
Received 14 March 2024, accepted 30 March 2024, date of publication 8 April 2024, date of current version 24 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3385634

Enabling Service-Oriented Manufacturing
Through Architectures, Models,
and Protocols
SEBASTIANO GAIARDELLI 1, (Student Member, IEEE), STEFANO SPELLINI2, MARCO PANATO2,
CARLO TADIELLO 2, MICHELE LORA 1, (Member, IEEE), DONG SEON CHENG 1,
AND FRANCO FUMMI 1, (Member, IEEE)
1Department of Engineering for Innovation Medicine (DIMI), University of Verona, 37134 Verona, Italy
2FACTORYAL S.r.l., 37057 San Giovanni Lupatoto, Italy

Corresponding author: Sebastiano Gaiardelli (sebastiano.gaiardelli@univr.it)

This work was supported in part by European Union’s Horizon 2020 Research and Innovation Program through the Marie
Skłodowska-Curie under Grant 894237, and in part by European Union Next-GenerationEU (Piano Nazionale di Ripresa e Resilienza
(PNRR)—Missione 4, Componente 2, and Investimento 1.5—D.D. 1058 23/06/2022) through the PNRR Research Activities of the
Consortium Interconnected North-Est Innovation Ecosystem (iNEST) under Grant ECS_00000043.

ABSTRACT Modern production lines are often composed of machinery from different vendors that must
be connected with each other to increase the overall interoperability and flexibility. A common problem that
arises in such systems is the complexity of the configuration task: they usually require each component to
be manually configured. Thus, machinery requires different configuration strategies, negatively impacting
scalability and increasing the chance of human errors. Furthermore, each time the manufacturing system has
to be updated, the entire procedure must be repeated. This paper proposes a software architecture abstracting
the complexity of existing production lines by enabling the service-oriented manufacturing paradigm. Then,
it presents a strategy to model manufacturing systems, covering the topology of the production plant,
machinery, and production recipes. The paper also proposes a model-based methodology to automatically
configure the reference software architecture and hence the machines in the system. The application of the
contributions to a fully-fledged production line shows the effectiveness of relying on model-based automatic
configuration.

INDEX TERMS Smart manufacturing, computer aided manufacturing, flexible manufacturing systems,
software architecture, systems modeling.

I. INTRODUCTION
Information technologies in manufacturing enable a wide
set of new functionalities in manufacturing systems, making
production lines more flexible and turning them into complex
Cyber-Physical Production Systems (CPPSs). To maximize
the benefits of such a revolution, principles from the Service-
oriented Architecture (SoA) paradigm has been introduced
in manufacturing [1], generating the concept of Service-
oriented Manufacturing (SoM) [2]. This paradigm assumes
that the functionalities carried out by pieces of equipment

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiwu Li .

are organized into ‘‘machine services’’, hiding internal
implementation details, and exposing only the machine’s
interaction protocols, by means of specific drivers [3].
Exploiting service-oriented principles implies moving

complexity from the system design phase to the system
configuration phase [4]. However, configuring a manufactur-
ing system is typically a time-consuming and manual task.
It consists of setting upmachines and the controlling software
architecture. Furthermore, each component’s configuration
is specific and tightly coupled with other component’s
configurations. This strict relation is typically the most
common source of errors. Furthermore, the same procedure
occurs each time the configuration must be modified during

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 85259

https://orcid.org/0000-0002-9451-1957
https://orcid.org/0000-0002-1789-9900
https://orcid.org/0000-0002-6224-4313
https://orcid.org/0009-0004-4177-1749
https://orcid.org/0000-0002-4404-5791
https://orcid.org/0000-0003-1547-5503


S. Gaiardelli et al.: Enabling Service-Oriented Manufacturing

FIGURE 1. Overview of the proposed methodology, centered around System Modeling Language (SysML). The left side depicts the conceptual
model represented using the SysML language. The right side depicts the proposed SoM architecture, automatically configurable from models.

the system’s life-cycle, or when newmachines are introduced
or replaced in the system.

For such reasons, we define a software architecture able
to support SoM principles, and an automated configuration
methodology for SoM production systems, which relies on
Model-based System Engineering (MBSE) techniques [5].
An overview of the methodology is depicted in Figure 1.
At the core, SysML is used to model both the manufacturing
architecture and the desired architecture functionalities. The
structure of the proposed SoM architecture is represented
in the right portion of Figure 1. It consists of three main
components: decision through the Automation Manager,
communication through a dedicated factory communication
infrastructure, and control through OPCUnified Architecture
(OPC UA) servers and machine drivers. Starting from the
bottom, the machines are connected with the architecture
through the communication protocol OPC UA. Industrial
Internet of Things (IIoT) message brokers enable communi-
cation between the components of the architecture; the choice
of the appropriatemessage broker for the architecture is based
on a qualitative and quantitative analysis, which is presented
later in this paper. On top, the Adaptive Manufacturing Con-
troller (AMC) handles the interaction with theManufacturing
Execution System (MES) and the machines. The architecture
is designed according to the principles of the cloud-native
architectures, which are extensively used for SoAs [6]. The
left side of Figure 1 reports the architecture functionalities.
On the one hand, we propose a methodology to create SysML
models of machines and drivers by reusing structural models
expressed using different languages (e.g., the Automation
Markup Language (AutomationML)). On the other hand,
we propose a strategy to model production tasks and
recipes. The resulting models encapsulate the information
necessary to automatically generate the configuration and
code necessary to control the reference SoM architecture.

The main contributions can be summarized as follows:
1) A cloud-native SoM architecture, which introduces

advanced scheduling and dynamic production recon-
figuration, extending the functionalities of a traditional
MES. While the proposed architecture is general, an
in-depth analysis of the most common IIoT message
brokers will guide the concrete realization of the
proposed architecture;

2) A modeling strategy to represent manufacturing sys-
tems using SysML, defining the topology of the
plant, the production recipes to be executed and the
requirements of the system;

3) A methodology relying on the SysML models to
generate the configuration files for the proposed
SoM architecture and automating its deployment on a
Kubernetes cluster;

4) The application of the architecture and its configuration
on a full-fledged reconfigurable manufacturing system.
The results estimate the necessary effort to add a
new machine, comparing it to a manual approach. In
addition, we compare the scheduling implemented by
a commercial MES with the one implemented on top of
our proposed architecture, showcasing its advantages.

The paper is organized as follows: Section II presents
the necessary background and analyzes the state-of-the-
art software architectures for manufacturing systems and
modeling of CPPSs. Section III describes the proposed SoM
architecture. Sections IV and V describe the model-based
methodology to specify the architecture and the functional-
ities of a production system. Section VI details the method-
ology for exploiting the models to automatically configure
of the architecture. Section VII presents a qualitative and
quantitative analysis of the most common message brokers;
the analysis will be used to concretely instantiate the
SoM-enabled architecture to control the system used in

85260 VOLUME 12, 2024



S. Gaiardelli et al.: Enabling Service-Oriented Manufacturing

Section VIII to experimentally evaluate the contribution in a
full-fledged production system. Finally, Section IX will draw
some conclusions.

II. BACKGROUND
This section will first summarize the state-of-the-art and
practice on software architectures for production systems;
then, it describes the current literature on production systems
modeling. Finally, it presents the most used communication
protocols used in IIoT systems.

A. SOFTWARE ARCHITECTURES FOR MANUFACTURING
SYSTEMS
Software governing manufacturing systems is organized
according to the Automation Pyramid since 1985 [7], and it is
still in use alsowhen looking at themost recent trends, such as
the German plan for Industrie 4.0 [8] orMade in China 2025.
According to the automation pyramid, systems are organized
into five layers, from the bottom up to the top:

• the Field Level is made of the sensors and actuators
physically interfacing with themachinery on the produc-
tion floor, as well as the software governing sensors and
actuators;

• theControl Level is composed by a set of Programmable
Logic Controllers (PLCs), each one governing the
control algorithms of each machine in the plant;

• the Supervisory Level allows human operators to
monitor the production processes being carried on by
the system. Its main components are the Supervisory
Control and Data Acquisition (SCADA) systems and the
Human-Machine Interaction (HMI) interfaces;

• the Planning level is in charge of deciding which
operations has to be carried out and how to allocate the
resources already available. The decisions are taken by
the MES, the main actor on the level.

• the Management level connects the production facil-
ities with the other areas of the company. Its main
component is the Enterprise Resource Planning (ERP)
software, which takes care of planning the resources
supplying, their management, and in general, it plans the
medium-term activities of a production system.

The complexity of actual architectures additionally
demand the definition of a standard terminology and
a unique data representation used throughout all the
automation levels. For this reason, the International Society
of Automation (ISA) defined the IEC 62264 standard (also
known as ISA-95) [9]. The standard defines functionalities,
responsibilities, standard terminology, and data exchange
within the pyramid and between the production and corporate
parts of a manufacturing company.

While the automation pyramid has been guiding the design
of manufacturing systems, the strict delimitation among its
layers may limit the flexibility of production lines. Hence,
this design is being replaced in more recent work with
network-structured architectures. However, the ISA-95

standard is still able to capture the aspects of this kind of
architectures [10].

As a matter of fact, our proposed architecture is both
network-structured and a classic automation pyramid and its
design can be fully expressed using the concepts outlined in
the ISA-95 standard.

B. PRODUCTION SYSTEMS MODELING
MBSE techniques [11] allow the encapsulation and abstrac-
tion of systems architectures and functionalities into models
that are able to capture widely heterogeneous components,
dynamics, and behaviors, as well as a large variety of different
viewpoints [12]. Thus, the MBSE approach is especially apt
for designing advanced manufacturing systems [13], [14].

In particular, SysML and AutomationML are popular
modeling languages in this field [15]. SysML is widely used
for software and systems model engineering. It provides a
set of diagrams over Unified Modeling Language (UML),
to represent systems and systems-of-systems in addition to
plain software. As such, it is natively capable of representing
manufacturing systems and expressive enough to enable
performing analysis over models. Specializations of SysML
have been proposed [16] to aid the development of automa-
tion software (i.e., PLC software) for smart manufacturing
systems. Models can be used to automatically generate
and integrate control software into machines. SysML has
also been used to ease the development and the integration
of a MES in a production line [17]. AutomationML is
an XML-based data format, created to provide a formal
exchange model for heterogeneous engineering tools [18].
It is capable of describing plant components from different
points of view, from the plant topology to a machine’s
kinematics. Different standards are strongly intertwined
within AutomationML to compose a complete description of
the system to be characterized. In particular, the Computer
Aided Engineering Exchange (CAEX) (IEC 62424) provides
features to represent a topological view of the system, with
relations between objects.

C. COMMUNICATION PROTOCOLS
Among the plethora of today’s manufacturing standards,
OPC UA became a de facto standard for Machine to Machine
(M2M) communication in industrial automation. OPC UA is
a platform-independent, service-oriented protocol developed
by the OPC Foundation and standardized in IEC 62541 [19].
The communication is based on a client/server structure,
where the server contains and exposes its information model.
Due to its versatility, OPCUA allows modeling data transport
that is compliant with the ISA-95 standard [20].
Distributed applications need scalable, fault-tolerant, and

low-latency communication channels to interact with each
other. Publish-subscribe is a popular communication protocol
used in SoAs, in which a set of entities (publishers) sends
messages to other entities (subscribers) through queues
created on a central broker. The broker acts as a router
between producers and consumers, and follows a delivery

VOLUME 12, 2024 85261



S. Gaiardelli et al.: Enabling Service-Oriented Manufacturing

FIGURE 2. General structure of the proposed SoM-enabled architecture.

policy that may include prioritization and filtering. Among
the plethora of message brokers available, the most diffused
ones are [21], [22]: Apache Kafka [23], RabbitMQ [24], and
KubeMQ [25].

Apache Kafka is an open-source message broker designed
to process high volumes of event streams. It only supports
the asynchronous messaging pattern, in which events are
processed independently. Published events are organized
into topics and further divided into partitions (the smallest
storage unit holding a subset of records owned by a topic)
managed by multiple brokers, guaranteeing persistence and
resilience. RabbitMQ is an open-source message broker
supporting different messaging protocols and messaging
patterns. It supports both asynchronous and synchronous
messaging patterns enabling Remote Procedure Call (RPC).
Messages can be sent directly to queues or to exchanges that
filter and forward messages to other queues based on the
messages’ metadata. KubeMQ is a message broker designed
to perform better in a Kubernetes cluster. It supports all the
most common messaging patterns, thus being specifically
tailored for a microservice environment, offering persistence,
scalability, and resilience.

Section VII presents a quantitative and qualitative com-
parison of the most used brokers. This analysis will be
used to choose the most suitable brokers for the proposed
architecture.

III. SERVICE-ORIENTED MANUFACTURING
ARCHITECTURE
A SoM-enabled software architecture must be able to inter-
face and manage highly different pieces of equipment, while
scaling on a large application scenarios. Furthermore, it must
guarantee robustness and provide high levels of Quality of
Service (QoS). To fulfill these requirements, we propose to
rely on containerization and virtualization by implementing
the entire software architecture as a Kubernetes cluster.
It consists of different Kubernetes containers connected
through Internet of Things (IoT) message brokers, also

running within Kubernetes containers. Figure 2 depicts a
general view of the proposed architecture: it spans from the
control level up to the planning level of the classic automation
pyramid. It connects the MES to the machinery via two main
components: the Factory Communication Platform (FCP)
in charge of handling the communication in the system,
and the AMC monitoring and supervising the system. The
FCP collects and stores machine data and provides RPC
communication to query and command the resources in
the infrastructure. The AMC manages the connection with
the MES, and it extends its functionalities by introducing
dynamic reconfiguration of the production line, autonomous
execution of production recipes, and advanced scheduling.
The integration of these components, detailed below, injects
automation at the supervisory level of the pyramid, thus
shaping an automated supervisory level.

A. FACTORY COMMUNICATION PLATFORM (FCP)
The FCP monitors the equipment, stores the gathered data,
and propagates the commands invoked by the AMC to the
machines. It acts as a service platform allowing, among other
functionalities, to interact with the other containers through
the RPC paradigm. Its structure is highlighted by the red
rectangle in Figure 2, and is composed of one IoT broker,
a set of OPC UA servers and clients. All the components run
on the nodes of a Kubernetes cluster.

All the flows of data are managed by an IoT broker
exposing and listening a set of topics. Many communication
brokers are suitable to be used to manage the communi-
cation in the FCP. Many broker solutions are suitable to
implement the proposed architecture. As long as the solution
supports publisher/subscriber semantics, data persistence,
high availability (e.g., the possibility of being replicated on
different nodes in the cluster), and minimum requirements
of throughput and security. The most common potentially
suitable broker solutions (i.e., Kafka, KubeMQ, RabbitMQ)
are analyzed qualitatively and quantitatively in Section VII.

Each machine in the production system is controlled by
an OPC UA server. The piece of equipment and its server are
strongly intertwined: the data model (e.g., machine status and
sensors data) exposed by the server depends on the underlying
drivers that communicate with themachine.Machine services
are implemented through OPC UA methods, which allow
exposing functions in a RPC fashion. Then, the OPC UA
data model is enriched with state variables that a client
may read to get the status of the running operation. The
OPC UA method acts as a wrapper on top of the machine-
dependent code. In fact, by modifying the data model and the
implementation of machine services, it is possible to modify
or add functionalities without dealing with the complexity of
PLC functions.

The FCP communicates with the equipment through mul-
tiple OPC UA Client nodes: an instance (and configuration)
is active for each OPC UA server. This node creates a
persistent connection with the machine and creates aOPCUA
subscription to the OPC UA variables, listening for data

85262 VOLUME 12, 2024



S. Gaiardelli et al.: Enabling Service-Oriented Manufacturing

FIGURE 3. The internal structure of the AMC.

changes. Each time a variable changes, the client is notified
with the new value. The value is written to a topic captured by
the IoT broker. The OPC UA client nodes are also connected
to the broker to listen for RPC requests. The allowed client
requests are: read a variable, write a variable and invoke the
execution of a OPC UA method.

B. ADAPTIVE MANUFACTURING CONTROLLER (AMC)
The AMC handles the communication with the MES and
the machines transparently, and its sub-components are
organized in three different layers, as depicted in Figure 3.
The information gathered from the MES and the machinery
is used to continuously make decisions about production
adapting it to the current status of the system. It is a
refinement and an extension of the Automation Manager
software module we originally presented in [26]. The top
layer is the MES connector: a driver interfacing the AMC
with the upper layers of the automation pyramid. The
bottom layer is the FCP connector: a driver connecting the
manager with the lower layers of the pyramid. The middle
layer contains the manager Core, a set of Applications,
and the Logger module. The AMC is compliant with the
ISA-95 standard and any existing software infrastructure
based on the same standard. The AMC takes in input the
information coming from both the MES and from a set of
configuration files describing the machine capabilities and
the implemented recipes. These characteristics are meant to
ease its integration within already existing manufacturing
plants. Thus, the architecture is meant to be integrated
within legacy manufacturing systems to introduce advanced
production features.

1) DRIVERS
The Driver levels contain the components enabling commu-
nication with other pieces of software. The FCP Connector
exposes the basic functionalities of OPCUA, such as variable
read/write, methods call, and subscriptions for data changes.
It also communicates with the OPC UA clients connected
to the machines in the cluster. The MES Connector is

implemented as a RPC client, calling functions defined by a
RPC server connected directly with the MES. An advantage
of using RPC interfaces is that the integration with any
other MES only requires to implement the corresponding
RPC server. The driver allows navigating through the MES
configuration and notifying the actions executed by the
architecture, such as the execution of a set of operations
or a triggered reconfiguration. The last driver is the Logger
that publishes log messages on two different topics: one for
the debugging messages, while the other includes messages
logging actions executed by the architecture (e.g., execution
of recipes or machine services). This allows notifying the
entire architecture of the status of each level.

2) CORE
The second level contains the Core components, defining
and implementing production processes. TheMES represents
production recipes as a sequence of dependent tasks, each
associated specifically to a class of working cells (e.g.,
a work center). This allows modeling production processes
at a higher level of abstraction, hiding the implementation
details (e.g., PLC cycles). However, this is not enough to
execute tasks without human intervention. Therefore, the
recipe representation in the Core of the AMC is extended
with a lower-level model describing the implementation of
tasks on the working cells. This representation consists of an
ordered sequence of actionswith input and output parameters,
formalized as a directed cyclic graph where actions are
nodes connected by directed edges to represent dependencies.
SectionVwill describe how the production recipes, tasks, and
services are modeled.

An action can be a service exposed by a piece of
equipment or a logical construct (e.g., creation of variables,
the sum of variables, if, cycles, etc.) proposed by the
Core. This extension allows executing tasks with a simple
visit of the graph nodes. Then, the actual execution of
tasks is managed by the Resource Manager that retrieves
the manufacturing structure from the MES and, for each
working cell, it connects to the correct machine’s client. Thus,
ensuring clients’ isolation when executing the particular
production operation. Furthermore, the resource manager
guarantees that a maximum of one operation is executed on a
working cell at the same time.

3) APPLICATIONS
The AMC is a modular piece of software with modules
(i.e., the AMC apps) implementing advanced functionalities
to refine the control of the system. Among these software
modules, the most important are the production scheduler,
and the applications collecting, organizing, and analyzing the
production data to detect anomalies [27], [28].

Optimal scheduling of production processes on different
machines in a dynamic environment is still an open prob-
lem [29] known as Dynamic Flexible Job Shop Scheduling
(DFJSS). Although there are many solutions to the static
counterparts of this problem, such as Job Shop Scheduling

VOLUME 12, 2024 85263



S. Gaiardelli et al.: Enabling Service-Oriented Manufacturing

(JSS) and Flexible Job Shop Scheduling (FJSS). However,
once introduced the dynamic component that characterizes
real systems, the solutions for these problems are not
applicable. The main reason is that every time an unexpected
event occurs (e.g., the arrival of new orders, machine
breakdowns, and delays), the schedule is no longer optimal
or becomes infeasible. Therefore, a promising direction is to
introduce static-reactive scheduling, characterized by a first
phase that produces a static schedule of the jobs, dynamically
updated on the arrival of events [30]. The first implementation
of the proposed architecture relies on this hybrid approach
to implement scheduling. It consists of a static phase
exploiting constraint programming to produce an optimal
solution while minimizing energy consumption and delays.
Then, a dynamic component continuously recalculates the
scheduling to react whenever an unexpected event (e.g., new
job arrivals, or machine breakdowns) occurs in the system.

Furthermore, we developed a data analysis application
receiving timing data about executed production processes
to achieve more precise scheduling. The gathered data is
used to update the completion time estimation of production
processes. To support the integration of applications based
on different technologies, an expansion interface exposes the
functions of the SoA-enabled architecture’s Core.

IV. MODELING THE SYSTEM ARCHITECTURE
The methodology hereby described creates the production
plant model alongside the computational infrastructuremodel
within the same SysML description. This is a fundamental
feature that enables the reuse of models and improves
the design process for complex systems. This section
details the steps necessary to build the SysML diagrams
representing the architecture of the production system. First,
it proposes a methodology to build the structural description
of the production plant by reusing AutomationML models.
Then, it presents a strategy to model the computational
infrastructure using SysML.

A. SYSTEM’S STRUCTURE DEFINITION VIA MODELS REUSE
Our model reuse methodology is inspired by the work
proposed in [31] and, which presents a mapping of the
AutomationML language elements into SysML. Automa-
tionML models describe the hierarchy of components in a
production line, their parameters, and relations. Therefore,
on the one hand, AutomationML models can be exploited
to create the structural part of SysML models, which is
necessary to define the components to be configured and
their target parameters. On the other hand, AutomationML
limitations on representing functionalities, protocols, etc.
require exploiting SysML, which is more expressive and
includes a wider set of language constructs. Table 1
presents a set of conceptual constructs used by the proposed
methodology. It provides a concretization of such constructs
on AutomationML language elements, also describing a
mapping to appropriate SysML language elements. The
Table organizes the modeling strategy by subdividing the

FIGURE 4. SysML Block Definition Diagram of a OPC UA server controlling
two machines: a UR5 robot arm and a milling machine.

set of constructs into four categories, from the most basic
one to the most complex: classes, Internal Classes Fields,
Components Instances and Relations and Libraries. The
first category describes a means to specify component
types, their roles within the production environment and
their interfaces to other components. The second category
details a way to customize the components through a set of
parameters and actual instances. The third category outlines
the instantiation of components and the relations between
instances, to construct a system as a hierarchy of concretized
components. Finally, the third category provides a method
to collect different concepts (e.g., components classes) in
specific libraries.

Both languages exploit object-oriented principles. There-
fore, classes can inherit properties from other classes or
can implement abstract classes. As a consequence, different
relations can be expressed using different constructs. As an
example, in SysML, the Generalization connector between
blocks represents the inheritance relation of AutomationML,
expressed between a superclass (which is the actual gen-
eralization) and the sub-class. Furthermore, AutomationML
requires that a role class must be associated to a simple class:
the RoleRequirement is the specific construct that defines the
relation between a class and a role. In addition, an element
may be associated with multiple roles, expressed by multiple
SupportedRoleClass AutomationML relationships. Roles
are mapped to abstract classes in SysML. Therefore, the
association of a role class to a class or an internal element
is mapped to the realization relation between SysML blocks.

B. COMPUTATIONAL INFRASTRUCTURE MODELING
Manufacturing systems characterize their current state and
its evolution through data, typically describing operating

85264 VOLUME 12, 2024



S. Gaiardelli et al.: Enabling Service-Oriented Manufacturing

TABLE 1. The set of conceptual constructs of the proposed models reuse strategy, their concretization on AutomationML language elements and their
mapping to SysML.

parameters (e.g., the temperature of a component, its
rotational velocity, or a possible alarm status). Such data
is retrieved through machine drivers: software components
responsible for the collection of the parameters’ values
from PLCs or edge-nodes, and sending them to the plant’s
computational systems. In SysML, the structure of the
data transmitted and received is modeled by BDDs: each
component can be represented as a single block, while
block properties are used to specify the details of the
component. Figure 4 shows a BDD of the OPC UA server
in a multi-system working cell. The main entity is the
OPCUA server, which coordinates two independent systems:
a UR5 collaborative robot and a milling machine. SysML
blocks are used to model both the OPC UA server and the
two machinery’s edge servers. The interaction between each
component is carried out by means of an interface (i.e.,
machine driver). This detail is represented by a composition
relation between the machine drivers and the OPC UA
server. In SysML, interfaces (i.e., drivers) are represented by
interface blocks.

In Figure 4, the driver blocks (‘‘RobotURInterface’’ and
‘‘BinaryDNCINterface’’) represents different BDDs, which
contain all the properties and methods that are exposed
by the machine edge server through the drivers. Each
driver interface block is the main block of another BDD
(not reported in Figure 4) that defines the semantics of
the different parameters available in the machine driver’s

data model. As an example, a parameter can be a driver
variable with an elementary data type(e.g., int, float) or a
driver object represented hierarchically by another block.
For instance, in Figure 4 the ‘‘EmcoCNCEdgeServer’’ driver
contains a property for the milling machine parameters
(‘‘MachineParameters’’). This property refers to a compo-
sition of blocks modeling the status of the machine (e.g.,
‘‘AxesParameters’’, ‘‘WorkingAreaParameters’’, and ‘‘Tool-
SystemParameters’’). The blocks identifying a machine edge
server (‘‘UR5EdgeServer’’ and ‘‘EmcoCNCEdgeServer’’ in
Figure 4) are connected to the respective interface blocks
through a dependency relation. In fact, the edge server block
uses the driver to exchange data with the OPC UA server
blocks, and therefore, it depends on the driver. This relation
describes the communication channel between the driver
interface and the machine edge server, encapsulating the
connection parameters.

V. MODELING THE SYSTEM BEHAVIOR
The models of the architecture describe the execution
platform where the manufacturing is executed, as well as the
computational platform governing the infrastructure. How-
ever, they do not describe how tasks are performed, that is
the behavior of the system and its components. In the context
of SoMmanufacturing, modeling the system behavior means
modeling the functionalities provided by the machines,
i.e., the services provided by the infrastructure, as well as

VOLUME 12, 2024 85265



S. Gaiardelli et al.: Enabling Service-Oriented Manufacturing

FIGURE 5. SysML Activity Diagram of a OPC UA method, which represents
the milling operation flow between two different machines orchestrated
by the OPC UA server.

the recipes to be implemented, i.e., the services required
to produce a product or a set of products. Furthermore,
a production system is intrinsically a distributed system,
therefore communication is another aspect to be modeled.
Indeed, SysML is well suited to model all these aspects.
Thus, many modeling strategies are suitable to model SoM
systems, as long as the services provided by the infrastructure,
and those required by the recipes can be properly identified
in the model. In this work, we rely on the modeling
strategies we previously introduced in [32] to model the
components’ behavior, and in [33] to model the production
recipes.

A. COMPONENTS BEHAVIOR MODELING
Other than sending data to the external world, a OPC UA
server also allows exposing its functionalities through
OPC UA commands. Our SoM architecture relies on this
principle to expose the services provided by the pieces of
equipment available in a manufacturing line. Therefore, it is
necessary to represent such functionalities by specifying the
operations to be performed, the machine driver interface,
and the machine’s behavior triggered by a specific condition.
In a typical UML fashion, SysML models this aspect with
block methods, as discussed in the previous section, and
with connected behavioral diagrams describing the process
implemented by the piece of equipment.

In this context, the behavioral diagrams provided by
SysML are most suited to describe the services and func-
tionalities of the production plant are Activity diagrams,
State Machine diagrams and Sequence diagrams. Activity
diagrams and State Machines are well-suited to describe the
behavior of the equipment, while Sequence diagrams are
best suited to describe the communication services provided
by the computational infrastructure. Indeed, following the
philosophy of SysML that grants freedom to the designer,
a designer may use any of these types of diagrams to model
the behavior of a component.

For example, in Figure 4, the method Mill() coordinates
the robot and a milling machine to pick, cut, and place the
piece back on the transportation system.

The method is associated with the Activity Diagram shown
in Figure 5, which expresses an operational flow between the
two machines. The control procedure interacts with both the
robot and the milling machine, checking and enabling control
variables necessary to perform the desired functionality.

B. PRODUCTION RECIPES MODELING
In the context of SoM, production recipes can be modeled
with different levels of granularity. Indeed, describing more
granular processes enables more schedule optimizations;
however, a finer granularity leads to more complex models,
harder to be developed by users. For this reason, we adopt
a three-level hierarchical modeling approach to model
production recipes. Each level depicts a particular abstraction
perspective of the production process: from the high-level
representation of production recipes as a set of tasks, to a
sequence of atomic operations performed by the machines
and the infrastructure. Figure 6 provides a simple example of
the three levels of a simple four-task recipe. All three levels
are described in SysML by using Activity diagrams.

1) TASK LEVEL
The first level represents at the highest abstraction level,
a production recipe as a set of macro-steps (i.e., tasks)
executed on a machine. It consists of a task-resource
graph, which is similar to a Resource Task Network (RTN)
representation. The nodes of the graph represent a task, while
the solid edges describe a partial order over the execution
of the tasks, as shown in Figure 6. Each task identifies a
contiguous production step executed on a machine and is
characterized by the required materials and the transformed
material states. A task can be allocated and executed on one
or more machines with which it is associated (represented
by the dashed edges in Section V-B). On these relations,
a set of attributes specifies the ‘‘cost’’ associated with the
tuple (resource, task). The attributes are the execution time,
the hourly cost, the electrical consumption, the estimated
efficiency, and the necessary tools. For the sake of clarity,
Section V-B reports only a subset of these parameters.

2) SERVICE LEVEL
In the second level, each tuple (task, resource) is refined with
a more detailed model of the sequence of machine services
implementing it (depicted in Section V-B). It consists of
a control flow graph, representing the interaction with the
machines and sensors through services, and their dependence.
This allows identifying the subset of services necessary to
carry out the task on the machines. Each node in the graph
represents either a service or a control flow statement.Control
flow statements model either the definition of variables,
arithmetical operations, conditional and iterative clauses,
enabling the representation of complex logical flows of

85266 VOLUME 12, 2024



S. Gaiardelli et al.: Enabling Service-Oriented Manufacturing

FIGURE 6. An example of the proposed three-layer representation for production processes. Figure 6 shows the first layer, which
defines tasks and their allocation onto machines. Section V-B specify in a control flow graph the sequence of ‘‘services’’
implementing the task T2. The third layer outlines machines’ functions implementing the Pick service (Section V-B).

services. Edges in the graph specify the order in which the
behaviors determined by the nodes are executed.

A service can be either a machine service or an infrastruc-
ture service:

• a machine service models a machine behavior as
a sequence of simpler operations called machine
functions.

• An infrastructure service models the interaction with
sensors, actuators and computational resources available
in the production system.

Each service is characterized by a set of input parameters
and output parameters that are used by the control flow
statements and as parameters for the machine services.
Variables defined within a task have a global scope within
the production recipes, allowing to make available the results
of machine services to subsequent tasks.

This level, combined, with the upper level, allows to high-
light the machine’s usage more precisely, enabling to further
optimize the machine schedule by developing methodologies
implementing tasks interleaving. Regarding Section V-B, the

service level models a task first requesting two materials
before assembling them with a robotic manipulator. In this
case, the robotic manipulator could perform other activities
meanwhile, materials are being moved to the robotic cell.

3) MACHINE FUNCTION LEVEL
The machine functions used in the second level is refined
in the third level. The purpose of this level is to represent
the actual control behavior of machinery at the PLC level
as a control flow graph. Unlike the upper level, the variables
defined in this level have private scope. Therefore, to access
variables defined in the outer scope each function has a list of
input and output parameters that can be variables or constants.

This level allows planning the execution of the machine
services, taking into consideration when a precise atomic
function will take place. In fact, it also allows getting a more
precise estimation of the time required to carry out a sub-task.
Consequently, it enables a better forecast on when certain
materials are necessary and on the used tools. With regard
to the example reported in Section V-B, the control function

VOLUME 12, 2024 85267



S. Gaiardelli et al.: Enabling Service-Oriented Manufacturing

‘‘Pick’’ is refined in a sequence of four machine functions:
(1) move the robotic arm, (2) close the gripper, (3) move
back the arm, and (4) open the gripper to release the material.
In addition, the information represented at this level can also
be exploited to further optimize the process, to minimize the
machines’ setup and waiting times.

VI. MODEL-BASED SYSTEM CONFIGURATION
The FCP and the AMC, the main components of the
proposed SoM architecture, are generic pieces of software
that require to be configured for each specific production
system. The models created as described in the previous
sections provide all the information required to control the
system and its communication flows. This section describes
how the information stored in the model can be used
to automatically configure the software component in the
proposed architecture.

A. OPC UA SERVER CONFIGURATION
The OPC UA servers act as a communication interface
between the machine and the AMC, by interacting with
OPC UA clients. The automatic generation of a OPC UA
server requires a set of mandatory information: the details of
the communication channel to the machine, the interaction
protocol with the drivers (i.e., how to read data and
send commands), and which parameters and methods are
offered by the server. The required pieces of information
for the automatic generation are contained in the SysML
models described in Section Section IV. Such information
is extracted from the model and exploited to build a set
of configuration files (i.e., the inputs of the OPC UA
servers and clients). In particular, the files generated for the
OPC UA servers are the Information Model, the network
connection parameters, the drivers’ interface parameters, and
the implementation of the OPCUA server methods. The same
Information Model and network connection parameters are
then used by the OPC UA clients to correctly instantiate the
communication with the server. Driver’s interface parameters
are mapped into OPC UA variables using the value-type
specified in the SysML diagrams of the Information Model.

The generated Information Model is composed of the
driver’s interface parameters of the underlying system com-
ponents and the functionalitymodeled on top of them.A piece
of code implementing a OPC UA method is also generated
for each Activity Diagram associated with a OPC UA
server block. More specifically, the generated method
exploits the driver interfaces’ functions and implements the
interaction flow described in the SysML Activity Diagram.
The generated OPC UA server loads the driver interfaces
with the respective communication channel parameters, the
Information Model, and imports the code implementing the
OPC UA methods. Each driver interface periodically polls
the machine to obtain data changes, which are published for
the OPC UA clients. Therefore, data coming from the driver
interfaces are published directly to the specific OPC UA
parameters.

TABLE 2. Configurations complexity in the number and type of messages
sent each second on the chosen architectures.

B. AMC CONFIGURATION
AMC internally represents production recipes following
the structure presented in Section V: a multi-hierarchical
representation composed of three levels describing different
layers of knowledge. By exploiting this model, it is possible
to generate the configuration for the AMC. Each production
recipe is converted into a JSON file containing its graph
represented through SysML. Thus, machine services used
within the recipes are correlated with the services offered
by the machines. This allows to uniquely identify a machine
service and configure all the parameters necessary to call that
service at run-time.

VII. EVALUATION OF IIOT BROKERS
The performance of message brokers has been studied in the
literatures [21] and [22]. All these comparisons are centered
on the transmission of raw data (i.e., throughput), but as far
as we know, there are no available comparisons regarding
how message brokers perform with respect to their supported
specific types of communication paradigms.

In our proposed architecture, the communication between
the applications is based on RPC and events subscription
(e.g., machine data updates). For this reason, we performed an
in-depth comparison between the standard architecture (taken
as baseline) based only on OPC UA servers and OPC UA
clients and our proposed architecture, where the central IIoT
broker is one of the following: Apache Kafka, RabbitMQ,
and KubeMQ, for a total of 4 different architectures. The
analysis evaluates both themachinemessage’s delay (variable
read, variable write, method call, and variable update) and the
resource consumption (CPU usage, RAM usage, and network
load) of such architectures.

Table 2 reports the tested architecture’s configurations,
differing in the number and type of messages sent each
second, and identified by the tuple configuration type and
number of clients. Each configuration type (small, medium,
and large) differs in the number of variables in the information
model of the OPC UA server and their update frequency. The
increasing number of OPC UA clients allows analyzing the
scalability of the different architectures by evaluating their
behavior under different network loads. In total, we tested on
each architecture these 9 configurations (ranging from 1448
messages to 3360 per second) for a total of 36 test cases.

85268 VOLUME 12, 2024



S. Gaiardelli et al.: Enabling Service-Oriented Manufacturing

FIGURE 7. Mean CPU usage in percentage, normalized between 0 and 100 of edge devices (on the left) and on the Kubernetes cluster (on the right).

All the tests have been executed on a Kubernetes cluster,
while the CPU usage, RAM usage, network traffic has been
collected by exploiting Prometheus [34] as metrics server.

A. PERFORMANCE ANALYSIS
Our proposed architecture can be divided based on the
hardware in which the software is executed into two parts:
1) machine interface (OPC UA servers) executed on edge
devices 2) FCP executed on a Kubernetes cluster. For the
sake of clarity, we have divided the subsequent performance
analysis in these two categories, to differentiate the impact
of our proposed architecture on both, edge devices and
Kubernetes cluster (respectively, left and right parts of
Figures 7 to 9).

Figure 7 depict the mean CPU usage, normalized between
0 and 100% of the different architectures, with an increasing
number of clients reading and writing data from the server.
From the left part, we can see that by introducing a SoM
architecture (independently of the chosen central message
broker) allows moving the CPU load from the edge devices
to the Kubernetes cluster. Thus, by increasing the number of
clients connected to the OPC UA server, this trend becomes
more visible, showing a decrement in CPU usage from 4 up to
10 times with KubeMQ as the message broker. This leverages
the edge devices (with limited computational power) from
executing non-priority tasks, leaving room for real-time tasks
and other on-the-edge applications.

Figure 8 depict themean RAMusage inMBof the different
architectures. In this case, we can see a minor difference
between the standard architecture and the proposed one.
The only difference is in the FCP, where the configurations
using Kafka and RabbitMQ consume more memory. This
phenomenon is caused on one side by the preventive
allocation of memory, and from the other side to the
messages’ delay, which requires more time to be consumed,
increasing the dimension of the message queues (discussed
in Section VII-B).

Figure 9 shows the mean MB/s received and transmitted
from the OPC UA server and from the Kubernetes cluster.
In the standard architecture, the network load is higher
on the OPC UA server, while in the SoM architectures

is moved to the Kubernetes cluster. This leads to a lower
impact on the Operational Technology networks (usually
composed of hardware with limited bandwidth) and a higher
load on the cluster network (local communication with
higher bandwidth and lower delays). Among the evaluated
technologies, KubeMQ stands out as the message broker with
better performance.

B. DELAY ANALYSIS
Another important parameter for a SoM architecture is the
messages’ delay. A lower message delay implies a faster
reaction from the applications subscribed to the same data
source. Table 3 reports the communication delay of our
proposed architecture with respect to direct connection with
OPC UA of variable read, variable write, method call, vari-
able update, and 50 consecutive variable updates. The results
show that a variable read, variable write, and method call
have higher delays in our proposed architecture. This is given
by the intermediate component in our proposed architecture
acting as a bridge between the OPC UA server and all the
applications connected to the message broker. The maximum
delay introduced is 5 milliseconds (for the architecture
configured with KubeMQ), a negligible delay considering
that the number of read requests can be reduced with
caching mechanisms and complex machine functionalities in
a SoM are enclosed into machine services (i.e., method call).
Moreover, we can see that with larger configurations and a
higher number of clients, where our proposed architecture
consumes less resources on the OPC UA server this gap
shrinks up and sometimes reverses.

Our proposed architecture reduces the delay of the variable
subscription. OPC UA variable subscription relies on server
polling to check if there are updates for the subscripted
clients, and if so, the clients must perform a variable read.
Having a single client connected to the OPC UA server
reduces thismechanism’s overhead by exploiting themessage
brokers for the messages’ persistence and immediate for-
warding of messages to multiple clients. This improvement
becomes more evident with an increasing configuration
complexity in which the improvement is 10%. Summing up,
among the message brokers, KubeMQ performs better in our

VOLUME 12, 2024 85269



S. Gaiardelli et al.: Enabling Service-Oriented Manufacturing

FIGURE 8. Mean RAM usage in MB, of edge devices (on the left) and on the Kubernetes cluster (on the right).

FIGURE 9. Mean MB/s transmitted and received from edge devices (on the left) and from the Kubernetes cluster (on the right).

proposed architecture with regard to Kafka and RabbitMQ,
with lower delays and performance usages.

VIII. CASE STUDY: THE ICE LABORATORY
The Industrial Computer Engineering (ICE) Laboratory is
a research facility of the University of Verona, meant to
serve as a demonstrator for a wide set of computational tech-
nologies applied to the industrial manufacturing field.1 The
centerpiece of the laboratory is a complete and reconfigurable
manufacturing line. The facility is equipped with a vertical
automated warehouse storing the materials, semi-finished
and finished products. The production line accommodates
multiple diverse cells: a robotic assembly cell with two
collaborative robot arm manipulators equipped with gripper
and screwdriver tools; aQuality Checking (QC) cell equipped
with a set of camera and laser scanners to inspect products
for possible defects; an additive manufacturing cell equipped
with multiple 3D printers; a subtractive manufacturing
cell equipped with a four-axis Computerized Numerical
Control (CNC) milling machine; a functional control cell
equipped with a flying probe functional tester machine
for testing electronic boards. The ICE laboratory logistics
is also managed by a very flexible set of technologies:
two Autonomous Ground Vehicles (AGVs) to move objects

1The ICE laboratory: https://www.icelab.di.univr.it/.

and materials in the shop-floor, for instance from the
automated warehouse to the production line and vice versa;
a reconfigurable system of conveyors that moves a set of
mini-pallets between the different working cells in the line.

Each piece of equipment in the plant was originally
equipped with a OPC UA server, which exposes the services
provided by the machine. A state-of-the-art commercial MES
was governing the production line, scheduling the production
to send the work order machines, and tracing the products
in the line. While the commercial MES offers the possibility
to send commands to the machines for standard production,
this possibility cannot be exploited when managing a flexible
production line. In fact, reconfiguring the line would require
extensive downtime to reconfigure the MES.

The contributions of this paper have been all applied to
the ICE laboratory. The ICE laboratory’s production line has
been modeled in SysML, as described in Section IV, while
the production recipes to be realized by the system have
been modeled in SysML following the strategy described
in Section V. Then, to automatically generate the OPC UA
servers and the configuration for all the Kubernetes contain-
ers (e.g., the AMC and message brokers containers) we built
a software that analyzes the SysML model to extract the
represented knowledge. Specifically, the software analyzes
the XML Metadata Interchange (XMI) produced by any
SysML tool and produces the set of configuration files needed

85270 VOLUME 12, 2024



S. Gaiardelli et al.: Enabling Service-Oriented Manufacturing

TABLE 3. Comparison between the communication delay with the proposed architecture with respect to a direct connection with OPC UA.

TABLE 4. Size of the generated files with different recipes and machine
configurations.

for the proposed architecture. Thus, the original MES-centric
architecture has been replaced by implementing the software
architecture described in Section III, while the protocols
choice has been guided by the results in Section VII. Lastly,
we showcase the advantages of our proposed SoM over the
commercial MES by comparing their scheduling capabilities.

In the following of this Section, we evaluate the complexity
of the proposed methodology, by showing how the size
of configuration files increases with respect to different
scenarios. Then, we evaluate the overhead introduced by our
proposed architecture. All experiments have been executed
on a 3.60 GHz Intel Core i7 with 32 GB of RAM.

A. AUTOMATIC GENERATION ANALYSIS
The configuration complexity of a production line is directly
proportional to the number of machines composing the plant.

TABLE 5. Comparison of the communication delay introduced by the
proposed SoM architecture, against a direct OPC UA connection.

Therefore, the complexity of the SysML model representing
the entire manufacturing system increases linearly with the
number of components in the system. Table 4 reports the
size of the configuration files automatically generated by our
software, applied to three different portions of the laboratory
machines. Each test consists of a SysML model containing
various combinations of recipes and machines. Specifically,
we divide the generated files into three main categories:
(1) OPC UA nodeset, (2) recipes, (3) container configuration.
The last column shows that the total size increases with
the number of machines and recipes. Without the automatic
generation provided by the presented methodology, the
configuration files would have been written manually by
the system installer or maintainer, in a time-consuming
and error-prone process. Therefore, the advantages of the
proposed methodology increase with the size of the system

VOLUME 12, 2024 85271



S. Gaiardelli et al.: Enabling Service-Oriented Manufacturing

TABLE 6. Execution time when using the state-of-the-art versus the
proposed architecture to govern three different production recipes.

to configure. The categories that impact the most on the
total configuration files sizes are the container configuration
and the OPC UA nodeset. This is due to the fact that,
for each container, each software parameter enabling the
communication between the different components of the
proposed architecture must be set. Meanwhile, the OPC UA
nodeset contains the definition of all the nodes.

For all tests, our software generated the configuration in
less than 1 second. The time increases linearly with respect
to the number of machines. The generated configuration has
been tested on the real architecture to verify its correctness.

B. OVERHEAD ANALYSIS
Additional features of the architecture come at a price
in terms of computational overhead. Table 5 reports the
overhead induced by the architecture in calling machine
services through OPC UA functions, in comparison with a
direct connection to the machines. It compares the delay of
different services, such as the read/write of variables, the
method calls, and the subscription to variables. For each
operation, the last row reports the additional overhead (in
percentage) of the proposed architecture.

Comparing the results we find the maximum delay of
around 100ms in the variables subscription. This is due to the
structure of the OPCUA protocol which notifies clients when
data changes only at certain specific intervals.

The additional overhead implies a significant communi-
cation delay for the read, the write, and the methods call,
but is negligible for the subscription updates. However,
this communication delay is in the context of complex
physical processes, typically involved in a manufacturing
line. For this reason, we also evaluated the behavior of the
proposed architecture to coordinate different manufacturing
processes. Table 6 reports the total execution time for three
production recipes of different sizes. The table compares
the time required to execute the recipes using a state-of-
the-practice architecture against the proposed solution. The
total execution times do not consider the time required to
transport the materials through the conveyor belts. This is
because transportation data is highly variable and influenced
by many physical factors that may not be controllable by
the software architecture. The fourth and fifth columns of
the Table report the execution times obtained with the two
different configurations. The last column reports the overhead
introduced by the proposed architecture. Considering the
number of service calls for each recipe, the delay introduced
is negligible with respect to the total execution time.

TABLE 7. Comparison between the scheduling of 500 production recipes,
using a classical RTN-based representation against the proposed
hierarchical modeling approach.

Furthermore, comparing Tables 5 and 6, it is worth
noticing that while the additional overhead is significant
when considering single operations, it becomes negligible in
the context of a complete manufacturing process. In fact, even
at higher operation frequencies, physical processes typically
dominate computational processes in terms of execution
times. This is due to the fact that manufacturing processes are
strongly dominated by mechanic operations, in which delays
are measured in tens rather than tenths of seconds.

C. SCHEDULING ANALYSIS
To demonstrate the advantages of our proposed architec-
ture, we compare the results obtained by the scheduler
implemented by the commercial MES, which relies on
a classical RTN-based task representation, against the
service-based scheduler implemented on top of the AMC.
The implemented service-based scheduler, which has been
initially proposed in [33] allows exploiting the proposed
hierarchical representation of production recipes to optimize
the production schedule. Either schedulers have been tested
on 500 production orders, randomly sampled from a pool of
the 4 production recipes available within the ICE Laboratory.
Among these production orders, 450 are high-priority (HP)
orders, and 50 are low-priority (LP) orders. While the first
ones are considered available from time t = 0 and can
be scheduled at any time, the second ones are considered
available after time t ′, such that t ′ > 0, identifying new
production orders released at runtime. The obtained results
are reported in Table 7. The first row compares the total
makespan obtained with the scheduler. Our service-based
scheduler is able to reduce the total makespan by almost
40 minutes (equal to the 3.52%). The next rows compare the
average machines’ downtimes, utilization, and throughput.
The service-based scheduler reduces the average machine
downtimes by 14.17% and increases their utilization and
throughput by 4.45% and 5.98% respectively.

By having in-depth knowledge regarding the implemen-
tation of production recipes on the production plant, the
service-based scheduler is able to better exploit machine
downtimes. It does so by splitting low-priority tasks into a
sequence of sub-tasks (represented within the SysMLmodel).

85272 VOLUME 12, 2024



S. Gaiardelli et al.: Enabling Service-Oriented Manufacturing

This allows the scheduling of a smaller portion of production
tasks, enabling a more precise interleaving with respect to
the state-of-the-art approach. By doing so, the scheduler is
free to fill the available gaps within the schedule with a
portion of low-priority production tasks. As a consequence,
this reduces the total makespan and machine downtimes and
increases the machine’s utilization and throughput. Lastly,
the last two rows compare the average time to complete
production recipes at high priority (HP) and low priority (LP).
We compute the completion time for a recipe as the difference
between the time instant in which the last task ends and the
time instant in which its first task starts. Our service-based
scheduler is able to handle the arrival of new production
orders more efficiently, reducing the completion time for both
new high and low priority orders. In general, the scheduler
routine in charge of managing the priorities of the tasks is
able to handle the allocation of sub-tasks more accurately
whether certain conditions are met (e.g., required materials
availability).

IX. CONCLUSION
In this paper, we presented a cloud-native architecture to
support flexible manufacturing.We also proposed amodeling
approach to specify the information required to automatically
deploy, configure, and control the proposed architecture.
Then, we benchmarked the main communication protocols
suitable to implement the proposed architecture. These three
main contributions create a unique framework centered
around the model, where the production system acts as a
service provider and production evolves by invoking the
infrastructure services.

The proposed software architecture has been implemented
to monitor and control a fully-fledged reconfigurable man-
ufacturing line; the system has been modeled in SysML
to automatically deploy and configure the architecture
components. Finally, the production requirements have been
also modeled in SysML as have also been the production
recipes. The proposed architecture has been validated on a
fully-fledged production line using different workloads. The
results show the architecture introducing very limited perfor-
mance degradation while enabling a wide range of production
optimizations, thus increasing overall productivity.

In the future, we plan to extend the proposed methodology
to automatically generate a digital twin from the SysML
model. This will enable the development of optimization
strategies exploiting the generated digital twin as a testbed.

ACKNOWLEDGMENT
This manuscript reflects only the authors’ views and opin-
ions, neither European Union nor European Commission can
be considered responsible for them.

REFERENCES
[1] U. D. Atmojo, Z. Salcic, K. I. Wang, and V. Vyatkin, ‘‘A service-oriented

programming approach for dynamic distributed manufacturing systems,’’
IEEE Trans. Ind. Informat., vol. 16, no. 1, pp. 151–160, Jan. 2020.

[2] F. Li, T. W. Liao, W. Cai, and L. Zhang, ‘‘Multitask scheduling in
consideration of fuzzy uncertainty of multiple criteria in service-oriented
manufacturing,’’ IEEE Trans. Fuzzy Syst., vol. 28, no. 11, pp. 2759–2771,
Nov. 2020.

[3] M. Wang, S. Pang, S. Yu, S. Qiao, X. Zhai, and H. Yue, ‘‘An
optimal production scheme for reconfigurable cloudmanufacturing service
system,’’ IEEE Trans. Ind. Informat., vol. 18, no. 12, pp. 9037–9046,
Dec. 2022.

[4] C. Pu, X. Ding, P. Wang, and Y. Yang, ‘‘Practical implementation of an
OPC UAmulti-server aggregation and management architecture for IIoT,’’
in Proc. IEEE Int. Conferences Internet Things, IEEE Green Comput.
Commun., IEEE Cyber, Phys. Social Comput., IEEE Smart Data, IEEE
Congr. Cybermatics, Aug. 2022, pp. 476–481.

[5] A. L. Ramos, J. V. Ferreira, and J. Barceló, ‘‘Model-based sys-
tems engineering: An emerging approach for modern systems,’’ IEEE
Trans. Syst. Man, Cybern., Part C, vol. 42, no. 1, pp. 101–111,
Jan. 2012.

[6] N.Kratzke and P.-C. Quint, ‘‘Understanding cloud-native applications after
10 years of cloud computing–A systematic mapping study,’’ J. Syst. Softw.,
vol. 126, pp. 1–16, Apr. 2017.

[7] W. Babel, ‘‘Automation pyramid and solutions business,’’ in Industry 4.0,
China 2025, IoT. Cham, Switzerland: Springer, 2022, pp. 75–147.

[8] R. Drath and A. Horch, ‘‘Industrie 4.0: Hit or hype?’’ IEEE Ind. Electron.
Mag., vol. 8, no. 2, pp. 56–58, Jun. 2014.

[9] IKnternational Society of Automation, Standard ISA-95, 2000.
[10] C. D. Brandl and C. Johnsson, Beyond the Pyramid: Using ISA95

for Industry 4.0 and Smart Manufacturing. Rijeka, Croatia: InTech,
Oct. 2021, pp. 14–20. [Online]. Available: https://www.isa.org/intech-
home/2021/october-2021/features/beyond-the-pyramid-using-isa95-for-
industry-4-0-an

[11] P. Derler, E. A. Lee, and A. Sangiovanni Vincentelli, ‘‘Modeling cyber–
physical systems,’’ Proc. IEEE, vol. 100, no. 1, pp. 13–28, Jan. 2012.

[12] C.-W. Yang, V. Dubinin, and V. Vyatkin, ‘‘Automatic generation of control
flow from requirements for distributed smart grid automation control,’’
IEEE Trans. Ind. Informat., vol. 16, no. 1, pp. 403–413, Jan. 2020.

[13] M. Obermeier, S. Braun, and B. Vogel-Heuser, ‘‘A model-driven approach
on object-oriented PLC programming for manufacturing systems with
regard to usability,’’ IEEE Trans. Ind. Informat., vol. 11, no. 3,
pp. 790–800, Jun. 2015.

[14] A. Köcher, A. Hayward, and A. Fay, ‘‘Model-based engineering of
CPPS functions and code generation for skills,’’ in Proc. IEEE 5th
Int. Conf. Ind. Cyber-Phys. Syst. (ICPS), May 2022, pp. 1–8, doi:
10.1109/ICPS51978.2022.9816919.

[15] A. Wortmann, O. Barais, B. Combemale, and M. Wimmer, ‘‘Modeling
languages in industry 4.0: An extended systematic mapping study,’’ Softw.
Syst. Model., vol. 19, no. 1, pp. 67–94, Jan. 2020, doi: 10.1007/s10270-
019-00757-6.

[16] B. Vogel-Heuser, D. Schütz, T. Frank, and C. Legat, ‘‘Model-driven
engineering of manufacturing automation software projects—A
SysML-based approach,’’ Mechatronics, vol. 24, no. 7, pp. 883–897,
Oct. 2014.

[17] L. Piétrac, A. Lelevé, and S. Henry, ‘‘On the use of SysML for
manufacturing execution system design,’’ in Proc. ETFA, Sep. 2011,
pp. 1–8.

[18] R. Drath, ‘‘Let’s talk AutomationML what is the effort of AutomationML
programming?’’ in Proc. IEEE 17th Int. Conf. Emerg. Technol. Factory
Autom. (ETFA), Sep. 2012, pp. 1–8.

[19] OPC Unified Architecture Specification—Part 1: Overview and
Concepts Release 1.04 OPC Foundation, 2017. [Online]. Available:
https://reference.opcfoundation.org/Core/Part1/v104/docs/

[20] M. V. Garcia, E. Irisarri, F. Perez, M. Marcos, and E. Estevez, ‘‘From ISA
88/95 meta-models to an OPCUA-based development tool for CPPS under
IEC 61499,’’ in Proc. IEEE WFCS, 2013, pp. 1–9.

[21] B. Ayaz, N. Slamnik-Kriještorac, and J. Marquez-Barja, ‘‘Data manage-
ment platform for smart orchestration of decentralized and heterogeneous
vehicular edge networks,’’ in Proc. ACM Conf. Inf. Technol. Social Good,
Sep. 2022, pp. 118–124.

[22] V. John and X. Liu, ‘‘A survey of distributed message broker queues,’’
2017, arXiv:1704.00411.

[23] J. Kreps, N. Narkhede, and J. Rao, ‘‘Kafka: A distributedmessaging system
for log processing,’’ in Proc. NetDB, vol. 11, 2011, pp. 1–7.

[24] RabbitMQ. Accessed: Mar. 14, 2024. [Online]. Available: https://www.
rabbitmq.com/

VOLUME 12, 2024 85273

http://dx.doi.org/10.1109/ICPS51978.2022.9816919
http://dx.doi.org/10.1007/s10270-019-00757-6
http://dx.doi.org/10.1007/s10270-019-00757-6


S. Gaiardelli et al.: Enabling Service-Oriented Manufacturing

[25] KubeMQ. [Online]. Available: https://kubemq.io/
[26] S. Gaiardelli, S. Spellini, M. Panato, M. Lora, and F. Fummi, ‘‘A software

architecture to control service-oriented manufacturing systems,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhibition (DATE), Mar. 2022, pp. 40–43.

[27] Y. Liu, S. Garg, J. Nie, Y. Zhang, Z. Xiong, J. Kang, and M. S. Hossain,
‘‘Deep anomaly detection for time-series data in industrial IoT: A
communication-efficient on-device federated learning approach,’’ IEEE
Internet Things J., vol. 8, no. 8, pp. 6348–6358, Apr. 2021.

[28] Y. Wu, H.-N. Dai, and H. Tang, ‘‘Graph neural networks for anomaly
detection in industrial Internet of Things,’’ IEEE Internet Things J., vol. 9,
no. 12, pp. 9214–9231, Jun. 2022.

[29] L. Zhou, Z. Jiang, N. Geng, Y. Niu, F. Cui, K. Liu, and N. Qi, ‘‘Production
and operations management for intelligent manufacturing: A systematic
literature review,’’ Int. J. Prod. Res., vol. 60, no. 2, pp. 808–846, Jan. 2022,
doi: 10.1080/00207543.2021.2017055.

[30] O. Cardin, D. Trentesaux, A. Thomas, P. Castagna, T. Berger, and
H. B. El-Haouzi, ‘‘Coupling predictive scheduling and reactive control in
manufacturing hybrid control architectures: State of the art and future
challenges,’’ J. Intell. Manuf., vol. 28, no. 7, pp. 1503–1517, Oct. 2017.

[31] L. Berardinelli, S. Biffl, A. Lüder, E. Mätzler, T. Mayerhofer, M. Wimmer,
and S. Wolny, ‘‘Cross-disciplinary engineering with AutomationML and
SysML,’’ At Automatisierungstechnik, vol. 64, no. 4, pp. 253–269,
Apr. 2016.

[32] S. Spellini, S. Gaiardelli, M. Lora, and F. Fummi, ‘‘Enabling component
reuse in model-based system engineering of cyber-physical production
systems,’’ in Proc. 26th IEEE Int. Conf. Emerg. Technol. Factory Autom.,
Sep. 2021, pp. 1–8.

[33] S. Gaiardelli, S. Spellini,M. Lora, and F. Fummi, ‘‘A hierarchical modeling
approach to improve scheduling of manufacturing processes,’’ in Proc.
IEEE 31st Int. Symp. Ind. Electron. (ISIE), Jun. 2022, pp. 226–232.

[34] B. Rabenstein and J. Volz, Prometheus: A Next-Generation Monitoring
System. Dublin, Ireland: USENIX Association, May 2015.

SEBASTIANO GAIARDELLI (Student Member,
IEEE) received the master’s degree in computer
science and engineering from the University of
Verona, Verona, Italy, in 2021, where he is
currently pursuing the Ph.D. degree in computer
science. He is involved as the Co-Founder and
the Scientific Advisor with FACTORYAL S.r.l.,
a startup specializing in factory automation soft-
ware that originated as a spin-off from the Univer-
sity of Verona. His research interests include the

development of new methodologies for the optimization, reconfiguration,
and verification of cyber-physical production systems.

STEFANO SPELLINI received the Ph.D. degree
in computer science from the University of
Verona, Italy, in 2022, with a thesis proposing
a unifying framework to model, verify and opti-
mize production systems. He is currently the
Development Team Leader and the Co-Founder
of FACTORYAL S.r.l., a spin-off company from
the University of Verona. He is involved in the
development of modeling methodologies and tools
for cyber-physical production systems.

MARCO PANATO received the B.S. and M.E.
degrees in computer science and engineering from
the University of Verona, Italy, in 2016 and 2018,
respectively. He is currently a Software Engineer
and the Co-Founder with FACTORYAL S.r.l., San
Giovanni Lupatoto, Verona, Italy, a spinoff of
the University of Verona. Previously, he was a
Research Assistant with the University of Verona.

CARLO TADIELLO received the B.S. and M.E.
degrees in computer science and engineering from
the University of Verona, Italy, in 2015 and 2018,
respectively. He is currently a Software Engineer
and the Co-Founder with FACTORYAL S.r.l.,
San Giovanni Lupatoto, Verona, Italy. Previously,
he was a Research Assistant with the ICE Labora-
tory, University of Verona.

MICHELE LORA (Member, IEEE) received the
Ph.D. degree in computer science from the Univer-
sity of Verona, Italy, in 2016. From 2020 to 2023,
he held a Marie Skłodowska-Curie Global
Fellowship with dual appointments at the Uni-
versity of Verona and the University of Southern
California. Previously, he held different research
positions in Sweden, the USA, and Singapore.
He is currently a Researcher with the University
of Verona. He is also involved as the Co-Founder

and the Scientific Advisor with FACTORYAL S.r.l., a startup specializing
in factory automation software that originated as a spin-off from the
University of Verona. His research interests include modeling, simulation,
and verification of cyber-physical systems.

DONG SEON CHENG received the Laurea
and Ph.D. degrees in computer science from
the University of Verona, in 2003 and 2008,
respectively, with a focus on computer vision and
pattern recognition. From 2012 to 2017, he was an
Assistant Professor with the Department of Com-
puter Science and Engineering, HankukUniversity
of Foreign Studies, South Korea, teaching under-
graduate and graduate courses. From 2019 to 2022,
he was with SETECNA EPC S.r.l., an electronics

company in the HVAC Industry. He has been a Research Associate with the
University of Verona, since 2023. His research interest includes machine
learning. He has published several journals and conference papers in his
research field.

FRANCO FUMMI (Member, IEEE) received the
Laurea degree in electronic engineering and the
Ph.D. degree in electronic and communication
engineering from the Polytechnic of Milan, in
1990 and 1994, respectively. Since March 2001,
he has been a Full Professor of computer architec-
ture with Università di Verona. He is also leading
the Cyber-Physical and IoT Systems Design
(CISD) Group, Università di Verona, where he is
composed of more than 20 people and working

on hardware description languages and electronic design automation
methodologies for modeling, verification, testing, and optimization of cyber-
physical systems. He is also the Co-Founder of two spin-off companies:
EDALab, focused on networked embedded systems design; and the
automation control software company FACTORYAL.

Open Access funding provided by ‘Università degli Studi di Verona’ within the CRUI CARE Agreement

85274 VOLUME 12, 2024

http://dx.doi.org/10.1080/00207543.2021.2017055

