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ABSTRACT The feed system is an important part of CNC machine tools, and its condition monitoring is
mostly based on vibration signals measured by sensors. To remove the noise mixed in the signal, a joint
denoising method based on variational mode decomposition (VMD), simple correlation analysis (SCA)
and translation invariant wavelet (TIW) denoising is proposed in this paper. Firstly, the VMD parameters
are adjusted adaptively by the Aquila Optimizer (AO) to meet the demand of signal decomposition from
different components of feed system. Then, the intrinsic mode functions (IMFs) obtained after VMD
processing are reconstructed based on correlation analysis to eliminate irrelevant information. Finally, the
reconstructed signal is denoised by translation invariant wavelet to obtain the denoised signal. The feasibility
and universality of the joint analysis method are verified by the denoising test of simulation signals and
measured signals from a certain machine feed system. The results show that the joint analysis method has
better denoising effect than some general denoising method, and it can satisfy the denoising requirement
when processing signals from different components. Besides, the proposedmethod has the ability of adaptive
denoising. Compared with other optimization algorithms, AO algorithm has better optimization accuracy and
efficiency, which can provide good support for the universality of the joint analysis denoising method.

INDEX TERMS Aquila optimizer, machine tool, multi-component feed system, signal denoising, variational
mode decomposition.

I. INTRODUCTION
A. RESEARCH BACKGROUND
The growth of the manufacturing sector has led to the popu-
larization of precision CNC machine tools because to their
fast processing rates, safety and dependability, high preci-
sion, and great efficiency. The feed system of precision CNC
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machine tools is composed of many complex components,
which plays the role of precisely controlling the position of
the tool and the workpiece [1]. Its positioning speed and
accuracy determine the efficiency and quality of product
manufacturing [2]. However, the state change of the feed sys-
tem will affect the operation reliability of the whole machine.
At present, the conditionmonitoring ofmachine tool feed sys-
tem is mostly based on various sensors [3], [4], [5]. Among
them, vibration signal analysis is one of the most common
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ways to predict the development trend of machine tool state
and judge the abnormal state of machine tool. However, when
collecting machine tool vibration information, it is inevitable
to mix various noises, such as human noise, environmental
noise or noise generated by the sensor itself. It will cause the
effective information contained in the original signal to be
covered up, which is not conducive to further analysis [6].
Research indicates that denoising of collected vibration sig-
nals can enhance the accuracy of lifetime prediction [7] and
fault diagnosis [8] of numerically controlled machine tools.
For instance, Qian et al. [9] introduced a new domain gen-
eralization transfer method - the Relation Transfer Domain
Generalization Network (RTDGN) - and applied it to fault
diagnosis under varying noise levels. The results demonstrate
that this algorithm significantly improves the accuracy of
bearing fault diagnosis.

At present, the research of signal denoising algorithm
has been relatively mature. Vibration signals collected from
machine tool feed system are usually nonlinear and non-
stationary [10], [11]. Fourier transform [12], as a denoising
method based on linear systems, is generally not appropriate
to process this kind of signals. Wavelet transform is fre-
quently employed in the field of vibration signal denoising
because of its nonlinear, locality and good time-frequency
domain analysis characteristics. For example, Su et al. [13]
denoised the vibration time domain signal of rotatingmachin-
ery based on wavelet transform, effectively improving the
fault identification ability.

As a time-frequency domain processing method [14], the
most significant feature of empirical mode decomposition
(EMD) is the proposal of the intrinsic mode function (IMF).
The concept of IMF overcomes the problem that the wavelet
basis function is not self-adaptive. However, its develop-
ment and application are hindered by the serious problems
of mode aliasing, end effect and so on. In 2009, Wu and
Huang [15] proposed a signal analysis method based on
improved EMD, namely ensemble empirical mode decom-
position (EEMD). The method utilizes the EMD filter bank
behavior and the statistical property of the uniform distribu-
tion of white noise spectrum to effectively suppress the mode
aliasing caused by intermittent high-frequency components.
Torres et al. [16] proposed the complete EEMDwith adaptive
noise (CEEMDAN). Because CEEMDAN can effectively
solve the problem of white noise transmission from high
frequency to low frequency, it is also widely used in signal
denoising [17].

Compared with EMD and the improved EMD, vari-
ational mode decomposition (VMD) is an adaptive and
completely non-recursive signal processing algorithm [18].
VMD has a complete mathematical model, and the IMF
of the signal is obtained by solving the variational prob-
lem. Its decomposition quality is determined by the number
of modes m and penalty coefficient µ. In order to opti-
mize these two variables. Wang et al. [19] proposed the
power information-guided variational modal decomposition

(PIVMD). This method uses the envelope autoregressive
(AR) power spectrum of the original vibration signal to derive
the VMD parameters, so as to effectively extract the modal
components of rolling bearing fault information. Li et al [20]
proposed a fault information-guided VMD (FIVMD) method
to extract the weak bearing repetitive transient. Intelligent
optimization algorithm has been widely applied in the con-
struction of optimal VMD model [21], [22]. Li et al. [23]
used genetic algorithm (GA) to optimize variational mode
decomposition (VMD) parameters and used it to extract fault
feature information. Li et al. [24] imported snake optimiza-
tion (SO) [25] into VMD for the first time, and proved that
the proposed method has good performance in denoising ship
radiated noise (SN).

Although the above denoisingmethods have achieved good
results in some cases, there are still some problems: 1) The
research of most denoising algorithms is limited to a single
component, and the interaction between multiple compo-
nents is not fully considered. Therefore, the denoising of
multi-component vibration signal has certain research signif-
icance. 2) In a low SNR environment, the classical VMD,
EMD and EMD improved algorithms are difficult to separate
the noise components. Therefore, this paper considers using
TIW to re-reduce the reconstructed signal, and removes the
noise as much as possible on the basis of retaining the sig-
nal characteristics. Based on the above analysis, this paper
constructs a new joint analysis denoising method AO-VMD-
SCA-TIW.

B. RESEARCH CONTENTS
The proposed joint analysis denoising method consists of
VMD, SCA and TIW. Among them, the important parame-
ters m and µ of VMD are optimized by Aquila Optimizer
(AO). This optimization algorithm takes m and µ as the
basic attributes of population individuals, and the minimum
envelope entropy of IMFs is used as the fitness function of
the algorithm. Parameters with the best fitness were sub-
stituted into VMD to process the original signal, and the
resulting IMFs were classified by correlation analysis. After
the effective IMFs are selected for signal reconstruction, the
reconstructed signal will be subsequently processed using
TIW to obtain the denoised signal. In this paper, simulation
signals and vibration signals of different components of the
machine tool feed system were employed to test the proposed
joint denoising method, so as to verify the effective and
universality of the method.

The main novelties and contributions are summarized as
follows: (1) The proposed algorithm not only has good
de-noising effect on simulation signal and multi-component
vibration signal of feed system, but also has certain universal-
ity. (2) Compared with EEMD and CEEMDAN, AO-VMD
has better anti-mode aliasing ability by selecting the optimal
the number of modes. In addition, due to the good mathemat-
ical properties of VMD, the impact features of the original
signal can be better retained. (3) As a new meta-heuristic
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algorithm, Aquila optimizer (AO) can provide more appro-
priate penalty coefficient µ and the number of modes m for
VMD with high efficiency and accuracy.

The remaining chapters are arranged as follows: The sec-
ond section, ‘‘ fundamental theory of denoising’’, focuses on
the VMD and TIW. In addition, AO is introduced to establish
the optimal VMD model (AO-VMD). In the third section,
‘‘Joint denoising Algorithm’’, presents the fusion algorithm
and provides an overview of the noise reduction process.
In the fourth part, the harmonic signals containing impact
and Gaussian white noise were constructed, and five differ-
ent denoising algorithms are used to denoise respectively,
to verify the effectiveness and advantages of the proposed
method. In the fifth section, the application of the joint
denoising method in the vibration signal of the machine tool
multi-component feed system is introduced and verifies it has
certain universality. The last section summarizes the whole
paper and gives the conclusion.

II. FUNDAMENTAL THEORY OF DENOISING
A. VMD
VMD obtains the IMFs of each signal by solving variational
optimization problems in the frequency domain. Different
from the concept of IMF proposed by Huang et al in liter-
ature [14], VMD redefines the intrinsic mode functions of
wireline broadbandwithmore stringent constraints. Themain
steps are as follows: [26]

The mathematical expression of the m-th IMF component
is as follow:

um(t) = Am(t) cos(8m(t)) (1)

where, 8m(t) is the signal’s instantaneous phase and Am(t) is
the envelope amplitude spectrum of signal um(t).
Next, the constrained variational model is constructed.

Firstly, the analytic signal u(t) is obtained by Hilbert trans-
formation of um(t). The exponential harmonic signal ejφm(t) is
added to each IMF to adjust the center frequency of the ana-
lytic signal. Each IMF is then translated into the base band.
Finally, the bandwidth is estimated by analyzing the Gaus-
sian smoothness of the signal. The following constrained
variational problem can be obtained:

min
{um},{ωm}

{

∑
m

||∂t [(d(t) +
j

π t
)∗um] e−jωmt ||22}

st.
∑
m

um(t) = f
(2)

where, IMFs and the corresponding center frequencies are
denoted by {um} and {ωm} respectively. The derivative with
respect to time is denoted by d(t), and the Dirichlet function
is denoted by ∂t .

To solve this constraint problem, the constraint opti-
mization problem can be equivalently transformed into an
unconstrained optimization problem using the augmented
Lagrangian function, and then solved by alternating direc-
tion method of multipliers (ADMM). Alternately update

un+1
m , ωn+1

m and λ n+1 to search the best solution to the prob-
lem mentioned above [27].

The penalty factor µ and the total number of modes m
will affect the quality of VMD decomposition. The Aquila
optimizer will be used in this paper to determine the two
parameter values.

B. AO-VMD
The Ao is a novel intelligent optimization algorithm inspired
by the hunting process of the Aquila in North America. Its
has strong solving ability, fast convergence speed and strong
stability. In this paper, the AO can be employed to determine
the parameter values of VMD adaptively to achieve the best
decomposition effect in different conditions. The process of
the algorithm is as follows: [28]

Step1: Population initialization
The AO is a swarm based intelligent algorithm, so the

first step is to build a matrix W to randomly initialize the
population position:

W ij = rand × (VBj −MBj) +MBj,

i = 1, 2, . . . ,Nj = 1, 2, . . . ,Dim (3)

where, N represents the population size and Dim represents
the dimension of the search space.

Step2: The global optimal solution is obtained via four
population behaviors

(1) Expand the search: The Aquila flock will soar upward
to expand the search area, which can be summarized as
follows:

W1 (t+1)=Wbest (t)×(1−
t
T
)+(WM (t)−Wbest (t)×rand)

WM(t) =
1
N

N∑
i=1

W i(t), ∀j = 1, 2, . . .Dim (4)

where, W(t) and W(t + 1) represent the individual positions
in the t and t+1 iterations respectively; Wbest(t) and WM(t)
represent the optimal individual position and the average
position of the population when the algorithm is iterated
to t times, respectively. T represents the total number of
iterations.

(2) Narrow the scope: When Aquila birds spot prey, they
will circle above the target. This process that can be expressed
as:

W2(t + 1) = Wbest(t) × Levy(D)+WR(t)+(y−x) × rand

(5)

where,WR(t) represent a random solution ofN loaded values
after a contraction exploration iteration, and Levy(D) is Lévy
flight distribution (LFD), and x and y represent the shape of
the flight. 

Levy(D) = s×
µ × σ

|ν|
1
β

σ = (
G(1 + β) × sin πβ

2

G( 1+β
2 ) × β × 2

β−1
2

)
(6)
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where, µ and ν are random numbers taken from [0, 1]; G(x)
is the gamma function, and β = 1.5.
(3) Extend development: When the Aquila birds are ready

to land and attack, the vertical descent approach will be taken
to initial attack. The position function is updated as follows:

W3(t + 1) = (Wbest(t) −WM(t) × α) − rand

+ ((VB−MB) × rand +MB) × δ (7)

where, α and δ are the adjustment parameters selected
from 0 to 1.

(4) Shrink development: Aquila birds attack the prey with
a certain randomness, and the behavior of walking and grab-
bing prey can be expressed as follows:

W4(t + 1) = QE(t) ×Wbest (t) − (H1 ×W (t) × rand)

− H2 × Levy(D) + rand × H1 (8)

where, QE(t) represents the quality function used to balance
the search strategy. H1 represents the random movements
of the Aquila birds in the process of tracking prey. H2 rep-
resents the linearly decreasing flight slope value, the range is
[0, 2]. The QE(t), H1 and H2 can be calculated as follows:

QE(t) = t
2×rand−1
(1−T )2

H1 = 2 × rand − 1

H2 = 2 × (1 −
t
T
) (9)

In this paper, µ and m are optimized by the AO, and
the minimum envelope entropy of the IMF is selected as its
fitness function. It’s calculated by the following formula:

Er = −

N∑
k=1

rk lg rk

rk = f (r)/
N∑
k=1

f (r)

(10)

where, Er is the envelope entropy which is the normalized
form of f (r), and f (r) is the envelope signal obtained by
Hilbert demodulation of the IMF component.

The sparse feature of the original signal can be represented
by the envelope entropy. The envelope entropy is greater
when there is more noise and less feature information in the
IMF. Therefore, the AO can adaptively adjust the result of
variational mode decomposition by calculating the envelope
entropy of the IMF. The optimal parameter combination is the
one that produces the most characteristic information while
producing the least noise.

C. TIW
In wavelet denoisingmethods, the thresholdmethod is widely
used and can achieve good denoising effect. The threshold
denoising method broadly used in engineering is realized
by setting the threshold ν. Its mathematical expression is as
follows:

c =

 sign(c×

[∣∣∣c2∣∣∣ − ν2
] 1
2
), |c| ≥ ν

0, |c| ≤ ν

(11)

where, c is the wavelet coefficient and c is the wavelet coef-
ficient after quantization. sign() is a symbolic function. ν is
the threshold, and ν =

√
2 lgL,where L represents the signal

length.
However, when the matching degree between the signal

features and the features of the wavelet base elements is too
low, pseudo-Dibbs will be generated by using the thresh-
old method. The translation invariant wavelet denoising can
effectively suppress this phenomenon. In this method, n times
of cyclic translation is adopted, and the signal after each
translation is denoised by threshold method. Then the result
after denoising is averaged. It is the basic idea of the trans-
lation invariant wavelet denoising method of ‘‘translation -
denoising - average’’ [29]. The idea can be expressed as:

T(xt , (Sh)h∈Hn ) = AVEh∈Hn
1
Sh

(T(Sh(xt ))) (12)

where, xt represents a signal. Sh represents a time-domain
translation of the signal xt by h units. h is a positive integer
whose value range isHn = {h : 0 ≤ h < n}. T represents that
the threshold method is used for signal denoising, and AVE
means ‘‘average’’.

III. JOINT ANALYSIS DENOISING METHOD
Based on the above basic theory, a joint denoising method
named AO-VMD-SCA-TIW is proposed. The process of AO-
VMD-SCA-TIW is as follows:

Step1: The VMDparameters are optimized with the Aquila
optimizer (AO-VMD):

(1) Set basic parameters of AO: population size=10, itera-
tion number =10, search space of m is [2, 10], and the search
space of µ is [50,2000].

(2) Initialize the population positionW, and the algorithm
starts looping at t = 1.
(3) Calculate the average population location, and the posi-

tion W1(t+1), W2(t+1), W3(t+1), W4(t+1) were updated
successively according to the each phase.

(4) Calculate the respective fitness according to the
updated position of the Aquila birds, so as to find the optimal
fitness value and the position of the corresponding individual.

(5) The fitness value of the current optimal individual is
compared with that of the optimal individual obtained in
the t generation, and the position of the better individual is
retained.

(6) Determine whether the termination conditions are met.
If not, repeat steps (4)-(6). If yes, jump out of the loop and
get the best decomposition parameter [m, µ].

Step2: The VMD algorithm based on the optimal param-
eters can process the noisy signal and obtain m IMF
components. The simple correlation analysis technique is
used to provide theoretical basis for signal reconstruction.
The correlation between each IMF and the original signal
can be analyzed to judge whether it can be discarded as
irrelevant information. The better the correlation between the
two variables, the closer the absolute value of the correlation
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FIGURE 1. The flow chart of the joint denoising method AO-VMD-SCA-TIW.

coefficient is to 1. Its mathematical expression is as follows:

CCxy =

n∑
m=1

(Xm − X )(Ym − Y )√
n∑

m=1
(Xm − X )2

√
n∑

m=1
(Ym − Y )2

(13)

where, X represents the original signal and Ym represents the
m-th IMF component obtained via VMD.CCxy represents the
Pearson correlation coefficient between the original signal
and IMF.

Step 3: According to [30], the threshold of Pearson cor-
relation coefficient CCxy was set as 0.2. The IMF will be

regarded as noise component if its correlation coefficient is
below the threshold. The reconstructed signal can be obtained
by combining the remaining components after eliminating
these noise components.

Step 4: The reconstructed signal is further denoised by
TIW to obtain the final denoised signal. The flow chart of
the joint analysis denoising method AO-VMD-SCA-TIW is
shown in Fig. 1.

IV. SIMULATION SIGNAL TEST
A. SIMULATION SIGNAL CONSTRUCTION
In order to verify the availability of AO-VMD-SCA-TIW, the
denoising experiment of the simulated signal was carried out

49908 VOLUME 12, 2024



J. Tian et al.: Denoising Method of Vibration Signal

FIGURE 2. Diagram of simulation signal generation.

first. The components in the machine tool feed system are
usually affected by a variety of environmental factors and will
be affected by irregular shocks, so the intensity and frequency
of the noise source will constantly change. In this section,
considering the actual working conditions, a pulse signal and
Gaussian white noise were added to a stationary signal. The
definition of simulation signal X is as follows:

X1 = A1 sin(2π f1t + cos(2π f2t)) + A2(eiωt + e-iωt )

X2 = pulstran(T ,D,’tripuls’,5,1)

X = awgn(X1 + X2, ni,′ measured ′) (14)

where, A1 = 8 and A2 = 10 represent the amplitude of the
signal; f1 = 0.25 and f2 = 0.005 represent the frequency
of the signal; X2 is a pulse signal; T represents the sampling
time and D represents the sampling interval; X represents
the simulation signal after adding Gaussian white noise with
specified signal-to-noise ratio (SNR); ni represents Gaussian
white noise of different intensity. In this paper, Gaussian
white noise with SNR of −9dB, −5dB, 5dB and 9dB was
added to the original signal respectively for simulation.

According to equation (14), X is the signal containing
noise, andX1+X2 is the original signal. Taking the simulation
signal containing 9db Gaussian white noise as an example,
both the original signal and noisy signal are displayed in
Fig.2.

B. SIMULATION SIGNAL DENOISING
In this paper, root mean square error (RMSE) and SNR were
employed to evaluate the denoising effect of AO-VMD-SCA-
TIW. The mathematical expression is as follows:

RMSE =

√√√√1
n

n∑
i=1

(f(l) − s(l))2

SNR = 10 log(

N∑
i=1

S2(l)

N∑
i=1

[f(l) − s(l)]2
) (15)

where, l is the length of the signal; f(l) is the signal after
AO-VMD-SCA-TIW denoising, and s(l) is the original

TABLE 1. Initial parameters of optimization algorithm.

FIGURE 3. Iterative process of the two algorithms. (a) AO-VMD-SCA-TIW.
(b) GA-VMD-SCA-TIW.

signal. The smaller the RMSE value and the larger the SNR
value, the better the denoising effect.

To verify the superiority of AO-VMD-SCA-TIW, this
paper compared it with GA-VMD-SCA-TIW, VMD-SCA-
TIW,CEEMDAN-SCA-TIW, and EEMD-SCA-TIW.Among
them, the former uses the genetic algorithm (GA) proposed by
Holland to replace the Aquila optimizer to achieve the pur-
pose of parameter optimization. VMD-SCA-TIW employs
VMD to replace the optimized VMD. After several simula-
tions, the number of modes m = 5 and penalty coefficient
µ = 4000 were artificially selected. The latter two use EEMD
and CEEMDAN to replace VMD.

Four groups of simulation signals were obtained by adding
four kinds of white Gaussian noise and pulse signals with dif-
ferent intensities to the original signal. AO-VMD-SCA-TIW,
GA-VMD-SCA-TIW, VMD-SCA-TIW, CEEMDAN-SCA-
TIW, EEMD-SCA-TIWwere used to denoise the noisy signal
respectively. Table 1 shows the initialization parameters of
the fusion optimization algorithm. Fig. 3 shows the differ-
ent iterative processes based on AO-VMD-SCA-TIW and
GA-VMD-SCA-TIW methods for signals with SNR of 9dB.

As can be seen from the above figure, both algorithms
completed convergence within ten iterations. The minimum
fitness of GA was 3.6323 and the minimum fitness of AO
was 3.5308. The smaller the envelope entropy, the less noise
contained in the IMF component, so it can be drawn that AO
had a better optimization effect. Furthermore, as seen in Fig.5,
the convergence speed of AO was faster: its convergence was
completed at the third iteration, while GA was completed at
the eighth iteration. In terms of computational efficiency, the
running time of AO was 106.89 seconds, while the running
time of GA was 1403.028 seconds, which shows that AO has
better efficiency.
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FIGURE 4. Comparison of denoising effect of five algorithms with a SNR
of 5dB. (a) AO-VMD-SCA-TIW. (b) GA-VMD-SCA-TIW. (c)VMD-SCA-TIW.
(d) CEEMDAN-SCA-TIW. (d)EEMD -SCA-TIW.

In order to verify the advantages of VMD in this algorithm,
this paper compared VMD with EEMD and CEEMDAN.
Taking the simulation signals with a SNR of 5db and 9db
as an example, the processes AO-VMD-SCA-TIW, GA-
VMD-SCA-TIW, VMD-SCA-TIW, EEMD-SCA-TIW and
CEEMDAN-SCA-TIW were used for denoising, respec-
tively. Fig. 4 and 5 show the actual denoising results under
different methods.

The above figures clearly shows that the denoised sig-
nal following AO-VMD-SCA-TIW processing has the best
matching performance with the original signal. According
to the denoising results, the reconstructed signal after vari-
ational mode decomposition can retain the pulse signal in
the original signal. The fundamental reason is that they have
different definitions of IMF. IMF in EMD needs to meet two
conditions: First, within the entire data segment, the number
of extreme points and the number of zero crossing points
must be equal or no more than one difference. Second, at any
time, the average value of the upper envelope formed by the
local maximum point and the lower envelope formed by the
local minimum point are zero. These will result in the shock
signal being separated as a factor affecting themean envelope.
The IMF of VMD is defined as formula (1), which has a
perfect mathematical model and will not be affected by shock
features.

Table 2 details the processing effects of the five denois-
ing methods discussed above on the four sets of simulation
signals. Furthermore, the effects of combined denoising with
TIW and denoising with simply signal reconstruction are

FIGURE 5. Comparison of denoising effect of five algorithms with a SNR
of 9dB. (a) AO-VMD-SCA-TIW. (b) GA-VMD-SCA-TIW. (c)VMD-SCA-TIW.
(d) CEEMDAN-SCA-TIW. (d)EEMD -SCA-TIW.

compared, where ‘-’ indicates that the signal is reconstructed
based only on simple correlation analysis.

Through vertical analysis of the table, it can be found that
with the increase of SNR, the denoising effects of various
methods are all improving. This shows that similar joint
analysis denoising methods are easier to deal with signals
with less noise. The horizontal analysis of the data in the table
shows that AO-VMD-SCA-TIW has the highest SNR value
and the lowest RMSE value under the same SNR, indicating
that it has the best denoising effect.

In the process of denoising, the optimization algorithm
will find the optimal VMD parameters to reduce the mutual
interference between different mode functions as much as
possible. When AO-VMD-SCA-TIW and GA-VMD-SCA-
TIW are compared under different situations, the denoising
effect of AO-VMD-SCA-TIW is superior to that of GA-
VMD-SCA-TIW. This is because under the same premise
of using VMD for signal decomposition, the AO can get
more appropriate decomposition parameters, so as to further
improve the anti-mode aliasing ability. Comparing the noise
reduction effect of AO-VMD-SCA-TIW and VMD-SCA-
TIW under different conditions, the noise reduction effect of
AO-VMD-SCA-TIW is better than that of VMD-SCA-TIW.
Because EEMD adds Gaussian white noise during signal
decomposition, even if it cancels the extra white noise after
ensemble averaging, residual Gaussian white noise in the
reconstructed signal is unavoidable, resulting in mode alias-
ing. In summary, the AO-VMD-SCA-TIW method proposed
in this paper has advantages in processing simulated signals.
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TABLE 2. Denoising effect of five methods on noisy signals.

FIGURE 6. Feed system signal acquisition experiment.

V. APPLICATION OF MULTI-COMPONENT
EXPERIMENTAL DATA IN FEED SYSTEM
In this section, the AO-VMD-SCA-TIW method was applied
to the actual working conditions. To test the universality
of the proposed method for vibration signals denoising,
vibration signals were collected from different components

in the feed system. The experimental site is a machining
shop, where the personnel turnover rate is high and mul-
tiple machine tools are running at the same time. There
were a lot of noise sources in the experimental environ-
ment, which affected the accurate acquisition of vibration
signals.
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FIGURE 7. Selected experimental data.

The experimental equipment was composed of IEPE piezo-
electric sensors, a data acquisition device and a computer. The
acquisition device is shown in Fig. 6(a), and the distribution
points of the vibration signal acquisition experiment for the
multi-component feed system are shown in Fig. 6(b). 8 mea-
suring points were arranged on the workbench, 4 measuring
points were arranged on the bearing seat, and 7 measuring
points were arranged on the guide rail to collect the signals in
all directions of different components as far as possible.

There were two working conditions were designed: the
motor speed of 4000 rpm and 5000 rpm, respectively. The
sampling frequency of the signal acquisition equipment was
all maintained at 1kHz and the machine table maintained
round-trip movement. Before the test starts, the collected
vibration signal was screened, that is, the signal with obvious
signal characteristics and clear waveform was retained, and
the similar signal removed. The vibration signal acquisition

FIGURE 8. Denoising effect on the vibration signals of bearing seat in the
X direction. (a)AO-VMD-SCA-TIW (b)GA-VMD-SCA-TIW. (c)VMD-SCA-TIW.
(c) CEEMDAN -SCA-TIW. (d)EEMD-SCA-TIW.

FIGURE 9. Denoising effect on the vibration signals of track seat in the X
direction: (a) AO-VMD-SCA-TIW. (b) GA-VMD-SCA-TIW. (c)VMD-SCA-TIW.
(d) EEMD-SCA-TIW. (e) CEEMDAN-SCA-TIW.

results of the selected components are shown in Fig. 7.
(T1 and T7 measuring points on the track, B2 and B4 mea-
suring points on the bearing seat, and W2, W5 and W7
measuring points on the workbench).

In this paper, in order to preserve the complete characteris-
tics of signals, the length of the signal interception is different
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TABLE 3. NRR values corresponding to the five methods.

for different components. As shown in Fig.7, the vibration
signal of each component has a certain regularity, which is
because the machine maintained a round-trip movement. The
signals of different components have significant differences
in amplitude and baseline offset. Therefore, it is of great
significance to denoise the vibration signal of the machine
tool feed system with multiple components.

The evaluation criteria such as SNR and RMSE mentioned
in the previous section are only applicable when the pure
signal is known. However, the real pure signal cannot be
obtained in the process of collecting vibration signal in real
environment. As a result, the noise rejection ratio (NRR) was
employed as the criterion for evaluating the denoising effect
of experimental signals [31]. The greater the NRR value, the
more effective the denoising performance. Its mathematical
expression is as follows:

NRR = 10
(
lg σ 2

1 − lg σ 2
2

)
(16)

where, σ1 and σ2 are the variance of the original experimental
signal and the signal after denoising, respectively.

Fig. 8 and Fig. 9 shows the denoising effect of five dif-
ferent denoising algorithms on the vibration signals of two
components in the X direction. Table 3 shows the comparison
of denoising effect of five denoising methods on different
experimental signals under different working conditions.

From the Fig.8 and the Fig.9, it can be found that the
five methods have reduced the burr in the experimental sig-
nal to some level, and the signal features are well retained.
Concurrently, the experimental signal’s baseline drift is
simultaneously adjusted to a lower level.

The vertical comparison of the data in the Table 3 reveals
that the denoising effect of the same method on multiple
groups of signals will change due to different components
and working conditions. Through horizontal analysis, it can
be concluded that AO-VMD-SCA-TIW has the best denois-
ing effect for the same group of signals. It is indicated
that AO-VMD-SCA-TIW has good performance in denoising
vibration signals of each component of the machine tool feed
system, which verifies the universality of the method.

VI. CONCLUSION
For the complex multi-component feed systems in the
machine tool, this paper proposes a joint analysis method
AO-VMD-SCA-TIW to decrease the noise mixed in the
vibration signal. The simulation results demonstrate that the
proposed AO-VMD-SCA-TIW method achieves the mini-
mum RMSE value and the highest SNR value. Based on
the feed system’s multi-component experimental results, it is
obvious that AO-VMD-SCA-TIW produces higher NRR val-
ues when denoising vibration signals generated by different
components.

In conclusion, the joint denoising algorithm can effectively
eliminate the noise in the signal collected by the sensor,
and has wide applicability in the denoising of vibration sig-
nals from multi-component feed system. This technology is
expected to be applied to the fault diagnosis and life predic-
tion of the feed system of CNC machine tools and can lay a
foundation for the subsequent information fusion.
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