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ABSTRACT Accurate 3D object detection is vital for autonomous driving since it facilitates accurate
perception of the environment through multiple sensors. Although cameras can capture detailed color
and texture features, they have limitations regarding depth information. Additionally, they can struggle
under adverse weather or lighting conditions. In contrast, LiDAR sensors offer robust depth information
but lack the visual detail for precise object classification. This work presents a multimodal fusion model
that improves 3D object detection by combining the benefits of LiDAR and camera sensors to address
these challenges. This model processes camera images and LiDAR point cloud data into a voxel-based
representation, further refined by encoder networks to enhance spatial interaction and reduce semantic
ambiguity. The proposed multiresolution attention module and integration of discrete wavelet transform
and inverse discrete wavelet transform to the image backbone improve the feature extraction capability. This
approach enhances the fusion of LiDAR depth information with the camera’s textural and color detail. The
model also incorporates a transformer decoder network with self-attention and cross-attention mechanisms,
fostering robust and accurate detection through global interaction between identified objects and encoder
features. Furthermore, the proposed network is refined with advanced optimization techniques, including
pruning and Quantization-Aware Training (QAT), to maintain a competitive performance while significantly
decreasing the need for memory and computational resources. Performance evaluations on the nuScenes
dataset show that the optimized model architecture offers competitive results and significantly improves
operational efficiency and effectiveness in multimodal fusion 3D object detection.

INDEX TERMS Autonomous driving, LiDAR, multimodal fusion, network compression, pruning,
quantization, quantization-aware training, sparsity, vision transformer, 3D object detection.

I. INTRODUCTION
Three-dimensional object detection is becoming more popu-
lar recently due to the rapid growth of deep learning models,
and the motivation to know precise object localization has
been increased, especially in robotics applications, such
as autonomous driving. Different sensors, such as cameras
and LiDARs, are available for such applications. Although
cameras provide rich color and texture information, their
effectiveness in 3D detection is limited by their lack of 3D
information and susceptibility to inclement weather. LiDARs,
on the other hand, offer 3D data appropriate for applications
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involving three dimensions. Besides their sparsity, LiDARs
lack color information, and texture information is harder
to extract from a LiDAR than from a camera. Hence,
no sensor is suitable for every application, and sensors
have limitations [1]. Multimodal fusion is frequently used
in autonomous driving to lessen the impact of sensor
constraints, extract complementary knowledge from other
sensors—such as color from the camera and 3D information
from LiDAR and use redundant data in the event of sensor
failure.

As various sensors have different input representations,
fusing features from multiple sensors is challenging. The
integration of cameras and LiDAR is frequently used for
3D object detection. There are various techniques to reduce
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the impact of input mismatch during multimodal fusion. The
first way is to project LiDAR data into a 2D representation
and merge it with related camera data, such as range
image or bird’s-eye view (BEV) [2], [3], [4]. The second
approach, as seen in [5], involves transforming camera data
into a pseudo-LiDAR representation and fusing them into a
LiDAR representation. Information is lost when projecting
the LiDAR data into a 2D representation. On the other hand,
errors can also occur while converting a camera image to
a pseudo-LiDAR representation [1]. Another method is to
transform camera images into voxels and fuse them with
LiDAR voxel data [6]. Furthermore, no optimal or widely
accepted method for combining multimodal data exists.
Projecting LiDAR data into the BEV representation also
causes height compression, which may lead to semantic
ambiguity. This work constructs a voxel space from images
based on predicted depth scores and geometric constraints
without height compression. This representation helps to
associate with the corresponding LiDAR point cloud features.
The voxel encoder network is used for spatial interaction
between the constructed voxel and the LiDAR point cloud
features. The final transformer decoder network is the
detection head and samples particular features for each
object’s 3D query coordinates.

Furthermore, a multiresolution convolutional attention
module is proposed to enhance the network’s feature extrac-
tion capability. This module leverages the multiresolution
characteristics of wavelets to extract features at multiple
scales, highlighting the most significant features. The design
of this attention module leverages the inherent properties
of wavelets, such as sparsity and the ability to separate
noise from the image. Wavelets are highly effective at
capturing noise and isolating it within the high-frequency
component [7]. This property allows for discarding much
of the noise component during processing attention weights
(see Section III). Additionally, given the inherent charac-
teristics of wavelets, the discrete wavelet transform (DWT)
and inverse discrete wavelet transform (IDWT) have been
incorporated into the BasicBlock and Bottleneck blocks of
the image backbone ResNet [8] network to enhance the
network’s feature extraction capability.

Although multimodal fusion improves detection and
localization performance, the computational burden is a large
deployment obstacle in resource-constrained environments.
The problem is more pronounced when the transformer
network is used because of the computational burden of
the multihead self-attention module. This work employs
pruning and quantization to reduce computational burden
and optimize the model for faster training and inference.
Network pruning removes weight parameters that do not
affect the model’s performance. On the other hand, network
quantization involves reducing the bit representation of the
data, for example, using eight-bit integers (INT8) instead of
floating point 32-bit (FP32) [9]. Finally, quantization-aware
training (QAT) is employed to mitigate the accuracy loss
during quantization.

The main contributions can be summarized as follows:
1) A Multimodal fusion model for 3-D object detection

has been developed, utilizing voxels as a unified
representation.

2) A Transformer decoder is utilized to enhance detection
performance by leveraging self-attention and cross-
attention mechanisms for long-range dependencies.

3) A multiresolution-based convolutional attention mech-
anism to improve the feature extraction capabilities of
the backbone network is proposed and evaluated.

4) A new backbone network is proposed by integrating
DWT and IDWT with the BasicBlock and Bottleneck
blocks of the ResNet backbone network to enhance the
network’s feature extraction capabilities.

5) Implement pruning and QAT techniques for network
optimization to reduce computational load and enhance
performance.

6) Multiple experiments were conducted to demonstrate
the performance of the proposed model on the
nuScenes dataset.

The structure of the rest of the paper is as follows:
Section II reviews work related to the proposed work, and
Section III details the architecture of the proposed model,
including feature extractors, unified feature representation,
transformer decoders, multiresolution attention module, and
network optimization. Section IV is dedicated to the experi-
mental results and analyses, including the setup of the training
process. Finally, Section V provides a conclusion on the
experimental results of the proposed model.

II. RELATED WORK
A. CAMERA-BASED 3D OBJECT DETECTION
The lack of accurate depth information is challenging
for camera-based 3D object detection. Various methods
have been developed for estimating depth from stereo
or monocular images. Among these, one technique for
estimating depth is to use LiDAR-based models, such [10],
[11], and convert the camera image into a pseudo-LiDAR
representation. Some approaches, including [12], [13], [14],
estimate depth using stereo images to address the lack of
depth issue. Geometric constraints, such as the object’s shape
and key points like [15], [16], and [17], can also solve the
lack of depth. Depth camera-based estimate techniques are
essential when 3D sensors are difficult to obtain, even though
they have distinct associated issues and are less accurate than
equivalent 3D sensors like LiDAR. Furthermore, cameras
are widely accessible due to their lower cost than most 3D
sensors.

B. LIDAR-BASED 3D OBJECT DETECTION
Point cloud data is unstructured and sparse, which makes
LiDAR processing more challenging [18]. Various methods
have been developed for processing and encoding LiDAR
data. These techniques can be grouped into three categories:
voxel, projection, and raw point cloud. The Projection of
LiDAR data into a 2D representation employs regression
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approaches and 2D methods to produce 3D information at
the final detection stages. For instance, BirdNet+ [19] used
a bird’s-eye view (BEV) to project the LiDAR point cloud
and then performed 2D convolution on the projected data.
Voxel methods, including VoxelNet [20], create volumetric
(voxel) representations from stacked point clouds to create
LiDAR point clouds. SECOND [21] enhanced voxelNet and
introduced sparse convolution [22]. Point cloud data can also
be encoded into pillar representations, such as PointPillars
[23] and WCNN3D [24]. The pillar representation through
2D convolution can alleviate the computational load of 3D
convolution on a voxel representation. Information loss can
occur when the LiDAR data are sampled into a voxel grid
or projected onto a 2D representation. Processing the raw
LiDAR data prevents information loss. However, in addition
to the processing overhead resulting from 3D convolution,
another difficulty is the sparse and unstructured nature of
point-cloud data. PointNet [25] and PointNet++ [26] are
widely used 3D detection methods that directly process
LiDAR data. Some works integrate the raw point cloud
and the voxel grid, such as PV-RCNN [27]. The model
outperformed voxel-only techniques in terms of performance,
but its computational complexity makes it impossible to use
in real-time.

C. MULTIMODAL 3D OBJECT DETECTION
Multimodal fusion uses multiple inputs from various sensors
for robust detection. Although multimodal fusion-based 3D
object detectionmethods outperform LiDAR-only or camera-
only methods, the data mismatch due to different input
representations is challenging. The multimodal fusion meth-
ods can be categorized into data, feature, or decision fusion.
Data fusion, sometimes called early fusion, fuses raw data
at the beginning of the network, making it challenging due
to the difference in the representation of the input data [28].
AVOD [3] fuses LiDAR and camera data at the beginning of
the network. In decision fusion, sometimes called late fusion,
features from multiple sensors are processed separately and
transformed into high-level features before the fusion point.
So, this fusion type does not have a data mismatch problem
like the data fusion. Wang et al. [29] proposed a Voxel-Pixel
fusion network that fuses LiDAR and image at the voxel
level. The image features are voxelized before fusing with the
corresponding LiDAR voxelized features. The inputs from
various sensors are processed separately until the fusion layer
for the decision fusion. This may restrict the proper use of
input from different sensors. Feature fusion may solve the
problems of data and decision fusions. Feature fusion can be
a middle-level, one-layer, or deep fusion, so it does not have
a data mismatch problem [28]. It correctly uses all the data up
to the decision level. PointPainting [30] fuses LiDAR features
and camera image features. The pointPainting performance
depends on the segmentation performance. Therefore, it fails
for small objects as a result of segmentation failure. Although
feature fusion uses fused data properly, data or decision

fusion may outperform it. Due to this and other related issues,
the best and agreed fusion technique is not yet solved [28].
Similarly, PointAugmenting [31] decorates the point cloud
data with CNN 2D image pointwise features to solve the
related segmentation issues of the pointPainting [30].

Transformer networks have shown success in sequence-to-
sequence tasks. Recently, transformers have also succeeded
in different vision applications, including object detection.
Different transformer-based 3D fusion detection models have
been proposed [4], [6], [32], [33], [34], [35], [36], [37].
UVTR [6] and Multimodal fusion [36] networks unified
multimodal inputs of camera images and LiDAR point
cloud using a transformer network. The image data are
transformed into voxel space, and the LiDAR point cloud
is sampled into voxel space before fusion. In contrast,
BEVFusion [37] is a multitask multisensor model that fuses
the LiDAR point cloud and camera image data in a BEV
representation. Token-Fusion [32] is a multimodal fusion
network that dynamically detects tokens and substitutes with
projected intermodal features. Residual positional alignment
is also used to utilize intermodal alignments better. Bridge-
transformer network [33] is a 3D object detection network
designed to bridge the learning process of image and point
cloud data. Conditional object queries and points-to-patch
projection are proposed to increase the interaction between
image and point cloud data. DeepFusion [35] put forth
a multimodal fusion with InverseAug and LearnableAlign
to enable geometric alignment between LiDAR points and
image pixels and capture the correlation between LiDAR
and image dynamic features. These transformer networks
have shown promising performance on 3D object detection
tasks. However, these networks are large and contain many
parameters, so further investigation is needed to developmore
lightweight and robust models.

III. METHOD
The proposed model consists of ResNet-50, ResNet-101,
and ResNet-152 [8] backbone networks for image feature
extraction and the VoxelNet [20] network for the processing
of point clouds of LiDAR, as shown in Fig. 1. The proposed
multiresolution attention model and DWT and IDWT are
integrated with the image backbone to enhance feature
extraction capability. The image and the LiDAR point
cloud features are voxelized into voxel representation before
feeding into voxel encoders. Finally, the transformer decoder,
consisting of a multi-head attention network, helps for global
interaction between object queries and encoder features
and local interaction between generated object queries for
accurate and robust prediction.

A. INPUT TRANSFORMATION TO COMMON
REPRESENTATION
Recently, several transformer-based 2D object detection
models have been proposed following the introduction of
DETR [38]. These networks typically use a CNN backbone to
extract image features and a transformer network to convert
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FIGURE 1. The proposed architecture. The CNN backbone network (ResNet-50, ResNet-101, and ResNet-152 [8]) with the proposed
attention module extracts the image features before building the voxel features. VoxelNet [20] is a backbone for extracting LiDAR
point cloud features. The deformable DETR [42] transformer decoder is also used as a transformer decoder.

the learned embeddings called object queries and their
positional information into predictions. However, research on
transformer-based 3D object detection has been limited until
recently. This work uses the ResNet [8] backbone network
with FPN [39] and the proposed multiresolution attention
module to extract multiscale image features. The voxel image
features are then constructed from these image features by
first generating the depth information of each image like
in [40] and [41]. The depth information DI ∈ RD×H×W can
be generated using:

DI (u, v) = Softmax (Conv(F I )(u, v)) , (1)

The terms H, W, D, and FI represent the height, width, depth
bins, and image features, respectively. The coordinates in the
image plane are indicated by (u, v).D is fixed at 64, following
the approach in [6]. The depth distribution corresponding to
the image pixel feature can be predicted from DI . Then, the
voxel space features VI can be generated by

V I (x, y, z) = DI (u, v, d) × F I (u, v), (2)

where the sampling point (u, v, d) in the image plane
is calculated from the sampling point (x, y, z) with the
calibration matrix. d is the depth of reference along the axis
D. DI (u, v, d) is the probability feature occupancy of FI (u, v)
in voxel (x, y, z). Then, multiple voxel spaces are concatenated
and features are integrated along the temporal dimension to
form a unified voxel space VI .

For the LiDAR point cloud voxel space, the point
cloud is split into several regular voxels. The VoxelNet
backbone [20], [21], [22] is used to extract and process input
voxels. Multiscale features are generated using parallel heads

with various strides like [6]. These multiscale features are
upsampled from the voxel space Vp ∈ RX×Y×Z×C . Where X,
Y, and Z are coordinates of a voxel in the three-dimensional
space. After constructing the voxel spaces for image and
LiDAR point cloud data, the voxel encoder, comprising
three convolutional blocks, facilitates local feature interaction
within each voxel space. Once voxel features are generated,
they lack interaction among themselves. Thus, the voxel
encoder is crucial in fostering local feature interactions. Then,
the processed features are fused to better utilize features from
the two voxel spaces. After the fusion stage, the transformer
decoder performs object-level interactions for accurate and
robust predictions.

B. TRANSFORMER DECODER AND FEED-FORWARD
NETWORK
Using transformer networks for machine translation was first
introduced by Vaswani et al. [43]. The multi-head attention
module helps identify important information within a query
element and a set of key elements. This is accomplished by
assigning attention weights to query-key pairs. The resulting
outputs from various attention heads are combined using
learnable weights, encouraging the model to pay attention
to distinct representations and positions. If a query element
q ∈ �q has representation features zq ∈ RC and k ∈ �k
indexes with xk ∈ RC , the multi-head attention feature can
be computed as follows [42]:

MultiHeadAttn(zq, x)=
M∑
m=1

Wm

∑
k∈�k

Amqk .W ′
mxk

 , (3)
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FIGURE 2. Transformer Decoder Network. The self-attention and
cross-attention ensure local and global interaction of features to learn the
most important features. where Q, K, and V denote query, key, and value.

where C, �q, and �k represent the feature dimension, set
of queries, and key elements, respectively. Furthermore, m
indexes the attention head and W ′

m ∈ RCv×C and Wm ∈

RC×Cv are learnable weights with Cv = C/M. The attention

weights Amqk ∝ exp
(
zTq u

T
mvmxk
√
cv

)
, which are normalized.

Um,Vm ∈ RCv×C are also learnable weights.
The DETR transformer decoder is slow and struggles to

detect small objects. This issue is solved using the deformable
DETR [42]. Deformable DETR and DETR eliminate post-
processing steps, such as nonmaximum suppression (NMS),
because the Hungarian loss [44] removes duplicates in
bipartite matching. The transformer decoder employs d-
dimensional positional encoding to embed object queries
to obtain an accurate object prediction from the input
of object queries. Initially, N object queries Q ∈ RN×C

are initialized. Then, self-attention between object queries
generates different object candidates. The self-attention
module is crucial for local feature interaction between object
queries. Before the generation of object queries, residual
connection and normalization operations are performed, and
fused feature maps are generated through cross-attention to
produce more relevant object candidates, as shown in Fig. 2.
To achieve global feature interaction, the cross-attention
module allows for the interaction of encoder and decoder
features rather than just focusing on local features such as
self-attention. The combination of self-attention and cross-
attention ensures both local and global interaction of features,
which is crucial for detecting and localizing the most
important features. Residual connection and normalization
operations are performed after the cross-attention module,
and element-wise summation is used to reduce computation

costs for all residual connections. The generated object
candidates are fed into the feed-forward network (FFN),
a simple multi-layer perceptron (MLP). Finally, the FFN
decodes the object queries into predictions for bounding-box
information and classification. To refine 3D bounding boxes,
iterative box refinement [42] is used. This process ultimately
results in accurate and robust object classification with
corresponding localization of objects.

C. MULTIRESOLUTION ATTENTION AND BACKBONE
NETWORK
Attention mechanisms have been extensively studied [45],
[46], [47] to enhance the feature extraction capabilities of
CNNs and improve feature representation by suppressing
irrelevant features. This work introduces a multiresolution
wavelet-based attention module, as shown in Fig. 3 (b). Using
the conventional DWT, the approach decomposes an image’s
frequency components into high- and low-frequency ele-
ments at each stage of decomposition. As shown in Fig. 3 (a),
the low-frequency component coefficient is decomposed into
low- and high-frequency coefficients. The next step is to
downsample along the rows and columns by a factor of two,
resulting in a total downsampling by a factor of two at each
stage. Depending on the level of decomposition, these steps
are repeated. For a given image X, the low-frequency com-
ponent is divided into four frequency subbands at each stage:
XLL , XLH , XHL , and XHH as shown in Fig. 3 (a). The XLL
(approximate component) represents subbands of the low-
frequency component, whereas XLH (horizontal component),
XHL (vertical component), and XHH (diagonal component)
are that of the high-frequency component. Furthermore, the
wavelet transform can separate noise from the image and
concentrate in the high-frequency component [7], mainly in
XHH . Therefore, XHH is discarded during the operation.
In standard CNNs, high-frequency components are disre-

garded. However, implementing the DWT makes extracting
additional features from the high-frequency subbands XLH
and XHL possible, thereby enhancing feature representation.
These components, XLH and XHL , are concatenated to
enhance features before global average pooling is applied,
as shown in Fig. 3 (b). Subsequently, a 1 × 1 convolution
followed by LeakyReLU and another 1 × 1 convolution
is applied before passing through the softmax activation
function. Wavelets can have negative coefficients, making
LeakyReLU a more suitable choice for activation. The
features extracted in this process are multiplied with XLL
to create an activation weight. This activation weight is
combined with XLL through a skip connection for enriching
features. The original features are then reconstructed and
preserved by applying an IDWT. This property helps
the DWT perform invertible downsampling without losing
information.

This work integrates a multiresolution attention module
into the ResNet [8] backbone network, incorporating it into
both the BasicBlock and Bottleneck blocks of the ResNet
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FIGURE 3. a) single-stage 2D wavelet decomposition. The low-frequency component coefficient (C) is decomposed into low- and
high-frequency coefficients. The next step is to downsample along the rows and columns by a factor of two, totaling two
downsamplings. Depending on the level of decomposition, these steps are repeated. g and h denote the high-frequency filter and
the low-frequency filter. b) Multiresolution attention module. GAP and C represent global average pooling and concatenation. *
and + indicate element-wise multiplication and element-wise addition, respectively.

architecture. The attention module is designed to mirror the
repetitive structure of blocks in the ResNet network. This
module leverages the inherent properties of wavelets, such
as multiresolution, invertible downsampling, noise separation
capability, and sparsity, to enrich features while mitigating
noise effects. The invertible downsampling property of
wavelets facilitates the downsampling of features without
information loss, as these features can be restored using
IDWT. This approach addresses the issue of information loss
in standard CNN models, which often complicates classi-
fication and detection tasks, particularly for small objects.
Furthermore, extracting features from high-frequency com-
ponents provides additional information typically overlooked
in standard CNN networks. The low-frequency component,
similar to the features used in CNNs, means that high-
frequency-derived features act as supplementary enhance-
ments to the overall feature set, thus improving performance.
Therefore, an attention mechanism built upon these wavelet
properties not only boosts the performance of convolutional
networks but does so without incurring additional computa-
tional costs compared to CNN-based attention modules. The
input and output dimensions of the attention module remain
consistent. Therefore, it can be seamlessly integrated into any
CNN-based backbone network.

Additionally, the DWT and IDWT are integrated into
the ResNet backbone network’s BasicBlock and Bottleneck
blocks, enhancing its feature extraction capabilities, as shown
in Fig. 4. The BasicBlock, a key component of ResNet,
includes two layers of 3×3 convolutions, with each layer
followed by batch normalization and a ReLU activation
function. In contrast, the Bottleneck block, another crucial
element of ResNet, comprises two 1 × 1 convolution layers
and a central 3 × 3 convolution layer, each accompanied
by batch normalization and ReLU activation. The DWT
is applied as an invertible downsampling block, whereas
the IDWT is utilized at the end of both block types
to restore and maintain detail. This simple incorporation
showcases the potential of DWT and IDWT to seamlessly
integrate with existing CNN architectures, thus significantly
enhancing their feature extraction capacity. The results of
these experimental integrations are detailed in Section IV.

D. NETWORK OPTIMIZATION
Network optimization techniques, such as pruning, quantiza-
tion, and quantization-aware training (QAT), were employed
to enhance the proposed model’s efficiency and performance.
Pruning involves removing less important neurons or con-
nections from a network, which minimizes its complexity.
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FIGURE 4. ResNet Backbone Network’s BasicBlock and Bottleneck with DWT and IDWT integration.

By simplifying the model, this method lowers processing
requirements without sacrificing significant accuracy. Prun-
ing can be groped into unstructured or structured [48].
Structured pruning removes individual units or structures—
like neurons, channels, or layers—from a model based on
how much they contribute to its functionality. On the other
hand, unstructured pruning focuses on removing individual
weights and frequently results in a more effective model
architecture with less computing complexity. This work
uses unstructured pruning, which removes individual weights
from the model by determining the least important weights.

Quantization reduces the memory and computational
requirements of the model by converting floating-point
weights and activations into lower-bit representations, like
8-bit integer representations. Although static quantization
reduces computational complexity, it leads to a performance
decline. Therefore, QAT is implemented in the proposed
model to enhance its performance further by mimicking the
effect of quantization during training to simulate the actual
quantization so that the model will have less performance
drop during inference. This method successfully avoids
significant performance deterioration after quantization by
ensuring the model is optimized for quantization. It can,
therefore, adapt to decreased precision with good perfor-
mance. The Straight Through Estimator (STE) [49] is used
in QAT to avoid the zero gradient issue. This optimization

approach balances high-level data processing and computing
efficiency, which enhances the model’s deployability and
functionality.

IV. RESULTS AND DISCUSSIONS
A. DATASET AND IMPLEMENTATION DETAILS
The proposed work is trained and evaluated using the
nuScenes [50] dataset, a large-scale autonomous driving
dataset of 700, 150, and 150 scenes in the training, validation,
and test set, respectively. There are ten different object classes
in the dataset. The main evaluation metrics for the dataset’s
3D object detection category are the mean average precision
(mAP) and nuScenes detection score (NDS). To separate the
effects of orientation and object size for detection, the AP
approach of the nuScenes dataset specifies a match between
a prediction and ground truth by thresholding the 2-D center
distance d on the ground plane instead of IOU [1], [50].

mAP =
1

|C||D|

∑
c∈C

∑
d∈D

APc,d , (4)

where D = {0.5, 1, 2, 4} meters, and C is the set of classes.
Similarly, the nuScenes detection score (NDS) is com-

puted.

NDS =
1
10

[
5mAP+

∑
mTP∈TP

(1−min(1,mTP))
]
, (5)
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TABLE 1. The nuScenes test set benchmark was employed to evaluate various methods. V0.075 denotes a voxel grid size of 0.075 meters, used in
conjunction with the VoxelNet backbone. Here, ‘L’ and ‘C’ represent LiDAR point cloud and camera data, and ‘LC’ denotes both. The best values are
highlighted in blue, and the second-best in bold. DLA34 [52], V2-99 [53], and ResNext-101 [54] are Backbone networks.

TABLE 2. Ablation studies. MR is the proposed multiresolution attention
module.

where the mean True positive (mTP) can be expressed as:

mTP =
1

|C|

∑
c∈C

TPc, (6)

Point cloud ranges of [−54, 54], [−54, 54], and [−5, 3]
meters for X-, Y-, and Z-axis, respectively, are used. The
voxel size is set to (0.075m, 0.075m, 0.2m), which is
commonly used. Additionally, 900 object queries were used
for the experiment. The AdamW optimization with an initial
learning rate of 1e−5 and a gamma of 0.1 is used for the
experiments. For LiDAR data, sweeps of 10 are used. The
model was trained for 36 epochs using NVidia A100/80G
GPUs running on CentOs 8. The work is implemented using
MMDetection3D [51] open-source toolbox.

B. QUANTITATIVE ANALYSIS
The advantages of multimodal fusion go beyond performance
enhancement. They are especially essential in robotics
applications like real-time autonomous driving, where the

TABLE 3. Pruning of the proposed multimodal fusion model.

TABLE 4. Quantization and Quantization Aware Training.

possibility of sensor failure exists. In such instances, the
functionality of the remaining sensors becomes crucial, even
when the system lacks complete data for decision-making.
Multimodal fusion improves performance by integrating
diverse sensor data and ensures system reliability. This
emphasizes the necessity of equipping autonomous vehi-
cles with multiple sensors for practical applications. The
comparison of various methods is presented in Table 1.
Techniques such as Transfusion [4] and UVTR [6] incorpo-
rate transformers, while others rely on convolutional neural
networkswithout requiring transformers. Additional methods
like BEVFusion [37] employ an end-to-end transformer for
feature extraction and as a transformer head. Evaluation
through NDS and mAPmetrics shows that multimodal fusion
surpasses the performance of methods using only LiDAR or
cameras.
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FIGURE 5. Qualitative output of 3D object detection on the nuScenes dataset. (a) BEV multimodality, (b) front left camera, (c) front camera, (d) front
right camera, (e) back left camera, (f) back camera and (g) back right camera.

Table 1 demonstrates the proposed model’s results
trained with various backbone networks. Backbones such as
ResNet-50, ResNet-101, and ResNet-152, paired with the

VoxelNet backbone, delivered performance comparable to
state-of-the-art models. The LiDAR-only approach yielded
69.8% in NDS and 65.7% in mAP. In contrast, the
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camera-only method achieved 53.7% in NDS and 45.5%
in mAP. Additionally, multimodal fusion employing the
ResNet-50 backbone for images and VoxelNet for point
clouds resulted in 70.6% for NDS and 66.9% for mAP. This
performance improved to 71.8% in NDS and 68.4% in mAP
with the ResNet-101 backbone. The highest enhancement
was observed with the ResNet-152 backbone, reaching
72.2% in NDS and 69.3% in mAP. The multimodal fusion
approach demonstrated a notable performance improvement
compared to the LiDAR-only method, with increases of up
to 2.4% in NDS and 3.6% in mAP. Furthermore, it showed a
substantial enhancement of 18.5% inNDS and 23.8% inmAP
over the camera-only methods. It is worth mentioning that
BEVFusion outperforms our methods in multimodal fusion,
although it is an end-to-end transformed model that is more
computationally intensive.

C. ABLATION STUDIES AND NETWORK OPTIMIZATION
The model was trained both with and without the proposed
multiresolution attention module, along with the integration
of DWT/IDWT into the backbone network, to showcase the
effectiveness of these solutions. As presented in Table 2,
the NDS and mAP accuracies indicate improved model
performance upon integrating the attention module and
DWT/IDWT into the backbone network.

Both proposed solutions demonstrated improved perfor-
mance when tested independently. Using the V0.075-R50
backbone, the multimodal fusion method exhibited a 0.6%
increase in NDS and a 0.7% rise in mAP. On the other
hand, with the V0.075-R152 backbone, it achieved a 0.7%
rise in NDS and 1.2% in mAP. These outcomes prove
the effectiveness of the proposed attention module and
the integration of DWT/IDWT in improving the model’s
feature extraction capabilities. Wavelets can capture coarse
and fine details, and the inherent multiresolution analysis
seamlessly integrates with the neural network’s capacity to
extract features across various scales. This enables the neural
network to focus on essential features, resulting in an efficient
and effective feature extraction. Moreover, the invertible
downsampling nature of wavelets plays an essential role in
preserving information during downsampling. Consequently,
the multiresolution attention module and DWT/IDWT facili-
tate invertible downsampling and reduce computations while
preserving crucial information, which is unachievable with
standard CNNs.

Despite the performance enhancements of multimodal 3D
fusion models, their high computational complexity and high
number of parameters often make them impractical for real-
time implementation. This issue worsens with transformer
networks due to the computationally intensivemultihead self-
attention. This work tackles these challenges by employing
network optimization techniques, including pruning and
quantization, using the native PyTorch API.

Table 3 presents the results of running the model with
varying pruning ratios, utilizing ResNet-50 and ResNet-101
as image backbones andVoxelNet as the LiDARbackbone for

multimodal fusion. Pruning effectively reduces the model’s
computational load and memory requirements. However,
a notable performance decline is observed as the pruning ratio
increases. The accuracy remains nearly comparable to the
unpruned model at a 10% pruning ratio, but it deteriorates
further with higher proportions of 50%, 80%, and 90%. This
performance drop is particularly significant at a 90% pruning
ratio.

Similarly, the model quantization reduces computational
load and memory requirements by employing a lower-
bit representation. The floating-point representations are
converted into INT8, a native PyTorch integer representation.
The ResNet-50 image backbone combined with the VoxelNet
LiDAR backbone model is selected for its simplicity. The
memory requirement can be reduced four times by converting
the 32-bit floating-point representation into an 8-bit inte-
ger representation. However, this conversion decreases the
model’s performance, resulting in 59.8% for NDS and 56.1%
for mAP, as shown in Table 4. Finally, QAT is employed to
alleviate the accuracy decline caused by quantization. The
model was retrained for 12 epochs to adjust for the lost
information dynamically. As shown in Table 4, the outcomes
demonstrate a significant improvement in accuracy using
QAT, enhancing the model’s performance by up to 7.8% in
NDS and 8.1% in mAP. Therefore, QAT can optimize model
performance with less memory and computational resources.

D. VISUALIZATION
The qualitative results presented in Fig. 5 are organized
into three columns, showing various prediction outcomes on
BEV and the corresponding individual camera views. This
figure illustrates multimodal predictions in BEV and each
associated camera perspective: Front Left, Front, Front Right,
Back Left, Back, and Back Right. The model effectively
detects distant objects and accurately identifies objects in
crowded scenes.

V. CONCLUSION AND FUTURE WORK
The proposed multimodal fusion 3D object detection model
demonstrates promising results on the nuScenes dataset.
It transforms camera images and LiDAR point cloud data
into a voxel-based representation, then processed by encoder
networks. This processing reduces semantic ambiguity
resulting from variations in the input data and improves
spatial interaction. In the transformer decoder network,
object-level interaction, facilitated by self-attention and
cross-attention mechanisms, significantly boosts detection
capabilities. Cross-attention, in particular, fosters global
interaction between the identified objects and the encoder
features, leading to robust and accurate detection. Fur-
thermore, the introduced multiresolution attention module
and integration of DWT/IDWT with the backbone network
improve feature extraction. Network optimization techniques
like pruning and QAT substantially reduce memory require-
ments and computational resources. These techniques are
crucial for maintaining competitive performance, especially
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if implemented during training to compensate for information
loss. Performance evaluations using NDS and mAP metrics
on the nuScenes dataset indicate that our model achieves
accuracy comparable to state-of-the-art multimodal fusion
3D object detection methods.

The potential for sharing lower-level feature representa-
tions across multiple tasks has been established in numerous
studies. Multitask and multimodal fusion could enhance
performance and optimize resource utilization rather than
separately addressing each task, such as 3D detection and
segmentation. Furthermore, knowledge distillation among
different inputs, such as LiDAR point clouds and camera
images, could further improve performance by leveraging
the complementary strengths of each modality. These aspects
present promising directions for future research.
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