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ABSTRACT In this paper, the finite-time annular domain stability and stabilization of regime-switching
jump diffusion system are discussed. With the help of explicit solution of multi-dimensional regime-
switching jump diffusion system, we give the sufficient and necessary conditions for finite-time annular
domain stability and stabilization of regime-switching jump diffusion system respectively. Finally, the
importance of Markov chain and Poisson jump of our obtained finite-time annular domain stability condition
are demonstrated by numerical examples.

INDEX TERMS Finite-time annular domain stability, finite-time annular domain stabilization, regime-
switching jump diffusion system.

I. INTRODUCTION
Initially, the researchers mainly study the stability analysis
of a deterministic system. Since deterministic systems are
susceptible to various random factors, such as epidemics,
earthquakes, tsunamis, or terrorist atrocities, stochastic sys-
tems as mathematical model are studied. Regime-switching
jump diffusion processes can be seen as a jump diffusion
process in a stochastic environment, where the evolution of
the stochastic environment is modeled by continuous-time
Markov chain, or more generally, a continuous-state-
dependent switching process with a discrete state space [17].
In order to simulate more systems, many scholars have
considered and studied stochastic systems [4], [8], [9], [10],
[11], [12], [13], [14], [15], [22], and also studied many
properties of the regime-switching jump diffusion system,
such as asymptotic stability in probability, finite-time annular
domain stability in the sense of expectation and so on.

The finite-time stability of regime-switching jump dif-
fusion system was studied in the 1970s. Since then, this
field has gained a great deal of attention and has undergone
substantial development. It has been applied into various
practical situations, such as the fields of finance [6], biology
[7] and engineering.
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Finite-time annular domain stability can be used to solve
many problems in engineering practices such as chemical
reaction processes, electronic circuit systems [18], and
medicine [19]. We investigate finite-time annular domain
stability of regime-switching jump diffusion system with
Markov chain and Poisson jump. There are many papers
about finite-time annular domain stability and the systems
in most of the papers involves only one of Markov chain
and Poisson jump [1], [2], [5]. There are a few papers
containing Markov chain and Poisson jump [3], [18]. All of
them use the Lyapunov exponent and linear matrix inequality
to give the sufficient condition for finite-time annular domain
stability of stochastic systems [1], [2], [3], [5], [18]. With the
help of the explicit solution of the regime-switching jump
diffusion system, we present the sufficient and necessary
condition for finite-time annular domain stability only by
the coefficient matrix. This can eliminate the need to find
a suitable Lyapunov function, and it greatly simplifies the
proof process. Of course, we will encounter difficulties in the
process of presenting evidence, such as the expectation about
exponential function whose exponent is the random matrix.

The structure of this paper is as follows. Some notations
and preliminary results are given in Section II. Section III
provides the sufficient and necessary condition of finite-time
annular domain stability of regime-switching jump diffusion
system. Then, the finite-time annular domain stabilization
of regime-switching jump diffusion system is considered
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in Section IV. Finally, two simulations are discussed to
illustrate the superiority of Markov chain and Poisson jump
in Section V.

II. NOTATIONS AND PRELIMINARY RESULTS
Let (�,F , P) be a complete probability space with a
filtration {Ft }t≥0 satisfying the usual conditions. Let ω(t) =(
ω1(t), · · · , ωd (t)

)⊤ be a d-dimensional standard Brownian
motion, N (·, ·) be a Ft -adapted Poisson random measure on
R+ ×Rn

\ {0} and N (t) be a Poisson random process defined
on R+ = [0, ∞) in the probability space. The corresponding
compensated Poisson process of N (t) is Ñ (t) = N (t) − λt
where 0 < λ < ∞ is called the jump intensity of N (t).
Let r(t) be a right-continuous Markov chain taking values in
S = {1, . . . ,m} with generator 0 = (γij)z×z given by

P{r(t + 1) = j|r(t) = i} =

{
γij1 + o(1) if i ̸= j,
1 + γii1 + o(1) if i = j,

where 1 > 0. Here γij is the transition rate from i to j and
γij > 0 if i ̸= j while γii = −

∑
j̸=i γij for ∀i, j ∈ S.

We assume that {r(·)}, {w(·)} and {N (·)} are independent.
Throughout this paper, unless otherwise specified, we use

the following notations. If A is a matrix or vector, A⊤ denotes
its transpose. If A, B ∈ Rn×n, A < B means that B − A is
a positive definite matrix. Tr(A) denotes the trace of A, ρ(A)
means the spectral radius of A, and let ∥ · ∥ be the 2-norm
of a matrix or vector. Denote by C2(Rn

; R+) the family of
all nonnegative functions V (x) which are continuously twice
differentiable in x. I = (e1, . . . , ej, . . . , en) ∈ Rn×n is an unit
matrix where j = 1, . . . , n.

Consider a general regime-switching jump diffusion sys-
tem

dx(t) = f (x(t), r(t), t)dt + g(x(t), r(t), t)dw(t)

+

∫
4

h(y, x(t−), r(t−), t−)N (dt, dy), (II.1)

on t ≥ 0 with x(0) being a constant vector, where
f : Rn

× S × R+ → Rn, g : Rn
× S × R+ →

Rn×d , and h : 4 × Rn
× S × R+ → Rn are Borel-

measurable. When h(y, x(t−), r(t−), t−) is independent of
y,

∫
4
h(y, x(t−), r(t−), t−)N (dt, dy) can be denoted by

h(x(t−), r(t−), t−)dN (t), and then system (II.1) is written as

dx(t) = f (x(t), r(t), t)dt + g(x(t), r(t), t)dw(t)

+ h(x(t−), r(t−), t−)dN (t), t ≥ 0. (II.2)

For a function V (x) ∈ C2(Rn
; R+), the generalized Itô’s

formula [14] of V (x) associated with system (II.2) is defined
as

dV (x) =

{
Vx(x)f (x, r(t), t)

+
1
2
Tr

[
g⊤(x, r(t), t)Vxx(x)g(x, r(t), t)

]}
dt,

+ Vx(x)g(x, r(t), t)dw(t)

+

[
V

(
x + h(x, r(t−), t−)

)
− V (x)

]
dN (t). (II.3)

Next, the definition of finite-time annular domain stability
of system (II.2) is given.
Definition 1 [1]: For given positive constants c3, c4, T ,

and a positive definite matrix R ∈ Rn×n, if there exist positive
constants c1 and c2, possibly depending on c3, c4, T and R
such that

c1 ≤ E
{
x⊤(0)Rx(0)

}
≤ c2

⇒ c3 < E
{
x⊤(t)Rx(t)

}
< c4, ∀t ∈ [0, T ], (II.4)

then system (II.2) is said to be finite-time annular domain
stable with respect to (c1, c2, c3, c4,T ,R).

III. FINITE-TIME ANNULAR DOMAIN STABILITY
In this section, we shall study the finite-time annular domain
stability of the homogeneous multi-dimensional regime-
switching jump diffusion system

dx(t) = F(r(t))x(t)dt +

d∑
k=1

Gkx(t)dwk (t)

+ Hx(t−)dN (t), t ≥ 0, (III.1)

with x(0) is a constant vector, F(1), · · · , F(m), G1, · · · , Gd ,
H ∈ Rn×n and r(t) ∈ S.

We will give the sufficient and necessary condition of
finite-time solution, and the explicit solution of system (III.1)
is given in the following lemma, whose proof will be found
in Appendix.
Lemma 2: When the matrices F(1), . . . , F(m), G1, . . . ,

Gd , H are commutative and ρ(H ) < 1, the explicit solution
of system (III.1) is

x(t) = 8(t)x0, (III.2)

where

8(t) = exp
{ ∫ t

0

(
F(r(s)) −

1
2

d∑
k=1

G2
k

)
ds+

d∑
k=1

Gkwk (t)
}

·
(
I + H

)N (t)
, (III.3)

with the initial value x(0) = x0 and r(t) ∈ S.
By referring to [20], 8(t) is called the fundamental matrix
of system (III.1).
Now, we give a sufficient and necessary condition of

finite-time annular domain stability for system (III.1).
Theorem 3: When ρ(H ) < 1, the system (III.1)

is finite-time annular domain stable with respect to
(c1, c2, c3, c4,T , I ) if and only if c3

c1
I < M (t) < c4

c2
I for

t ∈ [0,T ], where 0 < λ < ∞ is the jump intensity of N (t),
and

M (t) = e−λt
· exp

{ ∑
i∈S

πi

(
F⊤(i) −

1
2

d∑
k=1

(G2
k )

⊤
+ F(i)

−
1
2

d∑
k=1

G2
k

)
t +

t
2

d∑
k=1

(
G⊤
k + Gk

)2
+ λt

[(
I + H⊤

)(
I + H

)]}
. (III.4)
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Proof: Since x(t) = 8(t)x0, we have x⊤(t)x(t) =

x⊤

0 8⊤(t)8(t)x0, and

E
(
x⊤(t)x(t)

)
= E

(
x⊤

0 8⊤(t)8(t)x0
)

= x⊤

0 E
(
8⊤(t)8(t)

)
x0. (III.5)

By (III.3), and the independence of w1(·), · · · , wd (·), r(·) and
N (·), we obtain

E
{
8⊤(t)8(t)

}
= E

{
exp

[ ∫ t

0

(
F⊤(r(s)) −

1
2

d∑
k=1

(G2
k )

⊤
+ F(r(s))

−
1
2

d∑
k=1

G2
k

)
ds

]}
· E

{
exp

[ d∑
k=1

(
G⊤
k + Gk

)
wk (t)

]}
· E

{[(
I + H⊤

)(
I + H

)]N (t)}
. (III.6)

Let

Y (t) = exp
{ ∫ t

0
A(r(s))ds

}
, (III.7)

where

A(r(s)) = F⊤(r(s)) −
1
2

d∑
k=1

(G2
k )

⊤
+ F(r(s))

−
1
2

d∑
k=1

G2
k . (III.8)

By (III.7), we can obtain

Yj(t) = exp
{ ∫ t

0
A(r(s))ds

}
ej, (III.9)

where Yj(t) denotes the jth column of Y (t). Note that (III.9)
is an explicit solution of system

dYj(t) = A(r(t))Yj(t)dt, (III.10)

and Yj(0) = ej. Thus, by the ergodicity of Markov chain [21],
we have

EYj(t) = EYj(0) + E
∫ t

0
A(r(s))Yj(s)ds

= EYj(0) +

∑
i∈S

πi

∫ t

0
A(i)EYj(s)ds

= EYj(0) +

∑
i∈S

πiA(i)
∫ t

0
EYj(s)ds, (III.11)

i.e.,

d
(
EYj(t)

)
=

∑
i∈S

πiA(i)
(
EYj(t)

)
dt, (III.12)

then we have

EYj(t) = exp
{ ∑
i∈S

πiA(i)t
}
ej. (III.13)

By using of (III.13) and (III.8),

E
{
exp

[ ∫ t

0

(
F⊤(r(s)) −

1
2

d∑
k=1

(G2
k )

⊤
+ F(r(s))

−
1
2

d∑
k=1

G2
k

)
ds

]}
= exp

{ ∑
i∈S

πi

(
F⊤(i) −

1
2

d∑
k=1

(G2
k )

⊤
+ F(i)

−
1
2

d∑
k=1

G2
k

)
t
}
, (III.14)

are obtained. Next, let V (wk (t)) = exp
{ d∑
k=1

(
G⊤
k +

Gk
)
wk (t)

}
. Because G⊤

k + Gk is a symmetric matrix, there

exists an invertible matrix Bk such thatG⊤
k +Gk = Bk3kB

−1
k

where 3k = diag
(
λk1 , · · · , λkn

)
. Therefore,

exp
{(
G⊤
k + Gk

)
wk (t)

}
= exp

{
Bk3kB

−1
k wk (t)

}
= Bk exp

{
3kwk (t)

}
B−1
k

= Bk exp


λk1wk (t)

. . .

λknwk (t)

B−1
k . (III.15)

Note that

E
(
eλkiwk (t)

)
=

∫
+∞

−∞

eλki s
1

√
2π t

e−
s2
2t ds

= e
λ2
ki
t

2

∫
+∞

−∞

1
√
2π t

e−
(s−λki

t)2

2t ds

= e
λ2
ki
t

2 . (III.16)

Thus, by (III.15) and the independence of w1(t), . . . , wd (t),
we have

E
{
exp

[ d∑
k=1

(
G⊤
k + Gk

)
wk (t)

]}
= exp

{ t
2

d∑
k=1

(
G⊤
k + Gk

)2}
. (III.17)

Since N (t) is a scalar Poisson random process with jump
intensity λ and N (t) ≥ 0, we have

E
([(

I + H⊤
)(
I + H

)]N (t))
=

∞∑
j=0

[(
I + H⊤

)(
I + H

)]j
· e−λt

·
(λt)j

j!

= e−λt
·

∞∑
j=0

(
λt

[(
I + H⊤

)(
I + H

)])j
j!

= e−λt
· eλt

[(
I+H⊤

)(
I+H

)]
. (III.18)
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Then, by substituting (III.14), (III.17) and (III.18) into (III.6),
we have E

(
8⊤(t)8(t)

)
= M (t) which is defined as (III.4).

This together with (III.5) leads to

E
(
x⊤(t)x(t)

)
= x⊤

0 M (t)x0. (III.19)

Sufficiency. When c1 ≤ E(x⊤

0 x0) ≤ c2, M (t) >
c3
c1
I and

M (t) < c4
c2
I for ∀t ∈ [0,T ], we have

c4 =
c4
c2

· c2 ≥
c4
c2
x⊤

0 x0 > x⊤

0 M (t)x0

= E
(
x⊤(t)x(t)

)
>
c3
c1
x⊤

0 x0 ≥
c3
c1

· c1 = c3.

Necessity. The necessity is shown by contradiction. Suppose
that there exist times t∗1 , t

∗

2 ∈ [0,T ] such that M (t∗1 ) ≤
c3
c1
I

orM (t∗2 ) ≥
c4
c2
I . 1) IfM (t∗1 ) ≤

c3
c1
I , by choosing x0 satisfying

x⊤

0 x0 = c1 and using (III.19), we have

E
(
x⊤(t∗1 )x(t

∗

1 )
)

= x⊤

0 M (t∗1 )x0 ≤
c3
c1
x⊤

0 x0 = c3. (III.20)

This contradicts with the definition of finite-time annular
domain stability. 2) If M (t∗2 ) ≥

c4
c2
I , when x⊤

0 x0 = c2,
it follows from (III.19) that

E
(
x⊤(t∗2 )x(t

∗

2 )
)

= x⊤

0 M (t∗2 )x0 ≥
c4
c2
x⊤

0 x0 = c4, (III.21)

which is also a contradiction with the definition of finite-time
annular domain stability. Hence, we have c3

c1
I < M (t) < c4

c2
I

for ∀t ∈ [0,T ]. The proof is complete.
Remark 4: Theorem 3 gives the sufficient and necessary

condition for finite-time annular domain stability of sys-
tem (III.1), but the flaw is that R = I . From the proof of
Theorem 3, it can be seen that if R = cI where c is a constant,
we can also obtain the sufficient and necessary condition for
finite-time annular domain stability of the system (III.1).

IV. FINITE-TIME ANNULAR DOMAIN STABILIZATION
In this section, we shall study finite-time annular domain sta-
bilization of the linear multi-dimensional stochastic system

dx(t) =

(
F(r(t))x(t) + B1(r(t))u1(t)

)
dt

+

d∑
k=1

(
Gkx(t) + B2u2(t)

)
dwk (t)

+

(
Hx(t−) + B3u3(t)

)
dN (t), t ≥ 0, (IV.1)

where x(0) is a constant vector, B1(1), · · · , B1(m), B2, B3 ∈

Rn×n and u1(t), u2(t), u3(t) ∈ Rn are control inputs. And for
system (IV.1), the state feedback controllers are given as

u1(t) = K1(r(t))x(t), u2(t) = K2x(t),

u3(t) = K3x(t), (IV.2)

where K1(1), · · · , K1(m), K2, K3 ∈ Rn×n and r(t) ∈ S.
To express the explicit solution of system (IV.1), assume
that F(1) + B1(1)K1(1), · · · , F(m) + B1(m)K1(m), G1 +

B2K2, . . . , Gd + B2K2, H + B3K3 are commutative. Then,
similar to Theorem 3, a sufficient and necessary condition

for finite-time annular domain stabilization of system (IV.1)
is given as follows.
Theorem 5: When ρ(H + B3K3) < 1, the system (IV.1)

is finite-time annular domain stabilization with respect to
(c1, c2, c3, c4,T , I ) if and only if c3

c1
I < M (t) < c4

c2
I for

∀ t ∈ [0,T ], where 0 < λ < ∞ is the jump intensity of
N (t), and

M (t) = e−λt
· exp

{ ∑
i∈S

πi

((
F(i) + B1(i)K1(i)

)⊤

−
1
2

d∑
k=1

((Gk + B2K2)2)⊤

+

(
F(i) + B1(i)K1(i)

)
−

1
2

d∑
k=1

(Gk + B2K2)2
)
t

+
t
2

d∑
k=1

(
(Gk + B2K2)⊤ + (Gk + B2K2)

)2
+ λt

[(
I + (H + B3K3)⊤

)(
I + (H + B3K3)

)]}
.

(IV.3)

Proof: Substitute (IV.2) into system (IV.1), then sys-
tem (IV.1) can be changed as

dx(t) =

(
F(r(t)) + B1(r(t))K1(r(t))

)
x(t)dt

+

d∑
k=1

(
Gk + B2K2

)
x(t)dwk (t)

+

(
H + B3K3

)
x(t−)dN (t), t ≥ 0. (IV.4)

According to Lemma 2 and ρ(H + B3K3) < 1, the explicit
solution of system (IV.4) is x(t) = 8(t)x0, where

8(t) = exp
{ ∫ t

0

(
F(r(s)) + B1(r(s))K1(r(s))

−
1
2

d∑
k=1

(
Gk + B2K2

)2)ds
+

d∑
k=1

(
Gk + B2K2

)
wk (t)

}(
I + H + B3K3

)N (t)
,

(IV.5)

and x(0) = x0. Then we have

E(x⊤(t)x(t)) = x⊤

0 M (t)x0, (IV.6)

where M (t) is defined as (IV.3). According to Theorem 3,
system (IV.1) is finite-time annular domain stable with
respect to (c1, c2, c3, c4,T , I ) if and only if c3

c1
I < M (t) <

c4
c2
I for ∀ t ∈ [0,T ]. The proof is complete.

V. NUMERICAL EXAMPLES
In this section, two numerical examples are respectively
presented to illustrate the importance of the Markov chain,
Poisson jump.
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FIGURE 1. The trajectories of Markov chain and Poisson jump.

FIGURE 2. The trajectories of E(x⊤(t)x(t)) for system with Poisson jump
(a) and system without Poisson jump (b).

Example 6: Consider a two-dimensional regime-switching
jump diffusion system which is the special case of
system (IV.1) where n = 2 and d = 1, r(t) ∈ S = {1, 2}

with the generator 0 =

[
−1 1
2 −2

]
, u1(t) = K1(r(t))x(t),

u2(t) = K2x(t), u3(t) = K3x(t) and the coefficient matrices
are respectively

F(1) =

[
0.2 0.5
0.3 0.4

]
, F(2) =

[
0.17 0.26
0.3 0.2

]
,

G =

[
0.17 0.15
0.14 0.1

]
, H =

[
−0.36 0.5
0.21 0.39

]
,

B1(1) =

[
0.11 0.22
0.07 0.15

]
, B1(2) =

[
0.34 0.51
0.25 0.36

]
,

B2 =

[
0.42 0.44
0.35 0.53

]
, B3 =

[
0.15 0.19
0.14 0.16

]
,

K1(1) =

[
−0.1 0.07
0.15 −0.05

]
, K1(2) =

[
0.13 0.09
0.12 0.07

]
,

K2 =

[
0.2 0.19
0.1 −0.05

]
, K3 =

[
−0.14 0.05
0.12 −0.03

]
,

x(0) =

[
1.5
0.5

]
. (V.1)

In addition, let c1 = 2, c2 = 3, c3 = 1, c4 = 6, T = 1,
λ = 0.6. By Theorem 5, we have that system (IV.1) with
coefficients (V.1) satisfies 1 = c3 < E1[x⊤(t)x(t)] <

6 = c4 when 2 = c1 ≤ E1[x⊤(0)x(0)] ≤ c2 = 3,
i.e., the closed-loop system composed of (IV.1) and (V.1) is
finite-time annular stable with respect to (2, 3, 1, 6, 1, I ).
The simulations results of system (IV.1) with coeffi-

cients (V.1) are presented in Figure 1 and Figure 2 (a).
In Figure 2 (b), the simulation is about system (IV.1)
without Poisson jump, i.e., B3 = 0, H = 0 and other
coefficients are same as those in (V.1). Figure 2 (b) shows
that when there is no Poisson jump, the closed-loop system
is not finite-time annular domain stable with respect to

FIGURE 3. The trajectories of Markov chain and poisson jump.

FIGURE 4. The trajectories of E(x⊤(t)x(t)) for system with Markov chain
(a) and system without Markov chain (b).

(2, 3, 1, 6, 1, I ). This implies that Poisson jump plays an
active role in the finite-time annular domain stability.
Example 7: Consider a two-dimensional regime-switching

jump diffusion system which is the special case of system
(IV.1) where n = 2 and d = 1, r(t) ∈ S = {1, 2} with the

generator 0 =

[
−1 1
2 −2

]
, the corresponding state feedback

controllers u1 = K1(r(t))x(t), u2 = K2x(t), u3 = K3x(t) and
the coefficient matrices are respectively

F(1) =

[
0.1 0.15
0.13 0.14

]
, F(2) =

[
0.25 0.26
0.23 0.32

]
,

G =

[
0.1 0.21
0.12 0.15

]
, H =

[
0.36 0.3
0.26 0.39

]
,

B1(1) =

[
0.21 0.22
0.07 0.15

]
, B1(2) =

[
0.34 0.51
0.25 0.36

]
,

B2 =

[
0.22 0.14
0.35 0.63

]
, B3 =

[
0.25 0.16
0.18 0.19

]
,

K1(1) =

[
0.03 0.11
0.06 0.07

]
, K1(2) =

[
0.13 0.09
0.12 0.07

]
,

K2 =

[
0.04 0.1
0.08 0.07

]
, K3 =

[
0.12 0.03
0.04 0.07

]
,

F =

[
0.25 0.26
0.23 0.32

]
, B1 =

[
0.34 0.51
0.25 0.36

]
,

K1 =

[
0.13 0.09
0.12 0.07

]
, x(0) =

[
1.5
0.5

]
. (V.2)

By Theorem 5, we have 1 = c3 < E1[x⊤(t)x(t)] <

5 = c4 when 2 = c1 ≤ E1[x⊤(0)x(0)] ≤

c2 = 3, i.e., the closed-loop system composed of (IV.1)
with (V.2) is finite-time annular domain stable with respect
to (2, 3, 1, 5, 1, I ).
The simulations results of system (IV.1) with coeffi-

cients (V.2) are presented in Figure 3 and Figure 4 (a).
Figure 4 (b) depicts the simulation about system (IV.1)
withoutMarkov chain, andF ,B1 andK1 are constantmatrices
in (V.2) and other matrices have no change. Figure 4 (b)
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shows that the closed-loop system with no Markov chain
is not finite-time annular domain stable with respect to
(2, 3, 1, 5, 1, I ). This implies that Markov chain is helpful for
finite-time annular domain stability.

VI. CONCLUSION
In this paper, we gave the sufficient and necessary condition
of finite-time annular domain stability and stabilization for
regime-switching jump diffusion systems. By numerical
examples, we showed the importance of Markov chain and
Poisson jump for finite-time annular domain stability of
stochastic systems.

APPENDIX
PROOF OF LEMMA III.1.
When ρ

(
H (r(t−))

)
< 1 for ∀t ∈ R+, then it follows

from [16] that exp
{
ln

(
I + H

)}
= I + H . Let

Y (t) =

∫ t

0

(
F(r(s)) −

1
2

d∑
k=1

G2
k
)
ds (A.1)

+

d∑
k=1

∫ t

0
Gkdwk (s) +

∫ t

0
ln

(
I + H

)
dN (s),

then 8(t) = exp(Y (t)). By the generalized Itô’s formula,
we have

d8(t) = F(r(t))8(t)dt +

d∑
k=1

Gk8(t)dwk (t)

+ H8(t−)dN (t). (A.2)

Then,

d8(t)x0 = F(r(t))8(t)x0dt +

d∑
k=1

Gk8(t)x0dwk (t)

+ H8(t−)x0dN (t). (A.3)

Then 8(t)x0 is an explicit solution of multi-dimensional
linear system (III.1). Because of the uniqueness of solution
of system (III.1), the solution x(t) of system (III.1) can be
expressed as x(t) = 8(t)x0. The proof is complete.
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