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ABSTRACT An Error-Bound Particle Swarm Optimization (EB-PSO) is proposed in this work. The
objective function is evaluated for each particle in each iteration. The velocity update equation is modified
by introducing two new parameters ζ1 and ζ2. These parameters varies exponentially, within the bounds
(ζ1,min, ζ2,min) and (ζ1,max , ζ2,max), with respect to the number of iterations. Initially, a higher value of ζ2 and
minimum value of ζ1 is chosen to facilitate a global search. Once the global error (ε2) is less than the desired
value, ζ1 is allowed to increase from its minimum value and ζ2 is held constant at ζ2,max . This leads to local
exploitation of the search space. The proposed algorithm is implemented on Python platform. To verify the
effectiveness of the proposed EB-PSO algorithm in analog circuit sizing, a case study on the performance and
optimization of two-stage op-amp is presented, whose validation is done in Cadence-Virtuoso environment at
45-nm CMOS technology. The results show that the proposed EB-PSO algorithm converges in 11 iterations
for two-stage op-amp, whereas it takes 23, 29, and 41 iterations to converge for conventional GA, DE, and
PSO algorithms respectively.

INDEX TERMS Analog circuit sizing, particle swarm optimization (PSO), constrained optimization.

I. INTRODUCTION
Today, real-world domains such as industrial electronics and
telecommunications face many complex challenges. These
problems are difficult to solve due to constraints, non-
convexity, and uncertainties. Formulating an optimization
problem that incorporates constraints, objectives, design
variables, and iteration count is a difficult task. However,
over the last few decades, various optimization techniques
have been widely used to solve these complex real-world
problems. In general, optimization methods can be broadly
classified into two categories: deterministic and stochas-
tic [1]. Deterministic method involves differentiation based
approach in the solving process. In this approach, accuracy in
achieving the optimum solution is guaranteed. However, this
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method requires a huge amount of computation time, which
makes them impractical in solving complex problems. On the
contrary, stochastic methods involve randomness in one or
more variables while maximizing or minimizing an objective
function in the solving process. Today, stochastic methods
are popularly used as optimizer, due to their potential and
adaptability in incorporating the domain specific knowledge.
Even though the optimum solution is not guaranteed in
this approach, superior solutions with desired accuracy are
achieved in a reasonable amount of time, making it a suitable
choice for the designer. Thus, the computational time is
one of the most pertinent advantage in this approach over
deterministic methods.

Various heuristic [2], [3], [4], [5], [6], [7], [8], [9]
and meta-heuristic algorithms [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21] involve stochastic
based approach in finding the optimum solutions for high
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computational problems. Heuristic approach is specific to a
particular optimization problem whereas meta-heuristic is a
generic approach, which can be adapted in solving diverse
optimization problems. The drawback of the heuristics to
be problem-dependent, limits its usage in diverse field of
applications [10]. Meta-heuristic algorithms include various
optimization techniques like, among many others, particle
swarm optimization (PSO) [22], [23], [24], [25], [26], [27],
genetic algorithms [28], [29] and differential evolution [30],
[31]. Nature based metaheuristic algorithms are gaining high
recognition in solving computationally expensive optimiza-
tion problems [21]. PSO is a derivative-free population-based
technique, which is used to solve discrete as well as
continuous optimization problems. It is found that it can
easily fall into local optimum in a high-dimensional search
space resulting in premature convergence [23]. Furthermore,
it exhibits a lower convergence rate in the iterative process.
To address this, a modified variant of PSO known as
Historical Memory Particle Swarm Optimization (HMPSO)
was employed to seek an improved solution compared
to the conventional PSO method [32]. PSO using fuzzy
algorithm was used to overcome premature convergence,
which is typically found in conventional PSO [33]. A hybrid
PSO was presented in [34], in which the convergence
rate was improved by linearly decreasing the inertia
weight.

A summary of recently developed algorithms addressing
optimization problems includes the Chimp Optimization
Algorithm (ChoA), inspired by the cooperative intelligence
of chimpanzees during group hunts [35]. Notably, ChoA
is characterized by the absence of initial assumptions and
population dependency, prompting the development of the
Improved Chimp-Spotted Hyena Optimizer (ICHIMP-SHO).
To enhance the optimization capabilities of the original
Particle SwarmOptimization (PSO) and Gravitational Search
Algorithm (GSA), two new algorithms were introduced:
the Gravitational Particle Swarm Optimization Algorithm
(GPSOA) [36] and Sequential Hybrid PSO-GSA (SHPSO)
[37]. These algorithms aim to leverage the exploration
strength of PSO and the exploitation advantage of GSA to
overcome their respective limitations. Additionally, the Spar-
row Search Algorithm (SSA) was proposed, emphasizing
robust search capabilities and rapid convergence speed [38].
SSA is designed to efficiently explore and identify optimal
parameters in optimization tasks.

This paper introduces a modified approach to PSO called
Error-Bound PSO (EB-PSO), which involves the inclusion
of two parameters, ζ1 and ζ2, into the conventional PSO.
These parameters vary exponentially with iterations count,
and are constrained within the range of (ζ1,min, ζ2,min) and
(ζ1,max , ζ2,max). Additionally, their variation is determined
by the local and global errors, which are calculated at
each iteration. This dependency on the errors results in
an improved convergence rate. To validate the efficacy of
the EB-PSO algorithm, the paper includes a case study on
two-stage op-amp.

FIGURE 1. Operation of particle swarm optimization.

FIGURE 2. Variation of (a) local error (ε1) and (b) global error (ε2) with
iterations count.

The paper is organized as follows. Section II explores
the conventional PSO algorithm. The proposed EB-PSO
algorithm is discussed in Section III. Section IV presents the
simulation results and includes three case studies. The paper
is concluded in Section V.

II. BACKGROUND THEORY
A good exploitation ability ensures that the algorithm
converges faster to a global optimum solution and good
exploration results in no premature convergence. Considering
a n-dimensional search space, the particles are initializedwith
uniform random velocity and position in the search space. Let
for a particle j, the position and velocity be represented by
xj and vj respectively as shown in Fig. 1, where xj = (xj1,
xj2, . . . ., xjn) and vj = (vj1, vj2, . . . ., vjn). Let xpbest be the
personal best position for this particle j and xgbest be the
global best position of the group. The velocity of the particle
is calculated using the following equation:

vk+1
ij =w ∗ vkij+c1 ∗ r1(xkpbest,ij − xkij)+c2 ∗ r2(xkgbest,i − xkij)

(1)

the variable ‘k’ denotes the iteration count, ‘i’ ranges from
1 to n, and ‘j’ ranges from 1 to p. The values ‘p’ and ‘n’
represent the total number of particles and variables, respec-
tively. The coefficient of cognitive acceleration, denoted as
‘c1’, aids in exploring the search space, while the coefficient
of social acceleration, ‘c2’, facilitates exploiting the search
space. Additionally, ‘r1’ and ‘r2’ are random uniform values
generated in the range of 0 to 1. Each particle’s position is

VOLUME 12, 2024 50127



K. G. Shreeharsha et al.: EB-PSO for Analog Circuit Sizing

FIGURE 3. Variation of local error (ε1) and global error (ε2) with iterations count for the objective function f1(x).

subsequently updated using equation (2).

xk+1
ij = xkij + vk+1

ij (2)

To enhance the PSO algorithm’s search capability, an iner-
tia weight ‘w’ is introduced in the velocity equation (refer
eq. (1)). The value of ‘w’ determines the impact of the
previous velocity and, in turn, affects the particle’s speed
in converging. Specifically, w = w*wdamp, where a larger
value of ‘w’ facilitates global search, while a smaller value
enables local search. The search terminates when it reaches
the maximum number of iterations or meets the desired error
criteria. This work explores improving the convergence rate
by examining the error between the local best (xpbest,ij) and
global best ((xgbest,i)) with respect to the particle’s current
position (xij). Thus, the error between xpbest,ij and xij is termed
as the local error (ε1), i.e.

ε1 = xpbest,ij − xij (3)

Similarly, the error between xgbest,i and xij is termed as the
global error (ε2), i.e.

ε2 = xgbest,i − xij (4)

Here, the local error refers to the error of a particle’s current
position in its local neighborhood, which helps the particle
to update its position and velocity by considering the best
position found by its neighbors in the current iteration. On the
other hand, the global error is the error of the best solution
found so far by all particles, which acts as a guide for the
particles to converge towards optimal solution. To understand
the behaviour of the local and global errors, consider an
example of one-dimensional objective function as shown in
eq. (5).

Minimize f1(x) = x2

s.t. − 5 ≤ x ≤ 5 (5)

The objective function in (5) is minimized using a con-
ventional PSO algorithm and local as well as global
errors are obtained with iterations count (k), which are
plotted in Fig. 2. The errors vary and eventually stabilize
after several iterations, signifying the convergence of the
optimization algorithm. The function’s value obtained after
the convergence is the minimum value achieved using the
optimization algorithm. It can be observed that both the errors
take 98 iterations to settle. This necessitates a more number
of iterations to optimize an objective function.

III. ERROR-BOUND PARTICLE SWARM OPTIMIZATION
In traditional PSO, the update of particle velocity follows
the equation expressed in equation (1). It was noted that the
velocity is influenced by the value c1, c2, r1 and r2. The global
and local errors exhibit fluctuations with every iteration.
During the initial search phase, the positions of the particle
may deviate significantly from their global best, resulting in
a large error. As the particles exchange information about
their best possible location, the position error gradually
decreases, but conventional PSO algorithms tend to have a
slow convergence process. To expedite convergence, prior
research has recommended the use of a inertia weight with
time-decreasing behaviour. Nevertheless, this method still
necessitates a considerable number of iterations to achieve
convergence [39].

Concerning the design of analog circuits, there is a
notable increase in both complexity and design cycle time.
Consequently, the proposed EB-PSO algorithm aims to
alleviate the design cycle time. This study delves into
the time complexity of the EB-PSO algorithm, specifically
focusing on a variant that introduces the parameters ζ1 and
ζ2 to influence the search process. The manner in which
ζ1 varies plays a crucial role in shaping the behavior of the
EB-PSO algorithm.Opting for linear variations of ζ1 provides
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Algorithm 1 Proposed EB-PSO Algorithm: A Step-by-Step
Pseudo-Code
1: begin
2: Initialization: Number of Dimensions (n); Acceleration

Coefficients (c1 and c2); Population Size (p); Maximum
Number of Iterations (N); inertia weight (w); αmin;
αmax ; α1; α2 establishes the boundaries for the design
parameters.

3: for all particle do
4: Generate xi randomly and assess its fitness, denoted

as f(xi).
5: if current fitness value is superior to its previous

personal best (pbest) then
6: Set pbesti = xi and f(pbesti) = f(xi)
7: for all particle do
8: if f(pbesti) < f(gbest) then
9: f(gbest) = f(pbesti)

10: while maximum iterations are not reached do
11: Evaluate ε1 and ε2 using eq. (3) and (4)
12: if |ε2| > α2 then
13: ζ2 = ζ2,max ∗ e−

k
N

14: ζ1 = ζ1,min
15: else if |ε1| > α1 then
16: ζ1 = ζ1,max − (ζ1,max − ζ1,min)e−

k
N

17: ζ2 = ζ2,min
18: else
19: ζ1 = ζ1,max
20: ζ2 = ζ2,min

21: Evaluate the velocity of the particle using eq. (6)
22: Evaluate its position using eq. (2)
23: if pbest meets all the specified constraints and bounds

then
24: pbesti = xi(k + 1)
25: f(pbest) = f (xi(k + 1))
26: if f(pbest) < f(gbest) then
27: gbest = pbesti
28: f (gbest) = f (pbesti)
29: k = k + 1
30: end
31: return gbest

enhanced control over the transition between exploration and
exploitation, offering a gradual shift from global exploration
to local exploitation. However, the algorithm’s behavior is
significantly affected by the slope and intercept of the linear
function. While such gradual variations prove beneficial for
simpler problems, exponential variations of ζ1 are more
conducive to rapid convergence in the initial stages of the
algorithm for complex and high-dimensional issues like
analog circuit design. Nevertheless, an excessively high
decreasing rate may result in premature convergence and
entrapment in local optima if exploration diminishes too
swiftly. To address this, the present study introduces the

FIGURE 4. Flowchart of EB-PSO algorithm.

utilization of error-dependent coefficients for global and
local errors to enhance convergence speed. The parameters
ζ1 and ζ2 vary based on local and global errors. These
coefficients, denoted as ζ1 and ζ2, respectively, enable an
increased particle velocity directed towards minimizing the
error, thereby enhancing the learning rate as expressed in
eq. (6).

vk+1
ij = w ∗ vkij + ζ1 ∗ c1 ∗ r1(xkpbestij − xkij)

+ ζ2 ∗ c2 ∗ r2(xkgbesti − xkij) (6)

where ζ1 and ζ2 are defined as,

ζ1=

{
ζ1,max−(ζ1,max−ζ1,min)e−

k
N ; |ε1| > α1, |ε2| < α2

ζ1,max; |ε1| < α1, |ε2| < α2
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FIGURE 5. Variation of ζ1 and ζ2 with iterations count (k) for (a) ζ1,min =

0 and (b) ζ1,min = 0.1.

ζ2 =

{
ζ2,max ∗ e−

k
N ; |ε2| > α2

ζ2,min; |ε2| < α2
(7)

Here, (ζ1,min, ζ2,min) and (ζ1,max , ζ2,max) denotes the lower
and upper bound for the parameters ζ1 and ζ2 respectively.
Also, α1 and α2 represents minimum tolerable value of
error for local and global error respectively. The value of
α1 and α2 is dependent on the type of objective function
and the bounds associated with the design variables used
in the objective function. During the initial search when
global error is high (i.e. |ε2| > α2), ζ2 is set to ζ2,min
and is exponentially decreased with each iteration as seen
from eq. (7). Meanwhile, ζ1 is set to a minimum as the
velocity is defined by exploration. When the global error falls
below a threshold of α2 (indicating the end of the exploration
process), ζ1 starts increasing exponentially, while ζ2 remains
fixed to a low value (ζ2,min). This marks the beginning of
the exploitation process, which continues until the local error
reaches a desired low threshold of α1, indicating the end of
optimization process. The use of error-dependent coefficients
for global and local errors create a piece-wise functions for
the parameters ζ2 and ζ1.
Algorithm 31 outlines the functioning of the proposed

PSO. The evaluation of the objective function for each
particle takes place in every iteration. Here, if the fitness
value of the particle is less than its best value, then the local
best (xpbest ) is updated with the particle current position.
The particle having the best fitness value among all other
particles is chosen to be global best (xgbest ). The local and
global errors are then calculated. Initially, the global error
(ε2) is evaluated. If |ε2|>α2, then the ζ2 value is chosen to
be an exponentially decreasing function of iteration count
(k) as shown in eq. (7) and ζ1 is set to ζ1,min. Once the
global error is within the desired limits, the local error is
then evaluated. If |ε1|>α1, then the ζ1 is chosen to be an
exponentially increasing function of iteration count (k) as
shown in eq. (7). Also, ζ2 is set to ζ2,max . For the next iteration
k, the entire swarm is updated in every dimension by updating
the velocity of each particle and its corresponding position
using eq. (6) and (2) respectively. The proposed algorithm
is then used to examine the behaviour of ε1 and ε2 for the
objective function (f1(x)) defined in eq. (5) and the results
are plotted in Fig. 3. It is observed that the proposed PSO

FIGURE 6. Variation of (a) ε1 and (b) ε2 with iterations count(k) for
ζ1,min = 0 and ζ1,min = 0.1.

algorithm takes 33 iterations for ε2 and 37 iterations for
ε1 to settle. It is important to note that ε1 settles after ε2 as
the global error ε2 is evaluated before the local error ε1.
The flowchart representing the steps followed for proposed
EB-PSO algorithm is depicted in Fig. 4.

A. CHOICE OF (ζ1,MIN , ζ2,MIN ) AND (ζ1,MAX , ζ2,MAX )
In the proposed EB-PSO algorithm, (ζ1,min, ζ2,min) and
(ζ1,max , ζ2,max) defines the lower and upper range of ζ1 and
ζ2 values. In Fig. 5(a), if ζ1,min is set to zero, the local
error is eliminated during the initial search, and the velocity
update equation is only dependent on the global error. This
causes the particles to move towards the global best solution
in each iteration, limiting the search space exploration to
the area around the global best solution. Consequently, the
algorithm may not be able to discover potentially better
solutions in other parts of the search space, leading to slower
convergence. However, when ζ1,min is set to 0.1 in Fig. 5(b),
there is a minimum dependency on the local error term during
the initial search, resulting in a significant improvement
in convergence rate. The effectiveness of this concept is
demonstrated by evaluating objective function f1(x) under
both scenarios, and the results plotted in Fig. 6 show that
setting ζ1,min to 0.1 leads to faster convergence of local and
global errors. Additionally, once the exploitation process is
completed, the local error term is sufficient enough to explore
near the global best solution to find optimal solution. Thus,
ζ1,max and ζ2,min are chosen to be 1 and 0 respectively.
Tomaintain balance between the local and global error, ζ2,max
is set to 1.

B. CHOICE OF α1 AND α2
In the proposed EB-PSO method, the values of α1 and α2
determine the minimum allowable error for local and global
errors, respectively. α1 specifies the desired level of accuracy
for the objective function, while α2 is crucial for determining
the rate of convergence. The appropriate values of α1 and
α2 depend on several factors, including the bounds of the
objective function, the desired level of accuracy, and the
specifications to be met. Ultimately, it is up to the circuit
designer’s intuition and experience to choose the values of
α1 and α2 that will facilitate faster convergence. It should be
noted that α1 is kept smaller than α2, as the global error is
evaluated before the local error.
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FIGURE 7. Variation of local error (ε1) and global error (ε2) with iterations count for the objective function f2(x).

TABLE 1. Parameters employed in the proposed EB-PSO algorithm.

TABLE 2. Technology parameters.

IV. RESULTS AND DISCUSSIONS
The proposed EB-PSO algorithm is executed on the Python
platform utilizing TensorFlow andKeras to achieveminimum
local and global errors for the considered case studies.
The optimization problems are performed on an Intel
i7-9700 CPU, running at 3 GHz, and equipped with 16 GB
RAM. Two case studies using a noisy and non-convex
function is discuss in this work. To verify the usefulness
of the proposed EB-PSO in the field of analog circuit
sizing having a multi-dimensional objective function with
stringent design constraints, this work includes an additional
case study involving a two-stage operational amplifier (op-
amp). The validation of the obtained design parameters

and circuit simulations for the third case study are done
in Cadence-Virtuoso environment using 45 nm CMOS tech-
nology with 1.8V supply. The parameters selected for
implementing the proposed EB-PSO algorithm in all case
studies are outlined in the Table 1. The literature [25] reports
that the sum of c1 and c2 is stated to be greater than or
equal to 4. Thus, c1 = 3 and c2 = 1 are selected
for this work. The supply voltage, technology, and process
parameters considered for the third case study are listed in
Table 2. Here, Kp = µpCox and Kn = µnCox . The value of
ζ1,min and ζ2,max is chosen to be 0.1 and 1 respectively in this
work.

A. CASE STUDY 1: NOISY FUNCTION
Consider the objective function f2(x) as defined in eq. (8).

Minimize f2(x) = (x + rand(len(x)) ∗ 0.3)2

s.t. − 5 ≤ x ≤ 5 (8)

The function f2(x) is minimized using conventional PSO
as well as proposed EB-PSO algorithm. It achieves the
minimum value of 5.3 ∗ 10−8 for x = −0.06. The errors
ε1 and ε2 were evaluated with iterations count for both the
considered PSO algorithms. The results are plotted in Fig. 7.
It is noteworthy that the proposed EB-PSO algorithm takes
62 iterations for ε1 to settle whereas the conventional PSO
takes 79 iterations. Also, the error ε2 settles in 35 iterations
whereas the conventional PSO does not settle within the
considered bound (α2 = 0.3). It should be noted that ε2 settles
before ε1 as discussed in Section III.

B. CASE STUDY 2: NON-CONVEX UNI-MODAL FUNCTION
Another case study of non-convex uni-modal function is
considered in this work, whose objective function f3(x) is

VOLUME 12, 2024 50131



K. G. Shreeharsha et al.: EB-PSO for Analog Circuit Sizing

FIGURE 8. Variation of local error (ε1) and global error (ε2) with iterations count for the objective function f3(x).

FIGURE 9. Case study 3: Schematic illustrating a two-stage op-amp.

given by,

Minimize f3(x) = −(x + sin x) ∗ exp (−x2)

s.t. − 10 ≤ x ≤ 10 (9)

The function achieves a minimum value of −0.824 for
x = 0.68 with a proposed EB-PSO. The errors ε1 and
ε2 evaluated using conventional and proposed EB-PSO are
plotted in Fig. 8. It can be observed that the proposed EB-PSO
takes 49 and 46 iterations for ε1 and ε2 to settle, whereas
conventional PSO takes 67 and 65 iterations for ε1 and ε2
to settle. Thus, it is noticed that proposed EB-PSO converges
approximately 27% faster than the conventional PSO.

C. CASE STUDY 3: TWO-STAGE OP-AMP
In assessing the effectiveness of the EB-PSO in analog circuit
sizing, a case study is undertaken that involves a two-stage
operational amplifiern (op-amp) with RC compensation. The
schematic diagram of the two-stage op-amp is depicted in
Fig. 9. A load capacitance of 1 pF is considered. The design
steps [27], meeting specified constraints, are summarized in

Table 3. The problem formulation encompasses 10 design
variables, and their search ranges are detailed in Table 4. The
primary objective of this case study is to minimize the total
power consumption in two-stage op-amp.
The formulation of the optimization problem is expressed

as follows:

Minimize Power

s.t. DC Gain ≥ 60 dB

PM ≥ 60◦

GBW ≥ 15MHz

SR ≥ 20V/µs

Output swing ≥ 1.2V

VIN (max) = 1.6V

VIN (min) = 0.6V (10)

In this particular study, the objective is to ensure that all
transistors operate in the saturation region for enhanced gain.
Consequently, the saturation margins are maintained well
above 50 mV. This adds to a total of 15 specifications in
the design considerations. The cost function for the proposed
along with the considered traditional algorithms is plotted in
Fig. 10. It is observed that the proposed EB-PSO algorithm
converges in 11 iterations, whereas it takes 23, 29, and
41 iterations to converge for conventional GA, DE, and PSO
algorithms respectively. The running time for each considered
algorithms are tabulated in Table 5. Notably, the Genetic
Algorithm (GA) exhibits a faster convergence time. However,
it is worth highlighting that the optimal solution achieved
with the EB-PSO algorithm is significantly closer to the
desired specifications in comparison to GA. The optimized
design, acquired through the proposed EB-PSO algorithm,
is detailed in Table 6. To affirm the precision of the optimal
design parameters, diverse analyses including transient
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TABLE 3. Steps in designing Case Study 3, focusing on a two-stage op-amp [27].

TABLE 4. Parameters for the design and their respective ranges for a
two-stage op-amp.

TABLE 5. Running time for different considered algorithms in sec.

simulations, DC simulations, and frequency response
evaluations were carried out.

1) DC ANALYSIS
The determination of the Input Common-Mode Range
(ICMR) involves setting up the op-amp in the form of
a non-inverting unity gain buffer. In this configuration,
a continuous input spanning from 0 to VDD is applied to
the op-amp. The output voltage is graphed as illustrated
in Fig. 11. It’s important to highlight that the output

FIGURE 10. Variation in cost function of a two-stage op-amp concerning
the iteration count for various evolutionary algorithms.

maintains linearity within a defined range of input voltages.
Consequently, VIN(min) and VIN(max) are determined to be
0.38 V and 1.57 V, respectively.

2) TRANSIENT ANALYSIS
A time-domain analysis is conducted with a step signal as
input. The slew-rate is determined by measuring the slope of
the output signal, as shown in Fig. 12. Utilizing the EB-PSO
algorithm, a negative and positive slew-rate of 18.6V/µs
and 30V/µs respectively are achieved. Additionally, the
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TABLE 6. Parameters for the design of two-stage op-amp.

FIGURE 11. Variation in the output voltage of a two-stage op-amp in
relation to the input common-mode range.

FIGURE 12. Unit step response of the two-stage op-amp in unity
feedback configuration.

minimum andmaximum output voltage turns out to be 0.27 V
and 1.67 V, respectively.

3) FREQUENCY RESPONSE
In Fig. 13, a frequency response is depicted by analyzing a
differential signal at the input. The designed system achieves
a DC gain of 59.88 dB and a phase margin (PM) of 76.17◦.

FIGURE 13. Frequency response of a two-stage op-amp.

Furthermore, the unity-gain bandwidth (fugb) is measured at
16.9MHz, meeting the specified criteria.

For a comprehensive comparison, traditional evolutionary
algorithms such as conventional PSO, differential evolu-
tion (DE), and genetic algorithm (GA) were employed
alongside the proposed EB-PSO algorithm. The outcomes
are presented in Table 7. Notably, the proposed algorithm
demonstrates a higher convergence rate, effectively meeting
the desired specifications. It is crucial to observe that
both the proposed algorithm and DE successfully adhere
to the unity gain bandwidth constraints, while conventional
PSO and GA fall short in meeting the requirements.
However, DE achieves the specifications at the expense
of increased power consumption and convergence time.
Moreover, it’s worth noting that both GSA and CHIMP
exhibit higher computational power requirements compared
to the proposed EB-PSO algorithm. In contrast, EB-PSO
demonstrates a closer alignment with design specifications
when compared to HPSO and SSA optimizers. This suggests
that EB-PSO not only offers a more efficient computational
performance but also tends to yield solutions that are more
closely matched to the specified design criteria than its
counterparts.
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TABLE 7. Comparative evaluation of two-stage op-amp performance using various evolutionary algorithms.

V. CONCLUSION
An Error-Bound Particle Swarm Optimization (EB-PSO)
algorithm was proposed for analog circuit sizing to improve
the convergence rate in this work. An optimal solution was
found in a constrained design environment. The parameters
(ζ1 and ζ2) were introduced in the velocity update equation.
An exponential behavior bounded between (ζ1,min, ζ2,min) and
(ζ1,max , ζ2,max) was proposed with respect to the number of
iterations for both the parameters. The local error (ε1) and
global error (ε2) were calculated iteratively. Initially, ε2 is
minimized leading to global exploration search. It is then
followed by local exploitation by minimizing ε1. To verify
the effectiveness of the proposed EB-PSO algorithm in the
field of analog circuit sizing, a case study of two-stage
op-amp was presented. The optimal solution was verified
by simulation results using Cadence-Virtuoso environment.
The results showed that the optimal solution meets all the
desired specifications. Furthermore, in comparison to other
traditional algorithms under consideration, the proposed
algorithm has demonstrated the highest convergence rate of
11 iterations in case of two-stage op-amp, which is 52%, 62%,
and 73% faster when compared to GA, DE and conventional
PSO algorithm.
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