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ABSTRACT Wireless Sensor Networks (WSNs) play a critical role in numerous applications, and accurate
localization of sensor nodes is vital for their effective operation. In recent years, optimization algorithms
have garnered significant attention as a means of enhancing the WSN node localization. This paper
presents an in-depth exploration of the necessity of localization in WSN nodes, and offers a comprehensive
review of the optimization algorithms used for this purpose. This review encompasses a diverse range
of optimization techniques, including evolutionary algorithms, swarm intelligence, and metaheuristic
approaches. Key factors such as localization accuracy, scalability, computational complexity, and robustness
were systematically evaluated and compared across various optimization algorithms. Additionally, the study
sheds light on the strengths and limitations of each optimization approach and discusses their applicability
in different WSN deployment scenarios. The insights provided in this review serve as valuable resources for
researchers and practitioners seeking to optimize WSN node localization, thus promoting the efficient and
reliable operation of WSNs in diverse real-world applications.

INDEX TERMS Wireless sensor networks, WSNs-6LoWPAN, localization, optimization algorithms, 2D,
3D, irregular surfaces.

I. INTRODUCTION
Wireless Sensor Networks (WSNs) have become increas-
ingly prevalent in diverse applications, such as environmental
monitoring [1], healthcare [2], agriculture [3], and infras-
tructure management [4]. In WSNs, the accurate localization
of sensor nodes is crucial for ensuring effective operation
and enabling location-based services [5]. This enables asset
tracking, disaster management, precision agriculture, and
other services that rely on precise spatial information [6].

Localization involves estimating the geographical coordi-
nates or relative positions of sensor nodes within the network
[7]. Accurate WSN node localization offers numerous
benefits and enables a wide range of applications [8].
Tracking the physical locations of sensor nodes enhances
the overall performance of WSNs, leading to improved data
analysis, optimized resource allocation, and efficient network
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management [9]. However, achieving accurate localization in
WSNs is challenging because of the inherent characteristics
of wireless communication and the dynamic nature of the
network environment [10]. Factors such as signal attenuation,
multipath fading, and environmental obstructions can intro-
duce errors and uncertainties into the localization process
[11].

Different techniques, including range-based, range-free,
machine learning, and optimization algorithms, have been
explored for WSN node localization [12]. However, these
localization techniques face challenges in certain scenar-
ios, particularly in indoor environments, where Global
Positioning System (GPS) solutions may not be suitable
owing to their high hardware costs, power consumption,
and poor performance [13]. To address the localization
requirements of WSNs in indoor environments, researchers
have turned to alternative techniques, including commu-
nication protocols such as Zigbee [14] and 6LoWPAN
[15], along with optimization algorithms. These protocols
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offer low-power, low-cost, and low-data-rate communication
solutions, making them well suited for WSNs in indoor
settings [16]. Moreover, these protocols provide a means
for nodes to exchange localization-related information, such
as distance measurements and anchor node positions [17],
allowing optimization algorithms to utilize this information
for accurate node localization [18].

Optimization algorithms offer a powerful approach to
enhance the localization process in WSNs by leveraging
mathematical optimization techniques to obtain optimal
solutions [19]. These algorithms aim to optimize localization
accuracy, scalability, computational complexity, and robust-
ness [20]. By formulating the localization problem as an
optimization task, these algorithms can effectively exploit
the available measurements and constraints to accurately
estimate the positions of the sensor nodes [21].
Several surveys have been conducted to exploreWSN node

localization techniques, with a focus on 3D localization in
underwater networks [10], [22] to comprehensively overview
2D and 3D WSN network architectures employing various
localization techniques, including mobile anchors, machine
learning, mathematical models, and meta-heuristics [12].
Although these surveys provide valuable insights, they
often lack detailed discussions on the specific localization
algorithms used, challenges faced in the localization process,
and the absence of proposed solutions to these challenges
[10], [12], [22], [23]. Furthermore, the use of optimization
algorithms for localization has not been thoroughly explained
[9], leaving a gap in the literature regarding a detailed
examination of optimization techniques tailored to WSN
node localization.

This study aims to fill these gaps by presenting a compre-
hensive review of the optimization algorithms used for WSN
node localization. Unlike previous surveys, we delved deeper
into the intricacies of optimization techniques, including
evolutionary algorithms, swarm intelligence, metaheuristic
approaches, and other optimization-based methods, with a
focus on their application in achieving accurate and efficient
localization within WSNs. Our main contributions are as
follows.

a) Offering a detailed analysis of optimization algo-
rithms for WSN node localization, highlighting their
strengths, and addressing the gaps in algorithmic
discussion.

b) Identifying and examining challenges in using opti-
mization for WSN localization, such as computational
complexity and noisy data, were previously less
explored.

c) Incorporating the latest advancements in optimization
for WSN localization, providing an updated overview
of the field, and filling gaps left by prior surveys.

d) Suggesting actionable solutions for enhancing opti-
mization algorithms in WSN localization, focusing on
efficiency and cost-effectiveness in response to issues
noted in earlier surveys.

We include several acronyms used in this study in Table 1.
Furthermore, Figure 1 illustrates the scope of this survey and
its categorization. The remainder of this paper is organized
as follows. Section II analyzes the current survey on WSN
node localization. Section III highlights the architecture of a
WSN, the importance of localizing WSNs, and localization
strategies, and discusses WSN node localization techniques.
In Section IV, we discuss optimization Algorithms for WSN
Node Localization, and present a survey of recent research
in this domain. Section V presents a thorough examination
of the optimization algorithms for WSN node localization.
Section VII addresses open issues and proposes solutions
related to the optimization ofWSN node localization. Finally,
Section 8 concludes the paper.

FIGURE 1. The classification of this survey.

II. RELATED WORK
This section summarizes recent surveys gathered from previ-
ous review studies, highlighting the current state of digital
care and its associated challenges. It also offers insights
into the future direction of digital care. Table 2 presents
a summary of these surveys, outlining their contributions,
scope, and limitations.

Overall, the related works discussed contribute valuable
insights into the topic of WSN node localization. How-
ever, there are common limitations across these references,
including a lack of details on the specific localization
algorithms used, challenges faced, and proposed solutions.
Enhancing the level of detail in these areas would provide
a more comprehensive understanding and facilitate practical
implementation in WSN localization scenarios. Therefore,
in this study, further details of the localization process for
WSNs nodes, particularly through the use of optimization
techniques, will significantly enhance the understanding of
the topic. Optimization techniques play a crucial role in
determining optimal solutions for WSN node localization,
considering factors such as accuracy, energy efficiency, and
scalability. Moreover, employing optimization techniques in
WSN localization poses certain challenges that must be
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TABLE 1. List of abbreviations.

addressed for practical implementation. One challenge is
the computational complexity associated with optimization

algorithms, which often require significant computational
resources and time. This can limit their applicability in
resource-constrained WSN environments. Additionally, the
presence of noisy or incomplete sensor measurements can
further complicate the optimization process, potentially
leading to suboptimal localization results. To overcome
these challenges, the proposed solutions can focus on
optimizing the efficiency and performance of localization
algorithms.

The subsequent overview outlines the distinctive features
of our review article, which differentiate it from other reviews
and surveys. This paper focuses on:

a) Further details on the localization process for WSNs
nodes, particularly through optimization techniques,
will enhance our understanding and practical imple-
mentation.

b) The challenges of using optimization in WSN
localization include the computational complexity
and the presence of noisy or incomplete sensor
measurements.

c) The latest research findings are surveyed to optimize
efficiency, accuracy, and reliability in WSN node
localization, considering the unique characteristics of
WSNs and addressing the challenges associated with
optimization.

d) The proposed solutions can focus on developing
tailored optimization algorithms for WSN localization,
incorporating data-fusion techniques, and leveraging
machine learning for adaptive optimization.

III. WSN NODES LOCALIZATION
This section focuses on WSNs node localization and delves
into various aspects associated with this topic. We examine
the key elements ofWSN localization, starting with an explo-
ration of the network architecture. We discuss the importance
of localization inWSNs and highlight the different techniques
employed for node localization. Furthermore, we delve into
the evaluation criteria used to assess the effectiveness of the
localization techniques. Finally, we address the challenges
that arise in achieving accurate node localization within
WSNs. Through this comprehensive analysis, we aimed to
provide a thorough understanding of WSN node localization
and its underlying components.

A. WSN NETWORK ARCHITECTURE
The architecture of a WSN comprises a network of intercon-
nected WSN nodes that collaboratively gather and transmit
data wirelessly, [24] as illustrated in Figure 2. These WSN
nodes are typically small resource-constrained devices with
sensing, processing, and communication capabilities [25].
They are deployed in a specific area to form a self-organizing
network. The network may also include anchor nodes or base
stations responsible for collecting and aggregating data from
WSN nodes [26].
Based on Figure 2, the network employs the 6LoWPAN

protocol, which facilitates automated IP distribution using
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TABLE 2. Comparison of WSNs Localization Techniques.

FIGURE 2. The WSNs network architecture.

IPv6 and establishes a hierarchical relationship (parent-child)
for data transmission from the peripheral sensors to the
access point [14]. The optimal positioning of WSN nodes is

essential to ensure proximity between WSN nodes, thereby
enabling efficient Received Signal Strength Indicator (RSSI)
maintenance, reduced power consumption, and sustained
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data rates [27]. Hence, providing suitable WSN node
locations is important for the effectiveness of this network
configuration. The basic WSNs architecture is summarized
as follows.

a) WSNs Nodes: WSN nodes play a vital role in the
functioning of a WSN and can be classified into
sensor, anchor, and unknown nodes [28]. These nodes
serve as the fundamental building blocks of the net-
work, encompassing essential components, such as a
sensing unit, processing unit, memory, communication
interface, and power source [29]. With embedded
sensors, these nodes gather data from the surrounding
environment, process it locally, and transmit it to other
nodes or base stations within the network. In partic-
ular, anchor nodes employ either GPS technology or
manual configuration to accurately determine their own
coordinates, which in turn aids in localizing unknown
nodes within the network [30]. Moreover, each sensor
node establishes connections with its neighboring
nodes, thus enabling the determination of its precise
location [31].

b) Network Topology: WSNs offer the flexibility to adopt
diverse network topologies such as star, tree, mesh, and
hybrid configurations [32]. The selection of an appro-
priate topology is driven by the specific requirements
and objectives of the application. In star topology,
sensor nodes establish direct communication links with
a central base station, enabling efficient data exchange.
In contrast, a tree topology facilitates hierarchical
data aggregation, allowing for structured and scalable
information processing. The mesh topology enhances
the fault tolerance by providing multiple communica-
tion paths, thereby ensuring reliable data transmission
[33]. Hybrid topologies combine different network
structures to leverage their respective advantages and
optimize network performance.

c) Communication Protocols: Effective communication
protocols play a critical role in ensuring efficient data
transmission and network management within WSNs.
These protocols operate at various layers of the network
stack, encompassing physical, data link, network,
transport, and application layers [34]. Prominent proto-
cols employed inWSNs include IEEE 802.15.4, Zigbee
[14], and WirelessHART. These protocols facilitate
reliable and energy-efficient communication among
the sensor nodes, enabling seamless data exchange. It is
worth highlighting that the network topology depicted
in Figure 2 is specifically based on the 6LoWPAN
network, utilizing the IEEE 802.15.4 protocol to
establish communication links.

B. THE IMPORTANCE OF LOCALIZING WSNS
Localization provides numerous benefits for WSNs.
By strategically deploying sensors or nodes and accu-
rately determining their locations, network coverage can
be optimized, leading to enhanced data accuracy [35].

Localization is particularly vital in scenarios where specific
areas or regions require focused monitoring or targeted
actions [36]. By combining the precise positions of
WSN nodes with the network topology, the localiza-
tion process empowers WSNs to achieve optimal data
collection, efficient routing, and effective network manage-
ment, thereby improving overall network performance and
functionality [37].

Furthermore, localization plays a significant role in the
implementation of adaptive power-management strategies
for WSN nodes [38]. With the knowledge of their precise
locations, nodes can dynamically adjust their transmis-
sion power levels based on their distance to the base
station or neighboring nodes [39]. This adaptive power
management approach effectively reduces energy wastage
by avoiding excessive power consumption during long-
range transmission. By achieving a balance between energy
consumption and network connectivity through dynamic
power adjustments, the nodes can optimize energy usage
within the WSN [40]. Consequently, this reduction in energy
consumption not only extends the lifetime of the network
but also enhances its overall energy efficiency, allowing for
sustained and prolonged operation of the WSN [34]. The
previous discussion regarding the importance of WSN node
localization can be summarized as a set of points, as shown
in Figure 3.

FIGURE 3. The importance of WSNs nodes localization.

C. GENERAL WSN NODES LOCALIZATION STRATEGIES
In the context of WSN node localization, the two main
localization strategies are range- and range-free. Geometric,
machine learning, and optimization methods can be applied
within these two strategies to estimate node positions. In this
subsection, the main localization strategies based on their
methodology are discussed, including ranging-based such as
Received Signal Strength (RSS) localization and ranging-free
localization.
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1) RANGE-BASED STRATEGY
Range-based localization techniques utilize distance mea-
surements such as the Received Signal Strength Indicator
(RSSI), Time of Arrival (ToA), Time Difference of Arrival
(TDoA), and Angle of Arrival (AoA) to estimate node
positions [41]. These techniques leverage Trilateration and
Triangulation to determine node locations [42]. Examples
include GPS and anchor nodes with known positions.

a) Trilateration: Trilateration is a commonly used range-
based localization method that involves measuring the
distance between a node and three or more anchor
nodes with known positions. The distance can be
determined using techniques such as time-of-flight
(TOF), RSSI, or TDOA [43]. The TOF is based on
the measurement of the time taken for a signal to
travel from a source node to a destination node [42].
By determining the speed of signal propagation, the
distance between the nodes can be calculated using
Equation1:

d = Speed of Light × Time of Flight (1)

where d represents the distance. Moreover, RSSI uti-
lizes the strength of the received signal to estimate the
distance between nodes. The signal strength typically
decreases with increasing distance owing to path loss
and signal attenuation. The RSSI value was measured
at the receiving node, and distance estimation was
performed using an empirical relationship between the
signal strength and distance. The exact relationship can
vary depending on the specific wireless technology and
environmental conditions, and it involves measuring
the time difference between the arrival of a signal
at different reference nodes [43]. By determining the
speed of signal propagation, the difference in arrival
times can be converted into differences in distances.
The TDOA can be expressed mathematically as:

1d = c× 1t (2)

where 1d represents the difference in distance, c
represents the speed of signal propagation, and 1t
represents the difference in arrival times. The basic
principle of trilateration is that the position of a node
can be uniquely determined by intersecting circles (in
2D) or spheres (in 3D) centered at anchor nodes with
radii equal to their respective measured distances. The
node positions can be estimated by determining the
intersection points.
However, Trilateration assumes that the distance mea-
surements are accurate and that there is line-of-sight
or sufficient connectivity between nodes, [44] as illus-
trated in Figure 4. It is important to have a sufficient
number of anchor nodes to ensure reliable position
estimation. Nevertheless, Trilateration is sensitive to
measurement errors and inaccuracies, multipath inter-

ference, and non-line-of-sight conditions, which can
affect localization accuracy [45].

FIGURE 4. The Trilateration technique.

FIGURE 5. The Triangulation technique.

b) Multilateration: Multilateration extends trilateration
to a three-dimensional space. Similar to trilateration,
it uses distance measurements to estimate the node
positions [10]. The method assumes that the reference
nodes are within the communication range of the
unknown node and that the distances between them can
be accurately measured. However, instead of intersect-
ing circles or spheres, multi-acceleration considers the
intersection of the spheres centered around the anchor
nodes [17].With at least four anchor nodes, the position
of an unknown node can be determined by determining
the intersection points of the spheres. Nevertheless,
it is important to note that multi-aeration assumes ideal
conditions, including accurate distance measurements,
absence of measurement errors, and line-of-sight or
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sufficient connectivity between the unknown node and
the reference nodes [46].

c) Triangulation: Triangulation is another range-based
localization method that estimates the position of a
node based on the angles formed by the node and
multiple anchor nodes with known positions [47]. This
method uses the geometric principles of triangulation to
determine the location of a node. The position can be
calculated using trigonometric calculations by measur-
ing the AOA or TDOA between the node and anchor
nodes [48]. The AOA method calculates the angle
of arrival using trigonometric principles. Consider
Figure 5, where a target node sends a signal received by
three reference nodes: A, B, and C. The arrival angles at
these nodes were θA, θB, and θC, respectively. Given
the known positions of the reference nodes, the position
of the target node was estimated by solving a system of
equations derived from the trigonometric relationships
between the angles and node positions. Assuming that
the reference nodes are at positions (xA, yA), (xB, yB),
and (xC , yC ), the system of equations using AOA for
triangulation is

tan (θA) =
y− yA
x − xA

(3)

tan (θB) =
y− yB
x − xB

(4)

tan (θC ) =
y− yC
x − xC

(5)

These equations must be solved simultaneously to
determine the coordinates (x, y) of a target node.
However, Triangulation requires at least three anchor
nodes to obtain a unique position estimate. It is less
affected by rangemeasurement errors than trilateration,
because it relies on angle measurements [49]. More-
over, Triangulation may be influenced by factors such
as multipath interference, signal attenuation, and the
need for accurate angular measurements [50].

Furthermore, the choice between Trilateration, Multilater-
ation and Triangulation depends on factors such as the
availability of distance or angle measurements, environmen-
tal characteristics, and application requirements [51], [52].

2) RANGE-FREE STRATEGY
Range-Free Localization techniques operate based on the
principle of utilizing relative position information rather than
precise distance measurements [53]. These techniques aim to
estimate the positions of sensor nodes in a WSN based on
connectivity patterns, hop counts, and proximity information
gathered from neighboring nodes [54]. These techniques
leverage Centroid Localization, DV-Hop, and Amorphous
Localization to determine the node locations [55].

a) Centroid-based method: Anchor nodes with known
positions are strategically placed in the network [56].
Each sensor node collects signal strength or hop
count information from its neighbors and computes its

estimated position using the centroid of the neighboring
anchor nodes [57]. The centroid is calculated by taking
the average of the anchor node positions.

b) DV-Hop method: The DV-Hop algorithm uses hop
count information to estimate the distances between
the nodes. Initially, the anchor nodes were deployed
at known positions [58]. Each sensor node determines
its distance from the anchor nodes based on hop count
values [59]. By utilizing the anchor nodes as reference
points, the sensor node’s position is estimated using
multi-acceleration or trilateration techniques.

c) Amorphous localization: The basic principle of amor-
phous localization is to exploit the network con-
nectivity graph to infer the relative positions of
nodes. It leverages the information obtained from the
connectivity patterns and RSSI of neighboring nodes
to estimate the positions of unknown nodes [60]. The
underlying assumption is that nodes within proximity
have a stronger connectivity and share similar network
characteristics.

In addition, to enhance the accuracy and robustness
of range-free localization, modern research has proposed
various improvements, such as incorporating localization
algorithms with mobility prediction [61], deploying mobile
anchor nodes [62] using directional antennas [63], and
integrating additional contextual information such as RSSIs
and AOA measurements [64].

3) HYBRID LOCALIZATION STRATEGY
Hybrid localization techniques combine the strengths of mul-
tiple localization methods, such as range-based and range-
free techniques, to improve the accuracy and reliability of
node localization in WSNs and overcome the limitations and
challenges associated with individual localization methods
[65]. In hybrid localization, multiple sources of information
are integrated to estimate the positions of WSN nodes [66].
This includes range measurements, connectivity information,
environmental constraints, and additional contextual data.
Some common hybrid localization approaches include the
following.

a) Range-Based and Range-Free Fusion: This approach
combines range-based techniques such as trilateration
with range-free techniques such as amorphous localiza-
tion [67]. By integrating distance measurements from
range-based methods with connectivity information
from range-free methods, a hybrid technique can
achieve better localization accuracy and reliability [66].

b) Sensor Data Fusion: In this approach, sensor data
collected from different modalities, such as range
measurements, signal strengths, angle measurements,
and environmental information, are fused together
to estimate the node positions [68]. The fusion
process can be performed using statistical techniques,
machine-learning algorithms, or optimization methods
to integrate and interpret different types of sensor data
[69], [70].
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TABLE 3. Comparison of WSNs Localization Techniques.

c) Cooperative Localization: Cooperative localization
involves collaboration among nodes in the network to
collectively estimate their positions. Nodes exchange
information such as range measurements, connectivity
data, or relative positioning to improve the accuracy
of individual position estimates [71]. Cooperative
localization can be achieved through distributed algo-
rithms or centralized coordination. Particle Swarm
Optimization (PSO) and Genetic Algorithms (GA)
are commonly employed in collaborative localization
approaches [53].

D. WSN NODES LOCALIZATION TECHNIQUES
WSNs employ various localization techniques to determine
the spatial coordinates of WSNs nodes within the network.
These techniques can be broadly categorized as follows:

1) GEOMETRIC METHODS
Geometric methods in localization leverage mathematical
principles and geometric relationships to estimate the posi-
tions of nodes in a WSN [72].

a) Range-Based Geometric Methods: These methods
utilize measured range information (e.g., distance,
angle, and time) between nodes to estimate positions.
Common geometric algorithms used in range-based
localization include Trilateration, Multilateration, and
Triangulation [73]. Trilateration involves intersecting
circles or spheres to determine the position of the
node, whereas multilateration extends this concept to
multiple range measurements. Triangulation uses angle
measurements to calculate positions based on the laws
of cosines and sines.

b) Range-FreeGeometricMethods: Range-free geometric
methods do not rely on direct range measurements
but instead use geometric relationships between nodes.

One popular range-free geometric algorithm is the
Centroid Localization method, which estimates a
node’s position as the centroid of its neighboring
reference nodes [74]. Other approaches include the DV-
hop algorithm and Amorphous Localization algorithm,
which utilize hop distances or relative coordinates to
estimate node positions.

2) MACHINE LEARNING METHODS
Machine learning methods involve training models on
collected sensor data to learn patterns and make predictions
regarding the location of the node [75].

a) Range-Based Machine Learning Methods: In range-
based localization, machine learning algorithms can be
applied to improve the accuracy and mitigate noise. For
example, Support Vector Machines (SVM), k-nearest
neighbors (k-NN), and Random Forests can be used to
learn the mapping between range measurements and
node positions [76]. These models can then predict
the positions of unseen nodes based on their range
measurements.

b) Range-free machine-learning methods: Range-free
localization can also benefit from machine-learning
techniques. One common approach is to use supervised
learning algorithms to train models on labeled data
where the node positions are known [77]. These
models can then be used to predict the positions
of the unlabeled nodes based on features such as
signal strength, connectivity patterns, or environmental
characteristics.

3) OPTIMIZATION METHODS
Optimization methods aim to determine the optimal node
positions that satisfy certain criteria, such as minimizing
localization errors or maximizing network connectivity [23].
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a) Range-based Optimization Methods: In range-based
localization, optimization methods can be used to
minimize localization errors. This can be formulated as
an optimization problem, where the objective function
minimizes the difference between the measured and
estimated ranges [78], [79], [79]. Techniques such as
least-squares estimation (LSE), Maximum Likelihood
Estimation (MLE), and Nonlinear Optimization meth-
ods (e.g., Levenberg-Marquardt) can be employed to
solve these optimization problems and obtain accurate
node positions.

b) Range-Free Optimization Methods: Range-free local-
ization also benefits from these optimization methods.
These methods aim to maximize the network con-
nectivity or coverage by optimizing the deployment
of nodes [80], [81]. Optimization algorithms, such as
GAs, PSO, or Simulated Annealing, can be used to find
the optimal node positions that satisfy the connectivity
or coverage objectives.

Table 3 presents a comparison of these techniques to
summarize each of the aforementioned techniques. Each
technique is evaluated based on various factors including
technology, flexibility, applicability, data requirements, and
limitations.

E. LOCALIZATION EVALUATION CRITERIA
The evaluation of localization techniques in WSNs necessi-
tates the utilization of localization evaluation criteria, which
play a critical role in assessing the performance and effective-
ness. These criteria facilitate the quantitative measurement
and assessment of factors such as the accuracy, reliability,
efficiency, and overall quality of localization results [82].
By employing these evaluation criteria, researchers and
practitioners can compare various localization techniques,
gain insights into their limitations, and identify avenues
for enhancement. The following section highlights some
of the commonly employed localization evaluation criteria
that contribute to a comprehensive evaluation framework for
WSN localization techniques [83].

1) ACCURACY: It measures how closely the estimated
positions of the sensor nodes align with their true
positions. It is typically evaluated using metrics such
as the mean error, Root Mean Square Error (RMSE),
or Euclidean distance between the estimated and
true positions. A higher accuracy indicates better
localization performance.

2) PRECISION: Precision assesses the consistency and
repeatability of the localization results. It measures
the variation or spread of the estimated positions
around the true positions. Precision can be evaluated
using metrics such as the standard deviation or
interquartile range. Lower precision values indicate
better localization precision.

3) Coverage refers to the percentage of sensor nodes
that are successfully localized within the target area.
It measures the effectiveness of a localization technique

for localizing a high proportion of nodes. A higher
coverage indicates better localization coverage.

4) ROBUSTNESS: Robustness evaluates the resilience
of a localization technique to various environmental
factors, noise, and errors. It assesses how well the
technique performs under challenging conditions such
as harsh environments, signal interference, or sensor
failures. Robustness can be evaluated by introducing
perturbations or variations in the system and measuring
the impact on localization accuracy.

5) SCALABILITY: This assesses the ability of a local-
ization technique to handle large-scale WSNs with an
increasing number of sensor nodes. It measures compu-
tational efficiency, memory usage, and communication
overhead of a technique as the network size increases.
A scalable localization technique can provide accurate
results without significant performance degradation in
large networks.

6) NETWORK LIFETIME: The longevity of a localiza-
tion system network is determined by node energy con-
sumption and the ability of nodes to work efficiently,
contributing to the overall stability of monitoring.

7) ENERGY EFFICIENCY: Energy efficiency evaluates
the energy consumption of the localization technique.
It considers the power requirements for node localiza-
tion, communication, and processing. Energy-efficient
techniques minimize energy consumption to prolong
network lifetime and reduce the need for frequent
battery replacements or recharging.

8) COMPUTATIONAL COMPLEXITY: Computational
complexity measures the computational resources
required by a localization technique, such as the
processing power, memory, and algorithmic com-
plexity. Lower computational complexity indicates a
more efficient technique that can be implemented on
resource-constrained sensor nodes.

9) REAL-TIME PERFORMANCE: Real-time perfor-
mance evaluates the responsiveness and timeliness of a
localization technique in providing localization results.
It measures the time required to estimate positions
and update node locations. Real-time localization is
crucial for time-sensitive applications where up-to-date
information is required for decision-making.

Table 4 provides a comparative analysis of the evaluation cri-
teria for general localization techniques. The ratings assigned
to each criterion are relative and dependent on the type of
technology employed as well as specific implementation and
scenario considerations.

F. CHALLENGES OF WSNS NODE LOCALIZATION
Although WSN node localization offers numerous benefits,
several challenges need to be addressed for successful
implementation [84], [85]. These challenges arise because
of the unique characteristics and constraints of WSNs [36].
The following are some of the key challenges associated with
WSN node localization.
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TABLE 4. Comparison of evaluation criteria on general localization techniques.

1) LIMITED RESOURCES: WSN nodes are typically
resource-constrained in terms of processing power,
memory, communication capabilities, and energy sup-
ply. These limitations impose constraints on the com-
plexity and computational requirements of localization
algorithms. Efficient utilization of limited resources
is crucial to ensure accurate and energy-efficient
localization regardless of the deployment environment.

2) SIGNAL PROPAGATION: The propagation of signals
in a wireless medium is influenced by environmental
factors such as path loss, multipath fading, interference,
and obstacles. These factors introduce uncertainties
and variations in the signal strength, time of flight,
and angle of arrival measurements, which can affect
the accuracy of localization. Dealing with signal
propagation challenges andmitigating their impacts are
essential for reliable localization.

3) NON-LINE-OF-SIGHT (NLOS) CONDITIONS: In
many practical scenarios, WSN nodes may be located
in areas with obstructed line-of-sight paths or multipath
propagation. NLOS conditions can lead to distorted
signal measurements and introduce localization errors.
Developing robust techniques that can handle NLOS
conditions and accurately estimate the node positions
is a significant challenge.

4) SCALABILITY:WSNs often consist of a large number
of nodes deployed over a wide area, which makes
scalability a critical challenge. Localization algorithms
need to be scaled efficiently to handle large network
sizes and maintain reasonable computation and com-
munication overhead. Accurate and timely localization
in large-scale deployments is essential for effective
operation of WSNs.

5) MOBILITY AND DYNAMIC NETWORK TOPOL-
OGY: In some WSN applications, nodes may be
mobile or deployed in environments in which the
network topology changes dynamically. Node mobility
and dynamic topology pose challenges for localization
algorithms because nodes may change their positions
or connections frequently. Adapting localization tech-
niques to handle mobility and dynamic topologies is
necessary for maintaining accurate node positions.

6) LOCALIZATION ACCURACY: Achieving a high
localization accuracy is a fundamental challenge
in WSNs. Various sources of errors, including
measurement errors, environmental conditions, and

computational limitations, can affect the accuracy
of localization. Improving the accuracy of localiza-
tion techniques through advanced algorithms, error-
mitigation strategies, and calibration methods is an
ongoing research area.

7) POWER MANAGEMENT: Efficient power manage-
ment is crucial for maximizing the lifespan of WSN
nodes in any environment. Optimizing the energy
consumption and extending the operational life of
nodes are important considerations. Techniques such as
duty cycling, sleep scheduling, and energy harvesting
can help overcome energy restrictions and prolong the
operational lifespans of WSN nodes.

However, optimization techniques surpass geometric and
machine-learning methods for WSN localization [86].
By leveraging mathematical optimization algorithms, opti-
mization techniques can be used to handle complex problems
and address challenges such as node positioning and energy
efficiency [87], [88]. They are adaptable to various network
configurations and environmental conditions. Unlike geomet-
ric methods, which rely on calculations and assumptions,
optimization techniques provide a flexible framework for
incorporating diverse objectives into a single fitness function
[87]. Machine learning methods require extensive training
data and face scalability issues [89], whereas optimiza-
tion techniques offer an efficient approach for resource-
constrained WSNs [90]. Thus, optimization techniques are
preferred because of their adaptability, scalability, and
optimization capabilities in WSN localization.

IV. OPTIMIZATION ALGORITHMS FOR WSN NODE
LOCALIZATION
In the context of WSNs node localization, various optimiza-
tion algorithms are commonly employed to obtain optimal
or near-optimal solutions for node localization. We divided
these algorithms into three prominent categories of optimiza-
tion algorithms used in this field: evolutionary algorithms,
swarm intelligence, and metaheuristic approaches, as illus-
trated in Figure 6. It is possible that these categories may
overlap but are based on the most obvious technology in each
reviewed work.

Evolutionary Algorithms (EAs) [91] such as GA [92],
[93] and Genetic Programming (GP) focus on genetic-
inspired operators and evolutionary processes to guide the
search for optimal solutions. Swarm intelligence algorithms
such as PSO [94] and Ant Colony Optimization (ACO)
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TABLE 5. Ackley Multimodal parameters.

FIGURE 6. Optimization algorithms categories for WSN nodes
localization.

[19] emphasize decentralized interactions and collective
intelligence to navigate the solution space. Metaheuristic
approaches such as Simulated Annealing (SA) [66], [95] and
Tabu Search (TS) [96] provide general-purpose frameworks
to guide the search by combining different problem-
solving strategies. The selection of the optimization category
depends on various factors, including the problem domain,
problem characteristics, and desired trade-offs between
exploration and exploitation, as well as solution quality and
computational efficiency [97]. Furthermore, evaluating the
performance of the optimization techniques is necessary
to choose the type of algorithm used. The run time and
convergence of optimization techniques are important factors
to consider when evaluating the performance of the compared
techniques [98], [99]. The run time refers to the amount of
time it takes for an optimization technique to converge to a
solution. A technique that requires a long time to converge
may not be practical for real-world problems, especially
those that require quick decision-making. On the other hand,
a technique that converges quickly may be preferable, but it
may sacrifice solution quality for speed. Convergence refers
to the process bywhich an optimization technique approaches
a solution [100]. A technique that converges quickly implies
that it finds a solution in a relatively small number of
function evaluations. A technique that converges slowly,
on the other hand, may require a large number of function
evaluations to find a solution. To evaluate the performance
of an optimization technique, metrics such as the objective
function value, number of function evaluations, and run time
are typically used [100], [101]. The objective function value
measures the closeness of the technique’s solution to the
true optimal solution. The number of function evaluations
measures the number of times the objective function is

evaluated using the technique. The runtime measures how
long it takes for the technique to converge to a solution.

To demonstrate the performance of the optimization
algorithm samples, such as (PSO, GA, Grey Wolf Optimizer
(GWO) [101], simulated annealing-based neighborhood opti-
mization (SLnO) [102], and Whale Optimization Algorithm
(WOA) [103], [104]) on an Ackley model, the parameters
of [44], [57], [105], and [106] which are listed in Table 5.
The convergence of the algorithm for different dimensions is
illustrated in Figure 7. Figure 8 illustrates the running costs
of these optimization algorithms under the same model.

As illustrated in Figures 7 and 8, when comparing the
most important localization evaluation criteria, such as
the convergence and time parameters for the optimization
algorithms (PSO, GA, GWO, SLnO, and WOA), several
factors contributed to the observed differences. The faster
convergence of the PSO and GWO algorithms can be
attributed to their efficient exploration and exploitation capa-
bilities facilitated by their swarm-based approaches. These
algorithms employ mechanisms, such as velocity updates
and social interactions, which enable rapid convergence
towards promising solutions. In contrast, the SLnO andWOA
algorithms prioritize exploration, often employing diverse
search strategies and extensive solution space exploration.
Although this leads to slower convergence rates, it enhances
their ability to discover globally optimal solutions and
overcome local optima. In terms of time efficiency, the faster
execution of the PSO and GA algorithms can be attributed
to their simplified operations and reduced computational
overhead. GWO, SLnO and WOA algorithms, on the other
hand, involve more complex operations and population-
based approaches, resulting in longer computational times.
Consequently, the choice of the optimization algorithm
should consider the trade-off between the convergence speed,
solution quality, and available computational resources.

A. EVOLUTIONARY ALGORITHMS
Evolutionary algorithms (EAs) are composed of key com-
ponents that are applied to the WSN localization process,
enabling effective optimization of node positions. These com-
ponents include population initialization, fitness evaluation,
selection, genetic operators (crossover and mutation), and
termination conditions, [107] as illustrated in Algorithm 1.

The illustrated for each algorithm 1 steps explained as
follows:

a) The population initialization step involves randomly
generating an initial set of candidate solutions that
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FIGURE 7. Convergence of compared algorithms on unimodal benchmark functions.

FIGURE 8. Optimization algorithms running cost.

Algorithm 1 EAs for WSN Localization
1. Start
2. Initialize Population with random candidate solutions
3. Evaluate Fitness for each candidate solution using a fitness
function
4. While Termination Condition is not met, do:

5. Select parent solution based on their fitness values
6. Apply Genetic Operators to generate offspring solutions
6.1 Crossover
6.2 Mutation

7. Evaluate Fitness of the offspring solutions
8. Select Next Generation (best solutions)

9. End While
10. Best Solution as the localized positions of theWSN nodes
11. End

represent the potential node positions. These solutions
are evaluated using a fitness function that measures the
quality of localization estimates.

b) The fitness evaluation considers factors such as the
distance between nodes, connectivity information,
signal strength, and anchor node measurements.

c) Selection is a crucial step in EAs, in which individuals
with higher fitness values are chosen as parents for the
next generation. Various selection strategies, such as
tournament selection or roulette-wheel selection, can
be employed to balance exploration and exploitation in
the search space.

d) Genetic operators, including crossover and mutation,
mimic biological evolution by combining and alter-
ing the candidate solutions to create new offspring.
Crossover involves combining the genetic information
of two parent solutions to produce one or more
offspring with a combination of their characteristics.
Mutation introduces random changes to the offspring
to explore new regions in the search space and prevent
premature convergence.

e) To ensure convergence, termination conditions were
defined, such as the maximum number of generations
or a threshold value for the fitness function. Once
the termination conditions are satisfied, the algorithm
stops, and the best solution found during the evolution-
ary process is considered to be the localized positions
of the nodes.

However, it is important to consider the weaknesses asso-
ciated with EAs. Premature convergence can occur when
the algorithm converges to suboptimal solutions before
reaching a global optimum. Computational complexity can
pose challenges, particularly for complex problems with
numerous variables and constraints, limiting their applica-
bility in certain scenarios [108]. EAs lack problem-specific
knowledge, relying solely on the exploration and exploitation
of the search space, which may lead to inefficient searches
and suboptimal solutions. The performance of EAs is highly
sensitive to parameter values, requiring careful selection
to avoid issues such as poor or premature convergence.
In addition, EAs may face difficulties when applied to high-
dimensional problems owing to the exponential growth of the
search space [66], [109], [110]. Unlike some optimization
techniques, EAs do not provide guaranteed convergence
to the global optimum, making their convergence behavior
unpredictable.

Several recent studies have used or improved this AE
category for the localization of WSN nodes. Some of these
studies are summarized in Table 6. The [111], [112] proposed
clustering method is called Neighborhood Grid Cluster
(NGC) to address the localization of WSNs node challenges
and reduce energy consumption. The NGC approach utilizes
a GA optimization process to improve the efficiency and
reliability of localization algorithms (to estimate the position
of the target node). Moreover, the fitness function considers
the energy consumption, node connectivity, and Euclidean
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distance. The results demonstrate that the proposed NGCGA
outperforms other methods in terms of energy consumption,
number of alive nodes, and network coverage. However,
this study has certain limitations, including node constraints,
distance errors, and mobility. In the same context of using a
clustering technique along with GA, [113] introduced a GA-
based mobile sink technique for energy-efficient data routing
in WSNs. The algorithm divides the network into clusters of
rectangular shapes with a sink movement trajectory passing
through each cluster. The GA determines the optimal data
collection points on the trajectory for each cluster, thereby
minimizing the data transmission energy. The optimization
framework also considers the optimal location of cluster head
nodes based on the residual energy, distance, and previous
selection count.

In the same context as using GA, [81], [93] the proposed
GADV-Hop algorithm combines GA with the DV-Hop local-
ization approach to enhance the accuracy of node localization
in WSNs. GADV-hop restricts the feasible region of the
initial population and improves the quality of the population.
By utilizing this restrained population feasible region, the
algorithm achieves a more accurate localization of unknown
nodes and significantly faster convergence than previous
algorithms. In addition, the authors of [114] proposed
a 3D genetic algorithm-based Improved Distance Vector
(3DGAIDV), which incorporates a GA to further enhance the
localization accuracy in three-dimensional wireless sensor
networks. This algorithm introduces several enhancements
to improve the localization accuracy. First, the hop size
of the anchor nodes is adjusted using a correction factor.
The line search algorithm was employed to determine the
optimal hop size for the anchor nodes. This modification
enables more precise distance calculation between the target
and anchor nodes. The algorithm also addresses localization
errors by introducing the concept of coplanarity, which
excludes the coplanar anchor nodes from the localization
process. To further enhance the localization accuracy, a GA
was integrated by utilizing bounded population feasible
regions. Successful localized target nodes are upgraded to
assist anchor nodes, expanding the localization coverage and
accuracy in subsequent rounds. However, the 3DGAIDV
complexity is high.

In addition, the authors of [115] recognized the limitations
of the standard GA, such as the order of crossover and
mutation operations, which can lead to suboptimal solutions.
To overcome this, they introduced an improved strategy
that switched the order of these operations. In addition,
they dynamically adjusted the probability of crossover and
mutation based on the evolution of the population. These
modifications aim to better utilize the advantages of crossover
and mutation operators and enhance the accuracy of node
positioning. Through experimental evaluation, the proposed
Improved Adaptive Genetic Algorithm (IAGA) demonstrated
competitiveness and superiority in terms of benchmark
functions and WSN node localization, showcasing the
effectiveness of the improvements made to GA. In the same

context of using IAGA, the authors [116] combined an IAGA
and 2D hyperbolic localization algorithm to enhance the
accuracy of traditional DV-Hop. The proposed algorithm
addresses the limitation of low localization accuracy in DV-
Hop by introducing a modified factor to improve the distance
estimation between anchor nodes and unknown nodes. It also
incorporates the 2D hyperbolic localization algorithm to
further refine the estimated coordinates of the unknown
nodes. Additionally, the initial population area of the genetic
algorithm was reduced to improve the convergence speed,
stability, and localization accuracy.

Different techniques combining GA and Differential
Evolution (DE) were proposed in [117]. GA-DE combines
the strengths of GA and DE, utilizing GA’s selection and
crossover operators, and DE’s powerful mutation operator.
By leveraging the strengths of both algorithms, GA-DE
offers improved performance in terms of location estimation
accuracy, convergence, and scalability. However, while GA-
DE offers improvements, it may still face challenges in
handling highly complex optimization problems efficiently.
Moreover, the performance of GA-DE depends heavily on the
parameter settings, and finding the optimal set of parameters
can be time-consuming. Furthermore, the authors in [118]
introduced a hybrid approach that combines the GA and
the Firefly algorithm to tackle the optimization problem of
localization. Their method involved initializing a population
of fireflies using the most robust solution obtained from the
GA, and iteratively evolving this population to search for the
optimal global answer. The proposed model employs various
operators, including attractiveness, reach, and acceleration,
to facilitate the movement of fireflies towards brighter
individuals. Fitness measurement took into account factors
such as illumination, attractiveness, distance, and movement
of fireflies.

Another method that uses GA to improve the WSNs
node localization accuracy was proposed in [119]. This
study introduced a novel approach for indoor localization
using RSSI quantization and GA. The GA, based on an
elitist preservation strategy, was employed to optimize
the division of the network into rings and determine the
ring widths (threshold optimization). Ambiguities in the
areas that appeared were addressed using a density-based
clustering method [120]. Moreover, to achieve accurate target
localization, a two-stage centroid-localization algorithm was
proposed.

Furthermore, a comprehensive comparison was conducted
to assess the standard method, accuracy, power consumption,
computational complexity, localization time, and simulation
coverage of all reviewed localization optimization algo-
rithms. A comparison between the localization algorithms
discussed in this subsection and those described in the other
subsections is presented in Table 9.

B. SWARM INTELLIGENCE
Swarm intelligence is another category of optimization
algorithms commonly used in WSN localization [35]. It is
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inspired by the collective behavior of social insect colonies,
where individual agents interact with each other and the
environment to achieve a common goal. In the context of
WSN localization, swarm intelligence algorithms leverage
the principles of self-organization, decentralized decision
making, and cooperation among nodes to estimate the
positions of unknown nodes [121], [122].
One of the prominent swarm intelligence algorithms used

for WSN localization is PSO. PSO is based on the concept
of a swarm of particles that move through a search space to
find optimal solutions. Each particle represents a potential
solution and its position in the search space corresponds to
a candidate localization solution. The particles communicate
and update their positions and velocities based on their own
experiences and the collective information obtained from
other particles in the swarm. The WSN localization process
using PSO is described by Algorithm 2 [123].

Algorithm 2 PSO for WSN Localization
1: Initialize swarm of particles with random positions and
velocities
2: Initialize local best positions for each particle
3: Initialize global best position for the swarm
4: while termination criteria are not met do:
5: for each particle in the swarm do:
6: Evaluate fitness of the particle’s current position
7: Update local best position of the particle if necessary
8: Update global best position of the swarm if necessary
9: Update velocity of the particle based on current
velocity, cognitive component, and social component
10: Update position of the particle based on its velocity
11: end for
12: end while
13: Return the best position found as the solution

Based on Algorithm2, the localization process of this type
consists of the following main processes:

a) Initialization: The swarm of particles is initialized by
randomly assigning positions and velocities within the
search space. The position of each particle represents
the potential localization solution.

b) Fitness Evaluation: Evaluate the fitness of each parti-
cle’s position by comparing the estimated coordinates
with the true coordinates of the sensor nodes. The
fitness function quantifies the quality of the localization
solution, which is typically based on the error between
the estimated and true coordinates.

c) Update Particle Velocities and Positions: Update the
velocity and position of each particle based on its
previous velocity, position, and best positions found
by itself and its neighboring particles. This step allows
particles to explore the search space while considering
their own experiences and the collective knowledge of
the swarm.

d) Termination Criteria: Check if the termination criteria
are met. This can be based on the maximum number

of iterations or if a satisfactory solution is found. If the
termination criteria are not met, the Fitness Evaluation
is returned.

e) However, the performance of swarm intelligence
algorithms for WSN localization can be influenced
by factors such as the swarm size, network topology,
neighborhood structure choice, and fitness function
design [21]. Careful consideration and tuning of these
parameters are required to ensure effective localization
results.

Because PSO provides the best convergence and the least
time cost (fast computing and high precision), it is expected
that its use and development will be greater than the rest
of the categories. Table 7 shows comparisons between
these studies. PSO was used [79], [124] to localize three-
dimensional WSNs. Moreover, a PSO-WAN localization
analysis was presented in [125] for PSO to select the
optimal PSO parameters. These results demonstrate that
the PSO variant with a constriction coefficient and a ring
topology outperforms other variants and topologies and is
superior to the second-order cone programming algorithm.
For underwater WSN node localization, the authors of [95]
used PSO to predict the locations of unknown mobile nodes.
The beacon nodes were localized using a range-based PSO
algorithm, and their velocities were calculated. The unknown
nodes were then located using mobility prediction based on
the spatial correlation of the mobility of underwater objects.

For PSO enhancement by reducing the fitness function
cost and improving the accuracy, [126] proposed a novel
technique called Node Segmentation with Improved Particle
Swarm Optimization (NS-IPSO) to enhance the sensor node
localization accuracy in areas with obstructions. By dividing
sensor nodes into segments and improving the fitness
function (considering the minimum hop counts of each
anchor node) and the particle swarm optimization algorithm,
the proposed scheme achieves higher accuracy compared to
state-of-the-art methods. The simulation results demonstrated
its effectiveness, particularly in scenarios with obstacles.
However, further validation in real-world scenarios, consid-
eration of different deployment conditions, and investigation
of scalability and efficiency are required. Moreover, [94]
we introduce an improved method for optimizing the WSNs
coverage using an enhanced PSO algorithm. The proposed
approach addresses the issue of the random deployment of
WSN nodes by dynamically adjusting the inertia coefficient
and introducing a mutation operator to enhance the standard
PSO algorithm. These modifications aim to improve the
global convergence speed, increase the particle diversity, and
prevent the algorithm from becoming trapped in local optima.
However, it is important to consider potential limitations
such as the sensitivity of the algorithm to parameter settings
and the need for further validation in real-world deployment
scenarios. In the same context as improving PSO, [127]
presented a modern and efficient algorithm called Hybrid
Particle Swarm Optimization with Variable Neighborhood
Search (HPSOVNS) for localization in outdoor WSNs. The
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TABLE 6. Comparison of AEs Optimization algorithms.

algorithm combines PSOwithVariable Neighborhood Search
(VNS) to optimize the objective function, which is the last
mean squared range error of neighboring anchor nodes. The
algorithm utilizes the RSSI to calculate the interior distances
between the WSN nodes.

In addition, [128] an improved PSO algorithm called
improved self-adaptive inertia weight particle swarm opti-
mization (ISAPSO) is used to overcome the issue of
losing diversity and getting trapped in local optima in
standard PSO. The ISAPSO algorithm is based on the
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TABLE 7. Comparison of Swarm intelligence Optimization algorithms.

convergence conditions of PSO and retains the simplicity,
ease of implementation, and low-parameter adjustments of
the original algorithm. In addition, the initial search space
of PSO is optimized considering the characteristics of WSN

localization, and a comparative analysis with two other PSO
algorithms demonstrates that the ISAPSO algorithm achieves
better performance in terms of positioning accuracy, power
consumption, and real-time performance under different
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conditions such as beacon node proportions, node densities,
and ranging errors. However, the performance of the ISAPSO
algorithm is likely influenced by the accuracy of the ranging
measurements based on RSSI. If the ranging accuracy is low,
this may lead to less accurate localization results. Within
the realm of enhancing PSO, the work presented in [129]
marks a noteworthy stride in achieving precise and efficient
sensor node localization within WSNs-6LoWPANs. The
authors proposed the Adaptive Mean Center of Mass Particle
Swarm Optimizer (AMCMPSO), an innovative algorithm
that adapts parameters to significantly enhance the search
efficiency and convergence speed. Through comprehensive
simulations, the study demonstrates the remarkable perfor-
mance of AMCMPSO, boasting an average improvement
rate of 99.86% and consistently maintaining a localization
error below 1.34 cm. Even in intricate 3D environments,
AMCMPSO exhibits robustness, sustaining coverage rates
that exceed 87%. This work not only contributes to the
refinement of PSO, but also holds promise for advancing
the accuracy and efficiency of sensor node localization in
wireless sensor networks, particularly within the context of
WSNs-6LoWPANs.

Another technique proposed to improve GWO was pre-
sented in [130] for the Enhanced Grey Wolf Optimizer
(EGWO) for deploying WSNs on 3D surfaces. EGWO
enhances the exploitation and exploration ability of the
GWO by dividing the grey wolf population into two parts
responsible for outer layer and inner layer encircling and
introducing tent mapping. This improves the convergence
and optimization precision of the algorithm. This study also
presented an improved method for determining the perceived
blind zone and calculating the WSNs coverage area on
simple and complex 3D surfaces using a combination of
grid and integral techniques. The simulation results showed
that the EGWO outperformed the original GWO and three
existing variants in terms of optimization precision and
convergence performance on benchmark functions. However,
it is important to validate the effectiveness of EGWO in real-
world scenarios and consider its scalability and efficiency in
large-scale WSN deployment. Moreover, [103] an improved
version of the whale optimization algorithm incorporating
the exploratory move operator from the Hooke-Jeeves
local search method for wireless network localization is
proposed. Furthermore, [109] presented the Parallel Compact
Cat Swarm Optimization (PCCSO) algorithm, a heuristic
approach based on the Cat Swarm Optimization (CSO)
algorithm. The PCCSO addresses the limitations of CSO,
including poor convergence and high memory consumption,
by introducing three separate communication strategies and
the concept of compactness. These enhancements improve
the algorithm’s local search capability and reduce the
memory usage. In addition, PCCSO is applied to the DV-Hop
localization algorithm in wireless sensor networks, resulting
in improved localization accuracy and memory efficiency.

Another technique that depends on fuzzy clustering
and PSO was proposed in [131] to address the issue of

sensor energy optimization and improve WSNs connectivity.
However, this study does not provide an extensive analysis
or evaluation of the performance of the method with
larger network sizes or more complex scenarios. Moreover,
[132] presented a hybrid method for improving range-free
localization by integrating a fuzzy logic system into the
centroid algorithm and optimizing it using an Extreme
Learning Machine (ELM) technique. The proposed hybrid
model combines the strengths of both approaches, allowing
adaptive and robust location estimation in different scenarios.
Adaptive weights based on node ratios within the sensing
coverage and coverage range were used, and the resultant
force vectors with particle swarm optimization enhanced
efficiency in heterogeneous topologies. The technique shows
promise in addressing the limitations of traditional range-
free localization methods and offers improved performance
for WSN localization. Moreover, related to range-free
localization, the authors in [80] converted the traditional
DV-Hop from a single-objective optimization algorithm to
a multi-objective optimization algorithm. PSO was used
as the optimization algorithm. Related to Range-based
localization, [133] the proposed technique combines range-
based localization, sensor node segmentation, and PSO.
By segmenting the nodes into a restricted set of anchor
nodes (clusters) and using PSO with an improved fitness
function, the localization precision is enhanced, particularly
in areas with obstacles. The advantage of this approach
is its ability to achieve higher accuracy in estimating the
locations of unknown nodes compared with recent PSO-
based methods. However, it is important to note that
the performance of the proposed scheme may depend on
the specific network topology, number, and distribution
of the anchor nodes. Further evaluation and experimentation
are required to validate its effectiveness in different scenarios
and to determine its scalability and efficiency in large-scale
sensor networks.

C. METAHEURISTIC APPROACHES
Metaheuristic algorithms have gained significant attention
in the field of WSN localization owing to their ability
to efficiently address complex optimization problems [66],
[110], [134]. Unlike conventional optimization techniques
that rely on problem-specific knowledge, metaheuristics offer
a more general approach to guide the search process [135],
[136]. Metaheuristic algorithms are well suited for WSN
localization because they can handle the challenges posed
by the dynamic and unpredictable nature of wireless sensor
networks.

One of the key advantages of metaheuristic algorithms
is their ability to effectively explore and exploit the search
space. This is particularly crucial inWSN localization, where
the node positions are often unknown and must be estimated
accurately [137]. Metaheuristics such as Simulated Anneal-
ing (SA) and Tabu Search (TS) use adaptive search strategies
to balance exploration (searching for new solutions) and
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exploitation (exploiting promising regions of the search
space). This balance allows the algorithms to escape local
optima and converge towards the global optimum, thereby
providing accurate and robust localization results. Another
significant advantage of metaheuristics is their flexibility
and ease of implementation. Metaheuristic algorithms do
not require explicit mathematical models for the problem,
making them applicable to a wide range of WSN localization
scenarios [138].

Metaheuristic algorithms typically consist of key compo-
nents that enable them to navigate the search space efficiently
[139]. The key components of metaheuristic algorithms
applied to WSN localization are illustrated in Algorithm 3.

Algorithm 3Metaheuristic for WSN Localization
Input: WSN node positions and localization objectives
1. Initialize Population with random candidate solutions
2. Evaluate Fitness for each candidate solution using a fitness
function
3. Set the current best solution as the solution with the highest
fitness
4. Repeat until termination condition is met:

5. Generate new candidate solutions based on search
operators

6. Evaluate Fitness for each new candidate solution
7. Update the current best solution if a better solution is

found
8. Return the best solution found as the localized positions of
the WSN nodes
// Note: The specific search operators and termination condi-
tions will depend on the chosen metaheuristic algorithm.

Based on Algorithm 3, the localization process of this type
consists of the following main processes:

a) Initialization: The process begins by initializing a
population of candidate solutions that represent poten-
tial node positions. These solutions can be generated
randomly or based on heuristics.

b) Fitness Evaluation: Each candidate solution is evalu-
ated using a fitness function that assesses the quality
of the localization estimates. The fitness function
considers factors, such as distance measurements,
connectivity information, signal strength, and anchor
node measurements, to determine the fitness of a
solution.

c) Exploration and Exploitation: Metaheuristic algo-
rithms strike a balance between exploration and
exploitation to search the solution space effectively.
Exploration involves exploring new regions of the
search space to discover better solutions, whereas
exploitation focuses on exploiting promising regions to
refine and optimize solutions. This balance is critical
for achieving an accurate and robust localization.

d) Search Strategy: Metaheuristic algorithms employ
specific search strategies to navigate the solution
space. These strategies may include local search

operators, such as neighborhood exploration or local
optimization, and global search operators, such as
diversification or intensification. The combination of
these strategies helps the algorithm efficiently explore
the solution space and converge towards optimal or
near-optimal solutions.

e) Iteration and Termination: The algorithm iterates
through multiple generations or iterations, generating
new candidate solutions and updating the population
based on fitness evaluation. Termination conditions
are defined to determine when the algorithm should
be stopped. These conditions can be the maximum
number of iterations required to reach a specific fitness
threshold or a predefined time limit.

f) Solution Selection: At the end of the execution of the
algorithm, the best solution found during the optimiza-
tion process is selected as the localized position of
the WSN nodes. The selection process ensures that
the algorithm converges towards the most promising
solution that satisfies the localization objectives.

However, like any optimization technique, metaheuristics
have some limitations. One common concern is the stochastic
nature of these algorithms, which can lead to variable perfor-
mances across different runs [5], [99]. The results obtained by
metaheuristics may not always be reproducible and require
multiple runs to ensure solution robustness and stability.
In addition, the performance of metaheuristic algorithms
can be sensitive to parameter settings, necessitating careful
tuning and optimization of these parameters for optimal
results. Moreover, their generic nature allows researchers
and practitioners to adapt to various constraints, objectives,
and network conditions without significant modifications.
This adaptability is particularly advantageous in real-world
WSN localization applications, where the environments may
change and the number of nodes and anchor nodes can vary.
Table 8 shows some comparisons of the reviewed studies.
Reference [140] proposed a technique that combines

Multi-Swarm Optimization (MSO) with TS to improve
energy efficiency and routing optimization in large-scale
WSNs. By selecting efficient Cluster Heads (CHs), the
system enhances the network lifespan and routing optimiza-
tion. The technique offers advantages such as an increased
number of clusters formed, enhanced energy dissipation,
improved lifetime computation, and reduced packet loss and
end-to-end delay. However, clustering introduces additional
overhead owing to the need for cluster formation, cluster
head selection, and intercluster communication. Moreover,
a different technique was proposed in, [141] which is a
fuzzy logic-based Tabu Search (TS) algorithm model for
increasing the lifetime of WSNs by optimizing energy
consumption and distance. However, the complexity and
sensitivity of the algorithm to parameters, as well as its
potential limitations in handling network dynamics, should
be considered. Furthermore, in the same context as using
fuzzy logic, the authors in [96] presented a new approach
called Fuzzy Particle Swarm Optimization with Tabu Search
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TABLE 8. Comparison of Metaheuristic Optimization algorithms.

(FPSOTS) to improve indoor localization in WSNs by
enhancing the performance of PSO. The proposed approach
incorporates a tabu search to accelerate convergence, and
introduces limit and performance checks within the PSO

algorithm. Moreover, it utilizes the RSSI method to evaluate
the distances between sensors.

Different types of searches were proposed in, [75] called
the Enhanced Cuckoo Search (ECS) algorithm. The proposed
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TABLE 9. Comparison of the reviewed localization Optimization algorithms.

ECS algorithm is based on bio-inspired meta-heuristic
algorithms and converts the node-localization problem into
an optimization problem. The algorithm incorporates an
Early Stopping (ES) mechanism that exits the search loop as
soon as the optimal solution is reached, resulting in improved
search efficiency and reduced resource utilization. However,

the proposed ECS algorithm assumes a centralized architec-
ture, in which all neighboring anchor nodes communicate
with a central entity. This may limit the scalability and
applicability of the algorithm to decentralized or distributed
WSN environments.Moreover, [142] introduced an enhanced
version of the DV-Hop algorithm called Selective Opposition
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Class Topper Optimization (SOCTO) for localization in
WSNs. The technique focuses on optimizing the computation
of the average hop size with the weight of the beacon nodes
to improve localization accuracy. The proposed algorithm
demonstrated superior performance compared to the DV-Hop
technique and related approaches in terms of the average
localization error.

Different techniques using simulated annealing have been
proposed in [143]. In this study, a weighted DV-Hop method
that utilizes efficient simulated annealing was used to
improve the positioning accuracy of the sensors. The classic
DV-Hop algorithm has limited accuracy owing to errors in
estimating the average distance between adjacent sensors.
The proposed method assigns weights to the average distance
of each known node based on their influence on the unknown
nodes, resulting in a more accurate representation of the
network’s average distance. The locations of the unknown
nodes are determined by applying an efficient simulated
annealing algorithm. The experimental results conducted in
MATLAB demonstrate that the proposed method achieves
a higher precision in positioning. However, the use of a BP
Neural Network (BPNN) for coordinate prediction introduces
the possibility of overfitting. Another proposed method [144]
established a mathematical model for coverage optimization
and incorporated the simulated annealing algorithm into
the grey wolf optimization algorithm to enhance its global
optimization ability and convergence rate. Their Simula-
tion experiments demonstrated that the proposed algorithm
outperforms the particle swarm optimization algorithm and
the standard grey wolf optimization algorithm in terms of
optimization speed, network coverage, energy consumption
reduction, and network lifespan prolongation. However, the
computational complexity of the proposed algorithm is high.
In addition, regarding the use of the Simulated Annealing
method, authors in [145] combined the Approximate Point-
in-Triangulation (APIT) localization estimation method with
the bat algorithm optimized by Simulated Annealing (Bat-
SA). It utilizes multisensor data and emphasizes the uti-
lization of a large number of existing access points (APs)
to overcome the inaccuracies in range-based localization
in an indoor setting. The proposed Bat-SA algorithm
offers improved localization accuracy compared with the
traditional APIT algorithm. Additionally, [110] introduced a
novel algorithm called the quantum annealing at algorithm
(QABA). QABA integrates quantum evolution and annealing
strategies into the bat algorithm framework to enhance local
and global search capabilities. The algorithm achieves a
balance between search exploration and exploitation through
tournament and natural selection, ultimately converging to
the optimized solution. Moreover, the authors designed
two localization algorithms: QABA-2D for two-dimensional
space and QABA-3D for three-dimensional space, utilizing
trilateral localization and geometric feature principles. How-
ever, depending on the complexity of the problem and the
quality of the initial solution, the convergence speed of the
algorithm may still be relatively slow in certain scenarios.

Furthermore, a hybrid technique that depends on a virtual
WSN anchor node was proposed [146]. The Tunicate Swarm
Naked Mole-Rat Algorithm (TSNMRA) combined with a
single static anchor node. TSNMRA is used for target
node localization using a dynamic approach, whereas virtual
anchors and a hexagonal projection method are employed to
determine the coordinates of the target nodes.

V. DISCUSSION
This study aims to review the optimization algorithms for
WSN node localization. The findings of this study can
be used to evaluate and compare methods used in this
field. In Figures 7 and 8, we compare the evaluations of
some standard optimization algorithms. In Table 9, we show
a comparison of the proposed optimization techniques
reviewed in this paper.

Upon analyzing the table, it can be observed that several
techniques are associated with high accuracy and low energy
consumption. The most prominent methods that exhibit these
characteristics are GA, PSO, and IAGA. These techniques
consistently demonstrate high accuracy while maintaining
efficient energy consumption for WSN localization. The
GA is widely employed in the literature, and it consistently
achieves high accuracy levels with low energy consumption.
This method utilizes optimization processes to improve the
localization accuracy by considering factors such as energy
consumption, connectivity, and distance. The GA-based
approaches in consistently deliver superior accuracy while
consuming minimal energy. PSO is another technique that
consistently demonstrates high accuracy and low energy con-
sumption. It uses a population-based optimization algorithm
to refine the localization process. The PSO-based approaches
in achieved high accuracy levels while maintaining efficient
energy consumption, making it a popular choice for WSN
localization. In addition, IAGA, an enhanced version of
GA, exhibits high accuracy and low energy consumption.
It introduces improvements in the genetic algorithm to
further enhance the accuracy and reliability. References
utilizing IAGA consistently report high accuracy levels while
maintaining minimum energy consumption.

The percentage distribution of the discussed localization
techniques in WSNs reflects their varying popularity and
effectiveness in addressing localization challenges, as shown
in Figure 9. PSO has the highest percentage (44.44%) because
it is widely utilized and enhanced for WSN localization,
demonstrating superior performance in terms of accuracy
and convergence speed. GA follows with 30.5%, as it is
a popular choice for improving localization accuracy by
incorporating optimization processes and considering energy
consumption, connectivity, and distance. Other techniques,
such as WOA, GWO, TS, and SA, have relatively lower
percentages (ranging from 2.7% to 11.11%) but still find
applications in specific scenarios to enhance optimization
and convergence capabilities. The distribution of percentages
reflects the diverse research efforts in leveraging optimization
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FIGURE 9. Optimization reviewed papers.

algorithms to improve the accuracy, energy efficiency, and
convergence of localization techniques in WSNs.

FIGURE 10. WSN nodes Localization strategies used.

Furthermore, Figure 10 indicates that the majority (69.5%)
of the discussed techniques focus on range-free localization
methods, whereas the remaining percentage (30.5%) is
dedicated to range-based localization approaches. RangeF
localization techniques do not rely on direct distance
measurements but instead utilize connectivity information
or other indirect measurements to estimate node positions.
These methods often require less resources and are less
susceptible to ranging errors. The high percentage of range-
free techniques in the discussion suggests their popularity
and relevance in WSN localization research. On the other
hand, range-based localizationmethods utilize direct distance
measurements, such as time-of-flight or received signal

strength, to estimate node positions. These techniques
typically provide more accurate localization results but may
require additional resources and suffer from ranging errors or
signal attenuation.

However, the distribution of percentages reflects the
significance and applicability of both the Range-Free and
Range-Based localization methods in WSNs. Researchers
have explored and developed various techniques within each
category to address the unique challenges and requirements of
different WSN applications. The choice between the Range-
Free and Range-Based approaches depends on the specific
constraints, objectives, and environmental conditions of the
deployment scenario.

FIGURE 11. Assistive technologies used for localization optimization
processes.

Moreover, Figure 11 shows the utilization of assistive
techniques in WSN localization. Clustering methods hold
a percentage of 16.5%, indicating their moderate usage
in optimizing the energy consumption and simplifying the
localization process. DV-Hop, a Range-Free localization
algorithm, has a higher percentage of 25%, showing its pop-
ularity and effectiveness in estimating node positions based
on hop count and average distance information. Fuzzy logic
techniques, with a percentage of 11.11%, were employed
to handle uncertainties and improve accuracy in dynamic
environments. The distribution highlights the significance of
clustering, DV-Hop, and fuzzy logic in WSN localization,
with each technique addressing specific challenges and
requirements in different deployment scenarios.

Furthermore, Figure 12 illustrates that 2D localization
techniques comprise 75% of the discussed papers, whereas
3D localization techniques account for the remaining 25%.
This indicates that the majority of research and focus on
WSN localization lies within two-dimensional environments.
A higher percentage of 2D localization techniques suggests
that they are more prevalent and widely utilized in practical
applications. Two-dimensional localization is often straight-
forward to implement and has been extensively studied owing
to its relevance in various real-world scenarios. However,
the lower percentage of 3D localization techniques reflects
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FIGURE 12. Networks architecture used.

their relatively lower adoption and research focus. Three-
dimensional localization presents additional complexities
compared with 2D localization, such as accounting for height
and vertical positioning, which may require specialized
algorithms and hardware.

VI. CHALLENGES AND OPEN ISSUES
WSNs node localization has emerged as a prominent research
area across multiple fields, garnering significant attention
and investigation. Scholars in various relevant domains have
made noteworthy contributions to the advancement of WSNs
node localization, encompassing enhancements in network
topology [147], optimization of location algorithms, and
innovative research endeavors, thereby leaving a lasting
impact on this research hotspot [148]. However, there are
several challenges and open research directions that can be
identified in WSN node localization. These include:

1) IMPROVINGENERGYEFFICIENCY: Improving the
energy efficiency in WSN localization is a crucial
challenge that requires the development of energy-
aware algorithms, optimization of data collection and
transmission, implementation of duty cycling and sleep
scheduling techniques, integration of energy harvesting
and energy-aware node deployment strategies [149],
designing energy-efficient communication protocols,
and exploring hardware and sensing techniques [36].
By minimizing energy consumption without compro-
mising accuracy, the overall lifetime and operational
efficiency of WSNs can be maximized, contributing
to sustainable and long-lasting localization solutions.
It is possible to employ this by transferring the cost of
localization operations to another part of the network,
such as a software-defined network (SDN) [150], as we
will explain later.

2) ENHANCING LOCALIZATION ACCURACY:
Enhancing the localization accuracy is a critical
aspect that requires further improvement in WSN
localization techniques. Although many existing
methods achieve high accuracy, there is still room for

improvement [35]. Addressing factors such as ranging
errors, which can arise from signal attenuation or
multipath effects, is crucial for improving accuracy.
Additionally, accounting for environmental variations,
such as changes in temperature, humidity, or signal
interference, can help refine the localization algorithms
[151]. Furthermore, considering the presence of
obstacles that can obstruct signal propagation and
affect distance measurements is essential for enhancing
accuracy. Moreover, the improvement of optimization
algorithms can lead to more localization processes,
making it less costly and more accurate.

3) HANDLING DYNAMIC ENVIRONMENTS: Han-
dling dynamic environments is a significant challenge
in WSN localization. WSNs are often deployed in
dynamic scenarios in which nodes may move, network
topologies can change, and signal propagation condi-
tions may vary [152]. Adapting localization techniques
to accommodate these dynamic factors is crucial for
maintaining accurate and reliable results. Methods that
can track node mobility, dynamically adjust network
configurations, and account for varying signal strengths
and interference levels can enhance the robustness
and adaptability of localization algorithms in dynamic
environments [153], [154]. Additionally, incorporating
machine learning and data-driven approaches to model
and predict changes in the environment can further
improve localization accuracy in dynamic WSN sce-
narios. Therefore, by employing SDN technology, such
problems can be solved.

4) DEALING WITH SCALABILITY: As WSNs con-
tinue to expand in size and complexity, it is essential
to develop localization techniques that can handle
large-scale deployments efficiently. Scalability chal-
lenges include designing algorithms that can accurately
localize a significant number of nodes while min-
imizing the computational complexity and resource
requirements [155]. This involves optimizing the data
processing, communication overhead, memory usage,
and computational efficiency. Additionally, developing
distributed and decentralized localization techniques
that can scale with network size and adapt to
dynamic network conditions is essential. Exploring
novel approaches such as hierarchical localization,
cooperative localization, and network partitioning can
help address the scalability challenges in WSN local-
ization [8]. By focusing on scalability, researchers
can ensure that localization techniques are applicable
and effective for real-world large-scale WSN deploy-
ments. However, in most studies, protocols such as
6LoWPAN or Zigbee have not been employed in
the development of localization processes. Therefore,
they should be considered in the development of
localization.

5) INTEGRATION OF MULTIPLE TECHNOLOGIES:
The Integration of multiple technologies is a promising
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research direction for enhancing WSN localization.
Investigating the combination of optimization algo-
rithms with other advanced techniques, such as
machine learning, artificial intelligence, and data
fusion, has the potential to improve the localization per-
formance and robustness [14]. By leveraging machine-
learning algorithms, localization techniques can adapt
and learn from data patterns, enabling more accurate
and adaptive positioning. Artificial intelligence tech-
niques can aid in making intelligent decisions and
optimizing the localization processes based on real-
time environmental information. Additionally, data
fusion techniques that integrate information from
various sources, such as sensor, environmental, and
historical localization data, can improve the accu-
racy and reliability of WSN localization [156]. The
integration of these technologies offers opportuni-
ties to address challenges, such as ranging errors,
dynamic environments, and scalability, ultimately lead-
ing to more advanced and effective WSN localization
solutions.

6) HANDLING HETEROGENEOUS NETWORKS:
WSNs often comprise nodes with diverse capabilities,
including variations in the sensing range, transmission
power, and processing capabilities [72]. The develop-
ment of localization techniques that can effectively
handle heterogeneity and adapt to varying node
characteristics is a significant research direction [157].
This involves designing algorithms that can account for
and utilize the heterogeneous capabilities of nodes to
optimize localization accuracy and energy efficiency.
Techniques such as adaptive range estimation, dynamic
power control, and node classification can be explored
to address heterogeneity challenges in WSN localiza-
tion. Additionally, considering node heterogeneity in
the design of communication protocols, localization
algorithms can help optimize resource allocation and
improve the overall network performance.

7) STANDARDIZATION AND BENCHMARKING:
Standardization and benchmarking play crucial roles
in advancing WSN localization techniques. Estab-
lishing standardized evaluation metrics, datasets, and
benchmarks enables fair comparison between different
localization methods [103], [104]. It allows researchers
to objectively assess the performance of their tech-
niques and facilitates the identification of strengths and
weaknesses. Standardized evaluation frameworks can
include metrics, such as localization accuracy, energy
consumption, computational complexity, localization
time, and scalability [151]. The creation of stan-
dardized datasets that represent real-world scenarios
and challenges enables researchers to validate and
compare their algorithms under consistent conditions.
Furthermore, developing benchmarking platforms and
competition encourages collaboration and stimulates
innovation within the research community.

SDN technology can play a significant role in optimiz-
ing the localization process of WSNs [158], [159]. SDN
enables the centralized control and management of network
resources, allowing efficient coordination and configuration
of the network. This centralized control facilitates the
deployment of localization algorithms across the WSN,
ensuring consistent and synchronized operations. In addition,
SDN’s dynamic network configuration capabilities enable
on-demand changes in network parameters, topology, and
routing paths, adapting to real-time localization requirements
and environmental changes. SDN can optimize data routing
and forwarding by leveraging traffic engineering capabilities,
thereby improving the accuracy and efficiency of WSN
localization. It also provides Quality of Service (QoS)
provisioning, allowing for the prioritization of traffic and
allocation of appropriate resources to ensure reliable and
timely data transmission for localization purposes. SDN’s
programmable architecture of SDN empowers developers to
customize and extend network functionality, thereby enabling
the implementation of specialized localization algorithms
tailored to specific WSN deployment requirements. Fur-
thermore, SDN enhances network monitoring and analytics,
provides real-time visibility into the network’s performance,
and facilitates proactive identification of localization-related
issues. With its security and privacy enhancements, SDN
strengthens the protection of the localization data and
ensures the integrity and confidentiality of the localization
process. SDN optimizes WSN localization by offering
centralized control, dynamic configuration, traffic opti-
mization, QoS provisioning, programmability, monitoring
capabilities, and security enhancements. These benefits lead
to improved accuracy, efficiency, scalability, and reliability
in WSN localization, enabling better utilization of network
resources and support for various localization algorithms and
protocols.

As depicted in Figure 13, the SDN architecture comprises
two essential components: a central SD-Controller and a
network device known as SD-Switches. These SD-Switches
establish connections with wireless devices, that is, WSN
nodes, through access points (AP). The data exchange
between these devices is facilitated by the OpenFlow proto-
col [151], which is responsible for handling data transmission
between network equipment and the SD-Controller, while
also receiving updates from the SD-Controller. Consequently,
this proposal offers an optimal solution for the placement of
optimization algorithms, effectively addressing the problem
at hand.

In terms of handling heterogeneous networks, SDN allows
for flexible management of different node capabilities,
such as varying sensing ranges, transmission powers, and
processing capabilities. The SD-Controller can dynamically
adapt and configure the behavior of SD-Switches based on
the characteristics of individual nodes, enabling customized
localization techniques to be applied to different node
types within the network. This adaptability ensures that
localization algorithms can effectively handle heterogeneity
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FIGURE 13. SDN architecture in implementation of WSNs nodes localization.

and cater to the diverse capabilities of the WSN nodes.
Moreover, SDN can contribute to the integration of multiple
technologies. With SDN, the SD-controller can facilitate the
seamless integration of optimization algorithms with other
technologies such as machine learning, artificial intelligence,
or data fusion techniques. The centralized control provided by
SDN architecture enables efficient coordination and collab-
oration between different technologies, leading to improved
localization performance and robustness. By leveraging the
capabilities of multiple technologies, WSN localization can
benefit from enhanced accuracy, adaptability, and resilience
under various environmental conditions. SDN offers scalable
solutions by providing centralized management and control
of the network. The SD-Controller can efficiently handle a
large number of nodes, ensuring accurate localization while
minimizing computational complexity. SDN’s ability of SDN
to dynamically allocate network resources and optimize
routing decisions can contribute to achieving scalability in
WSN localization, enabling the accurate positioning of a
large-scale deployment without compromising performance.
Moreover, SDN’s centralized control and management
enables it to handle dynamic environments effectively. The
SD-controller can adapt to localization techniques based
on real-time changes in network topology, node mobility,
and varying signal propagation conditions. This adaptability
allows for quick adjustments and optimizations in response
to dynamic environmental factors, ensuring reliable and

accurate localization results, even in rapidly changing
scenarios.

Furthermore, the utilization of machine learning and artifi-
cial intelligence techniques can be instrumental in addressing
the challenges associated with optimization. By employing
intelligent algorithms, machine learning can dynamically
enhance localization processes, draw insights from previous
experience, and adjust to varying environmental conditions.
Consequently, this can lead to notable improvements in
the accuracy and efficiency of the WSN localization.
Additionally, leveraging SDN within each segment area
allows for the offloading of training and parameter tuning
costs to the SD-controller, further optimizing the localization
process.

VII. CONCLUSION
The accurate localization of sensor nodes is essential for
the effective operation of WSNs. Achieving accurate WSN
node localization is challenging owing to the wireless
communication characteristics and dynamic nature of the net-
work environment. Optimization algorithms have emerged
as a promising approach to address this challenge. This
review provides a comprehensive overview of WSN node
localization and the application of optimization algorithms.
We discussed various localization techniques and reviewed
a diverse range of optimization techniques, including
evolutionary algorithms, swarm intelligence, metaheuristic
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approaches, and other optimization-based methods. In addi-
tion, we evaluated and compared different optimization
algorithms, considering factors such as accuracy, scalability,
computational complexity, and robustness. Moreover, the
proposed solutions focus on developing tailored optimization
algorithms, incorporating the SDN technique, and leveraging
machine learning for adaptive optimization.
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