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ABSTRACT This article presents a literature review of the past five years of studies using Deep Rein-
forcement Learning (DRL) and Inverse Reinforcement Learning (IRL) in robotic manipulation tasks. The
reviewed articles are examined in various categories, including DRL and IRL for perception, assembly,
manipulation with uncertain rewards, multitasking, transfer learning, multimodal, and Human-Robot Inter-
action (HRI). The articles are summarized in terms of the main contributions, methods, challenges, and
highlights of the latest and relevant studies using DRL and IRL for robotic manipulation. Additionally,
summary tables regarding the problem and solution are presented. The literature review then focuses
on the concepts of trustworthy AI, interpretable AI, and explainable AI (XAI) in the context of robotic
manipulation. Moreover, this review provides a resource for future research on DRL/IRL in trustworthy
robotic manipulation.

INDEX TERMS Deep reinforcement learning, inverse reinforcement learning, robotic manipulation,
artificial intelligence, trustworthy AI, interpretable AI, eXplainable AI.

I. INTRODUCTION
Robots are devices that are produced for different tasks
and environments and are developed to meet the needs
of people in almost every field. They are designed and
programmed to perform specific tasks [1]. The robots are
employed in industry and manufacturing, agriculture, health
and medicine, space, exploration, military and defense and
service sectors [2], [3], [4], [5], [6], [7]. Robotic manipu-
lation applications are among the most used applications in
robotics [8], [9], [10], [11].
Deep Reinforcement Learning (DRL) is a frequently

used machine learning technique in robotic manipulation
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applications [12], [13]. The DRL algorithms attempt to find
the most appropriate policy for the problems by trial and
error [14]. The algorithms have been processed faster with
the development of computing tools [15]. They are used
to train robots in many manipulation tasks, such as robotic
grasping [16], robotic hand manipulation [17], and object
manipulation [18]. The algorithms face specific challenges,
such as the need for expert knowledge to determine the
appropriate reward function [19], to model the complex
environment [20], and to construct the proper algorithm for
complex tasks [21].
Inverse reinforcement learning (IRL) is a machine learning

approach based on obtaining the reward function by observ-
ing a policy [22]. The policy can be an expert representation
or a working policy [23]. In recent years, IRL has been
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applied to a wide variety of roboticmanipulation tasks such as
grasping [24], combining [25], andmanipulating objects [26],
[27], [28]. The IRL algorithms use observation to learn from a
given policy, which makes them too sensitive to noisy obser-
vation data [29], [30]. Furthermore, as they also account for
the noise within the data, the trained policy is likely incorrect.
Moreover, deriving possible multiple reward functions from
a single policy causes uncertainty in the solution.

The recent advances in trustworthy Artificial Intelligence
(AI) have led to the development of trustworthy robotic tech-
nologies [31]. Trustworthy AI emphasizes that the outcomes
of AI actions should be explained, and the outputs need
to be interpreted [32]. Researchers have discussed it with
the concepts of explainable AI (XAI)/ interpretable AI. The
concept of trustworthy AI has become vital, especially for
critical and sensitive [33]. The XAI algorithms address the
need for AI to explain the reasons of the actions it takes [34].
Interpretable AI is defined as understanding the output of the
algorithm for the end user [35].
Thanks to the developments in Artificial Intelligence (AI),

concepts such as Trustworthy AI, eXplainable AI (XAI),
and Interpretable AI which are closely interrelated con-
cepts focusing on the reliability and understandability of
AI systems have become increasingly important in instill-
ing confidence in these systems among humans [31]. This
confidence is related to the algorithms’ accuracy, reliability,
and fairness [32]. Trustworthy AI develops systems capable
of making correct and fair decisions while preventing misin-
terpretation or misleading use of data. Trustworthiness does
not rely solely on algorithm performance but also depends on
the comprehensibility of how these algorithms operate [33].
At that point, the concepts of XAI and Interpretable AI
became a current issue. XAI concentrates on the ability of
AI models to explain their decision-making processes and
outcomes. Humans can easily understand the XAI models
and trust them [34]. Interpretable AI emphasizes the under-
standability of the internal workings of AI models, which is
necessary for explaining why a particular decision was made
or a specific outcome was reached [35].
Section II presents the classification of DRL considering

AI algorithms, robotic manipulation applications, and studies
in this field. The problems encountered in robotic manipula-
tion and proposed solutions are addressed there. Section III
provides the IRL classification and the studies on robotic
manipulation of IRL. The problems being solved by IRL are
highlighted in the section. Section IV presents the concepts
of trustworthiness/ explainability/ interpretation in robotic
manipulation, with articles written about them and DRL and
IRL. In Section V, the possible future works are provided.

II. DEEP REINFORCEMENT LEARNING FOR ROBOTIC
MANIPULATION
TheDRLmethods are among themost effective deep learning
methods for performing various robotic manipulation tasks.
They train an agent in an environment to maximize the reward

function [36]. The DRL agent learns through trial and error
with a principal learning objective that maps the states of the
environment to actions.

FIGURE 1. DRL classification.

There are several different ways to classify the DRL algo-
rithms. One approach is to categorize DRL according to the
particular algorithm or approach used [37]. As shown in
Figure 1, DRL is classified according to algorithms [38].

1- Model-free DRL includes algorithms that an agent
learns to make decisions and take actions directly from inter-
action with its environment without explicitly modeling the
dynamics of the environment. In model-free DRL, the agent
learns a policy or value function directly from experience,
typically through trial and error, without requiring a model of
the environment’s transition dynamics [39]. The algorithms
are separated into two branches.

a) Value-based methods are the RL approaches where
the agent learns to make decisions and take actions based
on estimating the value of different actions or states in the
environment. In value-based DRL, the agent typically learns
a value function, which assigns a value to each possible
action or state. The value is the expected cumulative reward
the agent can achieve by taking that action or being in that
state and following a particular policy. [40]. Deep Deter-
ministic Policy Gradient (DDPG) [41], Twin Delayed DDPG
(TD3) [42], and Soft Actor-Critic (SAC) [43] are value-based
algorithms.

b) Policy-based methods are algorithms that directly
optimize policy without estimating the value of states or
state-action pairs by determining the actions taken by the
agent as a function of the agent’s state and environment [27].
Policy Gradient [44], Advantage Actor-Critic (A2C) [45],
Asynchronous Advantage Actor-Critic (A3C) [46], Proximal
Policy Optimization (PPO) [47], and Trust Region Policy
Optimization (TRPO) [48] are policy-based algorithms.
2- Model-based DRL includes algorithms that follow the

framework of an agent that interacts with an environment,
learns a model of that environment, and then uses the model
to make decisions [49]. The algorithms are divided into two
parts.
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a) Learning the model includes algorithms such as The
World Model, Imagination-Augmented Agents (I2A) [50],
Model-Based RL with Model-Free FineTuning (MBMF)
[51], and Model-Based Value Expansion [52].

b) Working on the given model includes algorithms such
as the AlphaZero algorithm [53].

In robotic manipulation the classification of DRL is
given according to the specific tasks and problem-solving
approaches:

Grasping and manipulation: Applications include using
DRL for robots to perform ambiguous manipulation tasks
such as grasping and hand manipulation [12].

Navigation and localization: Applications where DRL
is not used for robots to navigate and localize different
environments [54], [55].

Multi-agent systems: Applications where DRL is used
to train multiple agents to interact and coordinate with each
other [56].

Figure 2 shows some examples from the studies on manip-
ulation tasks such as robotic grasping [57], robotic hand
manipulation [58], and object manipulation [59] using DRL
algorithms. There are notable studies in the field of robot
manipulation with DRL [16]. In the study conducted by
OpenAI [60], a 24-degree-of-freedom robotic hand was suc-
cessfully trained in short training times using learning from
human demonstrations for applying complex manipulation
tasks. The Robotics Institute at Carnegie Mellon University
presented that model-based DRL has higher performance
than model-free DRL in object manipulation [61].

FIGURE 2. Robotic manipulation applications by using DRL. (a) Baxter
robot grasping [57]. (b) Robot hand block grip [58]. (c) SoftGym robot [59].

In addition to these articles, many other studies have used
DRL to train robots to perform manipulation tasks such as
sorting objects [62], assembling parts [63], and manipulating
flexible objects [64], [65]. As DRL evolves more robots will
likely be trained to perform increasingly complex manipula-
tion tasks. Figure 3 shows some studies related to these tasks.
The growing utilization of DRL algorithms has led to its

continuous improvement. The industrial applications of DRL
in robotic manipulation were explored in [66] and [67] as
well as in industrial automation applications [68], path plan-
ning [69], electronic circuit production [70], and assembly
tasks [71]. Figure 4 presents visuals of the applications.
In training a humanoid robot with DRL for gripper object

manipulation in an environment with obstacles [72],the robot

FIGURE 3. Robotic manipulation applications by using DRL.
(a) Sequencing four blocks in the real world [62]. (b) Assembling
parts [63]. (c) Manipulating flexible objects [64].

FIGURE 4. Robots are trained by using DRL for robotic manipulation.
(a) Adaptable automation task [68]. (b) The electronic circuit
production [70]. (c) An assembly task [71].

successfully detected obstacles without extracting features
from the image data. An approach to grasping based on
DRL haptic feedback to improve grip performance was pre-
sented, outperforming non-tactile rewards with tactile reward
equations [73].

A study in [74] presented a DRL-based approach to grasp
and manipulating unknown objects in real life demonstrating
that object manipulation can be performed with DRL using
3D image data without segmentation and image enhancement
methods.

A self-monitoring model-based approach was proposed
in [75]. The approach learns to predict the future directly from
raw sensory readings such as camera images. It was shown
that the obtained model works well with previously unseen
objects.

A task-oriented comprehension network (TOG-Net) was
proposed to jointly optimize the task-oriented comprehension
of the tool and manipulation policy [76].

An approach presented in [77] was implemented in dataset
collection for robot insight to enhance the efficiency of learn-
ing the principles of deep-dip gripping using 3D object CAD
models. This approach demonstrated training policies for
lifting and moving new objects with complex geometry from
a desktop or a box.

The essential structural features of a Markov decision pro-
cess from offline data were discussed in [78]. This discussion
included the performance of surgical robot control, and the
creation of efficient execution plans.

Visual perception-based RL was combined with low-level
reactive control based on tactile perception to prevent
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TABLE 1. The problems in robotic manipulation and the solutions searched using deep reinforcement learning algorithms in the articles between
2018 and 2023.
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TABLE 1. (Continued.) The problems in robotic manipulation and the solutions searched using deep reinforcement learning algorithms in the articles
between 2018 and 2023.
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TABLE 1. (Continued.) The problems in robotic manipulation and the solutions searched using deep reinforcement learning algorithms in the articles
between 2018 and 2023.

VOLUME 12, 2024 51845



R. Ozalp et al.: Advancements in DRL and IRL for Robotic Manipulation

TABLE 1. (Continued.) The problems in robotic manipulation and the solutions searched using deep reinforcement learning algorithms in the articles
between 2018 and 2023.

slippage in [79]. This study aims to fulfill the target of manip-
ulation and minimize the interference of tactile control.

The reviewed articles and studies have revealed DRL’s
widespread and vital use in robotic manipulation. In addition,
they have demonstrated that a wide variety of tasks can be
performed using DRL.

Table 1 lists the articles published between 2018 and
2023 that offer solutions to common problems in robotic
manipulation tasks. In general, the articles focus on a few
difficulties. These are commonly shown as difficulties related
to the environment [117], the structure of the robot [89],
transferring from simulation to real environment [95], secu-
rity [88], algorithm speed [112], and parameter selection [92].
Problems arising from the environment are seen as the inabil-
ity to model complex environments well enough [117], the
inability to model the interacting objects in the environ-
ment [91], the poor observability of the environment [110],
or the high-dimensional dataset problems encountered [100]
inmodeling the environment. The difficulties arising from the
robot’s structure include calculating the multi-joint robot’s
kinematic equations [112] or its movement in complex envi-
ronments due to the limited freedom of movement [103].
In the problems experienced in the transfer from the simu-
lation to the real environment, the simulation environment
dynamics [105] and the visuals cannot match the real envi-
ronment [98]. When we look at the security problems, doubts
about ensuring the safety of people in environments where
human-robot interaction mostly come to the fore [115].

The flexible structure of the DRL has solved the prob-
lems mentioned above. Methods such as task fragmentation
have been used in complex environment tasks. Some studies
combined DRL with different machine-learning algorithms
in tasks requiring parameter optimization to increase the
algorithm speed with multi-agent systems. The difficulties in
modeling the environment and transferring from simulation
to reality have been accomplished with DRL.

III. INVERSE REINFORCEMENT LEARNING FOR ROBOTIC
MANIPULATION
In recent years, with the development of RL algorithms,
robots can learn from experience [29]. In addition, with the
developments in simulation technology, the further develop-
ment of training algorithms has enabled them to improve
their performance over time, and the area and number of
uses have increased accordingly. Developments in simulation
environments such as ROS [119], Gazebo [93],Webots [120],

and V-REP [121] and advances in simulation physics engines
have accelerated the development of DRL.

This section focuses on recent developments in IRL for
robotic manipulation, particularly over the past five years
(2018-2023). Various problems in this area are discussed,
and articles on their solutions are reviewed and summarized.
Thus, it has been aimed at contributing to the solution of
similar problems.

The following are classified IRL according to specific tasks
or applications of robotic manipulation:

1-Grasping: Robotic grasping tasks using IRL aims to
learn a grip policy that a robot executes to grasp an
object [122], [123], [124], [125], [126], [127].
2-Assembly: Robotic assembly tasks using IRL aim to

learn a policy being executed by a robot to assemble a prod-
uct [25], [128], [129], [130].
3-Manipulation with indefinite rewards: The use of IRL

arises in robotic manipulation tasks where it may be difficult
or impossible to give the robot explicit rewards [30], [131],
[132].

4-Multitasking and transfer learning: Transfer learning
is used to increase the sample efficiency of IRL by allowing
a robot to transfer information between tasks [126], [133],
[134], [135], [136].
5-Multimodal IRL: Learning from different feedback

forms, such as visual, tactile, and verbal feedback is facili-
tated by fusing IRL [137], [138], [139], [140].
6- Active IRL: The robots utilize IRL to actively solicit

feedback from humans, which increases sample efficiency
and robustness of learned policies [141], [142], [143], [144].

7- HRI: Incorporating human feedback and preferences,
IRL improves the performance and robustness of learned
policies [145], [146], [147], [148], [149].
In recent years, a wide variety of robotic manipulation

tasks such as grasping, combining, and manipulating objects
have been addressed by using IRL [24], [150], [151]. Figure 5
provides a visual representation of these studies.

When the articles including IRL have been examined, the
following articles have come to the fore: a study [126] aims
to contribute to developing multitasking IRL in the compu-
tationally more efficient maximum causal entropy (MCE)
IRL framework. A Bayesian Inverse Reinforcement Learning
Fail (BIRLF) algorithm allows the agent to use successful
and unsuccessful observations by taking advantage of failed
demonstrations [122]. In [152], the DDPG and Principal
Component Analysis (PCA) methods have been used to show
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TABLE 2. The problems in robotic manipulation and the suggested solutions using IRL algorithms in the articles between 2018 and 2023.
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TABLE 2. (Continued.) The problems in robotic manipulation and the suggested solutions using IRL algorithms in the articles between 2018 and 2023.

how IRL can transfer task knowledge from a human expert
to a robot in a dynamic environment. A method for apply-
ing demonstration learning using IRL has been presented
in [129]. Figure 5 shows an application of this study.

FIGURE 5. Examples of IRL. (a). A real environment where a dexterous
hand is used to grasp toy fish [24]. (b). Human Notation [150] used for the
IRL algorithm to extract cost functions. (c). Image-based policies are
trained in simulation with learned reward functions and performed on a
real robot [151].

Another area of research has been on the use of IRL for
robotic assembly; here, the aim is to learn a policy that
a robot can execute to assemble a product [128], [153],
[154]. There has also been research on using IRL for robotic
manipulation with ambiguous rewards, where it is difficult
or impossible to give the robot explicit rewards [155], [156],
[157]. Researchers have proposed methods for using IRL in
such scenarios by incorporating uncertainty in rewards or
using other feedback forms such as sensor data or human
demonstrations [158].

In addition to the applications for this particular task,
the researchers have proposed new IRL algorithms that
can improve performance, robustness, and sample effi-
ciency. These include methods such as maximum entropy
IRL [159], inverse optimal control [160], and IRLwith expert
demonstrations [161].

The performance of IRL has steadily improved as IRL
allows robots to learn from human demonstrations without
defining a reward function, which creates a promising situa-
tion for using IRL in robotic manipulation in future studies.
Table 2 shows some distinguished articles on the use of
IRL in robotic manipulation tasks between 2018 and 2023,
the problems discussed in the articles, and their solutions.
These articles discuss various problems in using DRL and
IRL in robotic manipulation tasks and the approaches to
solving these problems. These problems include difficulty in
obtaining the appropriate reward function [30], [163], inabil-
ity to model the environment well enough [25], sensitivity to
noise [132], task-specificity and generalizability [129], [165],
excessive dependence on the quality of representations [131],
scalability problems [169], and data overload for complex
tasks [164].

Despite these difficulties, several IRL methods have been
applied to various robotic manipulation tasks, and different
types of IRL methods have been introduced to eliminate
these difficulties. Due to their strengths and difficulties,
the IRL algorithms will continue to evolve. Moreover, the
requirement for IRL usage in real-world robotic systems is
expected to increase to solve issues such as robustness, and
scalability.
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TABLE 3. Examples of articles in the field of trustworthy/interpretable/explainable AI for robotic manipulation.
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TABLE 3. (Continued.) Examples of articles in the field of trustworthy/interpretable/explainable AI for robotic manipulation.

TABLE 4. Advantages and disadvantages of DRL and IRL.

IV. TRUSTWORTHY/INTERPRETABLE/EXPLAINABLE
ARTIFICIAL INTELLIGENCE FOR ROBOTIC
MANIPULATION
The High-Level Expert Group on AI has announced that
trustworthy AI should have three vital components. They
are: i) lawful, ii) ethical, and iii) robust [170]. The reality

of controlling robots most of our lives today makes these
concepts essential. Only the applications of AI that comply
with these principles can be considered trustworthy. More-
over, an AI algorithm should also explain the reasons for this,
such as making a decision [171]. In addition, the algorithm’s
output should be interpretable; that is, the algorithm’s outputs
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should be understood [172]. In this way, scientific progress
can be made by interpreting the wrong output, even in false
outputs.

Trustworthy/ interpretable/ explainable AI concepts are
gaining importance as robotic manipulation is used in
important areas such as manufacturing, logistics, and health-
care [173]. With the development of Industry 5.0, the need
for autonomous systems that can perform complex robotic
manipulation tasks in smart factories and cyber-physical sys-
tems has increased. The trustworthiness of robots has proven
to be even more important in critical manipulation applica-
tions such as medicine, space, nuclear fields, and HRI [174].
At the same time, it is expected that the explainability and
interpretability of robots’ actions and decision-making mech-
anisms will be high to continue developments in these areas
and maintain trust in robots [175].
In recent years, researchers have used DRL and IRL

in robotic manipulation. They have attempted to make the
decision-making process interpretable and explainable by
learning control policies and ensuring the safety and robust-
ness of the learned policies. However, the topic is challenging
for DRL and IRL [176].

In the case of trustworthy AI, various approaches of DRL
have been presented to learn robust and secure principles that
can operate in uncertain and dynamic environments. In the
proposed study [177], a safe system has been developed
to grasp and lift objects connected by a human operator
in a power-assisted robotic system. The algorithms relating
to DRL and IRL are applied to interpretable and explain-
able AI to understand the decision-making step of learned
policies [178]. Currently, the methods have different chal-
lenges, which are helpful for debugging, monitoring, and
explainability.

Table 3 presents the review of articles written in the field of
Trustworthy/ Interpretable/ explainable AI for robotic manip-
ulation between 2018 and 2023. The problems addressed in
these articles and their solution methods are indicated. The
articles have obtained the policies people can understand and
showed how DRL can be used to understand learned policy
decision-making. In this way, they have created solutions for
the difficulties of DRL in the context of trustworthy/ explain-
able/ interpretable AI in robotic manipulation applications.

In addition, the articles have discussed problems such as
the lack of flexibility in rule-based security restrictions in
HRI applications [116], security problems against dynamic
obstacles [85], policy-making deficiencies in DRL and IRL
techniques without addressing security [179], optimizing
policy speed to ensure security [184], and the lack of
interpretability and explainability of robot decision-making
processes [185]. As problem-solving is discussed in the
articles, algorithms and methods have been proposed as trust-
worthy, explainable, and interpretable [178], [183]. Solutions,
such as the use of digital twin methods, greater inclusion of
environmental dynamics in the decision-making process, the
use of the XAI algorithm for ethical issues and areas requiring
security, and the inclusion of expert knowledge in the DRL

training process have been adopted. Moreover, because DRL
tries to maximize the given reward function, the authors have
suggested adding security restrictions to this process by cre-
ating security vulnerabilities [180]. In addition, faulty reward
functions also damage trustworthiness. Therefore, the authors
proposed more interpretable and explainable algorithms.

V. FUTURE WORKS
In this section, future works are given on using DRL and
IRL in robotic manipulation and then on integrating trustwor-
thy/interpretable/explainable AI into them.

This article suggests some future work as below:
1. Using the concepts of trustworthiness, interpretability,

and explainability with DRL and IRL methods in robotic
manipulation. Examples include determining the metrics and
benchmarks for the concepts and considering human feed-
back to incorporate these insights in the learning process.

2. Providing new debugging, monitoring, and explainabil-
ity tools to demonstrate how the learned policies carry out
decision-making. An example includes developing real-time
visualization tools for monitoring policy execution.

3. Performing DRL and IRL in multi-robot systems and
swarm robots for collaboration aim in manipulation tasks.
Examples cover defining collaboration metrics and protocols
for multi-robot manipulation and investigating communica-
tion schemes among swarm robots for efficient collaboration.

4. Investigating efficient use of DRL and IRL in the case
of continuous motion and high-dimensional observations in
robotic manipulation tasks. Examples include the optimiza-
tion of continuous action spaces and the reduction of handling
high-dimensional observations.

5. Developing new methods to evaluate the performance
of DRL and IRL methods for robotic manipulation tasks by
considering deployment and security challenges in the real
world.

6. Developing the applications of DRL and IRL in manip-
ulation tasks using mobile robots, aerial robots, and service
robots in different industrial fields such as automation.

FIGURE 6. Number of robotic manipulation studies using DRL (Google
scholar and web of science in 2018-2023) [190], [191].
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7. Using DRL and IRL with other machine learning
techniques and computer vision to increase performance in
robotic manipulation tasks.

8. Developing new transfer learning methods between
various robotic platforms and manipulation tasks to reduce
learning and deployment costs.

9. FusingNatural Language Processing, visual sensors, and
other sensors in robotics manipulation tasks and integrating
digital twins into new methods. Examples encompass the
design of new interfaces for natural language communication
with robots and the integration of digital twins to improve
simulation-to-real-world transfer.

10. Developing the transfer from simulation to real-world
applications in robotic manipulation tasks.

FIGURE 7. Number of robotic manipulation studies using IRL (Google
scholar and web of science in 2018-2023) [192], [193].

FIGURE 8. Number of robotic manipulation studies using
Trustworthy/Interpretable/ eXplainable AI (Google scholar and web of
science in 2018-2023) [194], [195], [196], [197], [198], [199].

VI. CONCLUSION
This review aims to provide an overview of the last five years
of research on DRL and IRL for robotic manipulation. First,

the DRL algorithms are introduced, and studies in the field
of robotic manipulation are examined. Then, the problems
and solution methods that the prominent articles using IRL
in robotic manipulation are given. Finally, trustworthy/ inter-
pretable/ eXplainable AI concepts are given in the context of
robotic manipulation and articles have been reviewed in this
field. These articles provide the main problems and solutions
in this field. The difficulties arising from robotic manipula-
tion, the applications of DRL and IRL to robotic manipulation
in simulation or real environments and the proposed solutions
are provided in these articles. Our literature review concludes
that i) both DRL and IRL are commonly used to train robots
to perform a wide variety of manipulation tasks, ii) both DRL
and IRL have their advantages and disadvantages and can be
used to achieve different goals in robotic manipulation, iii)
in the context of trustworthy AI, interpretable AI and XAI,
DRL and IRL can be used to train robots to perform tasks
more efficiently and trustworthy. Table 4 shows the reviewed
studies’ advantages and disadvantages of DRL and IRL.

The number of articles reviewed in this article for 2018 and
2023 are shown in Figure 6-7-8. Figure 6 shows the number
of articles written in the field of robot manipulation using
the DRL algorithm in Google Scholar and Web of Science.
Figure 7 shows the number of articles written in the field
of robot manipulation using the IRL algorithm in Google
Scholar and Web of Science. Figure 8 shows the number
of articles written robot manipulation using of Trustworthy/
Interpretable/ Explainable AI in Google Scholar. As seen in
the graphics, the number of articles in the examined areas has
increased from year to year. This increase shows that DRL
and IRL are suitable algorithms for robotic manipulation, and
their use in solving the difficulties in robotic manipulation
applications is increasing daily. It can be predicted that its
use will further increase in the coming years.

Studies in this area should attempt to develop newmethods
to train robots to perform complexmanipulation tasks inmore
complex and dynamic environments that align with current
developments. While performing these tasks, the robots are
expected to be interpretable, explainable, and trustworthy so
they can be used more safely and transparently. Researchers
have conducted many studies on these issues. More research
is needed to make DRL and IRL more interpretable, explain-
able, and trustworthy so that robots can be used more safely
and transparently while performing these tasks. It has been
observed that the use of DRL in robotic manipulation has
increased over the years since 2018. Currently, ongoing stud-
ies show that the use of DRL in robotic manipulation will
increase. This article provides a quick literature review for
new researchers working in this field.

REFERENCES
[1] S. B. Niku, Introduction To Robotics: Analysis, Control, Applications.

Wiley, 2011. [Online]. Available: http://ci.nii.ac.jp/ncid/BB04086836
[2] R. R. Murphy, ‘‘Introduction to AI robotics,’’ Ind. Robot: Int. J., vol. 28,

no. 3, pp. 266–267, Jun. 2001, doi: 10.1108/ir.2001.28.3.266.1.
[3] M. Ben-Ari and F. Mondada, ‘‘Robots and their applications,’’ in Ele-

ments of Robotics, 2018, pp. 1–20, doi: 10.1007/978-3-319-62533-1_1.

51852 VOLUME 12, 2024

http://dx.doi.org/10.1108/ir.2001.28.3.266.1
http://dx.doi.org/10.1007/978-3-319-62533-1_1


R. Ozalp et al.: Advancements in DRL and IRL for Robotic Manipulation

[4] I. Tsitsimpelis, C. J. Taylor, B. Lennox, and M. J. Joyce, ‘‘A review
of ground-based robotic systems for the characterization of nuclear
environments,’’ Prog. Nucl. Energy, vol. 111, pp. 109–124, 2019, doi:
10.1016/j.pnucene.2018.10.023.

[5] D. Patil, M. Ansari, D. Tendulkar, R. Bhatlekar, V. N. Pawar, and
S. Aswale, ‘‘A survey on autonomousmilitary service robot,’’ inProc. Int.
Conf. Emerg. Trends Inf. Technol. Eng. (ic-ETITE), Feb. 2020, pp. 1–7,
doi: 10.1109/ic-ETITE47903.2020.78.

[6] T. Duckett, ‘‘Agricultural robotics: The future of robotic agriculture,’’
2018, arxiv.1806.06762.

[7] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, A. M. Agogino, A. Tamar,
and P. Abbeel, ‘‘Reinforcement learning on variable impedance controller
for high-precision robotic assembly,’’ in Proc. Int. Conf. Robot. Autom.
(ICRA), May 2019, pp. 3080–3087, doi: 10.1109/ICRA.2019.8793506.

[8] M. Shridhar, L. Manuelli, and D. Fox, ‘‘CLIPORT: What and where
Pathways for robotic manipulation,’’ in Proc. 5th Annu. Conf. Robot
Learn., Jun. 2021, pp. 1–13. [Online]. Available: https://openreview.
net/pdf?id=9uFiX_HRsIL

[9] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta, ‘‘R3M:
A universal visual representation for robot manipulation,’’ 2022,
arXiv:2203.12601.

[10] Z. Feng, G. Hu, Y. Sun, and J. Soon, ‘‘An overview of collaborative
roboticmanipulation inmulti-robot systems,’’Annu. Rev. Control, vol. 49,
pp. 113–127, Jan. 2020, doi: 10.1016/j.arcontrol.2020.02.002.

[11] E. Papadopoulos, F. Aghili, O. Ma, and R. Lampariello, ‘‘Robotic manip-
ulation and capture in space: A survey,’’ Frontiers Robot. AI, vol. 8,
Jul. 2021, Art. no. 686723, doi: 10.3389/frobt.2021.686723.

[12] R. Liu, F. Nageotte, P. Zanne, M. de Mathelin, and B. Dresp-Langley,
‘‘Deep reinforcement learning for the control of robotic manipulation:
A focussed mini-review,’’ Robotics, vol. 10, no. 1, p. 22, Jan. 2021, doi:
10.3390/robotics10010022.

[13] H. Nguyen and H. La, ‘‘Review of deep reinforcement learning for robot
manipulation,’’ in Proc. 3rd IEEE Int. Conf. Robotic Comput. (IRC),
Feb. 2019, pp. 590–595, doi: 10.1109/IRC.2019.00120.

[14] A. S. Morgan, D. Nandha, G. Chalvatzaki, C. D’Eramo, A.M. Dollar, and
J. Peters, ‘‘Model predictive actor-critic: Accelerating robot
skill acquisition with deep reinforcement learning,’’ in Proc.
IEEE Int. Conf. Robot. Autom., May 2021, pp. 6672–6678, doi:
10.1109/ICRA48506.2021.9561298.

[15] J. Hua, L. Zeng, G. Li, and Z. Ju, ‘‘Learning for a robot: Deep reinforce-
ment learning, imitation learning, transfer learning,’’ Sensors, vol. 21,
no. 4, p. 1278, Feb. 2021, doi: 10.3390/s21041278.

[16] M. Q. Mohammed, K. L. Chung, and C. S. Chyi, ‘‘Review of deep rein-
forcement learning-based object grasping: Techniques, open challenges,
and recommendations,’’ IEEE Access, vol. 8, pp. 178450–178481, 2020,
doi: 10.1109/ACCESS.2020.3027923.

[17] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar,
and S. Levine, ‘‘The ingredients of real-world robotic reinforcement
learning,’’ 2020, arXiv:2004.12570.

[18] M. Vecerik, O. Sushkov, D. Barker, T. Rothorl, T. Hester, and J. Scholz,
‘‘A practical approach to insertion with variable socket position using
deep reinforcement learning,’’ in Proc. IEEE Int. Conf. Robot Autom.,
May 2019, pp. 754–760, doi: 10.1109/ICRA.2019.8794074.

[19] P. Ladosz, L. Weng, M. Kim, and H. Oh, ‘‘Exploration in deep reinforce-
ment learning: A survey,’’ Inf. Fusion, vol. 85, pp. 1–22, Sep. 2022, doi:
10.1016/j.inffus.2022.03.003.

[20] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, ‘‘Self-supervised
deep reinforcement learning with generalized computation graphs for
robot navigation,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2018, pp. 5129–5136, doi: 10.1109/ICRA.2018.8460655.

[21] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, ‘‘Deep reinforcement
learning for multiagent systems: A review of challenges, solutions, and
applications,’’ IEEE Trans. Cybern., vol. 50, no. 9, pp. 3826–3839,
Sep. 2020, doi: 10.1109/TCYB.2020.2977374.

[22] J. Jara-Ettinger, ‘‘Theory of mind as inverse reinforcement learning,’’
Current Opinion Behav. Sci., vol. 29, pp. 105–110, Oct. 2019, doi:
10.1016/j.cobeha.2019.04.010.

[23] S. N. Aslan, R. Ozalp, A. Uçar, and C. Güzelis, ‘‘End-to-end learning
from demonstation for object manipulation of robotis-Op3 humanoid
robot,’’ in Proc. Int. Conf. Innov. Intell. Syst. Appl. (INISTA), Aug. 2020,
pp. 1–6, doi: 10.1109/INISTA49547.2020.9194630.

[24] Z. Hu, Y. Zheng, and J. Pan, ‘‘Grasping living objects with
adversarial behaviors using inverse reinforcement learning,’’ IEEE
Trans. Robot., vol. 39, no. 2, pp. 1151–1163, Apr. 2023, doi:
10.1109/TRO.2022.3226108.

[25] D. Park, M. Noseworthy, R. Paul, S. Roy, and N. Roy, ‘‘Infer-
ring task goals and constraints using Bayesian nonparametric inverse
reinforcement learning,’’ in Proc. PMLR, May 2020, pp. 1005–1014,
Accessed: May 21, 2023. [Online]. Available: https://proceedings.
mlr.press/v100/park20a.html

[26] B. Fang, S. Jia, D. Guo, M. Xu, S. Wen, and F. Sun, ‘‘Survey of imitation
learning for robotic manipulation,’’ Int. J. Intell. Robot. Appl., vol. 3,
pp. 362–369, Sep. 2019, doi: 10.1007/S41315-019-00103-5.

[27] Z. Xie, Q. Zhang, Z. Jiang, and H. Liu, ‘‘Robot learning from demon-
stration for path planning: A review,’’ Sci. China Technological Sci.,
vol. 63, no. 8, pp. 1325–1334, Aug. 2020, doi: 10.1007/S11431-020-
1648-4.

[28] Y. Liu, A. Gupta, P. Abbeel, and S. Levine, ‘‘Imitation from observation:
Learning to imitate behaviors from raw video via context translation,’’ in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 1118–1125,
doi: 10.1109/ICRA.2018.8462901.

[29] S. Arora and P. Doshi, ‘‘A survey of inverse reinforcement learning:
Challenges, methods and progress,’’ Artif. Intell., vol. 297, Aug. 2021,
Art. no. 103500, doi: 10.1016/j.artint.2021.103500.

[30] K. Kim, S. Garg, K. Shiragur, and S. Ermon, ‘‘Reward identification
in inverse reinforcement learning,’’ in Proc. PMLR, Jul. 2021,
pp. 5496–5505, Accessed: Jun. 4, 2023. [Online]. Available:
https://proceedings.mlr.press/v139/kim21c.html

[31] J.-P.-A. Yaacoub, H. N. Noura, O. Salman, and A. Chehab, ‘‘Robotics
cyber security: Vulnerabilities, attacks, countermeasures, and recommen-
dations,’’ Int. J. Inf. Secur., vol. 21, no. 1, pp. 115–158, Mar. 2021, doi:
10.1007/s10207-021-00545-8.

[32] D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, and G.-Z. Yang,
‘‘XAI—Explainable artificial intelligence,’’ Sci. Robot., vol. 4, no. 37,
Dec. 2019, Art. no. eaay7120, doi: 10.1126/scirobotics.aay7120.

[33] M. Ryan, ‘‘In AI we trust: Ethics, artificial intelligence, and reliabil-
ity,’’ Sci. Eng. Ethics, vol. 26, no. 5, pp. 2749–2767, Oct. 2020, doi:
10.1007/S11948-020-00228-Y.

[34] F. Xu, H. Uszkoreit, Y. Du,W. Fan, D. Zhao, and J. Zhu, ‘‘Explainable AI:
A brief survey on history, research areas, approaches and challenges,’’ in
Lecture Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11839,
2019, pp. 563–574, doi: 10.1007/978-3-030-32236-6_51.

[35] J. D. Fuhrman, N. Gorre, Q. Hu, H. Li, I. El Naqa, and M. L. Giger, ‘‘A
review of explainable and interpretable AI with applications in COVID-
19 imaging,’’ Med. Phys., vol. 49, no. 1, pp. 1–14, Jan. 2022, doi:
10.1002/mp.15359.

[36] R. S. Sutton and A. G. Barto, ‘‘Reinforcement learning: An introduction,’’
IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 285–286, Jan. 2005, doi:
10.1109/tnn.2004.842673.

[37] X. Wang, S. Wang, X. Liang, D. Zhao, J. Huang, X. Xu, B. Dai,
and Q. Miao, ‘‘Deep reinforcement learning: A survey,’’ IEEE
Trans. Neural Netw. Learn. Syst., early access, Sep. 28, 2022, doi:
10.1109/TNNLS.2022.3207346.

[38] S. E. Li, Reinforcement Learning for Sequential Decision and Opti-
mal Control. Singapore: Springer, 2023, doi: 10.1007/978-981-19-
7784-8.

[39] H. Dong, Z. Ding, S. Zhang, Deep Reinforcement Learning Fun-
damentals, Research and Applications: Fundamentals, Research and
Applications. New York, NY, USA: Springer Nature, 2020.

[40] C. Wan and M. Hwang, ‘‘Value-based deep reinforcement learning for
adaptive isolated intersection signal control,’’ IET Intell. Transp. Syst.,
vol. 12, no. 9, pp. 1005–1010, Nov. 2018, doi: 10.1049/iet-its.2018.
5170.

[41] C. Do, C. Gordillo, and W. Burgard, ‘‘Learning to pour using deep
deterministic policy gradients,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Oct. 2018, pp. 3074–3079, doi: 10.1109/IROS.2018.
8593654.

[42] M. Kim, D.-K. Han, J.-H. Park, and J.-S. Kim, ‘‘Motion planning of robot
manipulators for a smoother path using a twin delayed deep deterministic
policy gradient with hindsight experience replay,’’ Appl. Sci., vol. 10,
no. 2, p. 575, Jan. 2020, doi: 10.3390/app10020575.

[43] I. Nematollahi, E. Rosete-Beas, A. Röfer, T. Welschehold, A. Valada,
and W. Burgard, ‘‘Robot skill adaptation via soft actor-critic Gaussian
mixture models,’’ in Proc. Int. Conf. Robot. Autom. (ICRA), May 2022,
pp. 8651–8657, doi: 10.1109/ICRA46639.2022.9811770.

[44] H. Zhang, F. Wang, J. Wang, and B. Cui, ‘‘Robot grasping method opti-
mization using improved deep deterministic policy gradient algorithm of
deep reinforcement learning,’’Rev. Sci. Instrum., vol. 92, no. 2, Feb. 2021,
Art. no. 025114, doi: 10.1063/5.0034101/369268.

VOLUME 12, 2024 51853

http://dx.doi.org/10.1016/j.pnucene.2018.10.023
http://dx.doi.org/10.1109/ic-ETITE47903.2020.78
http://dx.doi.org/10.1109/ICRA.2019.8793506
http://dx.doi.org/10.1016/j.arcontrol.2020.02.002
http://dx.doi.org/10.3389/frobt.2021.686723
http://dx.doi.org/10.3390/robotics10010022
http://dx.doi.org/10.1109/IRC.2019.00120
http://dx.doi.org/10.1109/ICRA48506.2021.9561298
http://dx.doi.org/10.3390/s21041278
http://dx.doi.org/10.1109/ACCESS.2020.3027923
http://dx.doi.org/10.1109/ICRA.2019.8794074
http://dx.doi.org/10.1016/j.inffus.2022.03.003
http://dx.doi.org/10.1109/ICRA.2018.8460655
http://dx.doi.org/10.1109/TCYB.2020.2977374
http://dx.doi.org/10.1016/j.cobeha.2019.04.010
http://dx.doi.org/10.1109/INISTA49547.2020.9194630
http://dx.doi.org/10.1109/TRO.2022.3226108
http://dx.doi.org/10.1007/S41315-019-00103-5
http://dx.doi.org/10.1007/S11431-020-1648-4
http://dx.doi.org/10.1007/S11431-020-1648-4
http://dx.doi.org/10.1109/ICRA.2018.8462901
http://dx.doi.org/10.1016/j.artint.2021.103500
http://dx.doi.org/10.1007/s10207-021-00545-8
http://dx.doi.org/10.1126/scirobotics.aay7120
http://dx.doi.org/10.1007/S11948-020-00228-Y
http://dx.doi.org/10.1007/978-3-030-32236-6_51
http://dx.doi.org/10.1002/mp.15359
http://dx.doi.org/10.1109/tnn.2004.842673
http://dx.doi.org/10.1109/TNNLS.2022.3207346
http://dx.doi.org/10.1007/978-981-19-7784-8
http://dx.doi.org/10.1007/978-981-19-7784-8
http://dx.doi.org/10.1049/iet-its.2018.5170
http://dx.doi.org/10.1049/iet-its.2018.5170
http://dx.doi.org/10.1109/IROS.2018.8593654
http://dx.doi.org/10.1109/IROS.2018.8593654
http://dx.doi.org/10.3390/app10020575
http://dx.doi.org/10.1109/ICRA46639.2022.9811770
http://dx.doi.org/10.1063/5.0034101/369268


R. Ozalp et al.: Advancements in DRL and IRL for Robotic Manipulation

[45] P. Shukla, M. Pegu, and G. C. Nandi, ‘‘Development of behavior based
robot manipulation using actor-critic architecture,’’ in Proc. 8th Int.
Conf. Signal Process. Integr. Netw. (SPIN), Aug. 2021, pp. 469–474, doi:
10.1109/SPIN52536.2021.9566102.

[46] T. Chen, J.-Q. Liu, H. Li, S.-R. Wang, and W.-J. Niu, ‘‘Robustness
assessment of asynchronous advantage actor-critic based on dynamic
skewness and sparseness computation: A parallel computing view,’’ J.
Comput. Sci. Technol., vol. 36, no. 5, pp. 1002–1021, Oct. 2021, doi:
10.1007/S11390-021-1217-Z.

[47] F. Ye, X. Cheng, P. Wang, C.-Y. Chan, and J. Zhang, ‘‘Automated lane
change strategy using proximal policy optimization-based deep reinforce-
ment learning,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Oct. 2020,
pp. 1746–1752, doi: 10.1109/IV47402.2020.9304668.

[48] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel, ‘‘Model-
ensemble trust-region policy optimization,’’ 2018, arXiv:1802.10592.

[49] Z. Huang, W. Heng, and S. Zhou, ‘‘Learning to paint with model-based
deep reinforcement learning,’’ 2019, arXiv:1903.04411.

[50] M. Thabet, ‘‘Imagination-augmented deep reinforcement learning for
robotic applications,’’ A thesis, Dept. Doctor Philosophy, Univ. Manch-
esterr, Manchester, U.K., 2022.

[51] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, ‘‘Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018,
pp. 7559–7566, doi: 10.1109/ICRA.2018.8463189.

[52] M. Janner, J. Fu, M. Zhang, and S. Levine, ‘‘When to trust
your model: Model-based policy optimization,’’ in Proc. Neural
Inf. Process. Syst., vol. 32, Jun. 2019, pp. 12498–12509. [Online].
Available: https://papers.nips.cc/paper/9416-when-to-trust-your-model-
model-based-policy-optimization.pdf

[53] G. Marcus, ‘‘Innateness, AlphaZero, and artificial intelligence,’’ 2018,
arXiv:1801.05667.

[54] K. Zhu and T. Zhang, ‘‘Deep reinforcement learning based mobile
robot navigation: A review,’’ Tsinghua Sci. Technol., vol. 26, no. 5,
pp. 674–691, Oct. 2021, doi: 10.26599/TST.2021.9010012.

[55] N. F. Bar, H. Yetis, and M. Karakose, ‘‘Deep reinforcement learning
approach with adaptive reward system for robot navigation in dynamic
environments,’’ in Interdisciplinary Research in Technology andManage-
ment, Sep. 2021, pp. 349–355, doi: 10.1201/9781003202240-55.

[56] W. Du and S. Ding, ‘‘A survey on multi-agent deep reinforcement
learning: from the perspective of challenges and applications,’’ Artif.
Intell. Rev., vol. 54, no. 5, pp. 3215–3238, Jun. 2021, doi: 10.1007/
S10462-020-09938-Y.

[57] S. Joshi, S. Kumra, and F. Sahin, ‘‘Robotic grasping using deep reinforce-
ment learning,’’ in Proc. IEEE 16th Int. Conf. Autom. Sci. Eng. (CASE),
Aug. 2020, pp. 1461–1466, doi: 10.1109/CASE48305.2020.9216986.

[58] M. Saeed, M. Nagdi, B. Rosman, and H. H. S. M. Ali, ‘‘Deep rein-
forcement learning for robotic hand manipulation,’’ in Proc. Int. Conf.
Comput., Control, Electr., Electron. Eng. (ICCCEEE), Feb. 2021, pp. 1–5,
doi: 10.1109/ICCCEEE49695.2021.9429619.

[59] X. Lin, Y. Wang, J. Olkin, and D. Held, ‘‘SoftGym: Benchmarking
deep reinforcement learning for deformable object manipulation,’’ in
Proc. PMLR, Oct. 2021, pp. 432–448, Accessed: Jun. 2, 2023. [Online].
Available: https://proceedings.mlr.press/v155/lin21a.html

[60] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov,
and S. Levine, ‘‘Learning complex dexterous manipulation with deep
reinforcement learning and demonstrations,’’ 2017, arXiv:1709.10087.

[61] L. Manuelli, L. Li, P. Florence, and R. Tedrake, ‘‘Keypoints into the
future: Self-supervised correspondence in model-based reinforcement
learning,’’ in Proc. Conf. Robot Learn., Jan. 2020, pp. 693–710. [Online].
Available: http://dblp.uni-trier.de/db/journals/corr/corr2009.html#abs-
2009-05085

[62] J. Bao, G. Zhang, Y. Peng, Z. Shao, and A. Song, ‘‘Learnmulti-step object
sorting tasks through deep reinforcement learning,’’ Robotica, vol. 40,
no. 11, pp. 3878–3894, Nov. 2022, doi: 10.1017/s0263574722000650.

[63] F. Li, Q. Jiang, S. Zhang, M. Wei, and R. Song, ‘‘Robot skill acquisition
in assembly process using deep reinforcement learning,’’ Neurocom-
puting, vol. 345, pp. 92–102, Jun. 2019, doi: 10.1016/j.neucom.2019.
01.087.

[64] J. Matas, S. James, and A. J. Davison, ‘‘Sim-to-real reinforcement learn-
ing for deformable object manipulation,’’PMLR, pp. 734–743, Oct. 2018,
Accessed: Jun. 2, 2023. https://proceedings.mlr.press/v87/matas18a.html

[65] A. Singh, L. Yang, C. Finn, and S. Levine, ‘‘End-to-end robotic reinforce-
ment learning without reward engineering,’’ Robot., Sci. Syst., vol. 15,
p. 73, Jun. 2019, doi: 10.15607/RSS.2019.XV.073.

[66] Ì. Elguea-Aguinaco, A. Serrano-Muñoz, D. Chrysostomou, I. Inziarte-
Hidalgo, S. Bøgh, and N. Arana-Arexolaleiba, ‘‘A review on rein-
forcement learning for contact-rich robotic manipulation tasks,’’ Robot.
Comput.-Integr. Manuf., vol. 81, Jun. 2023, Art. no. 102517, doi:
10.1016/j.rcim.2022.102517.

[67] A. Acuto, P. Barillà, L. Bozzolo, M. Conterno, M. Pavese, and A. Poli-
cicchio, ‘‘Variational quantum soft actor-critic for robotic arm control,’’
2022, arXiv:2212.11681.

[68] Z. Raziei and M. Moghaddam, ‘‘Adaptable automation with
modular deep reinforcement learning and policy transfer,’’ Eng.
Appl. Artif. Intell., vol. 103, Aug. 2021, Art. no. 104296, doi:
10.1016/j.engappai.2021.104296.

[69] B. Sangiovanni, G. P. Incremona, M. Piastra, and A. Ferrara, ‘‘Self-
configuring robot path planning with obstacle avoidance via deep rein-
forcement learning,’’ IEEE Control Syst. Lett., vol. 5, no. 2, pp. 397–402,
Apr. 2021, doi: 10.1109/LCSYS.2020.3002852.

[70] G. Schoettler, A. Nair, J. Luo, S. Bahl, J. Aparicio Ojea, E. Solowjow,
and S. Levine, ‘‘Deep reinforcement learning for industrial insertion
tasks with visual inputs and natural rewards,’’ in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Oct. 2020, pp. 5548–5555, doi:
10.1109/IROS45743.2020.9341714.

[71] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, and A. M. Agogino, ‘‘Deep
reinforcement learning for robotic assembly of mixed deformable and
rigid objects,’’ in Proc. IEEE Int. Conf. Intell. Robots Syst., Dec. 2018,
pp. 2062–2069, doi: 10.1109/IROS.2018.8594353.

[72] W. Yuan, K. Hang, D. Kragic, M. Y. Wang, and J. A. Stork, ‘‘End-to-
end nonprehensile rearrangement with deep reinforcement learning and
simulation-to-reality transfer,’’ Robot. Auto. Syst., vol. 119, pp. 119–134,
Sep. 2019, doi: 10.1016/j.robot.2019.06.007.

[73] A. Koenig, Z. Liu, L. Janson, and R. Howe, ‘‘The role of tactile sensing in
learning and deploying grasp refinement algorithms,’’ in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Oct. 2022, pp. 7766–7772, doi:
10.1109/IROS47612.2022.9981915.

[74] M. H. Sayour, S. E. Kozhaya, and S. S. Saab, ‘‘Autonomous
robotic manipulation: Real-time, deep-learning approach for grasping
of unknown objects,’’ J. Robot., vol. 2022, pp. 1–14, Jun. 2022, doi:
10.1155/2022/2585656.

[75] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine, ‘‘Visual fore-
sight: Model-based deep reinforcement learning for vision-based robotic
control,’’ 2018, arXiv:1812.00568.

[76] K. Fang, Y. Zhu, A. Garg, A. Kurenkov, V. Mehta, L. Fei-Fei, and
S. Savarese, ‘‘Learning task-oriented grasping for tool manipulation
from simulated self-supervision,’’ Int. J. Robot. Res., vol. 39, nos. 2–3,
pp. 202–216, Mar. 2020, doi: 10.1177/0278364919872545.

[77] J. Mahler. (2018). Efficient Policy Learning for Robust Robot
Grasping. [Online]. Available: https://www2.eecs.berkeley.edu/
Pubs/TechRpts/2018/EECS-2018-120.pdf

[78] S. Krishnan. (2018). Hierarchical Deep Reinforcement
Learning For Robotics and Data Science. [Online]. Available:
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-
101.pdf

[79] P. Falco, A. Attawia, M. Saveriano, and D. Lee, ‘‘On policy learning
robust to irreversible events: An application to robotic in-hand manipula-
tion,’’ IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 1482–1489, Jul. 2018,
doi: 10.1109/LRA.2018.2800110.

[80] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and
S. Levine, ‘‘Scalable deep reinforcement learning for vision-
based robotic manipulation,’’ in Proc. PMLR, Oct. 2018,
pp. 651–673, Accessed: Jun. 20, 2023. [Online]. Available:
https://proceedings.mlr.press/v87/kalashnikov18a.html

[81] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine,
‘‘Composable deep reinforcement learning for robotic manipulation,’’ in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 6244–6251,
doi: 10.1109/ICRA.2018.8460756.

[82] V. Myers, A. He, K. Fang, H. Walke, P. Hansen-Estruch, C.-A. Cheng,
M. Jalobeanu, A. Kolobov, A. Dragan, and S. Levine, ‘‘Goal representa-
tions for instruction following: A semi-supervised language interface to
control,’’ 2023, arXiv:2307.00117v1.

[83] K. Black, M. Janner, Y. Du, I. Kostrikov, and S. Levine, ‘‘Training diffu-
sion models with reinforcement learning,’’ 2023, arXiv:2305.13301v2.

[84] A. Sehgal, N.Ward, H. La, and S. Louis, ‘‘Automatic parameter optimiza-
tion using genetic algorithm in deep reinforcement learning for robotic
manipulation tasks,’’ 2022, arXiv:2204.03656v2.

51854 VOLUME 12, 2024

http://dx.doi.org/10.1109/SPIN52536.2021.9566102
http://dx.doi.org/10.1007/S11390-021-1217-Z
http://dx.doi.org/10.1109/IV47402.2020.9304668
http://dx.doi.org/10.1109/ICRA.2018.8463189
http://dx.doi.org/10.26599/TST.2021.9010012
http://dx.doi.org/10.1201/9781003202240-55
http://dx.doi.org/10.1007/S10462-020-09938-Y
http://dx.doi.org/10.1007/S10462-020-09938-Y
http://dx.doi.org/10.1109/CASE48305.2020.9216986
http://dx.doi.org/10.1109/ICCCEEE49695.2021.9429619
http://dx.doi.org/10.1017/s0263574722000650
http://dx.doi.org/10.1016/j.neucom.2019.01.087
http://dx.doi.org/10.1016/j.neucom.2019.01.087
http://dx.doi.org/10.15607/RSS.2019.XV.073
http://dx.doi.org/10.1016/j.rcim.2022.102517
http://dx.doi.org/10.1016/j.engappai.2021.104296
http://dx.doi.org/10.1109/LCSYS.2020.3002852
http://dx.doi.org/10.1109/IROS45743.2020.9341714
http://dx.doi.org/10.1109/IROS.2018.8594353
http://dx.doi.org/10.1016/j.robot.2019.06.007
http://dx.doi.org/10.1109/IROS47612.2022.9981915
http://dx.doi.org/10.1155/2022/2585656
http://dx.doi.org/10.1177/0278364919872545
http://dx.doi.org/10.1109/LRA.2018.2800110
http://dx.doi.org/10.1109/ICRA.2018.8460756


R. Ozalp et al.: Advancements in DRL and IRL for Robotic Manipulation

[85] J. Thumm and M. Althoff, ‘‘Provably safe deep reinforcement
learning for robotic manipulation in human environments,’’ in
Proc. IEEE Int. Conf. Robot. Autom., 2022, pp. 6344–6350, doi:
10.1109/ICRA46639.2022.9811698.

[86] Y. Lin, A. Church, M. Yang, H. Li, J. Lloyd, D. Zhang, and N. F. Lepora,
‘‘Bi-touch: Bimanual tactile manipulation with sim-to-real deep rein-
forcement learning,’’ 2023, arXiv:2307.06423.

[87] L. Fan, ‘‘SURREAL: Open-source reinforcement learning framework
and robot manipulation benchmark,’’ in Proc. PMLR, Oct. 2018,
pp. 767–782, Accessed: Jun. 20, 2023. [Online]. Available:
https://proceedings.mlr.press/v87/fan18a.html

[88] X. Zhu, F. Zhang, and H. Li, ‘‘Swarm deep reinforcement learning
for robotic manipulation,’’ Proc. Comput. Sci., vol. 198, pp. 472–479,
Jan. 2022, doi: 10.1016/j.procs.2021.12.272.

[89] X. Liu, G. Wang, Z. Liu, Y. Liu, Z. Liu, and P. Huang, ‘‘Hierarchical
reinforcement learning integrating with human knowledge for practical
robot skill learning in complex multi-stage manipulation,’’ IEEE Trans.
Autom. Sci. Eng., early access, Jul. 17, 2004, doi: 10.1109/TASE.2023.
3288037.

[90] M. Yang, Y. Lin, A. Church, J. Lloyd, D. Zhang, D. A. W. Barton, and
N. F. Lepora, ‘‘Sim-to-real model-based and model-free deep reinforce-
ment learning for tactile pushing,’’ IEEE Robot. Autom. Lett., vol. 8, no. 9,
pp. 5480–5487, Sep. 2023, doi: 10.1109/LRA.2023.3295236.

[91] J. Yamada, ‘‘Motion planner augmented reinforcement learning for
robot manipulation in obstructed environments,’’ in Proc. Conf. Robot.
Learn, 2021, pp. 589–603, Accessed: Jun. 20, 2023. [Online]. Available:
https://proceedings.mlr.press/v155/yamada21a.html

[92] A. Sehgal, H. La, S. Louis, and H. Nguyen, ‘‘Deep reinforcement learn-
ing using genetic algorithm for parameter optimization,’’ in Proc. 3rd
IEEE Int. Conf. Robotic Comput. (IRC), Feb. 2019, pp. 596–601, doi:
10.1109/IRC.2019.00121.

[93] H. Xiong, T. Ma, L. Zhang, and X. Diao, ‘‘Comparison of end-to-end
and hybrid deep reinforcement learning strategies for controlling cable-
driven parallel robots,’’ Neurocomputing, vol. 377, pp. 73–84, Feb. 2020,
doi: 10.1016/j.neucom.2019.10.020.

[94] B. Peng, T. Rashid, C. A. Schroeder de Witt, P.-A. Kamienny,
P. H. S. Torr, W. Böhmer, and S. Whiteson, ‘‘FACMAC: Factored multi-
agent centralised policy gradients,’’ 2020, arXiv:2003.06709.

[95] A. Zhan, R. Zhao, L. Pinto, P. Abbeel, and M. Laskin, ‘‘A frame-
work for efficient robotic manipulation,’’ in Proc. NeurIPS, Dec. 2021,
pp. 1–15.

[96] R. Jangir, G. Alenya, and C. Torras, ‘‘Dynamic cloth manipulation
with deep reinforcement learning,’’ in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2020, pp. 4630–4636, doi:
10.1109/ICRA40945.2020.9196659.

[97] Y. Hu and B. Si, ‘‘A reinforcement learning neural network for robotic
manipulator control,’’ Neural Comput., vol. 30, no. 7, pp. 1983–2004,
Jul. 2018, doi: 10.1162/neco_a_01079.

[98] R. Jeong, Y. Aytar, D. Khosid, Y. Zhou, J. Kay, T. Lampe,
K. Bousmalis, and F. Nori, ‘‘Self-supervised sim-to-real adaptation for
visual robotic manipulation,’’ in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2020, pp. 2718–2724, doi: 10.1109/ICRA40945.2020.
9197326.

[99] C. Wang, Q. Zhang, Q. Tian, S. Li, X. Wang, D. Lane, Y. Petillot, and
S. Wang, ‘‘Learning mobile manipulation through deep reinforcement
learning,’’ Sensors, vol. 20, no. 3, p. 939, Feb. 2020, doi: 10.3390/
s20030939.

[100] Y. Tsurumine, Y. Cui, E. Uchibe, and T. Matsubara, ‘‘Deep reinforce-
ment learning with smooth policy update: Application to robotic cloth
manipulation,’’ Robot. Auto. Syst., vol. 112, pp. 72–83, Feb. 2019, doi:
10.1016/j.robot.2018.11.004.

[101] B. Sangiovanni, A. Rendiniello, G. P. Incremona, A. Ferrara, and
M. Piastra, ‘‘Deep reinforcement learning for collision avoidance of
robotic manipulators,’’ in Proc. Eur. Control Conf. (ECC), Jun. 2018,
pp. 2063–2068, doi: 10.23919/ECC.2018.8550363.

[102] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
‘‘Learning synergies between pushing and grasping with self-
supervised deep reinforcement learning,’’ in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 4238–4245, doi:
10.1109/IROS.2018.8593986.

[103] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar, ‘‘Dexter-
ous manipulation with deep reinforcement learning: Efficient, general,
and low-cost,’’ in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 3651–3657, doi: 10.1109/ICRA.2019.8794102.

[104] Y. Hu, W. Wang, H. Liu, and L. Liu, ‘‘Reinforcement learning track-
ing control for robotic manipulator with kernel-based dynamic model,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3570–3578,
Sep. 2020, doi: 10.1109/TNNLS.2019.2945019.

[105] W. Zhao, J. P. Queralta, and T. Westerlund, ‘‘Sim-to-real transfer
in deep reinforcement learning for robotics: A survey,’’ in Proc.
IEEE Symp. Series Comput. Intell. (SSCI), 2020. pp. 737–744, doi:
10.1109/SSCI47803.2020.9308468.

[106] C. C. Beltran-Hernandez, D. Petit, I. G. Ramirez-Alpizar, and K. Harada,
‘‘Variable compliance control for robotic peg-in-hole assembly: A deep-
reinforcement-learning approach,’’ Appl. Sci., vol. 10, no. 19, p. 6923,
Oct. 2020, doi: 10.3390/app10196923.

[107] A. Mandlekar, F. Ramos, B. Boots, S. Savarese, L. Fei-Fei, A. Garg,
and D. Fox, ‘‘IRIS: Implicit reinforcement without interaction at scale
for learning control from offline robot manipulation data,’’ in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2020, pp. 4414–4420, doi:
10.1109/ICRA40945.2020.9196935.

[108] J. Xie, Z. Shao, Y. Li, Y. Guan, and J. Tan, ‘‘Deep reinforce-
ment learning with optimized reward functions for robotic trajec-
tory planning,’’ IEEE Access, vol. 7, pp. 105669–105679, 2019, doi:
10.1109/ACCESS.2019.2932257.

[109] A. Wang, T. Kurutach, K. Liu, P. Abbeel, and A. Tamar, ‘‘Learning
robotic manipulation through visual planning and acting,’’ Robot., Sci.
Syst., pp. 74–86, May 2019, doi: 10.15607/RSS.2019.XV.074.

[110] R. Strudel, A. Pashevich, I. Kalevatykh, I. Laptev, J. Sivic, and C. Schmid,
‘‘Learning to combine primitive skills: A step towards versatile robotic
manipulation,’’ in Proc. IEEE Int. Conf. Robot. Autom., May 2020,
pp. 4637–4643, doi: 10.1109/ICRA40945.2020.9196619.

[111] X. Li, J. Zhong, and M. M. Kamruzzaman, ‘‘Complicated robot
activity recognition by quality-aware deep reinforcement learning,’’
Future Gener. Comput. Syst., vol. 117, pp. 480–485, Apr. 2021, doi:
10.1016/j.future.2020.11.017.

[112] A. Malik, Y. Lischuk, T. Henderson, and R. Prazenica, ‘‘A deep
reinforcement-learning approach for inverse kinematics solution of a high
degree of freedom robotic manipulator,’’ Robotics, vol. 11, no. 2, p. 44,
Apr. 2022, doi: 10.3390/robotics11020044.

[113] H. Oliff, Y. Liu, M. Kumar, M. Williams, and M. Ryan, ‘‘Rein-
forcement learning for facilitating human-robot-interaction in man-
ufacturing,’’ J. Manuf. Syst., vol. 56, pp. 326–340, Jul. 2020, doi:
10.1016/j.jmsy.2020.06.018.

[114] S. Christen, S. Stevšic, and O. Hilliges, ‘‘Demonstration-guided deep
reinforcement learning of control policies for dexterous human-robot
interaction,’’ in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 2161–2167, doi: 10.1109/ICRA.2019.8794065.

[115] M. El-Shamouty, X. Wu, S. Yang, M. Albus, and M. F. Huber, ‘‘Towards
safe human–robot collaboration using deep reinforcement learning,’’ in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2020, pp. 4899–4905,
doi: 10.1109/ICRA40945.2020.9196924.

[116] C. Li, P. Zheng, Y. Yin, Y. M. Pang, and S. Huo, ‘‘An AR-assisted
deep reinforcement learning-based approach towards mutual-
cognitive safe human–robot interaction,’’ Robot. Comput.-Integr.
Manuf., vol. 80, Apr. 2023, Art. no. 102471, doi: 10.1016/j.rcim.2022.
102471.

[117] M. B. Imtiaz, Y. Qiao, and B. Lee, ‘‘Prehensile and non-prehensile
robotic pick-and-place of objects in clutter using deep reinforcement
learning,’’ Sensors, vol. 23, no. 3, p. 1513, Jan. 2023, doi: 10.3390/
s23031513.

[118] R. Dershan, A. M. Soufi Enayati, Z. Zhang, D. Richert, and H. Najjaran,
‘‘Facilitating sim-to-real by intrinsic stochasticity of real-time sim-
ulation in reinforcement learning for robot manipulation,’’ 2023,
arXiv:2304.06056.

[119] N. G. Lopez, Y. L. E. Nuin, E. B. Moral, L. U. S. Juan, A. S. Rueda,
V. M. Vilches, and R. Kojcev, ‘‘Gym-gazebo2, a toolkit for reinforcement
learning using ROS 2 and gazebo,’’ 2019, arXiv:1903.06278.

[120] S. N. Aslan, B. Taşçi, A. Uçar, and C. Güzeliş, ‘‘Learning to
move an object by the humanoid robots by using deep reinforce-
ment learning,’’ in Proc. Intell. Environments Workshop 17th Int. Conf.
Intell. Environments, vol. 29, Jul. 2021, pp. 143–155, doi: 10.3233/
AISE210092.

[121] C. Chen, H.-Y. Li, X. Zhang, X. Liu, and U.-X. Tan, ‘‘Towards
robotic picking of targets with background distractors using deep
reinforcement learning,’’ in Proc. WRC Symp. Adv. Robot. Autom.
(WRC SARA), Aug. 2019, pp. 166–171, doi: 10.1109/WRC-SARA.2019.
8931932.

VOLUME 12, 2024 51855

http://dx.doi.org/10.1109/ICRA46639.2022.9811698
http://dx.doi.org/10.1016/j.procs.2021.12.272
http://dx.doi.org/10.1109/TASE.2023.3288037
http://dx.doi.org/10.1109/TASE.2023.3288037
http://dx.doi.org/10.1109/LRA.2023.3295236
http://dx.doi.org/10.1109/IRC.2019.00121
http://dx.doi.org/10.1016/j.neucom.2019.10.020
http://dx.doi.org/10.1109/ICRA40945.2020.9196659
http://dx.doi.org/10.1162/neco_a_01079
http://dx.doi.org/10.1109/ICRA40945.2020.9197326
http://dx.doi.org/10.1109/ICRA40945.2020.9197326
http://dx.doi.org/10.3390/s20030939
http://dx.doi.org/10.3390/s20030939
http://dx.doi.org/10.1016/j.robot.2018.11.004
http://dx.doi.org/10.23919/ECC.2018.8550363
http://dx.doi.org/10.1109/IROS.2018.8593986
http://dx.doi.org/10.1109/ICRA.2019.8794102
http://dx.doi.org/10.1109/TNNLS.2019.2945019
http://dx.doi.org/10.1109/SSCI47803.2020.9308468
http://dx.doi.org/10.3390/app10196923
http://dx.doi.org/10.1109/ICRA40945.2020.9196935
http://dx.doi.org/10.1109/ACCESS.2019.2932257
http://dx.doi.org/10.15607/RSS.2019.XV.074
http://dx.doi.org/10.1109/ICRA40945.2020.9196619
http://dx.doi.org/10.1016/j.future.2020.11.017
http://dx.doi.org/10.3390/robotics11020044
http://dx.doi.org/10.1016/j.jmsy.2020.06.018
http://dx.doi.org/10.1109/ICRA.2019.8794065
http://dx.doi.org/10.1109/ICRA40945.2020.9196924
http://dx.doi.org/10.1016/j.rcim.2022.102471
http://dx.doi.org/10.1016/j.rcim.2022.102471
http://dx.doi.org/10.3390/s23031513
http://dx.doi.org/10.3390/s23031513
http://dx.doi.org/10.3233/AISE210092
http://dx.doi.org/10.3233/AISE210092
http://dx.doi.org/10.1109/WRC-SARA.2019.8931932
http://dx.doi.org/10.1109/WRC-SARA.2019.8931932


R. Ozalp et al.: Advancements in DRL and IRL for Robotic Manipulation

[122] X. Xie, C. Li, C. Zhang, Y. Zhu, and S.-C. Zhu, ‘‘Learning virtual grasp
with failed demonstrations via Bayesian inverse reinforcement learning,’’
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Nov. 2019,
pp. 1812–1817, doi: 10.1109/IROS40897.2019.8968063.

[123] J. Sun, L. Yu, P. Dong, B. Lu, and B. Zhou, ‘‘Adversarial inverse
reinforcement learning with self-attention dynamics model,’’ IEEE
Robot. Autom. Lett., vol. 6, no. 2, pp. 1880–1886, Apr. 2021, doi:
10.1109/LRA.2021.3061397.

[124] S. Krishnan, A. Garg, R. Liaw, B. Thananjeyan, L. Miller, F. T. Pokorny,
and K. Goldberg, ‘‘SWIRL: A sequential windowed inverse rein-
forcement learning algorithm for robot tasks with delayed rewards,’’
Int. J. Robot. Res., vol. 38, nos. 2–3, pp. 126–145, Mar. 2019, doi:
10.1177/0278364918784350.

[125] S. Kumar, J. Zamora, N. Hansen, R. Jangir, and X. Wang, ‘‘Graph
inverse reinforcement learning from diverse videos,’’ in Proc. PMLR,
Mar. 2023, pp. 55–66, Accessed: Jun. 4, 2023. [Online]. Available:
https://proceedings.mlr.press/v205/kumar23a.html

[126] A. Gleave and O. Habryka, ‘‘Multi-task maximum entropy inverse rein-
forcement learning,’’ 2018, arXiv:1805.08882.

[127] I. Batzianoulis, F. Iwane, S. Wei, C. G. P. R. Correia, R. Chavarriaga,
J. D. R. Millán, and A. Billard, ‘‘Customizing skills for assistive robotic
manipulators, an inverse reinforcement learning approach with error-
related potentials,’’ Commun. Biol., vol. 4, no. 1, p. 1406, Dec. 2021, doi:
10.1038/s42003-021-02891-8.

[128] Y. Ma, D. Xu, and F. Qin, ‘‘Efficient insertion control for precision
assembly based on demonstration learning and reinforcement learning,’’
IEEE Trans. Ind. Informat., vol. 17, no. 7, pp. 4492–4502, Jul. 2021, doi:
10.1109/TII.2020.3020065.

[129] X. Zhang, L. Sun, Z. Kuang, and M. Tomizuka, ‘‘Learning variable
impedance control via inverse reinforcement learning for force-related
tasks,’’ IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 2225–2232, Apr. 2021,
doi: 10.1109/LRA.2021.3061374.

[130] M. Hamaya, F. von Drigalski, T. Matsubara, K. Tanaka, R. Lee,
C. Nakashima, Y. Shibata, and Y. Ijiri, ‘‘Learning soft robotic assembly
strategies from successful and failed demonstrations,’’ in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Oct. 2020, pp. 8309–8315, doi:
10.1109/IROS45743.2020.9341504.

[131] D. S. Brown, W. Goo, and S. Niekum, ‘‘Better-than-demonstrator imita-
tion learning via automatically-ranked demonstrations,’’ in Proc. PMLR,
May 2020, pp. 330–359, Accessed: Jun. 22, 2023. [Online]. Available:
https://proceedings.mlr.press/v100/brown20a.html

[132] S. Arora, P. Doshi, and B. Banerjee, ‘‘Online inverse reinforce-
ment learning with learned observation model,’’ in Proc. PMLR,
Mar. 2023, pp. 1468–1477, Accessed: Jun. 4, 2023. [Online]. Available:
https://proceedings.mlr.press/v205/arora23a.html

[133] K. Nishi and M. Shimosaka, ‘‘Fine-grained driving behavior prediction
via context-aware multi-task inverse reinforcement learning,’’ in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2020, pp. 2281–2287, doi:
10.1109/ICRA40945.2020.9197126.

[134] S.-W. Yoo and S.-W. Seo, ‘‘Learning multi-task transferable
rewards via variational inverse reinforcement learning,’’ in Proc.
Int. Conf. Robot. Autom. (ICRA), May 2022, pp. 434–440, doi:
10.1109/ICRA46639.2022.9811697.

[135] S. Arora, P. Doshi, and B. Banerjee, ‘‘Min-max entropy inverse
RL of multiple tasks,’’ in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2021, pp. 12639–12645, doi: 10.1109/ICRA48506.2021.
9561771.

[136] K. Kobayashi, T. Horii, R. Iwaki, Y. Nagai, and M. Asada, ‘‘Situated
GAIL: Multitask imitation using task-conditioned adversarial inverse
reinforcement learning,’’ 2019, arXiv:1911.00238.

[137] K. Hausman, Y. Chebotar, S. Schaal, G. Sukhatme, and J. J. Lim,
‘‘Multi-modal imitation learning from unstructured demonstrations using
generative adversarial nets,’’ in Proc. Adv Neural Inf. Process Syst.,
May 2017, pp. 1236–1246, Accessed: Jun. 5, 2023.

[138] S. Piao, Y. Huang, and H. Liu, ‘‘Online multi-modal imitation learn-
ing via lifelong intention encoding,’’ in Proc. IEEE 4th Int. Conf.
Adv. Robot. Mechatronics (ICARM), Jul. 2019, pp. 786–792, doi:
10.1109/ICARM.2019.8833960.

[139] R. H. Kaiser, M. T. Treadway, D. W. Wooten, P. Kumar, F. Goer,
L. Murray, M. Beltzer, P. Pechtel, A. Whitton, A. L. Cohen, N. M. Alpert,
G. El Fakhri, M. D. Normandin, and D. A. Pizzagalli, ‘‘Frontostriatal
and dopamine markers of individual differences in reinforcement learn-
ing: A multi-modal investigation,’’ Cerebral Cortex, vol. 28, no. 12,
pp. 4281–4290, Dec. 2018, doi: 10.1093/cercor/bhx281.

[140] K. Stanojević, S. P. Samuel, K. Advisor, and P.-A. Murena. (2021).
Non-Sequential Bayesian Multi-Modal Inverse Reinforcement Learn-
ing, Accessed: Jul. 2, 2023. [Online]. Available: https://aaltodoc.
aalto.fi:443/handle/123456789/111789

[141] D. S. Brown, Y. Cui, and S. Niekum, ‘‘Risk-aware active inverse
reinforcement learning,’’ in Proc. PMLR, Oct. 2018, pp. 362–372,
Accessed: Jun. 5, 2023. [Online]. Available: https://proceedings.
mlr.press/v87/brown18a.html

[142] M. Lopes, F. Melo, and L. Montesano, ‘‘Active learning for reward
estimation in inverse reinforcement learning,’’ in Lecture Notes in Com-
puter Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 5782, 2009, pp. 31–46, doi:
10.1007/978-3-642-04174-7_3.

[143] F. Memarian, Z. Xu, B. Wu, M. Wen, and U. Topcu, ‘‘Active task-
inference-guided deep inverse reinforcement learning,’’ in Proc. 59th
IEEE Conf. Decis. Control (CDC), Dec. 2020, pp. 1932–1938, doi:
10.1109/CDC42340.2020.9304190.

[144] D. Lindner, A. Krause, and G. Ramponi, ‘‘Active exploration for inverse
reinforcement learning,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 35,
Dec. 2022, pp. 5843–5853, Accessed: Jul. 2, 2023. [Online]. Available:
https://github.com/lasgroup/aceirl

[145] M. Fahad, Z. Chen, and Y. Guo, ‘‘Learning how pedestrians navigate:
A deep inverse reinforcement learning approach,’’ in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 819–826, doi:
10.1109/IROS.2018.8593438.

[146] D. Mukherjee, K. Gupta, L. H. Chang, and H. Najjaran, ‘‘A survey
of robot learning strategies for human-robot collaboration in indus-
trial settings,’’ Robot. Comput.-Integr. Manuf., vol. 73, Feb. 2022,
Art. no. 102231, doi: 10.1016/j.rcim.2021.102231.

[147] W. Wang, R. Li, Y. Chen, Z. M. Diekel, and Y. Jia, ‘‘Facilitating
human–robot collaborative tasks by teaching-learning-collaboration from
human demonstrations,’’ IEEE Trans. Autom. Sci. Eng., vol. 16, no. 2,
pp. 640–653, Apr. 2019, doi: 10.1109/TASE.2018.2840345.

[148] B. Woodworth, F. Ferrari, T. E. Zosa, and L. D. Riek, ‘‘Preference learn-
ing in assistive robotics: Observational repeated inverse reinforcement
learning,’’ in Proc. Mach. Learn. Res., vol. 85, Nov. 2018, pp. 420–439,
Accessed: May 21, 2023. [Online]. Available: https://proceedings.
mlr.press/v85/woodworth18a.html

[149] M. Kollmitz, T. Koller, J. Boedecker, and W. Burgard, ‘‘Learning
human-aware robot navigation from physical interaction via inverse
reinforcement learning,’’ in Proc. IEEE Int. Conf. Intell. Robots
Syst., Oct. 2020, pp. 11025–11031, doi: 10.1109/IROS45743.2020.
9340865.

[150] N. Das, S. Bechtle, T. Davchev, D. Jayaraman, A. Rai, and
F. Meier, ‘‘Model-based inverse reinforcement learning from visual
demonstrations,’’ in Proc. PMLR, Oct. 2021, pp. 1930–1942,
Accessed: Jun. 4, 2023. [Online]. Available: https://proceedings.
mlr.press/v155/das21a.html

[151] W. Xue, P. Kolaric, J. Fan, B. Lian, T. Chai, and F. L. Lewis, ‘‘Inverse
reinforcement learning in tracking control based on inverse optimal con-
trol,’’ IEEE Trans. Cybern., vol. 52, no. 10, pp. 10570–10581, Oct. 2022,
doi: 10.1109/TCYB.2021.3062856.

[152] E. B. Hansen, R. E. Andersen, S. Madsen, and S. Bøgh, ‘‘Transferring
human manipulation knowledge to robots with inverse reinforcement
learning,’’ in Proc. IEEE/SICE Int. Symp. Syst. Integr. (SII), Jan. 2020,
pp. 933–937, doi: 10.1109/SII46433.2020.9025873.

[153] O. M. Manyar, Z. McNulty, S. Nikolaidis, and S. K. Gupta, ‘‘Inverse
reinforcement learning framework for transferring task sequencing poli-
cies from humans to robots in manufacturing applications,’’ in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2023, pp. 849–856, doi:
10.1109/ICRA48891.2023.10160687.

[154] W. Luo, J. Zhang, P. Feng, D. Yu, and Z. Wu, ‘‘A deep transfer-
learning-based dynamic reinforcement learning for intelligent tightening
system,’’ Int. J. Intell. Syst., vol. 36, no. 3, pp. 1345–1365,Mar. 2021, doi:
10.1002/int.22345.

[155] Q. Wang, F. R. Sanchez, R. McCarthy, D. C. Bulens, K. McGuinness,
N. O’Connor, M. Wüthrich, F. Widmaier, S. Bauer, and S. J. Redmond,
‘‘Dexterous robotic manipulation using deep reinforcement learning and
knowledge transfer for complex sparse reward-based tasks,’’ Expert Syst.,
vol. 40, no. 6, p. 13205, Nov. 2022, doi: 10.1111/exsy.13205.

[156] A. Bobu, M. Wiggert, C. Tomlin, and A. D. Dragan, ‘‘Feature expansive
reward learning: Rethinking human input,’’ in Proc. 16th ACM/IEEE
Int. Conf. Hum.-Robot Interact. (HRI), Mar. 2021, pp. 216–224, doi:
10.1145/3434073.3444667.

51856 VOLUME 12, 2024

http://dx.doi.org/10.1109/IROS40897.2019.8968063
http://dx.doi.org/10.1109/LRA.2021.3061397
http://dx.doi.org/10.1177/0278364918784350
http://dx.doi.org/10.1038/s42003-021-02891-8
http://dx.doi.org/10.1109/TII.2020.3020065
http://dx.doi.org/10.1109/LRA.2021.3061374
http://dx.doi.org/10.1109/IROS45743.2020.9341504
http://dx.doi.org/10.1109/ICRA40945.2020.9197126
http://dx.doi.org/10.1109/ICRA46639.2022.9811697
http://dx.doi.org/10.1109/ICRA48506.2021.9561771
http://dx.doi.org/10.1109/ICRA48506.2021.9561771
http://dx.doi.org/10.1109/ICARM.2019.8833960
http://dx.doi.org/10.1093/cercor/bhx281
http://dx.doi.org/10.1007/978-3-642-04174-7_3
http://dx.doi.org/10.1109/CDC42340.2020.9304190
http://dx.doi.org/10.1109/IROS.2018.8593438
http://dx.doi.org/10.1016/j.rcim.2021.102231
http://dx.doi.org/10.1109/TASE.2018.2840345
http://dx.doi.org/10.1109/IROS45743.2020.9340865
http://dx.doi.org/10.1109/IROS45743.2020.9340865
http://dx.doi.org/10.1109/TCYB.2021.3062856
http://dx.doi.org/10.1109/SII46433.2020.9025873
http://dx.doi.org/10.1109/ICRA48891.2023.10160687
http://dx.doi.org/10.1002/int.22345
http://dx.doi.org/10.1111/exsy.13205
http://dx.doi.org/10.1145/3434073.3444667


R. Ozalp et al.: Advancements in DRL and IRL for Robotic Manipulation

[157] A. Bobu, M. Wiggert, C. Tomlin, and A. D. Dragan, ‘‘Inducing structure
in reward learning by learning features,’’ Int. J. Robot. Res., vol. 41, no. 5,
pp. 497–518, Apr. 2022, doi: 10.1177/02783649221078031.

[158] D. S. Brown, W. Goo, P. Nagarajan, and S. Niekum, ‘‘Extrapolating
beyond suboptimal demonstrations via inverse reinforcement learn-
ing from observations,’’ in Proc. PMLR, May 2019, pp. 783–792,
Accessed: Jun. 4, 2023. [Online]. Available: https://proceedings.mlr.
press/v97/brown19a.html

[159] Z.Wu, L. Sun,W. Zhan, C. Yang, andM. Tomizuka, ‘‘Efficient sampling-
based maximum entropy inverse reinforcement learning with application
to autonomous driving,’’ IEEE Robot. Autom. Lett., vol. 5, no. 4,
pp. 5355–5362, Oct. 2020, doi: 10.1109/LRA.2020.3005126.

[160] C. You, J. Lu, D. Filev, and P. Tsiotras, ‘‘Advanced planning for
autonomous vehicles using reinforcement learning and deep inverse rein-
forcement learning,’’ Robot. Auto. Syst., vol. 114, pp. 1–18, Apr. 2019,
doi: 10.1016/j.robot.2019.01.003.

[161] A. Tucker, A. Gleave, and S. Russell, ‘‘Inverse reinforcement learning for
video games,’’ 2018, arXiv:1810.10593.

[162] N. Yu, L. Nan, and T. Ku, ‘‘Robot hand-eye cooperation based on
improved inverse reinforcement learning,’’ Ind. Robot: Int. J. Robot. Res.
Appl., vol. 49, no. 5, pp. 877–884, Jun. 2022, doi: 10.1108/ir-09-2021-
0208.

[163] L. Yu, T. Yu, C. Finn, and S. Ermon, ‘‘Meta-inverse reinforcement learn-
ing with probabilistic context variables,’’ 2019, arXiv:1909.09314.

[164] J. Chen, T. Lan, and V. Aggarwal, ‘‘Option-aware adversarial inverse
reinforcement learning for robotic control,’’ 2022, arXiv:2210.01969.

[165] F. Xie, A. Chowdhury, M. C. De Paolis Kaluza, L. Zhao, L. L. S. Wong,
and R. Yu, ‘‘Deep imitation learning for bimanual robotic manipulation,’’
2020, arXiv:2010.05134v2.

[166] A. T. Le, M. Guo, N. v. Duijkeren, L. Rozo, R. Krug, A. G. Kupcsik,
and M. Bürger, ‘‘Learning forceful manipulation skills from multi-modal
human demonstrations,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Sep. 2021, pp. 7770–7777, doi: 10.1109/IROS51168.
2021.9636828.

[167] J. Luo, O. Sushkov, R. Pevceviciute, W. Lian, C. Su, M. Vecerik,
N. Ye, S. Schaal, and J. Scholz ‘‘Robust multi-modal policies for
industrial assembly via reinforcement learning and demonstrations: A
large-scale study,’’ Robot., Sci. Syst., vol. 17, pp. 88–97, Mar. 2021, doi:
10.15607/RSS.2021.XVII.088.

[168] A. Bighashdel, P. Meletis, P. Jancura, and G. Dubbelman, ‘‘Deep adaptive
multi-intention inverse reinforcement learning,’’ in Proc. Mach. Learn.
Knowl. Discovery Databases. Res. Track, in Lecture Notes in Computer
Science, 2021, pp. 206–221, doi: 10.1007/978-3-030-86486-6_13.

[169] M. Imani and S. F. Ghoreishi, ‘‘Scalable inverse reinforcement learn-
ing through multifidelity Bayesian optimization,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 33, no. 8, pp. 4125–4132, Aug. 2022, doi:
10.1109/TNNLS.2021.3051012.

[170] A. Jobin, M. Ienca, and E. Vayena, ‘‘The global landscape of AI ethics
guidelines,’’ Nature Mach. Intell., vol. 1, no. 9, pp. 389–399, Sep. 2019,
doi: 10.1038/s42256-019-0088-2.

[171] A. Holzinger, A. Saranti, C. Molnar, P. Biecek, and W. Samek, ‘‘Explain-
able AI methods—A brief overview,’’ in XxAI—Beyond Explainable AI
(Lecture Notes in Computer Science), 2022, pp. 13–38, doi: 10.1007/978-
3-031-04083-2_2.

[172] A. Ghosh and D. Kandasamy, ‘‘Interpretable artificial intelligence: Why
and when,’’ Amer. J. Roentgenology, vol. 214, no. 5, pp. 1137–1138,
May 2020, doi: 10.2214/ajr.19.22145.

[173] M. T. Mason, ‘‘Toward robotic manipulation,’’ Annu. Rev. Control,
Robot., Auto. Syst., vol. 1, no. 1, pp. 1–28, May 2018, doi: 10.1146/
annurev-control-060117-104848.

[174] A. Akundi, D. Euresti, S. Luna, W. Ankobiah, A. Lopes, and I. Edin-
barough, ‘‘State of industry 5.0—Analysis and identification of current
research trends,’’ Appl. Syst. Innov., vol. 5, no. 1, p. 27, Feb. 2022, doi:
10.3390/asi5010027.

[175] X. Li, Z. Serlin, G. Yang, and C. Belta, ‘‘A formal methods
approach to interpretable reinforcement learning for robotic plan-
ning,’’ Sci. Robot., vol. 4, no. 37, Dec. 2019, Art. no. aay6276, doi:
10.1126/scirobotics.aay6276.

[176] M. Z. Naser, ‘‘An engineer’s guide to eXplainable artificial intelli-
gence and interpretable machine learning: Navigating causality, forced
goodness, and the false perception of inference,’’ Autom. Construction,
vol. 129, Sep. 2021, Art. no. 103821, doi: 10.1016/j.autcon.2021.103821.

[177] S.M.Mizanoor Rahman, ‘‘Trustworthy power assistance in object manip-
ulation with a power assist robotic system,’’ in Proc. SoutheastCon,
Apr. 2019, pp. 1–8, doi: 10.1109/southeastcon42311.2019.9020523.

[178] A. Heuillet, F. Couthouis, and N. Díaz-Rodríguez, ‘‘Explainability
in deep reinforcement learning,’’ Knowledge-Based Syst., vol. 214,
Feb. 2021, Art. no. 106685, doi: 10.1016/j.knosys.2020.106685.

[179] A. Salehi and S. Doncieux, ‘‘Data-efficient, explainable and safe box
manipulation: Illustrating the advantages of physical priors in model-
predictive control,’’ 2023, arXiv:2303.01563.

[180] A. Pore, D. Corsi, E. Marchesini, D. Dall’Alba, A. Casals, A. Farinelli,
and P. Fiorini, ‘‘Safe reinforcement learning using formal verifica-
tion for tissue retraction in autonomous robotic-assisted surgery,’’ in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2021,
pp. 4025–4031, doi: 10.1109/IROS51168.2021.9636175.

[181] D. Corsi, E. Marchesini, A. Farinelli, and P. Fiorini, ‘‘Formal verification
for safe deep reinforcement learning in trajectory generation,’’ in Proc.
4th IEEE Int. Conf. Robotic Comput. (IRC), Nov. 2020, pp. 352–359, doi:
10.1109/IRC.2020.00062.

[182] K. You, C. Zhou, and L. Ding, ‘‘Deep learning technology for construc-
tion machinery and robotics,’’ Autom. Construction, vol. 150, Jun. 2023,
Art. no. 104852, doi: 10.1016/j.autcon.2023.104852.

[183] W. J.Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu, ‘‘Defini-
tions, methods, and applications in interpretable machine learning,’’Proc.
Nat. Acad. Sci. USA, vol. 116, no. 44, pp. 22071–22080, Oct. 2019, doi:
10.1073/pnas.1900654116.

[184] D. Corsi, R. Yerushalmi, G. Amir, A. Farinelli, D. Harel, and G. Katz,
‘‘Constrained reinforcement learning for robotics via scenario-based pro-
gramming,’’ 2022, arXiv:2206.09603.

[185] B. Beyret, A. Shafti, and A. A. Faisal, ‘‘Dot-to-dot: Explainable hierarchi-
cal reinforcement learning for robotic manipulation,’’ in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Nov. 2019, pp. 5014–5019, doi:
10.1109/IROS40897.2019.8968488.

[186] S. B. Remman and A. M. Lekkas, ‘‘Robotic lever manipulation
using hindsight experience replay and Shapley additive explanations,’’
in Proc. Eur. Control Conf. (ECC), Jun. 2021, pp. 586–593, doi:
10.23919/ECC54610.2021.9654850.

[187] S. A. Khader, H. Yin, P. Falco, and D. Kragic, ‘‘Learning deep
energy shaping policies for stability-guaranteed manipulation,’’ IEEE
Robot. Autom. Lett., vol. 6, no. 4, pp. 8583–8590, Oct. 2021, doi:
10.1109/LRA.2021.3111962.

[188] T. Hickling, A. Zenati, N. Aouf, and P. Spencer, ‘‘Explainability in deep
reinforcement learning, a review into current methods and applications,’’
2022, arXiv:2207.01911.

[189] S. B. Remman, I. Strümke, and A. M. Lekkas, ‘‘Causal versus marginal
Shapley values for robotic lever manipulation controlled using deep
reinforcement learning,’’ in Proc. Amer. Control Conf. (ACC), Jun. 2022,
pp. 2683–2690, doi: 10.23919/ACC53348.2022.9867807.

[190] (2018). Number of Robotic Manipulation Studies Using DRL in Google
Scholar From 2018 to 2023. Accessed: Feb. 28, 2024. [Online]. Available:
https://scholar.google.com/scholar?q=%22deep+reinforcement+learning
%22+and+%22robot+manipulation%22&hl=tr&as_sdt=0%2C5&as
_ylo=2018&as_yhi=2023

[191] Number of Robotic Manipulation Studies Using DRL in Web of Science
from 2018 to 2023. Accessed: Feb. 28, 2024. [Online]. Available:
https://www.webofscience.com/wos/woscc/summary/9e95bb47-f6ad-
42ef-b4a0-53c5734c42e7-cf8587d7/relevance/1

[192] Number of Robotic Manipulation Studies Using IRL in Google Scholar
from 2018 to 2023. Accessed: Feb. 28, 2024. [Online]. Available:
https://scholar.google.com/scholar?q=%22inverse+reinforcement+
learning%22+and+%22robot+manipulation%22&hl=tr&as_sdt=
0%2C5&as_ylo=2018&as_yhi=2023

[193] Number of Robotic Manipulation Studies Using DRL in Web of Science
from 2018 to 2023. Accessed: Feb. 28, 2024. [Online]. Available:
https://www.webofscience.com/wos/woscc/summary/7b18565c-
d2ea-4604-bef1-f04062fb5054-cf8a6 ff3/relevance/1

[194] Number of Robotic Manipulation Studies Using Explainable AI in Google
Scholar from 2018 to 2023. Accessed: Feb. 28, 2024. [Online]. Available:
https://scholar.google.com/scholar?q=%22explainable+ai%22+and+
%22robot+manipulation%22&hl=tr&as_sdt=0%2C5&as_ylo=
2018&as_yhi=2023

[195] Number of Robotic Manipulation Studies Using Explainable AI in Web of
Science from 2018 to 2023. Accessed: Feb. 28, 2024. [Online]. Available:
https://www.webofscience.com/wos/woscc/summary/3df660b8-412a-
4abf-bf8b-f0da5551d751-cf8 a9774/relevance/1

[196] Number of Robotic Manipulation Studies Using Trustworthy AI in Google
Scholar from 2018 to 2023. Accessed: Feb. 28, 2024. [Online]. Available:
https://scholar.google.com/scholar?q=%22trustworthy+ai%22+and+
%22robot+manipulation%22&hl=tr&as_sdt=0%2C5&as_ylo=
2018&as_yhi=2023

VOLUME 12, 2024 51857

http://dx.doi.org/10.1177/02783649221078031
http://dx.doi.org/10.1109/LRA.2020.3005126
http://dx.doi.org/10.1016/j.robot.2019.01.003
http://dx.doi.org/10.1108/ir-09-2021-0208
http://dx.doi.org/10.1108/ir-09-2021-0208
http://dx.doi.org/10.1109/IROS51168.2021.9636828
http://dx.doi.org/10.1109/IROS51168.2021.9636828
http://dx.doi.org/10.15607/RSS.2021.XVII.088
http://dx.doi.org/10.1007/978-3-030-86486-6_13
http://dx.doi.org/10.1109/TNNLS.2021.3051012
http://dx.doi.org/10.1038/s42256-019-0088-2
http://dx.doi.org/10.1007/978-3-031-04083-2_2
http://dx.doi.org/10.1007/978-3-031-04083-2_2
http://dx.doi.org/10.2214/ajr.19.22145
http://dx.doi.org/10.1146/annurev-control-060117-104848
http://dx.doi.org/10.1146/annurev-control-060117-104848
http://dx.doi.org/10.3390/asi5010027
http://dx.doi.org/10.1126/scirobotics.aay6276
http://dx.doi.org/10.1016/j.autcon.2021.103821
http://dx.doi.org/10.1109/southeastcon42311.2019.9020523
http://dx.doi.org/10.1016/j.knosys.2020.106685
http://dx.doi.org/10.1109/IROS51168.2021.9636175
http://dx.doi.org/10.1109/IRC.2020.00062
http://dx.doi.org/10.1016/j.autcon.2023.104852
http://dx.doi.org/10.1073/pnas.1900654116
http://dx.doi.org/10.1109/IROS40897.2019.8968488
http://dx.doi.org/10.23919/ECC54610.2021.9654850
http://dx.doi.org/10.1109/LRA.2021.3111962
http://dx.doi.org/10.23919/ACC53348.2022.9867807


R. Ozalp et al.: Advancements in DRL and IRL for Robotic Manipulation

[197] Number of Robotic Manipulation Studies Using Trustworthy AI in Web of
Science from 2018 to 2023. Accessed: Feb. 28, 2024. [Online]. Available:
https://www.webofscience.com/wos/woscc/summary/a8e5f037-8538-
4f04-ad69-174f5dcac5d6-cf8aa795/relevance/1

[198] Number of Robotic Manipulation Studies Using Interpretable
AI in Google Scholar from 2018 to 2023. Accessed: Feb. 28,
2024. [Online]. Available: https://scholar.google.com/scholar?q=
%22interpretable+ai%22+%22robot+manipulation%22&hl=tr&as_sdt=
0%2C5&as_ylo=2018&as_yhi=2023

[199] Number of RoboticManipulation Studies Using Interpretable AI inWeb of
Science from 2018 to 2023. Accessed: Feb. 28, 2024. [Online]. Available:
https://www.webofscience.com/wos/woscc/summary/4bcdc18c-d624-
4556-bc6e-8155875f10eb-cf8 acb75/relevance/1

RECEP OZALP received the B.S. and M.S.
degrees from the Mechatronics Engineering
Department, Firat University, Turkey, in 2016 and
2018, respectively, where he is currently pursu-
ing the Ph.D. degree in education. He has been
a Lecturer with the Baskil Vocational School,
Firat University, since 2019. His research interests
include humanoid robots and artificial intel-
ligence, engineering applications, and robotic
vision.

AYSEGUL UCAR (Senior Member, IEEE)
received the B.S., M.S., and Ph.D. degrees from
the Department of Electrical and Electronics Engi-
neering, Firat University, Turkey, in 1998, 2000,
and 2006, respectively. In 2013, she was a Vis-
iting Professor with the Division of Computer
Science and Engineering, Louisiana State Univer-
sity, USA. Since 2020, she has been a Professor
with the Department of Mechatronics Engineer-
ing, Firat University. She has more than 24 years

of background in autonomous technologies and artificial intelligence, its
engineering applications, robotics vision, teaching, and research. She is
active in several professional bodies, particularly as a European Artificial
Intelligence Alliance Committee Member and an Associate Editor of IEEE
ACCESS.

CUNEYT GUZELIS received the B.Sc., M.Sc.,
and Ph.D. degrees in electrical engineering from
İstanbul Technical University, İstanbul, Turkey,
in 1981, 1984, and 1988, respectively. He
was a Visiting Researcher and a Lecturer with
the Department of Electrical Engineering and
Computer Sciences, University of California at
Berkeley, Berkeley, CA, USA, from 1989 to 1991.
He was a full-time Faculty Member with Istanbul
Technical University, from 1991 to 2000, where

he became a Full Professor, in 1998. He was a Professor of electrical
and electronics engineering with Dokuz Eylül University, İzmir, Turkey,
from 2000 to 2011, where he was the Dean of the Faculty of Engineering
and İzmir University of Economics, İzmir, from 2011 to 2015, where he was
the Director of the Graduate School of Natural and Applied Science. Since
2015, he has been a Professor of electrical and electronics engineering with
Yaşar University, İzmir, where he was the Director of the Graduate School.
He has supervised 17M.S. and 14 Ph.D. students and published over 50 SCI-
indexed journal articles, six peer-reviewed book chapters, and more than
80 peer-reviewed conference papers. He has participated in over 20 scientific
research projects funded by national and international institutions, such as the
British Council and the French National Council for Scientific Research. His
research interests include artificial neural networks, biomedical signal and
image processing, nonlinear circuits-systems and control, and educational
systems.

51858 VOLUME 12, 2024


