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ABSTRACT This survey aims to provide an overview of various methods for generating data-driven
test scenarios for assessing automated driving systems (ADSs). The survey updates the overall process of
scenario generation and categorizes the current methods using a systematic literature review of 64 studies
identified between 2017 and 01/2023. Overall, we demonstrate that the data-driven scenario generation
process should be updated by another process step, scenario fusion, leading to seven process steps:
1) scope definition, 2) primary data source selection, 3) primary data collection, 4) scenario identification,
5) scenario fusion, 6) scenario generation, and 7) scenario evaluation. “Scenario fusion” aims to fuse
scenarios identified in different data sources for a better coverage of the ADSs’ operational design domains
(ODDs) and a more comprehensive scenario description. Moreover, we introduce an improved definition
for the representativity of test scenario catalogs, which helps improve the collection of traffic data using
sampling plans. Also, we show that real driving and police accident data are the most commonly used
data input sources. Besides, we illustrate that the ODD is often not defined. Finally, we discuss that the
standardization of test scenario generation is difficult because most methods do not address specific ADSs
and test environments, and do not provide standardized interfaces. Overall, we recommend comparing
existing approaches using the same input data and researching the mutual supplementation of the existing
methods. Finally, pre-defined case studies, further standardized terminology, and standards for test execution
and evaluation can help speed up the standardization process.

INDEX TERMS Advanced driver assistance systems, autonomous driving, system validation, vehicle safety.

I. INTRODUCTION
The trend in driver assistance systems is increasingly
developing towards automated driving systems (ADSs) [1],
as the Mercedes-Benz DRIVE PILOT [2] is capable of
fully controlling the vehicle in traffic jams up to 60 km/h.
In real traffic, the ADS can encounter an infinite number
of traffic situations, which complicates the safety validation
with every increasing level of automation [3]. Scenario-based
testing is a promising method that has attracted increasing
attention in recent years [4]. Real traffic situations are
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taken from the traffic and parameterized into test scenarios,
which are applied using real driving or simulative test
procedures. These test scenarios can be transferred into
a scenario database, which, in the best case, depicts the
traffic as representative as possible. The advantages of the
scenario-based testing approach are cost and time efficiency
as well as high repeatability and flexibility [5], [6]. Although
the scenario-based testing approach is often addressed in the
literature and established as a test approach in the automotive
sector for development and validation [7], a standardized
data-driven method for the generation of test scenarios
has yet to be established. Various approaches exist for
processing the available road traffic accidents and traffic
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data. Determining a general approach would accelerate the
scenario generation process and improve the compatibility of
test platforms. To solve this problem, this survey provides
an overview of state-of-the-art approaches for data-driven
generation of test scenarios from accident and traffic data.
The methods reviewed herein use scenarios generated for
both development and validation processes. In addition to
reviewing the literature on scenario generation methods, the
methods are categorized according to five research questions
(RQs):

(RQ1) How is the term representativity used and defined
in the context of scenario generation?

(RQ2) Which types of data input sources are used for
data-driven scenario generation?

(RQ3) Which type of operational design domain (ODD),
describing the operating range of one specific automated
driving system, is currently addressed by the generated
scenarios?

(RQ4) What is the most widely discussed scenario
generation method?

(RQ5) Can data-driven generation of test scenarios from
accident and traffic data be standardized?

The remainder of this paper is organized as follows.
In Section II, we introduce important definitions and
explain the concept of scenario-based testing. In Section III,
we explain the systematic literature review process and define
the criteria for categorizing the literature. In Section IV,
we evaluate and categorize the identified literature. Before
concluding the review in Section VI, we discuss the principal
results, RQs, limitations, and future research in Section V.

II. BACKGROUND
The following section provides definitions and descriptions
of scenario generation. Moreover, the ASAM OpenX file
format, which is used in some methods, is presented.

A. SCENARIO DEFINITION
A scenario describes “the temporal relationship between
several scenes in a sequence of scenes, with goals and
values within a specified situation, influenced by actions and
events” [77, 3.26]. While a scene corresponds to a snapshot
of the environment, such as dynamic elements and actors
(e.g., persons, objects, and systems), a scenario illustrates the
temporal development of the scenes [77]. An action (e.g.,
turning on car lights) can be a single act/behavior of an actor
(e.g., ego-car), whereas an event occurs at a point in time
(e.g., traffic light switches to green) [77]. The goals and
values depend on the system under test (SuT). A goal of the
SuT could, e.g., be to keep the current lane [77], while a
value would be to minimize personal injury versus property
damage [77].
To differentiate at the abstraction level, Menzel et al.

defined functional, logical, and concrete scenarios [78].
The most abstract scenario description is the functional
scenario expressed in natural language. Functional scenarios

FIGURE 1. Example of a car-bicycle scenario, observed using a camera
drone (left) and applied for testing in a stochastic traffic simulation
(right). Images by [19] and [79].

are primarily used in the conceptual phase of the ADS
development.

A functional scenario could be a car turning right,
while a bicycle next to it wants to go straight at a
four-way junction without traffic lights and priority signs
(see Figure 1). Less abstract scenario descriptions are logical
scenarios that use parameter ranges for scenario entities and
their relationships. Logical scenarios are applied primarily
during the development phase. Using the functional scenario
described previously, parameter ranges for the variables are
implemented; for instance, velocity ranges of both road users,
for example, 10 to 30 km/h for the car and 5 to 15 km/h for the
bicycle, or a roadwidth range from 2.5 to 4m. Each parameter
range must be assigned a specific value to convert logical
to concrete scenarios. This description is the least abstract,
and represents a uniquely defined test scenario that can be
used in real-world tests. The previously described logical
scenario would be complemented with specific parameters
from the ranges; for example, the velocity of the car is set
to 20 km/h and that of the bicycle is set to 13 km/h. The
number of scenarios increases considerably with respect to
each practical value in the parameter range.

For this purpose, test scenarios worth evaluating must be
identified from a large number of concrete scenarios for ADS
validation. The test scenarios can be described according
to the 6-layer model (6LM) [80], which is an extension
of the 5-layer model defined in the Pegasus Project [81].
Layer 1 describes the road network and traffic guidance
objects; layer 2 describes the roadside structures; and layer
3 describes the temporal modifications of the first two
layers. Layer 4 deals with dynamic objects, such as vehicles
and pedestrians, and layer 5 introduces the environmental
conditions (weather and wind). Finally, layer 6 illustrates
digital information, such as the state of traffic lights and
vehicle2X messages.

B. SCENARIO REPRESENTATIVITY
The current literature does not provide a specific definition
of representativity in relation to test scenarios. According
to [4], real-world data describing scenes that occur on the
road are required to generate representative test scenarios.
This ensures a high degree of realism. Based on [82]
and [83], a scenario is acclaimed as representative, insofar
as it represents the natural population as realistically as
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possible, thus being area-, time-, and objective-dependent.
Reference [84] added that, according to the system’s use
case, each representative scenario catalog is valid only for a
specific safety function or system. Therefore, it is necessary
to investigate their corresponding ODD. Furthermore, [5]
explains that a more extensive data foundation automatically
leads to a higher representativity for the entire scenario
dataset, owing to more situations that the SuTmay encounter.
As each method in this review uses data as a foundation,
a fundamental level of representativity exists, depending on
the population addressed by the data sampled and used.
In addition to the use of representativity in relation to
a natural population, another approach is to select the
most representative test scenarios or to reduce the number
of scenarios from the generated scenario set [84] (see
Section IV).

C. SCENARIO FORMATS (OPENX)
A short overview of the Association for Standardization of
Automation and Measuring Systems (ASAM) OpenX file
formats (XML) is provided below: OpenSCENARIO [85]
defines the entities and their behavior on the road, and
models the dynamic part of the scenario. Different actions
are triggered by conditions, such as speed, distance, time
parameters, and other pre-defined values. Whereas Open-
SCENARIO describes traffic participants and their activities
in the scenario, the road structure is provided in another
OpenX format, called OpenDRIVE [86]. In OpenDRIVE,
the road is shaped based on a reference line, with lanes
on each side. Features, such as road marks, speed limits,
and signals, can also be added. OpenDRIVE is commonly
used in various simulation programs, and can be generated
virtually or through terrain measurements and mapping.
In addition to these two rudimentary, static, and dynamic
content-defining formats, ASAM has designed other OpenX
simulation standards [87]. Although they are not commonly
used for scenario descriptions, a brief explanation follows to
ensure completeness. OpenCRG specifies the road structure
by assigning values to each cell in a grid on the road. The
OpenLABEL format is used for labelling objects and data.
Finally, OpenODD, a format that represents the ODD of a
safety function, is still in the conceptual phase and needs to
be finalized.

D. SCENARIO-BASED TESTING
To consider the most relevant and valid ADS critical
situations, a scenario-based approach is applied. In the testing
process, conventional test drives are replaced by scenarios
in which irrelevant driving is eliminated, and safety-critical
events are considered [82]. This method efficiently optimizes
the evaluation process and, thus, the approval of functional
safety [88]. Various projects have dealt with scenario-
based testing, including Pegasus [89], SePIA [90], Enable
S3 [91], SAKURA [92], Headstart [93], SET Level [94],
StreetWise [95], MOOVE [96], and L3Pilot [97]. Currently,

running projects are V&V Methoden [98], HI-DRIVE [99],
V4Safety [100] and SivaS [101].Moreover, initiatives exist to
standardize the testing process and exchange knowledge and
scenarios, such as P.E.A.R.S [102], IAMTS [103], and Safety
PoolTM [104]. In particular, Safety PoolTM offers a global
scenario database containing curated functional and logical
scenarios derived from accident and real driving data, as well
as expert knowledge, which is accessible on request [104].
The scenario generation methods follow two main

approaches [82].
The knowledge-driven approach is primarily based on

expert opinion, using knowledge and logical linking to
define scenarios. Engineers construct scenarios based on
their expertise or guidelines related to traffic rules and
physical laws; see the example of an urban cut-in scenario
parameterized by expert knowledge in [105]. This human
factor also contributes to a more comprehensive selection of
accidents, from a human perspective [106].
In contrast, the data-driven approach derives scenarios

primarily from accident, real driving, or simulated/synthetic
data sources. Other data sources, such as weather databases,
are often linked to enrich the primary data sources. Expert
knowledge can, but must not, support a data-driven approach
to classify and parametrize scenarios [107].

The general framework for generating scenarios from
data is structured as follows. The collected data are stored
in a database. Initially, the data is structured and irrele-
vant parameters are excluded. Different scenario types are
identified and then parameterized, often within parameter
ranges. An optional step is the clustering and exclusion
of scenarios to reduce their number. The choice of data
source depends on the evaluation objective or approach.
For example, logical scenarios are often required for virtual
validation when simulations are used as the assessment
tools. Consequently, unprocessed police accident data that
only provide functional scenarios are insufficient. This is
because the number of variables recorded is usually much
smaller in police accident databases than in in-depth accident
databases [108]. Moreover, owing to the lack of reconstruc-
tion data, the dynamic information (i.e., trajectories with
speed and collision courses) of those involved in the accident
cannot be automatically retrieved.

The data sources can be divided into different categories.
One main group comprises in-depth accident databases
in addition to accident reports from police data, such as
the German In-Depth Accident Study (GIDAS) [108], the
China In-Depth Accident Study (CIDAS) [109], the Chinese
National Automobile Accident In-depth Investigation System
(NAIS), the Shanghai United Road Traffic Safety Scientific
Research Center (SHUFO) [110], the Korean In-Depth Acci-
dent Study (KIDAS) [111], sub-databases of the American
National Automotive Sampling System (NASS) [112], and
the Initiative for the Global Harmonisation of Accident Data
(IGLAD) [113]. In particular, IGLAD is attempting to har-
monize in-depth data from more than 14 partners worldwide
and make it available in an in-depth database [114]. Real
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driving data can be used to consider accidents and critical
situations, and are often collected using naturalistic driving
studies or proving ground data. The most common sensors
for collecting real driving data are camera systems, such
as drones (see Figure 1), stationary or on-board cameras
(see Figure 4), and sensor systems, such as GPS or radar.
NDS data, such as the SHRP 2 study [115], often contain
large amounts of information and parameters, resulting in
large datasets. [107] provides an overview and comparison
of different naturalistic driving datasets from 2004 to 2019.
A recently published drone dataset, not incorporated in
the list in [107], is the ListDB dataset covering three
different intersections in Dresden, Germany [116]. Another
rarely used data source is simulated/synthetic data obtained
using simulation tools or driving simulators, which virtually
generate information [26], [27], [28], [41], [45], [55].
Overall, the data sources differ in the content and level

of information they provide (see Table 1) to describe the
layers of the 6LM presented in [80]. The largest differences
appear in layer 4, which describes dynamic objects. Although
drone-based traffic observations, such as ListDB [116], can
deliver the dynamic information of all objects visible in the
video in principle, they cannot deliver any information about
objects that are not visible to the sensor/camera (e.g., the
driver in the car or visibility restrictions for the driver). Thus,
information regarding drivers and road traffic participants
(e.g., age, sex, driving experience, and vehicle model)
remains unknown. In contrast, the police in Germany collect
information about the participants involved in a road traffic
accident and the conflict situation [117] but do not perform
a reconstruction for research. Thus, German police accident
data do not contain information on the temporal development
of dynamic objects. In contrast, in-depth accident databases
such as GIDAS provide information about participants as
well as dynamic information via reconstruction [108], [118].
However, GIDAS, for example, only collects road traffic
accidents with personal injuries, and not road traffic accidents
with property damage [108], [118]. Moreover, NDSs are
often limited to the ego-vehicle view [115] and cannot capture
the temporal development of all objects surrounding the ego
vehicle, as drone-based traffic observations can. Table 1
shows that there is no single data source that can perfectly
describe all the layers of the 6LM; however, different
data sources lead each other depending on the information
required.

III. METHOD
This review was based on a systematic literature review using
the “Preferred Reporting Items for Systematic Reviews and
Meta-Analyses” (PRISMA) guidelines [8].

A. LITERATURE DATABASES
The SCOPUS and IEEE Xplore databases were used
in this study. IEEE Xplore covers studies in computer
science, electrical engineering, electronics, and other related

fields. SCOPUS provides peer-reviewed journals in physical,
life, social, and health sciences. The initial search was
conducted on 10/24/2022, with an additional search alert
for later published articles. The inclusion of articles was
stopped on 01/11/2023. Furthermore, some studies were
included through side searches, based on recommendations or
websites.

B. SEARCH STRATEGY
First, a search string (see Table 2) was determined according
to a pre-search to detect important keywords concerning
ADSs and test scenario generation. Often occurring words
were noted and categorized into subject areas, such as test
concepts, different ADSs, or scenario-related terms. The
words that appeared most frequently in each subject area
were chosen as keywords for the database search. The
components in the first column (see Table 2) represent the
focus areas of this study and define keyword blocks (second
column). The keywords in each row are combined by the
Boolean expression “OR”, and each row is assembled by an
“AND”. The asterisk (*) wildcard represents all continuations
of a word, e.g., “generate”, “generation”, or “generating”.
Different terms were used to describe ADSs, as shown in the
third row of Table 2. Other commonly used synonyms include
highly automated driving (HAD), advanced driver assistance
systems (ADAS), connected automated vehicles (CAV), and
self-driving cars. The combined search string was used in
both databases under consideration of their input syntax, and
the search was conducted in all metadata, except for the term
“scenario”, which had to be part of the title.

C. SEARCH RESULTS
Using the search string derived from Table 2, 781 studies
were found in both databases, of which 181 were duplicates
(see Figure 2). Another 110 papers were removed because
their publication dates were earlier than 2017. The year
2017 was set as the lower limit, with the publication and
introduction of the terms functional, logical, and concrete
scenario [9] as a major step towards a uniform understanding
of scenarios. The titles of the remaining 492 records were
screened, resulting in 340 excluded articles, as shown in the
“Screening” section of the flowchart in Figure 2. The criteria
for inclusion, applied by two of the authors independently and
then consolidated, were the direct designation of “scenario”
or “generation” in the title and the thematic reference to ADS.
Titles theming the evaluation or validation of ADS without
naming scenario generation were further investigated in the
abstract screening. Data usage was considered in the abstract
screening: scenarios should be generated from accident or
traffic data. Traffic data can be collected, for example,
on roads by performing naturalistic driving studies (NDSs)
or by using driving simulators. None of the other generation
methods, such as those that primarily rely on ontologies,
was investigated in this review. With these two criteria,
both the main aspects of the research problem (scenario
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TABLE 1. Qualitative comparision of four different types of data sources with respect to the first five layers of the 6LM [80], [108], [115], [116], [117], [118]
(without synthetic/simulated data sources, which also rely on real world data to some extent). x = information is determinable directly or via
post-processing using also additional data sources; X = delivers the best information.

TABLE 2. Keywords of the search string.

generation under data reference) are treated. After evaluating
the abstracts, 66 studies were removed, and for the following
full-text review, 86 titles were sought for retrieval, of which
six were not retrieved due to missing access [10], [11], [12],
[13], [14], [15]. The exclusion criteria for a more detailed
review of the literature were “no scenario generation”, “no
data reference”, “wrong language”, and “different topics”.
The number of excluded papers is shown in Figure 2.

Four additional papers were added to the previously
described database search via a side-search. The exclusion
process is illustrated in Figure 2. A total of 64 papers were
included in this review, of which 61 [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41],
[42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52],
[53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63],
[64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74],
[75], [76] original research papers were evaluated in tabular
form. The remaining three review-papers are part of the
discussion in Section V. As shown in Figure 3, most studies
were published in 2021 (18x) and 2022 (19x).

D. CATEGORIZATION APPROACH
Before categorizing the different scenario generation meth-
ods, six categories were deductively determined from the
64 included studies based on the five RQs. The first category
comprises the data used for the primary dynamics in the
scenario described in layer 4 of the 6LM [80]. The data
foundation is divided into the subcategories “accident data”,
“real driving data”, and “simulated/ synthetically generated
data”. Each subcategory is assigned a specific data reference
as an abbreviation; for example, Police Accident Data (P) or
Dash Cams (DC). For unclear or not detailed descriptions
of the recorded real driving data in the respective literature
sources, “NDS” is stated, including all types of sensor data.
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FIGURE 2. Process of the literature search documented using the PRISMA flowchart [8].

FIGURE 3. Annual distribution of the 64 included studies.

In contrast to the input data, the next category is the output
of the scenario generation method. The output is divided into
the subcategories of “scenario structure”, “trajectories and
maneuvers”, and “values and conditions”. Referring to [78],
the first subcategory scenario structure is split into functional,
logical, or concrete scenarios; specific file formats; and
content-related descriptions or unspecific, not further detailed
scenario output. The latter is generated using methods that
create a concrete scenario that can be performed on a proving
ground or in a simulation. The second subcategory includes
trajectories or maneuvers as the output, mostly given as
vehicle movement from the top view or with time steps. The

last output subcategory includes values and conditions in the
form of parameters or pre-crash conditions.

The third category represents the representativity of
the generated scenarios. Even though a general definition
of representativity or its measurement does not exist,
representativity is indicated either as RA – representativity
regarding the scenario set itself or as RB – representativity
related to a natural population.

The fourth category indicates the point of view of the data
used for scenario generation. The point of view is divided
into “road user based” (e.g., on-board camera, see Figure 4),
“location based” (e.g., stationary camera, see Figure 1),
or “global view” (e.g., traffic flow), and “reconstructed”,
which is always the case for accident databases as data
sources (see Table 1). Multiple viewpoints can be obtained
when more than one data input source is used. An example
of multiple points of view is the use of stationary, and thus
location based cameras, in addition to dynamic parameters
(GPS and speed values) recorded in a test vehicle (road user
based point of view).

The next category evaluates the ODD of the generated
scenarios, which is separated into “spatial” and “objective”-
related subcategories. In general, the ODD describes the
domain and conditions for which the ADS is developed
to operate securely, such as the road layout, speed ranges,
and environmental conditions [119]. The spatial subcate-
gory encompasses different road sections addressed by the
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FIGURE 4. Example for a road user based view. In addition, other road
users are marked with bounding boxes. Image by [83].

generated scenarios, such as “highway only” scenarios. The
objective-related subcategory deals mainly with the driving
maneuvers addressed by the generation method, such as “cut-
in” or “deceleration” maneuvers. For more detailed accident
or traffic parameter categories that can be created from
clustering, the subcategory “both” (spatial and objective) is
available. The term “unspecific” describes when no ODD is
indicated.

The last category contains a description of the scenario
space. The scenario space refers to the searchmethod used for
scenario identification. An open scenario space refers to the
search for possible patterns in the data foundation. In contrast,
a pre-defined scenario space refers to methods that rely
on identifying existing patterns, such as accident types or
rule-based approaches.

IV. RESULTS
Before we classify the individual scenario generation
approaches into the six categories introduced, we provide
an overview of the data-driven scenario generation process
based on existing research and literature review results.
Finally, we introduce the studies by [53] and [74], building
on each other and part of the SAKURA project [92].

A. PROCESS OF SCENARIO GENERATION
In the following, we classify the scenario generation methods
used in the 64 papers into the overall scenario generation
process, which is discussed in [31], [120], [121], and [122].
Thereby, we extended the scenario generation process
proposed by [31], [120], and [121] by emphasizing the data
selection (2) and collection steps (3) and adding the optional
fifth step of scenario fusion (see Figure 6). In addition to
Figure 6, Table 3 (see the Appendix) shows which study
addresses which of the following sub-steps of the scenario
generation process:

The first step is to define the scope of validation. This
includes the definition of the SuTs and their corresponding
ODDs. Eleven out of 64 studies specified a SuT, whereby all
of them can be assigned to either SAE Level 2 (partial driving
automation) or Level 3 (conditional driving automation)
[124].

Furthermore, the validation scope encompasses the types
of scenarios for which the SuT should be tested – for example:
Is the focus on accident, critical, or non-critical scenarios?
Scenarios are critical when they contain a potential risk of
harm, defined by the scenario likelihood of occurrence and
severity of the potential harm [121], [125].

The second step is to define the primary data sources
covering the defined ODDs and scenario types. Depending
on the evaluation scope, different types of data sources, such
as accident and real driving databases, may simultaneously
be necessary. In the reviewed studies, five methods relied on
two different types of primary data sources: police accident
and real driving data [19], [46], [75], [76].

The third step consists of data collection, which attempts
to draw a random sample of the desired scenario types
(accident, critical, non-critical, etc.) from the defined ODDs.
However, most methods are currently developed on either
existing publicly available datasets (35x) or self-collected
experimental datasets, without a survey methodology with a
sampling design (22x).

The fourth step is to identify and extract the scenarios
in the collected data using pre-defined scenarios (7x) or
scenarios extracted by rule-based (28x), unsupervised (7x)
or supervised approaches (5x) – or any combination of them
(12x). Pre-defined scenarios [33], [37], [43], [64], [70], [71]
are often extracted from accident data because every recorded
accident can be considered a scenario. Rule-based approaches
(see Table 3) rely on clearly defined parameter ranges or
thresholds to identify scenarios and often require extracted
road user specific trajectories from, e.g., video material using
Convolutional Neural Networks (CNNs) [127]. A CNN is a
supervised learning algorithm that requires a training dataset
containing classified data. The algorithm learns from existing
classes and then assigns them to the unseen data [128]. Appli-
cations of CNNs include object detection, scene labelling,
and classification [127]. An example of a rule-based
approach is to extract scenarios using vectors describing
time-dependent traffic scenes, their specific actors (e.g.,
road users), and their actions [36]. Unsupervised approaches
using agglomerative hierarchical [29], k-medoids [55] or
entropy-based [30] clustering seek to identify scenarios by
identifying patterns in, e.g., past accident data [29], [30],
[55], [69]. Unsupervised approaches that leverage Generative
Adversarial Neural Networks (GANs) attempt to generate
new scenarios derived from a self-supervised learning
task [62], [63]. In contrast, supervised approaches attempt to
identify scenarios by predicting existing patterns, i.e. given
scenario training classes. Examples of supervised prediction
tasks used include modified Random Forests [17], Logistic
Regressions [28], and Recurrent Neural Networks (RNNs)
[40]. Furthermore, combinations of several approaches exist,
such as the combination of supervised and unsupervised
learning, to identify scenarios [18], [21], [60].

The fifth step is the optional step of fusing the sce-
narios identified in different data sources to maximize
their informational content. Thus, the fusion of scenarios
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FIGURE 5. Concept of asymmetric statistical matching, as shown in [76].

extracted from police accident data with those extracted from
video-based traffic observations canmake it easier to describe
all six scenario layers of the 6LM [80] in detail [19]. For
example, ODD-representative test scenarios can be generated
by enriching police accident data from an ODDwith dynamic
information, such as starting speeds and accelerations,
determined from the ODD covering video-based traffic
observations [19]. This type of fusion allows police accident
data to be “parameterized”, which in turn helps to determine
all relevant accident scenarios in an ODD. While [75] used
Record Linkage to fuse scenarios belonging to the same
entity across different data sources, [76] tested Statistical
Matching, a method of data fusion [126], to fuse scenarios
that belong to one superordinate population only, but do
not share the same entity in the data sources considered.
Thus, with the help of Statistical Matching, ODD-specific
scenario data sets A with variables Y and X , and B with
variables X and Z , extracted from different accident and
traffic data sources, which must not have observed the same
road users in the ODD, can be fused into a common scenario
data set A*, which consequently contains more information
(variablesX , Y , and Z ) than the respective individual scenario
data sets (see Figure 5) [19], [76]. A real application,
published after the systematic literature review, can be found
in [122].

The sixth step involves transferring the identified scenar-
ios into a format inwhich they can be applied to a test environ-
ment (simulation, proving ground, etc.). Thus, if necessary,
this step includes the conversion of logical scenarios into
concrete and executable scenarios. The most frequently used
method is to sample, estimate, or combine parameters (6x)
using, e.g., the Metropolis Hastings Algorithm belonging to
theMarkovChainMonte Carlo (MCMC) approach [16], [23].
The second most are customized methods (5x) used to derive
critical scenarios, using, e.g., the Improved Intelligent Driver
Model (IIDM) [45]. Another option is to use reinforcement
learning-based methods [31], [32], [72] (3x), or search-based
methods (2x), such as genetic algorithms [41].
The seventh step is to evaluate the generated scenarios

and how they correspond to the desired testing scope
(see step 1). Eight methods were used to evaluate the
scenarios generated in terms of their criticality using,
e.g., risk metrics [16], [23], [31], [32]. Other criticality
metrics rely on collision detections/systems that fail [34],

maximum vehicle yaw rate [43], or are probability- [53] or
expert-based [47]. The methods used to assess the achieved
coverage of the targeted scenario space can be explo-
rative using histograms [34]. Moreover, metric-based meth-
ods using a specific coverage metric based on scenario
classes [66] or search-based methods [48] are used to
assess coverage. Other methods also investigate the diver-
sity/similarity (2x) [36], [58], the exposure to the real
world [66], and the possibility of testing a cooperative
ADS [45] using customized metrics.
Finally, Figure 7 maps the occurrence of steps four to

seven of the scenario generation process in the 64 included
studies to the publication year. While step four “scenario
generation” has already been represented in 2017, steps
“scenario generation” and “scenario evaluation” began to be
discussed in 2019 and seem to be of increasing interest. The
“scenario fusion” method was introduced in 2020 and has
rarely been discussed.

B. CATEGORIZATION
After considering the data-driven scenario generation pro-
cess in general, we mapped the scenario generation
approaches [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45],
[46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56],
[57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67],
[68], [69], [70], [71], [72], [73], [74], [75], [76] to the six
previously defined categories in Section III-D (see Table 4
in the Appendix). A cross in the corresponding cell indicates
if the category “output” or “ODD” is not specified.

The data were divided into three subcategories in the data
source category: accident databases, real driving data, and
simulated/synthetic data (Figure 8). Approximately 68% of
the data used in the reviewed methods were different types of
real driving data that were used as inputs for the generation
process. The most common sensors for real driving data are
various camera videos or images from drones [17], [18], [19],
[20], [45], [48], [50], [65], [74], stationary cameras [19],
[20], [42], [53], [62], [63], [71], [76], or dash cams/on-
board cameras [26], [36], [43], [46], [51], [62], [63], [75].
Dynamic parameters, such as GPS or velocity, represent a
large proportion of the real driving data (NDS and BUS
data [16], [20], [21], [22], [24], [25], [27], [31], [32], [39],
[44], [49], [51], [52], [53], [57], [58], [59], [66], [67], [72]).

A rarely used data source is a dataset of pre-crafted
scenarios or trajectories [20], [23], [68], [73]. Accident
databases, as data sources, share approximately 26% of the
identified methods, which, in most cases, originate from a
set of police accident reports [19], [24], [28], [29], [30],
[33], [35], [43], [46], [47], [55], [61], [67], [69], [70], [75],
[76]. In some cases, only accidents involving vehicles with
an ADS were considered and filtered from existing accident
databases [34], [37], [38], [64]. The least used data sourcewas
simulated or synthetically created data at approximately 6%.
Simulated/synthetic data [40], [41], [42], [54], [67] are
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FIGURE 6. Data-driven scenario generation process based on [31], [120], [121], and [122] and adapted by the results of the analysis of the 64 included
studies. Each process step lists the number of occurrence in the 64 included studies.

primarily based on virtual driving simulators or simulation
programs.

The categorization of representativity is performed
between RA and RB, with RA depicting representativity
within each scenario set or space, which is the case in
25 generation approaches [16], [23], [24], [29], [30], [31],
[32], [40], [41], [42], [43], [44], [45], [47], [48], [53], [55],
[60], [65], [66], [67], [68], [69], [72], [74]. To achieve
this goal, filtering of the generated scenario set to reduce
the number of scenarios is frequently performed. Another
possibility represents criticality measures to perform risk
analysis or calculate dynamic parameters, such as time-
to-collision (TTC) or time headway (THW). A unique
example of the RA approach is the minimization of the
performance outcome to identify worst-case scenarios and

select them for the testing and evaluation of the ADS [72].
The representativity in the natural population is described by
RB, which occurs ten times [19], [22], [28], [35], [38], [46],
[54], [62], [63], [76].

RB is realized by dividing scenarios into groups based on
global or environmental properties, such as different scenario
types for different regions or countries, or environmental
values, such as weather effects. Overall, the representativity
of each scenario set (RA) predominates its counterpart RB,
although in several generation methods the term represen-
tativity either deviates from RA/RB (4x) or is not specified
more precisely (25x, see Figure 9).
The point of view will always be from the “reconstructed

point of view” when accident databases are used as data
sources, which occurred 21 times. Processing sensor data
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FIGURE 7. Distribution of the occurrence of the steps “(4) Scenario
identification”, “(5) Scenario fusion”, “(6) Scenario generation”, and
“(7) Scenario evaluation” over the publication years of the 64 included
studies. Steps 1-3 are not shown separately as they are usually
dependent on steps 4-7.

FIGURE 8. Distribution of different primary data sources used in the
64 included studies to generate scenarios. The data sources can be
divided into three groups: Accident, real driving and simulated/synthetic
data. In the real driving data, a further distinction is made between the
different sensors used in the case of naturalistic driving studies (NDSs).

FIGURE 9. Distribution of the different types of representativity in the
64 included studies to generate scenarios. RA depicts representativity
within each scenario set or space. RB describes the representativity in the
natural population addressed by the scenario set/space.

with vehicle-specific dynamic parameters often leads to a
road user based view, and camera footage mostly indicates
a road user or a location based point of view. The global view
is selected in cases that use global parameters such as traffic
flow.

The results of the scenario generation process are presented
in the output section. Eight times, the studies directly

FIGURE 10. Distribution of spatial and objective related ODDs in the
64 included studies to generate scenarios (excerpt).

referenced the scenario output as a functional, logical,
or concrete scenario structure [78]. Some approaches aim
for functional scenarios, whereas others aim for completely
parameterized concrete scenarios derived from functional
scenarios. In addition, six studies described their output in
a more detailed structure, such as OpenSCENARIO [52],
[65], and pre-crash matrix [38] formats or matrices with
scenario content [64]. A particular case was presented
in [62], in which dynamic human poses were evaluated and
categorized to generate pedestrian-crossing scenarios. The
remaining approaches with direct scenario outputs have yet
to state their output format; thus, they are only marked
with a cross. Approximately 20% of the reviewed methods
deliver trajectories or maneuvers. Approximately 10% of the
methods output pre-crash conditions or crash characteristics
but do not provide specific scenario content/formats.

The ODD was divided into spatially related (18x),
objective-related (22x), and both (13x) or not specified
(11x). The spatially related ODD is organized into highways,
motorways, urban areas, intersections, and roundabouts.
Regarding dynamic content, the objective-related ODD
is organized into road users and maneuvers. If accident
categories or variables, such as the 3-digit accident type, are
used, as in [19], then the method can be categorized into
both spatial and objective ODD. An overview of the ODDs
is presented in Figure 10. Because only half of the reviewed
approaches further address their generated scenarios to a
specific ODD, the distributions would only be conditionally
meaningful and are, therefore, not depicted in charts, but
presented schematically.

Almost two-thirds of the scenario generation methods can
be assigned to a pre-defined scenario space by search-
ing for existing patterns using their algorithms. Repeated
algorithms include Recurrent Neural Networks (RNNs),
Convolutional Neural Networks (CNNs), and rule based
approaches. The open scenario space appeared 16 times,
indicating that the data were processed without any pre-
defined categories. The scenario space of the remaining six
studies was not addressed in detail [34], [36], [37], [45], [50],
[58]. Frequently applied algorithms for scenario detection
include CNNs [17], [18], [25], [56], and RNNs [51], [60],
[72]. RNNs use the results of the current step as the input for
the next step, and may not require labelled data for training.
Features are learned from the memory of the previous input,
which results in the problem of storing past information
over an extended period [129]. Because RNNs predict the
most likely result for the next step, they are often used with
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FIGURE 11. Deceleration scenario (left) and cut-in scenario (right)
generated by [53] and [74]. Image by [74].

sequential data, such as text or video, for natural language
processing, speech analysis, or entity extraction [128].
For scenario generation, CNNs are often used to extract the

bounding boxes of different objects in video data. Another
application of CNNs is the prediction of trajectories. RNNs
are used to process the sequential motion information of
vehicles and plan the next motion steps.

C. EXEMPLARY RESULTS
For example, we introduce the connected and well-
documented work of [53] and [74] which generated logical
cut-in and deceleration scenarios on highways (see Figure 11)
from real-world data using a rule-based scenario identifica-
tion approach, called the ‘‘SAKURA approach’’ [74], [123].
This work is particularly interesting because it not only

generates logical scenarios relevant for the validation of
automated lane-keeping systems (ALKSs), but also because it
uses publicly available data, such as the highD dataset [133],
and compares the scenario generation approach for data from
two countries (Germany and Japan).

Overall, [74] identified 8,822 deceleration scenarios in
a Japanese NDS consisting of 1,047 h of recorded driving
on highways (road user based point of view) and 26,846
deceleration scenarios in the German highD dataset (location
based point of view). The deceleration scenarios were
described by five main parameters (see Figure 11 (left))
aggregated using histograms: subject initial velocity Ve0,
relative initial velocity Ve0−Vo0, initial longitudinal distance
dx0, maximum deceleration ax and mean jerk jx [74].
Moreover, [74] identified 1,561 cut-in scenarios in the

Japanese NDS and two other Japanese datasets (one more
NDS (350 h) and one location based traffic observation
using fixed cameras) as well as 1,017 cut-in scenarios in
the German highD dataset. The cut-in scenarios were also
described using five main parameters (see Figure 11 (right))
aggregated using histograms, such as Ve0, Ve0 −Vo0, dx0, the
initial lateral distance dy0 and the lateral velocity Vy [74].
To identify the scenarios, the SAKURA approach follows

pre-defined rules. In the case of cut-in scenarios, for example,
it was determined that the scenario duration should be
between 2 − 16s, the longitudinal velocity of the subject
vehicle should be greater than the challenging vehicle’s
longitudinal velocity, and that dx0 should be between
0 − 100m [53]. Please see [53] for all rules of the applied
SAKURA approach.

Overall, [74] showed that although there are differences
in the traffic systems between Germany and Japan, there
are also significant correlations between the majority of

the corresponding scenario parameters. Thus, Japan and
Germany can share a common set of test scenarios in this case
to some extent [74].

V. DISCUSSION
The following section presents a comparison with other
reviews and discusses the RQs and the general results of the
survey. Moreover, limitations and future work are outlined.

A. DISCUSSION TO OTHER REVIEWS
Various surveys have addressed the topic of scenario
generation for the evaluation of ADSs, whereas five surveys
can be found in [107] and [121].

Zhang et al. [121] split the data sources for scenario
generation into accident data and various types of data such
as traffic and sensor data. They also referred to knowledge-
based generation, and identified pre-crash situations to create
logical and concrete scenarios.

In [130], dynamic scenario generation is divided into
four methods: combinatorial testing, knowledge- and driving-
behavior-based generation, and data-driven scenario gen-
eration. Roads were created independently from dynamic
scenario content using field-collection data from Open-
StreetMap files or remote sensing imagery.

Riedmaier et al. [131] provide a structured overview of
knowledge-based and data-driven approaches. Furthermore,
they compared the reviewed approaches systematically with
ten evaluation criteria: Scenario Representativeness, Param-
eter Compatibility, Corner Case Identification, Scenario
Space Coverage and Expansion, System Applicability, Com-
putational Feasibility, Black-box Compatibility, Statement
Reliability, and Assessment Transferability.

A scenario definition related to ASAM OpenX standards
is given in [107]. The scenario data sources were divided into
real, simulated, and empirical data. Moreover, the authors
compared naturalistic driving datasets including scenario
databases.

Cai et al. [120] proposed a framework for a data-driven
scenario methodology, including data source collection, sce-
nario identification and generation, and scenario evaluation.
In this framework, the scenarios originate from natural
driving, accidents, and virtual data. Different generation
methods can be divided into diversity- and criticality-oriented
generations. Diversity-oriented methods generate scenarios
by random sampling or parameter variation to fill the entire
ODD, with the drawback of generating “boring” scenarios.
Criticality-oriented methods attempt to identify the most
critical scenarios by using statistical methods or search
algorithms. Additionally, various criticality metrics were
created to evaluate the test scenarios.

All these surveys provide a taxonomy for relevant terms
in scenario-based testing, for example, scenarios, scenes,
or critical and challenging scenarios. They reviewed several
approaches to scenario generation. However, we extended
the data collection step in the previously proposed scenario
generation processes by emphasizing the data selection (2)
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and collection steps (3) separately. Moreover, we added
an optional fifth step of scenario fusion for the first
time. Moreover, our survey differentiates the fact that only
data-driven scenario generation methods are directly related
to traffic and accident data, and provides two comprehensive
lookup tables.

Generally, special attention must be paid to the terms
“scenario database” and “scenario catalog”, which are often
used, but not yet specified. Although scenario databases
mainly contain a collection of scenarios unrelated to a
specific ADS, scenario catalogs are often created for a
specific purpose, such as testing one type of ADS.

B. RESEARCH QUESTIONS AND FUTURE WORK
RQ1 asked how the term representativity was used and
defined in the context of scenario generation. To date, there
is still no precise definition of “representativity” in relation
to the coverage of real-world scenarios belonging to a natural
population, although the resulting gap between the generated
and real-world scenarios has often been discussed. Therefore,
we propose the following definition of representativity in
relation to a test scenario catalog for assessing specific ADS
(SuTs’) operating in clearly defined ODDs:
A test scenario catalog represents reality at a given point in

time and is thus representative of the ODD inherent to the SuT
addressed by the catalog, if the distribution of the scenarios
in the test scenario catalog and in real traffic matches at
the given point in time. This is approximately achieved by
correctly drawing and processing a sufficiently large random
sample of scenarios from the ODD inherent to the SuT.

This definition explicitly does not address the term
“representative test scenario” because a single test scenario
can never be representative of the real traffic situation.
The term “representative test scenario” fits better to the
representativity category RA introduced before. Moreover,
owing to the complexity of the real traffic situation, a perfect
representativity of a scenario catalog represents an ideal state
that can only be approximated by limiting the considered
section of the real traffic situation. Therefore, a test scenario
catalog should always be designed for a specific SuT that
addresses a clearly defined ODD. Furthermore, the data
sources used to generate the test scenarios in the test scenario
catalog must represent a sample of the population that
can be derived from the SuT and its corresponding ODD.
When drawing the sample, the number “of characteristic
combinations for each sample may not exceed the population
itself, since otherwise the possibility of generalization is
not given” [83, p.368]. In addition, the scenario generation
method must not distort the sample because of the arbitrary
elimination of test scenarios. Finally, every scenario catalog
must be continuously updated to remain representative.

In future research, we propose including the following
aspects for every data collection:

• define the ODD and the targeted natural population
before data collection starts;

• define standardized reports of sampling plans;
• consider potential requirements from the methods
of scenario identification, fusion, and generation
already during data collection, e.g., necessary metadata,
as shown in [132];

• collect comprehensive metadata in general, for example,
time, location, and road users involved, as in [116]
and [132], to document the sample drawn.

RQ2 asked what types of data input sources were
used for the data-driven scenario generation. The most
commonly used data input sources are real driving and
accident data, mostly from police accident reports. The highD
dataset [133], which contains naturalistic vehicle trajectories
driven on highways as recorded by drones, has been used in
several studies [17], [18], [45], [48], [65], [74]. Moreover,
the STATS19 UK accident database [134] was referenced
three times [28], [29], [30]. Additionally, simulated data
have been used in several approaches. This includes data
created in virtual driving simulations with IPG Automotive
CarMaker [135] in [54] and ground-truth data from the SVL
Simulator [136] in [41].

In future research, we propose to:

• define publicly available, standardized research datasets,
which help to compare the results of scenario genera-
tion;

• create datasets that share a common population, for
example, to align real driving studies and accident data
collection in time and space. Thus, the understanding of
the scenarios observed increases;

• increase the number of available datasets by, for
example, involving citizen volunteers in data collection.
Therefore, citizens can help collect video-based traffic
observation data (“recording from home”) and thus
cover as many different locations as possible in a cost-
effective manner.

RQ3askedwhich types ofODDswere currently addressed
in the generated scenarios. The ODD in the generated scenar-
ios was organized into spatial (highways, motorways, urban
areas, intersections, and roundabouts), objective (pedestrians
and bicycles, maneuver types), and both. No ODD has
turned out to be mainly addressed. Furthermore, the primary
application purpose, either development or validation and
testing, is rarely discussed in the compared studies, which is
important because the data source and generation approach
depend on the chosen application.

In future research, we propose to:

• always define an ODD;
• use standardized ODD description formats, such as
OpenODD [87];

• intensify the research focus on ODDs containing
intersections and roundabouts, as well as vulnerable
road users (bicycles and pedestrians). For example,
this implies recording more publicly available datasets
using traffic observations in urban areas. Care should
be taken to ensure that vulnerable road users can also
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be recognized by appropriate algorithms during post-
processing, as they represent objects with a size of a few
pixels, for example, when observing from a high altitude
using drones [132]; a handbook for observing vulnerable
road users in general is given by [137].

RQ4 asked what the most discussed scenario generation
method was. First, no method reviewed addressed all seven
steps of the scenario generation process introduced (see
Figure 3). However, most of these methods use only one
primary data source (58x), often in the form of real-driving
data (55x), provided by existing datasets (35x), and apply
rule-based approaches (28x) to identify and extract the
scenarios. The scenario generation itself (step six), which
aims to determine executable scenarios for testing, does not
yet show a favorite method; six methods rely on estimat-
ing/sampling or combining parameters, and five methods use
highly customized approaches relying on, e.g., driver models.
Regarding the scenario evaluation (step seven), most methods
assess the scenarios regarding their criticality (8x), followed
by the coverage of the targeted scenario space (3x). However,
slight modifications or data processing differences exist for
each method, even among methods with the same data
input sources. Evaluation and direct comparison are further
aggravated by methods that have neither the same input nor
the same output. To choose the ideal approach, one should
consider the demands of the generation approach, which is
facilitated by the overview and categorization presented in
Tables 3 and 4, respectively. The correspondingmethods [17],
[21], [45], [51], [74] are worth considering for ADS designed
for highways. If only drone data are accessible for scenario
generation, the appropriate methods can also be filtered from
Table 4.
In future research, we propose to:

• extend the research on the use of more than one
primary data source (“scenario fusion”) to maximize the
information available per scenario (see Table 1);

• design standardized interfaces between the seven sce-
nario generation steps to facilitate the exchange of and
build on existing research results;

• recognize that combining different data-driven methods
is required to best cover the scenario space. In addition,
a combination of knowledge-based and data-driven
approaches may be reasonable.

Finally, RQ5 asked whether data-driven generation of
test scenarios from accident and traffic data could be
standardized. Currently, standardization of the generation of
test scenarios is not possible. The reasons for this are that
most of the methods:

• . . . did not specify the type of ADS they could address.
• . . . did not specify the type of test environment (simula-
tion, proving ground, etc.), they were applicable.

• . . . are based on existing datasets, which, in turn, are not
yet collected in a standardized manner and thus provide,
for example, different amounts of information.

Moreover, various problems may arise, resulting in an
excessive number of undefined boundary conditions. One
boundary condition is the input format of the data, which
includes several parameters or file formats. In addition, the
output structure is diverse among the many methods.

Somemethods have already used the standardized scenario
format OpenScenario, which is a promising way to structure
the scenario output. Currently, every research facility or
industry seems to use its own method, depending on the
available data and their specific needs. This problem is
intensified by the availability of different simulation methods
and the lack of practical applications for these methods in the
development or validation process.

Thus, we propose in future research to:

• compare existing scenario generation approaches based
on the same input data (‘‘round robin tests’’);

• develop methods using pre-defined case studies (given
ADS, ODD, data set, validation method) to enable the
comparison of methods;

• further standardize the terminology in the field of
scenario-based testing;

• define not only standards for scenario generation but
also for test execution and evaluation to help both the
development of new ADSs and their safety validation;

• extend the research on methods that speed up the sce-
nario generation process, such as dense reinforcement
learning, to identify critical scenarios [138].

Last, this survey focused primarily on data-driven genera-
tion of test scenarios. Future surveys should take a closer look
at the generation of test scenarios using (traffic) simulations.

C. LIMITATIONS
Limitations arise due to the limited search period ending
January 2023. In terms of answering the research questions,
there may have been changes since 01/2023, especially
with regard to RQ2–RQ4, which are based on quantitative
analyses. Moreover, the inclusion and exclusion of studies are
always subjective to a certain degree, even in the case of two
experts reviewing independently. Furthermore, not all studies
describe the methods or data sources used in detail, which
makes basic categorization difficult.

Several studies have been conducted on scenario-based
testing and scenario generation methods. However, the
number of scenarios sufficient for safety validation still needs
to be determined, whereby first approaches to solve this
challenge exist [139]. Another limitation is the high number
of generation methods with slight differences between each
other: on the one hand, applying various data processing
algorithms, and on the other hand, using different input and
output variables.

VI. CONCLUSION
Scenario-based testing will help validate the safety of
ADSs. Based on the 64 studies reviewed, the scenario
generation process was divided into seven steps: (1) scope
definition, (2) primary data source selection, (3) primary
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TABLE 3. Reviewed studies mapped to the scenario generation process following the seven identified steps.
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TABLE 3. (Continued.) Reviewed studies mapped to the scenario generation process following the seven identified steps.

data collection, (4) scenario identification, (5) scenario
fusion, (6) scenario generation, and (7) scenario evaluation.
To date, none of the reviewed methods covers all seven
steps. Moreover, most methods do not specify the ADS
or ODD that is being addressed. The most frequently
used primary data sources were real driving and accident
data: 39 studies used real driving data, 21 used processed
accident data, and six utilized virtually generated data.
The ODD can be divided into spatial- and objective-
related ODDs. Spatially related ODDs include five highways,
three intersections, and two roundabout scenario generation
methods. The objective-related ODDs were further divided
into two methods for road user scenarios, one for pedestrian
and one for bicycle scenario generation, and seven maneuver-
related methods.

Future research should extend the research on the use
of more than one primary data source to maximize the
information available per scenario and to design standardized
interfaces between the seven steps of scenario generation.
In addition, new methods should be developed using
pre-defined case studies to enable the comparison ofmethods.
Furthermore, the terminology in the field of scenario-based
testing must be further standardized. The representativity of
the scenarios is another challenge that must be addressed
using a precise definition for which the first proposal is given.
With this, ADS users can trust the safety of their automated
driving vehicles, which is a crucial step in transforming their
mobility towards the needs of the future.

APPENDIX
In the following, all important abbreviations for Tables 3
and 4 in the Appendix are introduced (again) for easier
reading.

A. TABLE 3: REVIEWED STUDIES MAPPED TO THE
SCENARIO GENERATION PROCESS

• (1) Scope / SuT definition
SuT: System under test

• (2) Primary data source selection
minimum number of different data source types (data
source type)

• (3) Primary data collection
se: self-recorded on an experimental basis
sp: self-recorded following a sampling plan
ed: existing dataset

• (6) Scenario generation
pe/ps/pc: parameter estimation/parameter sampling/
parameter combination
co: criticality oriented
rl: reinforcement learning
sb: search-based
cm: customized (e.g., driver models)

B. TABLE 4: DETAILED CATEGORIZATION RESULTS OF THE
REVIEWED STUDIES
1) Data source

AVA: police-reported automated vehicle accidents
IGLAD: Initiative for the global harmonization of
accident data
P: police accident data
BUS: CAN-BUS data
C: camera data
D: drone data
DC: dash cam data
NDS: naturalistic driving study not specified
OBC: on-board camera data
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TABLE 4. Detailed categorization results of the reviewed studies.
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TABLE 4. (Continued.) Detailed categorization results of the reviewed studies.

SC: stationary camera data
SPMD: safety pilot model deployment dataset
TD: trajectory dataset
Euro NCAP: European New Car Assessment Program
TS: traffic simulator

2) Representativity

RA: representativity in the scenario space
RB: representativity in the natural population

3) Output
c: concrete scenarios
f: functional scenarios
l: logical scenarios
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PCM: pre-crash matrix
OSC: OpenSCENARIO files
CC: crash characteristics

4) ODD
both: objective and spatial ODD specified
CIM: cut-in maneuver
DCM: deceleration maneuver
LCM: lane change maneuver
OTM: overtaking maneuver

5) Scenario space
CNN: convolutional neural network
RCNN: region-based convolutional neural network
RNN: recurrent neural network
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