieve the associated
data by calling the content identifier from the IPFS web

console. Since the size of hash data is relatively lower than
the raw data, storing hash data substantially improves the
response time of the blockchain in the proposed work.

In the proposed framework, the blockchain layer allows
only authorized users, such as water suppliers, the gov-
ernment and entities that use the treated water from WTP,
to participate in secured water-based information. It serves
as an integrated bridge between government authorities and
water suppliers for predicting the effects of polluted water on
the human body and life expectancy.

D. PROFILING LAYER
The data gathered is safely distributed to several WTPs,
to improve the water treatment as a whole. Safe sharing
guarantees a proper amount of chemical application to
non-potable water. Through the utilization of sophisticated
profiling methods, the system creates a thorough grasp of
characteristics related to water quality. This enables plants to
make choices that improve the quality of water by changing
water profiling procedures, which in turn helps prolong
human life expectancy.

Algorithm 1 describes the entire flow of the proposed
blockchain and AI-based model.

V. RESULTS AND DISCUSSIONS
In this section, we discuss the performance analysis of
the proposed framework, which is comprised of AI and
blockchain-based results. We considered different perfor-
mance parameters, such as statistical measures (accuracy,
ROC, learning curve) and blockchain’s scalability. A detailed
explanation of each parameter is as follows.

A. EXPERIMENTAL SETUP
The proposed framework is implemented in Google Colab’s
integrated development environment (IDE) with Python
3.10.5. language. To support this language, we used libraries
like Numpy, Pandas, Scikit-learn, Seaborn, and Matplotlib.
We used pandas for data manipulation and data analysis,
which allows us to work with data in a structured way, such as
CSV files. Numpy has been used for numerical calculations
and to efficiently calculate and evaluate matrices for data
analysis and scientific computing. The scikit-learn library is
another essential library we use for model selection and eval-
uation, classification, and data processing. Further, we used
the Seaborn library, which is used for data visualization
and graph plotting, styling and customizing. The Matplotlib
library has been used to plot graphs and curves, which makes
it easy for us to visualize data and statistics.

The data coming from the AI layer is forwarded to the
Ethereum-based public blockchain, which is implemented in
the Remix IDE (0.39.1). It is an online platform for devel-
oping and testing smart contracts on the Ethereum-based
public blockchain. It helps to write, compile, deploy and
debug the smart contracts using the Solidity programming
language (0.8.23).
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FIGURE 4. Confusion matrix.

It helps to create our smart contracts using different
functions such as startPlant() to start a particular WTP; after
starting the plant, only one can add or release the water using
addWater() and releaseWater() functions, once the plant is
running addSample() and getSample() functions are used
for profiling of water. These samples contain the details of
water parameters, which are important for classifying the
water sample into potable and non-potable water. After that,
the stopPlant() function is used to stop the WTP. Once the
smart contract is executed, the authenticated information is
transferred to the IPFS-based blockchain ledger. Further,
we used calculated precision, recall, and F1-score to calculate
the model performance; these are calculated based on
the confusion matrix. The learning curve is visualized to
understand the model, which shows the rate of learning of the
Machine Learning model and the performance of the training
and validation datasets. The receiver operating characteristic
(ROC) curve is used to evaluate processes in the binary
classification model comprehensively.

B. AI-BASED RESULTS
This section shows different AI-based algorithm and their
performance analysis to profile WTP as potable or not
potable. To evaluate the performance of the AI algorithms
and to understand the results, we need to understand and
assess the model based on precision, recall and F1 score. It is
important to find the reliability of a model. FIGURE 4 shows
the confusion matrix of the DT model. It plots the values
of true positive (TP), false positive (FP), true negative (TN)
and false Negative (FN). The model classifies the drinkable
sample as positive. In contrast to this, negative class classifies
the data points that have a negative impact, which in this case
are data points that are classified under non-drinkable water.
TP measures the extent to which data points are correctly
classified under positive. FP measures the extent to which
data points are negative and classified as positive. Similarly,
FN measures the extent to which negative data points are
correctly classified, and TN measures the extent to which
negative data are classified as positive. The confusion matrix
is used to calculate the precision and the recall.

FIGURE 5. Learning curve.

FIGURE 6. Accuracy comparison of all machine learning models.

The learning curve shows an analysis of accuracy changes
with varying learning efforts. It depicts how a model learns
over time graphically; thus, this helps to represent the
percentage of rate improvement. This helps to understand the
variance of accuracy with the amount of data trained. The
steeper the slope, the better the model. From FIGURE 5,
we can infer that the model learns incrementally from the
data. The accuracy increases with increases in the training
data set, giving the final accuracy of 0.9944. FIGURE 6 is
a bar graph that compares the accuracy of all the learning
algorithms. From the analysis of the curve, we can conclude
that DT is getting higher accuracy (99.44%) compared to
other algorithms, such as LR, NB, SGDC, and KNN. The
reason DT is getting better accuracy is that according to the
algorithm, the feature to use as a tree node is a feature that has
a very important role in classifying a data point, i.e., WQI.

Precision measures the accuracy of the positive predictions
made by the model. It is calculated as the ratio of TP to the
sum of TP and FP. Recall measures the ability of the model
to identify positive instances correctly. It is calculated as the
ratio of TP to the sum of TP and FN predictions. The F1 score
has been calculated to find the balance value of both precision
and recall. The DT model showcased a high precision value
of 1, a recall of 0.990291, and an f1-score of 0.995122.
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FIGURE 7. Log-loss curve comparison.

FIGURE 8. ROC curve comparison.

A ROC determines the degree of separability of classes.
It is a plot between True Positive Rates (TPR) and False
Positive Rates (FPR). FIGURE 8 shows the ROC Curve of all
the algorithms used in the analysis. The ROC curve was used
to represent the probability graph and show the performance
of the classification model. The FPR values are plotted on the
x-axis, and the TPR values are plotted on the y-axis. A good
ROC curve should have high TPR and low FPR, leading to
the curve covering the top left corner of the graph. Here,
the ROC curve is used to compare the output of different
classifiers. By comparing all the curves, we can infer that
decision trees have the most accurate results and almost a
perfect ROC curve.

The loss evaluation has been done using a log-loss
curve. It indicates how close the prediction probability is
to the corresponding actual values. FIGURE 7 shows the
comparison of log losses of all models. The DT classifier
has a log-loss of 0.2, showcasing its exceptional predictive
accuracy and reliability. Among the models evaluated, the
SGDC classifier demonstrates the lowest log-loss, while the
KNN model exhibits the highest log-loss. In addition to
evaluating various evaluation metrics of the ML models, it’s
crucial to consider the training times as they can impact
practical implementation. Comparing the training times of the

FIGURE 9. Training time comparison of ML models.

FIGURE 10. Smart contract interface.

different algorithms, we find that the algorithms KNN, NB,
and DT take comparatively less training time with values of
0.0046, 0.0047, and 0.0054 seconds respectively. As we can
see, the model with the best evaluation has a low training time
compared to LR and SGDC, which have training times of
0.028 and 0.0182. The comparison is shown in FIGURE 9
using a bar graph.

C. BLOCKCHAIN-BASED RESULTS
We stored the data in the blockchain network via smart
contract. This smart contract is built and deployed using
Remix IDE. The interface of the deployed contract is shown
in FIGURE 10. This interface contains various functions
and variables that are specified in the smart contract such
as startPlant() to start a particular WTP; after starting
the plant only one can add or release the water using
addWater() and releaseWater() functions, once the plant is
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FIGURE 11. Scalability comparison with proposed blockchain with IPFS
and conventional blockchain.

running addSample() and getSample() functions are used
for profiling of water. These samples contain the details
of water parameters, which are important for classifying
the water sample into potable and non-potable water. After
that stopPlant() function is used to stop the WTP. It has
isOperating variable of boolean type to check whether the
WTP is in operating mode or not, and whenever we call
the stopPlant() function, this variable is set to false, which
doesn’t allow to add or release water functionalities of WTP.
Also, this has waterLevel variable to check the water level
of WTP and whenever we use the functionalities addWater()
and releaseWater(), the value ofwaterLevel will be increased
and decreased respectively. sampleCount variable is used to
check howmany samples are being added using addSample()
functionality. getSample() functionality is used to retrieve the
sample which is used for profiling. Hence, WTP’s operations
are controlled using smart contracts.

In the blockchain network, every user runs its node, and
nodes communicate with each other for data exchange. The
proposed framework utilized IPFS, which computes the hash
for the validated data from the smart contract. The hashed
data is then forwarded to the blockchain’s immutable ledger
for an efficient storage and retrieval process. Since raw data
is not stored in the ledger, hashed data is stored instead,
resulting in a lower processing delay in the blockchain
network. As a result, the blockchain node processes more
data transactions, improving scalability. FIGURE 11 shows
the scalability comparison between the traditional blockchain
(not using IPFS) and the proposed blockchain (using IPFS).
Based on the aforementioned facts related to the IPFS
integration in blockchain, we can infer from the FIGURE 11
that the proposed blockchain has better scalability compared
to the traditional blockchain. Additionally, we also compared
the blockchain’s scalability with different response times
(10s, 50s, and 70s) in FIGURE 12. It can be seen from
FIGURE 12 that the higher the response time, the lower
the scalability, i.e., response time = 70s, scalability = 5 at
transaction 120. Conversely, if the response time is lower

FIGURE 12. Scalability comparison with blockchain’s response time.

(due to IPFS), the scalability shows remarkable growth, i.e.,
response time = 10s, scalability = 20 at transaction 120.

VI. CONCLUSION
Determining the potability of water presents a significant
challenge for researchers due to the influence of external
factors. Traditionally, water quality assessment methods rely
on subjective analysis and limited attributes. To overcome
these limitations, machine learning and deep learning algo-
rithms have gained attention in recent years for the potential
of water potability prediction. We have aimed to assess water
potability using a machine-learning model. We explored the
effectiveness of different machine learning algorithms like
DT, KNN, NB, SGDC, and RF. Among the evaluated models,
the decision tree algorithms emerged as the most accurate
for determining water portability. By leveraging the decision
tree algorithm, we can enhance the process of water quality
assessment. The reliable classification provided by thismodel
can aid in making informed decisions related to water
treatment and resource allocation, ultimately contributing to
improved public health and safety. It is important to note
that water potability prediction is a complex task influenced
by external factors. We plan to advance hybrid models to
improve prediction accuracy in future research.

REFERENCES
[1] Ministry of Jal Shakti. (2022). Deaths Due to Lack of Clean Water.

Accessed: Mar. 21, 2022. [Online]. Available: https://pib.gov.in/Press
ReleaseIframePage.aspx?PRID=1807831#:~:text=Composite%20Water%
20Management%20Index%20(CWMI,of%20India’s%20projected%20po
pulation%20by

[2] C. G. Madhusoodhanan, K. G. Sreeja, and T. I. Eldho, ‘‘Climate change
impact assessments on the water resources of India under extensive human
interventions,’’ Ambio, vol. 45, no. 6, pp. 725–741, Oct. 2016.

[3] Water, Sanitation and Hygiene (Wash). Accessed: Mar. 14, 2024.
[Online]. Available: https://www.who.int/health-topics/water-sanitation-
and-hygiene-wash#tab=tab_2

[4] N. Luvhimbi, T. G. Tshitangano, J. T. Mabunda, F. C. Olaniyi, and
J. N. Edokpayi, ‘‘Water quality assessment and evaluation of human health
risk of drinkingwater from source to point of use at thulamelamunicipality,
limpopo province,’’ Sci. Rep., vol. 12, no. 1, p. 6059, Apr. 2022.

[5] L. Lin, H. Yang, and X. Xu, ‘‘Effects of water pollution on human health
and disease heterogeneity: A review,’’ Frontiers Environ. Sci., vol. 10,
Jun. 2022, Art. no. 880246.

49164 VOLUME 12, 2024



D. S. Thakkar et al.: Blockchain-Orchestrated Intelligent WTP Profiling Framework

[6] A. H. Stevenson, ‘‘Studies of bathing water quality and health,’’ Amer.
J. Public Health Nations Health, vol. 43, pp. 529–538, May 1953.

[7] M. Marmot, T. Atinmo, T. Byers, J. Chen, T. Hirohata, A. Jackson,
W. James, L. Kolonel, S. Kumanyika, and C. Leitzmann, Food, Nutrition,
Physical Activity, and the Prevention of Cancer: A Global Perspective.
Washington, DC, USA: World Cancer Research Fund/American Institute
for Cancer Research, 2007.

[8] T. Page, R. H. Harris, and S. S. Epstein, ‘‘Drinking water and
cancer mortality in Louisiana,’’ Science, vol. 193, no. 4247, pp. 55–57,
Jul. 1976.

[9] B. S. Rathi, P. S. Kumar, and D.-V.-N. Vo, ‘‘Critical review on hazardous
pollutants in water environment: Occurrence, monitoring, fate, removal
technologies and risk assessment,’’ Sci. Total Environ., vol. 797, Nov. 2021,
Art. no. 149134.

[10] R. Noori, F. Farahani, C. Jun, S. Aradpour, S. M. Bateni, F. Ghazban,
M. Hosseinzadeh,M.Maghrebi,M. R. V. Naseh, and S. Abolfathi, ‘‘A non-
threshold model to estimate carcinogenic risk of nitrate-nitrite in drinking
water,’’ J. Cleaner Prod., vol. 363, Aug. 2022, Art. no. 132432.

[11] Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the
First and Second Addenda, World Health Org., Geneva, Switzerland, 2022.

[12] B. Stride, C. Dykes, S. Abolfathi, M. Jimoh, G. D. Bending, and J. Pearson,
‘‘Microplastic transport dynamics in surcharging and overflowing man-
holes,’’ Sci. Total Environ., vol. 899, Nov. 2023, Art. no. 165683.

[13] R. Noori, M. Maghrebi, S. Jessen, S. M. Bateni, E. Heggy, S. Javadi,
M. Noury, S. Pistre, S. Abolfathi, and A. AghaKouchak, ‘‘Decline in
Iran’s groundwater recharge,’’ Nature Commun., vol. 14, no. 1, p. 6674,
Oct. 2023.

[14] F. Chigondo, B. C. Nyamunda, and V. Bhebhe, ‘‘Extraction of water
treatment coagulant from locally abundant kaolin clays,’’ J. Chem.,
vol. 2015, pp. 1–7, Jul. 2015.

[15] Y.-G. Park, W. H. Lee, and K. Kim, ‘‘Different adsorption behavior
between perfluorohexane sulfonate (PFHxS) and perfluorooctanoic acid
(PFOA) on granular activated carbon in full-scale drinking water treatment
plants,’’ Processes, vol. 9, no. 4, p. 571, Mar. 2021.

[16] P. Guzmán-Avalos, D. Molinero-Hernández, S. Galván-González,
N. Herrera-Sandoval, G. Solorio-Díaz, and C. Rubio-Maya, ‘‘Numerical
design and optimization of a hydraulic micro-turbine adapted to a
wastewater treatment plant,’’ Alexandria Eng. J., vol. 62, pp. 555–565,
Jan. 2023.

[17] D. Goodarzi, S. Abolfathi, and S. Borzooei, ‘‘Modelling solute transport
in water disinfection systems: Effects of temperature gradient on the
hydraulic and disinfection efficiency of serpentine chlorine contact tanks,’’
J. Water Process Eng., vol. 37, Oct. 2020, Art. no. 101411.

[18] Y. Qiu, S. Ekström, B. Valverde-Pérez, B. F. Smets, J. Climent,
C. Domingo-Félez, R. M. Cuenca, and B. G. Plósz, ‘‘Numerical modelling
of surface aeration and N2O emission in biological water resource
recovery,’’Water Res., vol. 255, May 2024, Art. no. 121398.

[19] S. J. Sugumar, R. Sahana, S. Phadke, S. Prasad, and G. R. Srilakshmi,
‘‘Real time water treatment plant monitoring system using IoT and
machine learning approach,’’ in Proc. Int. Conf. Design Innov. 3Cs
Compute Communicate Control (ICDI3C), Jun. 2021, pp. 286–289.

[20] F. Granata, S. Papirio, G. Esposito, R. Gargano, and G. De Marinis,
‘‘Machine learning algorithms for the forecasting of wastewater quality
indicators,’’Water, vol. 9, no. 2, p. 105, Feb. 2017.

[21] U. Safder, J. Kim, G. Pak, G. Rhee, and K. You, ‘‘Investigating machine
learning applications for effective real-time water quality parameter
monitoring in full-scale wastewater treatment plants,’’ Water, vol. 14,
no. 19, p. 3147, Oct. 2022.

[22] J. Patel, C. Amipara, T. A. Ahanger, K. Ladhva, R. K. Gupta, H. O. Alsaab,
Y. S. Althobaiti, and R. Ratna, ‘‘A machine learning-based water potability
prediction model by using synthetic minority oversampling technique and
explainable AI,’’Comput. Intell. Neurosci., vol. 2022, pp. 1–15, Sep. 2022.

[23] A. Alqahtani, M. I. Shah, A. Aldrees, and M. F. Javed, ‘‘Comparative
assessment of individual and ensemble machine learning models for
efficient analysis of river water quality,’’ Sustainability, vol. 14, no. 3,
p. 1183, Jan. 2022.

[24] D. Jalal and T. Ezzedine, ‘‘Performance analysis of machine learning algo-
rithms for water quality monitoring system,’’ in Proc. Int. Conf. Internet
Things, Embedded Syst. Commun. (IINTEC), Dec. 2019, pp. 86–89.

[25] P. Wongburi and J. K. Park, ‘‘Prediction of sludge volume index in a
wastewater treatment plant using recurrent neural network,’’ Sustainability,
vol. 14, no. 10, p. 6276, May 2022.

[26] S. Manimekalai, P. B, F. D. Shadrach, V. Lakshmanan, T. Daniya, and
T. Guha, ‘‘Artificial neural network with extreme learning machine-based
wastewater treatment systems,’’ in Proc. IEEE 2nd Mysore Sub Sect. Int.
Conf. (MysuruCon), Oct. 2022, pp. 1–6.

[27] K. Banerjee, V. Bali, N. Nawaz, S. Bali, S. Mathur, R. K. Mishra,
and S. Rani, ‘‘A machine-learning approach for prediction of water
contamination using latitude, longitude, and elevation,’’ Water, vol. 14,
no. 5, p. 728, Feb. 2022.

[28] S. D. Narendar, C. Murugamani, P. R. Kshirsagar, V. Tirth, S. Islam,
S. Qaiyum, B. Suneela,M. Al Duhayyim, andY. A.Waji, ‘‘IoT based smart
wastewater treatment model for Industry 4.0 using artificial intelligence,’’
Sci. Program., vol. 2022, pp. 1–11, Feb. 2022.

[29] J. Donnelly, A. Daneshkhah, and S. Abolfathi, ‘‘Physics-informed neural
networks as surrogate models of hydrodynamic simulators,’’ Sci. Total
Environ., vol. 912, Feb. 2024, Art. no. 168814.

[30] Y. Gao, W. Xiong, and C. Wang, ‘‘Numerical modelling of a dam-
regulated river network for balancing water supply and ecological flow
downstream,’’Water, vol. 15, no. 10, p. 1962, May 2023.

[31] M. N. Koleva, C. A. Styan, and L. G. Papageorgiou, ‘‘Optimisation
approaches for the synthesis of water treatment plants,’’ Comput. Chem.
Eng., vol. 106, pp. 849–871, Nov. 2017.

[32] K. G. Aparna and R. Swarnalatha, ‘‘Dynamic optimization of a wastewater
treatment process for sustainable operation using multi-objective genetic
algorithm and non-dominated sorting cuckoo search algorithm,’’ J. Water
Process Eng., vol. 53, Jul. 2023, Art. no. 103775.

[33] O. Ajayi, A. Bagula, and H. Maluleke, (2022), ‘‘Dataset for assessing
water quality for drinking and irrigation purposes using machine learning
models,’’ IEEE DataPort, doi: 10.21227/trcf-1s03.

DHRUV SARJU THAKKAR is currently pursuing
the Bachelor of Technology degree in computer
engineering with the Institute of Technology,
Nirma University. His current interests include
deep learning, data science, explainable AI, and
blockchain.

ANERI THAKKER is currently pursuing the
Bachelor of Technology degree in computer engi-
neering with the Institute of Technology, Nirma
University. Her research interests include deep
learning, data science, and blockchain.

RAJESH GUPTA (Member, IEEE) received the
Bachelor of Engineering degree from the Uni-
versity of Jammu, India, in 2008, the master’s
degree in technology from ShriMata Vaishno Devi
University, Jammu, India, in 2013, and the Ph.D.
degree in computer science and engineering from
Nirma University, Ahmedabad, Gujarat, India,
in 2023, under the supervision of Dr. Sudeep
Tanwar. He is currently an Assistant Professor
with Nirma University. He has authored/coau-

thored some publications (including papers in SCI-indexed journals
and IEEE ComSoc-sponsored international conferences). Some of his
research findings are published in top-cited journals and conferences,
such as IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, IEEE TRANSACTIONS

ON NETWORK AND SERVICE MANAGEMENT, IEEE TRANSACTIONS ON NETWORK

SCIENCE AND ENGINEERING, IEEE TRANSACTIONS ON GREEN COMMUNICATIONS

AND NETWORKING, IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS,
IEEE Network Magazine, IEEE INTERNET OF THINGS JOURNAL, IEEE
Internet of Things Magazine, Computer Communications, Computer and
Electrical Engineering, International Journal of Communication Systems
(Wiley), Transactions on Emerging Telecommunications Technologies
(Wiley),Physical Communication (Elsevier), IEEE ICC, IEEE INFOCOM,

VOLUME 12, 2024 49165

http://dx.doi.org/10.21227/trcf-1s03


D. S. Thakkar et al.: Blockchain-Orchestrated Intelligent WTP Profiling Framework

IEEE GLOBECOM, IEEE CITS, and many more. His H-index is 31 and
i10-index is 67. His research interests include device-to-device communica-
tion, network security, blockchain technology, 5G communication networks,
and machine learning. He is an Active Member of the ST Research
Laboratory (www.sudeeptanwar.in). He was a recipient of the Doctoral
Scholarship from the Ministry of Electronics and Information Technology,
Government of India, under the Visvesvaraya Ph.D. Scheme. He was a
recipient of the Student Travel Grant from WICE-IEEE to attend IEEE ICC
2021 held in Canada. He received the best research paper awards from IEEE
ECAI 2021, IEEE ICCCA 2021, IEEE IWCMC 2021, and IEEE SCIoT
2022. His name has been included in the list of Top 2% scientists worldwide
published by Stanford University, USA, consecutively in 2021, 2022, and
2023. He attended fully-funded the most prestigious ACM’s Heidelberg
Laureate Forum 2023 held at Heidelberg University, Germany. He was
felicitated by Nirma University for their research achievements bagged,
from 2019 to 2022.

NILESH KUMAR JADAV (Graduate Student
Member, IEEE) received the bachelor’s and
M.Tech. degrees from Gujarat Technological Uni-
versity (GTU), Gujarat, India, in 2014 and 2018,
respectively. He is currently a full-time Ph.D.
Research Scholar with the Department of Com-
puter Science and Engineering, Nirma University,
Ahmedabad, Gujarat. He has authored/coauthored
publications (including papers in SCI-indexed
journals and IEEE ComSoc-sponsored interna-

tional conferences). Some of his research findings are published in
top-cited journals and conferences, such as IEEE TRANSACTIONSON INDUSTRIAL
INFORMATICS, IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT,
IEEE OPEN JOURNALOFVEHICULAR TECHNOLOGY,Digital Communications and
Networks (Elsevier),Computers and Electrical Engineering (Elsevier), IEEE
INFOCOM, IEEE ICC, and IJCS. His research interests include artificial
intelligence, network security, 5G communication networks, and blockchain
technology. He is an Active Member of the ST Research Laboratory
(www.sudeeptanwar.in).

SUDEEP TANWAR (Senior Member, IEEE) is
currently a Professor with the Computer Science
and Engineering Department, Institute of Technol-
ogy, Nirma University, India. He is also a Vis-
iting Professor with Jan Wyzykowski University,
Polkowice, Poland, and the University of Pitesti,
Pitesti, Romania. He has authored two books,
edited 13 books, and more than 270 technical
papers, including top journals and top conferences,
such as IEEE TRANSACTIONS ON NETWORK SCIENCE

AND ENGINEERING, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS, IEEE WIRELESS COMMUNICATIONS,
IEEE NETWORK, ICC, GLOBECOM, and INFOCOM. He initiated the
research field of blockchain technology adoption in various verticals,
in 2017. His H-index is 68. He actively serves his research communities in
various roles. His research interests include blockchain technology, wireless
sensor networks, fog computing, smart grids, and the IoT. He is a member of
the Technical Committee on Tactile Internet of the IEEE Communication
Society. He is a Senior Member of CSI, IAENG, ISTE, and CSTA.
He received the Best Research Paper Awards from IEEE GLOBECOM
2018, IEEE ICC 2019, and Springer ICRIC-2019. He has served many
international conferences as a member of the organizing committee, such
as the Publication Chair for FTNCT-2020, ICCIC 2020, and WiMob2019;
a member of the Advisory Board for ICACCT-2021 and ICACI 2020; the
Workshop Co-Chair for CIS 2021; and the General Chair for IC4S 2019 and
2020 and ICCSDF 2020. He is serving on the editorial boards for Frontiers
of Blockchain,Cyber Security and Applications,Computer Communications,
International Journal of Communication Systems, and Security and Privacy.

GIOVANNI PAU (SeniorMember, IEEE) received
the bachelor’s degree in telematic engineering
from the University of Catania, Italy, and the
master’s (cum Laude) and Ph.D. degrees in
telematic engineering from the Kore University of
Enna, Italy. He is currently an Associate Professor
with the Faculty of Engineering and Architecture,
Kore University of Enna. He is the author/coauthor
of more than 100 refereed papers published in
journals and conference proceedings. His research

interests include wireless sensor networks, fuzzy logic controllers, intelligent
transportation systems, the Internet of Things, smart homes, and network
security. He is a member of the IEEE (Italy Section) and has been
involved in several international conferences as the session co-chair and
a technical program committee member. He serves/served as a leading
guest editor for the special issues of several international journals. He is an
Editorial Board Member and an Associate Editor of several journals, such as
IEEE ACCESS, Wireless Networks (Springer), EURASIP Journal on Wireless
Communications and Networking (Springer),Wireless Communications and
Mobile Computing (Hindawi), and Sensors (MDPI).

GULSHAN SHARMA received the B.Tech.,
M.Tech., and Ph.D. degrees. He is currently a
Senior Lecturer with the Department of Electrical
Engineering Technology, University of Johannes-
burg. He is also a Y-Rated Researcher with NRF
South Africa. His research interests include power
system operation and control and the application
of AI techniques to power systems. He is an
Academic Editor of International Transactions on
Electrical Energy System (Wiley) and a Regional

Editor of Recent Advances in Electrical and Electronic Engineering
(Bentham Science).

FAYEZ ALQAHTANI is currently a Full Profes-
sor with the Software Engineering Department,
College of Computer and Information Sciences,
King Saud University (KSU). He was appointed as
the Director of the Computer Division, Deanship
of Student Affairs. He has conducted research
projects in several areas of information and
communication technology, such asweb 2.0, infor-
mation security, enterprise architecture, software
process improvement, the Internet of Things, and

fog computing. He has participated in several academic events. He is
a member of several academic and professional associations, such as
the Association for Computing Machinery (ACM), Australian Computer
Society, and the Association for Information Systems.

AMR TOLBA (SeniorMember, IEEE) received the
M.Sc. and Ph.D. degrees from the Mathematics
and Computer Science Department, Faculty of
Science, Menoufia University, Egypt, in 2002 and
2006, respectively. He is currently a Full Professor
of computer science with King Saud University
(KSU), Saudi Arabia. He serves as a technical
program committee (TPC) member for several
conferences. He served as an associate editor/a
guest editor for several ISI journals. He has

authored/coauthored over 180 scientific papers in top-ranked (ISI) inter-
national journals and conference proceedings. His main research interests
include artificial intelligence (AI), the Internet of Things (IoT), data science,
and cloud computing.

Open Access funding provided by ‘Università degli Studi di Enna "KORE"’ within the CRUI CARE Agreement

49166 VOLUME 12, 2024


