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ABSTRACT Accurate segmentation of river water in close-range Remote Sensing (RS) images is vital for
efficient environmental monitoring and management. However, this task poses significant difficulties due to
the dynamic nature of water, which exhibits varying colors and textures reflecting the sky and surrounding
structures along the riverbanks. This study addresses these complexities by evaluating and comparing several
well-known deep-learning (DL) techniques on four river scene datasets. To achieve this, we fine-tuned
the recently introduced ‘‘Segment Anything Model’’ (SAM) along with popular DL segmentation models
such as U-Net, DeepLabV3+, LinkNet, PSPNet, and PAN, all using ResNet50 pre-trained on ImageNet
as a backbone. Experimental results highlight the diverse performances of these models in river water
segmentation. Notably, fine-tuned SAM demonstrates superior performance, followed by U-Net(ResNet50),
despite their higher computational costs. In contrast, PSPNet(ResNet50), while less effective, proves to be
the most efficient in terms of execution time. In addition to these findings, we introduce a novel river
water segmentation dataset, LuFI-RiverSnap.v1 (Dataset link), characterized by a more diverse range
of scenes and accurate masks compared to existing datasets. To facilitate reproducible research in remote
sensing and computer vision, we release the implementations of the fine-tuned SAMmodel (Code link).
The findings from this research, coupled with the presented dataset and the accuracy achieved by fine-tuned
SAM segmentation, can support tracking river changes, understanding river water level trends, and exploring
river ecosystem dynamics. These can also provide valuable insights for practitioners and researchers seeking
models tailored to specific image characteristics with practical means in disaster risk reduction, such as rapid
assessments of inundations during floods or automatic extractions of gauge data in watersheds.

INDEX TERMS Deep learning, segment anything model (SAM), river water segmentation, U-Net,
DeepLabV3+, LinkNet, PSPNet, PAN, RiverSnap.

I. INTRODUCTION
Rivers, as vital components of Earth’s hydrological cycle,
play a fundamental role in sustaining ecosystems and human
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societies [1]. Accurate delineation and characterization
of river boundaries and features are imperative for a
multitude of applications, including flood risk assessment,
water resource management, riverine hydrological parameter
estimation, and ecological conservation [2]. In contemporary
river research studies, where high-resolution images with
exceptional clarity and detail are essential, e.g. either to
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FIGURE 1. Examples of different segmentation models in river water
segmentation. (a) The image of Norway’s Glomma river (source link) and
its segmentation resulted from (b) image thresholding, (c) hybrid
algorithm (k-means + active contour model), and (d) Deep Learning (DL)
model.

validate numerical models or to acquire accurate data for
early warning systems, the segmentation of river water
in close-range Remote Sensing (RS) images captured by
low-cost sensors becomes particularly significant [3], [4].
Indeed, close-range RS images captured by low-cost cameras
(e.g., smartphone/surveillance cameras) are proven to facili-
tate the detection of subtle variations in river water properties
and the surrounding terrain [3], [5], [6]. This presents,
until yet, a rarely utilized and systematically investigated
opportunity to extract nuanced insights into hydrological
parameters or any related process (e.g., water level, water
turbidity, floating debris, etc.) from close-range RS images
[3], [6].
Segmenting the water body from the background in

close-range images is a key step in determining riverine
parameters. It forms the basis for further analysis, directly
impacting the accuracy of subsequently analyzed parameters
through images. In developing these methods, researchers
have introduced a variety of image segmentation algorithms,
classifying them into conventional image analysis and
advanced Deep Learning (DL) models [7], [8]. While
traditional methods (e.g., thresholding, region-based, and
hybrid algorithms) are commonly used for image segmen-
tation, they encounter limitations when applied to water
bodies like wetlands, lakes and river scenes due to the
complex nature (e.g., inhomogeneous appearance and color
variations), and the reflections of surrounding structures (e.g.,
vegetation, rocks, and buildings) and the sky on the water
surface [9], [10], [11] (see Fig. 1 (b) and (c)). This is
mainly because most of these techniques depend on low-
level/basic image features for object segmentation, which
may not inherently capture complex spatial relationships,
such as those found in river scenes in close-range images [8],
[12]. In contrast, DL models, known for their automatic
extraction of high-level semantic features from various data
types, have recently offered more robust solutions in this
specific aspect [5], [11], [12]. Furthermore, since DL models
are typically trained on diverse datasets, they exhibit superior
capabilities in handling sky reflections and structures on the
water body, as depicted in Fig. 1 (d).

While DL techniques are mainly applied to segment water
in space/airborne RS images [13], [14], [15], they have high
potential in accurately extracting hydrological features such
as water bodies and water levels from close-range imagery
captured by low-cost cameras, such as surveillance and smart-
phone cameras [12]. For example, to predict floods stemming
from river overflow, Lopez-Fuentes et al. [16] identified
rising river water levels by applying three DL techniques
(Fully convolutional network (FCN) [17], DenseNet [18],
and [19]) through water segmentation in surveillance camera
images. Their study showed that the DenseNet model
exhibited superior performance in flood extent detection
from close-range RS images. Pan et al. [20] also compared
different image-based methods for water-body segmentation
in surveillance camera images to create a real-time water
level detection service. The study revealed that employing
a convolutional neural network (CNN) at the core of the
service significantly enhanced accuracy, yielding highly
accurate results (about 9 mm error) compared to reference
measurements. Vitry et al. [21] employedU-Net [22] to detect
floodwater and introduced the Static Observer Flooding
Index (SOFI) to obtain water level fluctuations. In a similar
approach, Akiyama et al. [23] examined the potential of the
SegNet [24] segmentation to extract river water from the
background of close-range RS images.

Vandaele et al. [25] employed both the UperNet [26] and
DeepLabv3 [27] networks with a ResNet50 architecture [28]
as a backbone for the river water segmentation process in
the context of water level detection. Muhadi et al. [12]
successfully utilized DeepLabv3+ [29] and SegNet networks
to detect water bodies, evaluate water levels, and track
fluctuations in surveillance images. Eltner et al. [11] also
integrated advanced DL water segmentation models (SegNet
and FCN) with photogrammetric techniques to achieve
precise water stage measurements from images taken by a
Raspberry Pi camera.

The aforementioned studies have yielded valuable insights
into identifying water bodies in image backgrounds and
their application in extracting hydrological parameters, such
as water level. However, most of these studies relied on a
limited set of segmentation models, leaving their adaptability
across diverse environmental contexts and image datasets
uncertain. Furthermore, their applicability was often confined
to specific scenes (e.g., datasets used in [11]), making
the trained CNNs less suitable for broader applications in
different environments [3]. To enhance real-time water level
monitoring and address these limitations, Eltner et al. [30]
introduced UPerNet [26] with the ResNeXt-50 backbone
as a well-generalized CNN model, chosen from a range of
DL models for water segmentation in various geographical
contexts. Furthermore, Wagner et al. [3] conducted a
widespread study evaluating 32 DL segmentation models
by introducing high-quality RIWA.v1 [6], [31] for water
detection with online/offline augmentation.

While existing studies have identified several effective DL
models for river water segmentation, limited datasets often
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constrained their evaluations. Amore comprehensive analysis
across multiple datasets with diverse conditions is essential
to better assess the capabilities and generalizability of each
model. While the RIWA dataset [31] provides valuable
support for this research area, there remains a critical need
for additional accurately labeled datasets to further enhance
model training and evaluation.

Moreover, DL models such as U-Net [22], DeepLabV3+
[29], Pyramid Scene Parsing Network (PSPNet) [32], have
been widely employed in river water segmentation and its
applications. For instance, a recent comparative analysis
by [3] revealed that U-Net with a ResNeXt50 backbone
had the best performance for river water segmentation
among 32 DL models. However, while this study sheds
light on the capabilities of established DL architectures,
it also raises questions about the exploration of alternative
methodologies and newer model designs. In particular, the
potential of efficient model architectures like the Pyramid
Attention Network (PAN) [33] and LinkNet [34] as well as
recently published DL models, such as Meta AI’s ‘‘Segment
AnythingModel’’ (SAM) [35] have not yet been explored and
compared. Incorporating such advanced models could also
unveil new avenues for research in river water segmentation.

In this study, we aim to address these challenges, making
the following contributions:
1. For the first time, to the best of our knowledge, we fine-

tuned the SAM segmentation model for water/river
water segmentation in close-range RS images. This
fine-tuning aims to enhance the segmentation of water
bodies, particularly for wetlands, lakes, and rivers. The
fine-tuned SAM model’s code has also been made
accessible at: (Fine-tune SAM code link).

2. We extensively surveyed six state-of-the-art DL mod-
els (U-Net [22], DeepLabV3+ [29], LinkNet [34],
PSPNet [32], PAN [33], and the recently published
SAM [35]), evaluating their strengths and limitations.
This assessment aims to establish their suitability for
water body segmentation from close-range RS images at
rivers.

3. We collected close-range images from rivers using var-
ious platforms, such as smartphones, cameras, surveil-
lance cameras, and low-altitude drones, to introduce a
new dataset namedLuFI-RiverSnap.v1. It comprises over
800 images with precise annotations, along with a few
suitable images from the Kaggle WaterNet [36], Elbers-
dorf / Wesenitz [11], RIWA.v1 [31] datasets. To support
and advance the development of river water segmentation
tasks, we have released the recently introduced LuFI-
RiverSnapv1 dataset at (Dataset link).

4. We performed a thorough experimental analysis of
segmentation methods on three considered benchmark
datasets and the newly introduced LuFI-RiverSnap.v1
datasets. This comprehensive evaluation sets a research
baseline, providing valuable segmentation model recom-
mendations for river water analysis and suggesting future
study directions.

FIGURE 2. The ResNet50 backbone adopted from the PyTorch
implementation and [38].

FIGURE 3. Architecture of U-Net(ResNet50), adopted from [39].

II. MATERIALS AND METHODS
A. DL SEGMENTATION MODELS
This section briefly overviews the unique architectural
features of the six baseline DL models considered in the
context of water body segmentation tasks. For all models
except the SAM, we employed ResNet50 [28] (see Fig. 2),
pre-trained on the ImageNet dataset [37], as the backbone
architecture.

1) U-Net
U-Net, introduced by Ronneberger et al. [22], is widely used
for object segmentation. Its U-shaped architecture includes
an encoder for downsampling and a decoder for upsampling
and feature fusion [22]. Skip connections aid in integrating
features from different resolutions [39]. ResNet50 serves as
the encoder in this study, while a custom decoder involves
upsampling and convolutional layers. (see Fig. 3).

2) DeepLabV3+
DeepLabV3+ is an advanced variant of the DeepLab series,
featuring Atrous Spatial Pyramid Pooling (ASPP) and an
encoder-decoder structure [29]. ResNet50 is also integrated
into the encoder pathway in this study. It begins with extract-
ing high-level features, and comprehensive representation
through feature combination. Upsampling with transposed
convolutions enhances spatial resolution, enriched by skip
connections (see Fig. 4),
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FIGURE 4. Architecture of DeepLabV3+(ResNet50), adopted from [29].

FIGURE 5. Architecture of LinkNet(ResNet50), adopted from [34].

3) LinkNet
LinkNet features a U-shaped architecture, maintaining the
crucial encoder-decoder structure for hierarchical feature
extraction and seamless upsampling [34]. In the depicted
architecture Fig. 5, ResNet50 is also utilized in the encoder to
extract high-level features through a downsampling strategy.
Encoder features are directly linked to corresponding outputs
in the decoder via skip connections using the ‘‘sum’’ operator.

4) PSPNet
PSPNet is a model structured on the encoder-decoder
paradigm, incorporating a distinctive pyramid pooling mod-
ule (PPM) for aggregating contextual information across
multiple scales within the feature hierarchy [32]. As shown in
Fig. 6, the initial step involves using ResNet50 to extract the
feature maps. Following this, PPM is employed to generate
representations of different sub-regions. These features are
then upsampled and concatenated, enabling the model to
incorporate both local and global contextual data. The final
representation undergoes convolutional processing to achieve
river water predictions.

FIGURE 6. Architecture of PSPNet(ResNet50), adopted from [32].

FIGURE 7. Architecture of PAN(ResNet50), adopted from [33].

5) PAN
s an encoder-decoder architecture to enhance global con-
textual information in semantic segmentation [33]. This is
achieved by integrating the Feature Pyramid Attention (FPA)
and Global Attention Upsample (GAU) modules. In the
implementation, the ResNet50 was also used to extract dense
features, followed by FPA and GAU for accurate pixel
predictions and localization details (see Fig. 7),

6) SAM
SAM stands as an innovative encoder-decoder promptable
model developed by the Meta AI team for precise image
segmentation [35]. Its training involved a massive SA-1B
dataset, encompassing over 1 billion masks extracted from
11 million images, raising its generality to segment unseen
objects and images [35], [40]. This prowess extends the
model’s applicability beyond the confines of image seg-
mentation, allowing it to be effectively employed in various
scenarios, including but not limited to object tracking [40].

As depicted in Fig. 8 (a), the SAM comprises three
key components [35]. First, an image encoder denoted by
EncI uses a Vision Transformer (ViT) backbone, such as
ViT-B (91M), ViT-L (308M), or ViT-H (636M parameters),
to process 1024 × 1024 images I and generate image
embedding features FI [35]. The flexible prompt encoder,
denoted by Encp, then adeptly handles both sparse prompts
Ps (e.g., points, boxes, text) and dense prompts (masks) Pl ,
translating them into tokens Tp and TL , respectively [35].
Finally, the outputs of the encoders pass to a lightweight mask
decoder DecL [35] for label predictions.
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FIGURE 8. Architecture of (a) SAM, adopted from [35], and (b) fine-tuning
of SAM for river water segmentation in this study.

7) FINE-TUNING OF SAM
In this study, SAM was fine-tuned for river water seg-
mentation, as depicted in Fig. 8 (b). In this way, We first
froze the SAM encoder EncI with a lighter ViT-B (91M
parameters) backbone to optimize computational efficiency
and conserve resources. This configuration allowed us to
use the pre-trained parameters of the SAM encoder for
extracting robust image embedding features FI from river
scene images. This also facilitates the use of larger batch
sizes, thereby enhancing the overall efficiency of the model
training pipeline.

Given the absence of a prompt in our fine-tuning process,
the learnable mask tokens TL were automatically obtained
through element-wise addition of a learned embedding to
each location of the image embedding FI [35]. Subsequently,
the extracted features FI alongside the learnable mask tokens
TL were directly fed into the trainable mask decoder DecL to
predict the low-resolution mask L̂ as follows:

L̂ = DecL(FI ,TL) (1)

The low-resolution mask L̂ is then upsampled to the input
size and compared with the ground truth mask using a
determined loss function during training.

Our fine-tuning process is conducted without any prompt
encoder, enabling a fair assessment of SAM alongside other
models under consideration and reducing human-machine
interaction.

B. RIVER WATER SEGMENTATION USING DL MODELS
In this study, the river water segmentation workflow using
DL models is depicted in Fig. 9. Supported by a river
water dataset with distinct subsets for training, validation,
and testing, this methodology forms the foundation of our
approach.

Let D = {(Ii,Li)}N−1i=0 denote our river dataset, where
Ii ∈ Rw×h×3 is an RGB image of the river scene, and
Li ∈ [0, 1]w×h is its corresponding annotated river mask
for sample i, i.e., ‘‘0’’ represents the background, and ‘‘1’’
denotes the river. The datasetD includes threemutual subsets:
the training set (Dtrain), the validation set (Dval), and the

test set (Dtest), where D = Dtrain ∪ Dval ∪ Dtest. Initially,
all subsets are subjected to a preprocessing step, denoted
as P, which includes normalization (N ) and resizing (R)
operations:

DP
= {(R(N (Ii)),R(Li))}

N−1
i=0 = {(I

P
i ,LPi )}

N−1
i=0 (2)

where, N (.) ensures consistent pixel values, and R stan-
dardizes the input dimensions to a 512 × 512 pixel
format, resulting in IPi ∈ R512×512×3 and LPi ∈

[0, 1]512×512 as the preprocessed RGB image and the
intended annotated river mask for sample i, respectively.
Subsequently, preprocessed training and validation samples
are fed into a chosen deep learning segmentation model
represented by fM , where M can be one of the segmenta-
tion models from (SAM, U-Net(ResNet50), PSPNet(ResNet50),
PAN(ResNet50), LinkNet(ResNet50), DeepLabV3+(ResNet50)),
with parameters M . During the training phase, the model fM
is constructed and refined using the dataset DP

train, guiding it
to learn river water patterns and handle reflection structures.
To ensure the model generalizes well to new data and avoids
overfitting, the dataset DP

valP is also utilized during training.
Given the preprocessed input image IPi , the model

computes the predicted binary river mask L̂Pi = fM (IPi ; θM )
through a forward pass in each training loop. To quantify
the difference between the predicted water mask L̂P and
its ground truth mask LP over each training loop, the loss
function is computed using binary cross-entropy (BCE) with
sigmoid loss:

LBCE(L̂Pi ,LPi )=L
P
i log(σ (L̂i))+ (1− LPi ) log(1− σ (L̂i))

(3)

where, σ is the logistic sigmoid function. To update the
model parameters θM , the Ltrain is optimized using the Adam
optimizer [41] over each epoch. Moreover, the validation
loss Lval is computed over the DP

val using the trained model
fM and its updated parameters θM , to monitor the model’s
performance at the end of each epoch. Algorithm 1 outlines
the specific steps involved in the training phase of river water
segmentation.

After fine-tuning the model, evaluation is performed on
the test samples. In this way, the trained model fM and its
optimized parameters θM are employed to predict the test
subset DP

test. These predictions are further compared with the
ground truth masks LPtest using an array of metrics detailed
in [subsection II-D] to evaluate model performance. The
specifics of the testing process have been summarized in
Algorithm 2.

C. DATA
We employed three established benchmark datasets (i.e.,
Kaggle WaterNet [36], Elbersdorf/Wesenitz [11], RIWA.v1
[31]) along with our newly proposed LuFI-RiverSnap.v1
dataset to enrich the comprehensiveness of our analysis
through various baseline deep learning networks. The amount
of training, validation, and testing images of these datasets is
shown in Table 1.
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FIGURE 9. Workflow of river water segmentation using Deep Learning (DL) models.

1) KAGGLE WaterNet [36]
This widely adopted public dataset, available in two versions,
contains over 1000 annotated images (Dataset link).
It integrates water images from the ADE20K dataset, encom-
passing diverse water body scenes such as water streams,
river segmentation, and gauges from various locations.
In this study, we selected 748 accurately labeled river
scene images from the second version. This dataset was
divided into training (70%), validation (∼16%), and test
(∼14%) sets, forming the basis of our workflow. Despite
the moderate range of diversity in river water color and
reflection, most considered models are expected to exhibit
proficiency in the river water segmentation task on this
dataset.

2) ELBERSDORF/WESENITZ [11]
This dataset comprises 3,407 accurately annotated images
captured using a Raspberry Pi RGB camera positioned
4 meters above the Wesenitz river at the Elbersdorf station
between March 30, 2017, and April 30, 2018 (Dataset
link). We randomly selected 1001 images from this
dataset, allocating approximately 50% for training, ∼20%
for validation, and 30% for test samples. Given that this data
originates from a single location, optimal model performance
is anticipated on this dataset.

3) RIWA.v1 [31]
This stands as a robust and versatile resource for river
scene analysis and segmentation, encompassing 1128 images
captured using smartphones, Unoccupied Aerial Vehicles
(UAVs), and DSLRs (Dataset link). This dataset incor-
porates diverse river scenes, including images from Elbers-
dorf/Wesenitz [11] and Kaggle WaterNet [36]. The dataset’s
diversity, with rivers of varying colors, presents a challenge
for models in segmenting water from the background.

4) LuFI-RiverSnap.v1
This dataset includes close-range river scene images obtained
from various devices, such as UAVs, surveillance cameras,
smartphones, and handheld cameras with sizes up to
4624× 3468 pixels (Dataset link). Several social media
images, as typically volunteered geographic information
(VGI) [42], have also been incorporated into the dataset to
havemore diverse river landscapes from various locations and
sources. The images mainly include river scenes from several
cities in Germany (Hannover, Hamburg, Bremen, Berlin,
and Dresden), Italy (Venice), Iran (Ahvaz), the USA, and
Australia. To further enhance the dataset’s diversity and accu-
racy, a small subset of images of Elbersdorf/Wesenitz [11],
RIWA.v1 [31], and KaggleWaterNet [36] have been added to
the data. This comprehensive dataset includes 1092 images,
all accurately annotated, establishing it as a valuable resource
for advancing research and development in river scene anal-
ysis and segmentation. The dataset comprises challenging
cases for water segmentation, such as rivers with significant
reflection, shadows, various colors, and flooded areas. Fig. 10
provides an insightful overview of the LuFI-RiverSnap.v1
dataset, showcasing instances of rivers with different colors.

D. EVALUATION CRITERIA
To evaluate the performance of considered DLmodels in river
water segmentation, their predictions were compared with
the corresponding ground-truths of the test samples using
several metrics extracted from the confusion matrix. These
metrics include theOverall Accuracy (OA),Precision,Recall,
F1-score (FS ), Intersection over Union (IoU ), and Kappa
Coefficient (κ), measured by:

OA = 1−
TP+ TN

TP+ FP+ FN + TN
× 100% (4)

Precision =
TP

TP+ FP
× 100% (5)
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FIGURE 10. LuFI-RiverSnap dataset- Illustrative examples of rivers featuring diverse water colors.

Recall =
TP

TP+ FN
× 100% (6)

FS =
2TP

2TP+ FP+ FN
× 100% (7)

IoU =
TP

TP+ FP+ FN
× 100% (8)

κ =
P0 − Pe
1− Pe

subject to


Pe=

(TP+FN )(TP+FP)
τ 2

+
(FN+TN )(FP+TN )

τ 2

P0=
TP+TN

τ
τ=TP+FP+FN+TN

(9)

In the above equations, TP (True Positive) refers to pixels
that are accurately segmented as part of the river category; FP
(False Positive) refers to pixels that are incorrectly classified
as part of the river category when they actually belong to
a different category; TN (True Negative) refers to pixels
that are accurately assigned as background pixels (non-river);
and FN (False Negative) refers to pixels that are incorrectly
classified as non-river when they actually belong to the river
category.

To interpret the performance of the models quantitatively,
we introduced a categorization scheme using predefined

thresholds for IoU. This scheme assigns a qualitative label
to the model’s performance based on observed metric values
for each test sample. Accordingly, the model’s performance
is labeled as ‘‘Excellent’’ when IoU > 0.90, ‘‘Good’’ if
0.85 ≤ IoU ≤ 0.90, ‘‘Fair’’ if 0.75 ≤ IoU ≤ 0.85, ‘‘Poor’’
if 0.65 ≤ IoU < 0.75, and ‘‘Unacceptable’’ otherwise.
This approach provides a concise and insightful method
of interpreting model performance across key metrics,
facilitating a comparative analysis to identify the strengths
of DL models.

III. EXPERIMENTS
A. EXPERIMENTAL SETUP
We implemented river water segmentation models in Python,
utilizing PyTorch’s core library within Google Colab. GPU-
accelerated computations in Colab were performed with
the following resources: an NVIDIA Tesla T4 (15GB)
GPU, an Intel Xeon CPU with two cores running at
2.30 GHz, and 32 GB of RAM. We employed the
segmentation_models_pytorch library1 to imple-
ment all DL models, excluding SAM, which was fine-tuned
based on its original code.2 All DL models were trained on
the datasets without augmentation, using default parameters

1https://github.com/qubvel/segmentation_models.pytorch
2https://github.com/facebookresearch/segment-anything
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Algorithm 1 DL Model Training for River Water
Segmentation

Data: Dtrain = {(Ii,Li)}
Ntrain−1
i=0 ,

Dval = {(Ii,Li)}
Nval−1
i=0 , Learning Rate α, Batch

size B, Number of epochs Nepochs
Result: model fM , parameters θM

1 Initialization: Initialize model parameters θM
Initialize the best validation loss LvalBest ←∞;

2 Step 1: Data preprocessing: foreach sample
(Ii,Li) ∈ Dtrain do

3 (IPi ,LPi )← Preprocess(Ii,Li) ; /* by Eq (1)

*/
4 Add (IPi ,LPi ) to D

P
train

5 Preprocess all validation samples: foreach sample
(Ii,Li) ∈ Dval do

6 (IPi ,LPi )← Preprocess(Ii,Li) ; /* by Eq (1)

*/
7 Add (IPi ,LPi ) to D

P
val

8 Step 2: Model Training: for epoch← 1 to Nepochs
do

9 foreach mini-batch (IPi:i+B−1,L
P
i:i+B−1) ∈ D

P
train do

10 L̂Pi:i+B−1← fM (IPi:i+B−1; θM ) LBCEi:i+B−1 ←

BCEWithLogitsLoss(L̂Pi:i+B−1,L
P
i:i+B−1) ;

/* by Eq (2) */
11 θM ←

AdamOptimizer(θM ,∇θM
1
B

∑i+B−1
j=i LBCEj , α)

12 Calculate Training Loss for Epoch:
Ltrain←

1
Ntrain/B

∑Ntrain/B
i=1

1
B

∑i+B−1
j=i LBCEj

13 Print(Ltrain);
14 Model Evaluation on Validation Set: foreach

mini-batch (IPi:i+B−1,L
P
i:i+B−1) ∈ D

P
val do

15 L̂Pi:i+B−1← fM (IPi:i+B−1; θM ) LBCEi:i+B−1 ←

BCEWithLogitsLoss(L̂Pi:i+B−1,L
P
i:i+B−1) ;

/* by Eq (2) */
16

17 Calculate Validation Loss for Epoch:
Lval←

1
Nval/B

∑Nval/B
i=1

1
B

∑i+B−1
j=i LBCEj

18 Print(Lval)
19 Save the model checkpoint if the validation loss

improves if Lval < LvalBest then
20 LvalBest ← Lval;
21 return model fM , parameters θM

for 50 epochs with a batch size of 32 and a learning rate
of 1 × 10−5. The model parameters from the epoch with
the lowest validation loss were saved as the best-performing
ones.

The computational time per epoch and the number of
trainable parameters (nparam) for each model have been
reported in Table 2.

Algorithm 2 DL Model Testing for River Water
Segmentation

1 Inputs: Dtest = {(Ii,Li)}
Ntest−1
i=0 , Trained model fM ,

Model parameters θM ;
2 Outputs: Predictions on the test dataset L̂test, Average
evaluation metrics AverageMetrics;

3 Preprocess all test samples: foreach sample
(Ii,Li) ∈ Dtest do

4 (IPi ,LPi )← Preprocess(Ii,Li) ; /* by Eq (1)

*/
5 Add (IPi ,LPi ) to DP

test

6 Make Predictions and Evaluate Metrics:
MetricsList← [] ; /* List to store
individual metrics for each sample

*/
7 for i← 0 to Ntest − 1 do
8 L̂Pi ← fM (IPi ; θM ) ; /* by the trained

model fM */

9 Add (L̂Pi ) to L̂test ; /* Add (L̂Pi ) to L̂test
*/

10 MetricsList.append(EvaluateMetrics(L̂Pi ,LPi )) ;
/* by evaluation metrics,
reported in Subsection II-D */

11

12 Calculate Average Metrics:
AverageMetrics← Average(MetricsList) ;
/* Calculate the average of the
evaluated metrics */

13 return Predictions on the test dataset L̂test, Average
evaluation metrics AverageMetrics;

TABLE 1. Amount of training, validation, and test samples of datasets
used in this study.

As evident from Table 2, the SAM algorithm fea-
tured a parameter count roughly three times larger
(> 60M) than that of other models, thereby justifying
its considerable computational expense during dataset
training. PSPNet(ResNet50) and PAN(ResNet50) were among
the lighter and more efficient networks, boasting the lowest
parameters and computational costs. DeeplabV3+(ResNet50),
U-Net(ResNet50), and LinkNet(ResNet50) exhibited roughly the
same training time, although DeeplabV3+(ResNet50) was
lighter than both. To clarify why we fine-tuned SAM with a
ViT (91M) backbone, a comparative analysis was conducted
in Appendix A.
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TABLE 2. The number of parameters and average training time per epoch for each DL configuration.

TABLE 3. Comparison results of DL segmentation models on the Kaggle
WaterNet dataset. (Red: the best, blue: second best).

It’s important to highlight that, due to limitations in
computational resources, the 512 × 512 input dimensions
were used for all model training processes. Its worth noting
that the SAM model resamples 512× 512 images to 1024×
1024, as its ViT backbone requires this size of inputs.
We evaluated the impact of this resampling process on SAM’s
performance in Appendix B.

We plotted training and validation accuracy graphs to
address overfitting and determine optimal training epochs for
each DL network, as depicted in Fig. 11.

B. EXPERIMENTAL RESULTS
The following subsections have presented and discussed the
visualization and quantitative results of the DL models for
each considered dataset.

1) RESULTS OBTAINED ON THE KAGGLE WaterNet DATASET
Fig. 12 shows examples of segmentation results obtained by
applying the considered DL models to the Kaggle WaterNet
test images. SAM outperformed other models in river water
segmentation (see Fig. 12(g)), while PSPNet(ResNet50)
showed inferior performance in cases 1, 5, and 9 (see
Fig. 12(c)). DeepLabV3+(ResNet50), PAN(ResNet50), and
LinkNet(ResNet50) consistently produced robust segmentation
results in most instances, except for case 12 (refer to
column 12 of Fig. 12 (d), (e), and (f)). In these cases, these
models incorrectly identified areas around the river as water.
However, PAN(ResNet50) demonstrated better accuracy than
DeepLabV3+(ResNet50) and LinkNet(ResNet50) in these cases.
The U-Net(ResNet50) model displayed moderate segmentation
performance compared to other models, where It exhibited
good performance in some cases, like test images 6,7,8, and
11 (see Fig. 12 (b)), and poorer performance in others.

The quantitative results reported in Table 3 closely align
with the findings discussed from Fig. 12. The SAM model
emerged as the top-performing model among the tested DL
models as evidenced by the highest metric values. Following

closely behind SAM, DeepLabV3+(ResNet50) exhibited the
second-best performance, with only a 1.5% degradation in κ

and IoU . LinkNet(ResNet50) also demonstrated robust results,
with almost identical results to DeepLabV3+(ResNet50).
On the other hand, PSPNet(ResNet50) yielded poorer results,
displaying the lowest metric values among the mod-
els assessed. Moreover, U-Net(ResNet50) and PAN(ResNet50)
showed similar performance in river water segmentation.

The box plots in Fig. 13(a) also confirm the findings.
SAM consistently showed higher median values than other
models, indicating more consistent performance with fewer
fluctuations. SAM’s performance distribution was also more
concentrated around the median of the metrics, suggesting
less susceptibility to outliers and more predictable results.
Conversely, PSPNet(ResNet50) had the lowest median values,
indicating comparatively less stable performance.

As depicted in Fig. 13(b) SAM achieved excellent
performance in approximately 77% of the testing data, with
a failure rate of around 6%. Conversely, DeepLabV3+,
PAN, LinkNet, and U-Net achieved excellent performance
in roughly 69% of the test data, with varying rates of
‘‘Fair’’ and ‘‘Good’’ performance levels. Notably, while both
LinkNet and PAN achieved the same number of ‘‘Excellent’’
ratings in water segmentation, PAN had a higher failure
rate. Moreover, Fig. 13(b) also confirm PSPNet’s inferior
performance, where it achieved a success rate of 56%, which
was 21% lower than SAM and 10% lower than the other
models in river segmentation.

2) RESULTS OBTAINED ON THE ELBERSDORF/WESENITZ
DATASET
It is evident from Fig. 14 that all the models qualitatively
produced almost identical segmentation results, effectively
distinguishing water from the background in the Elbers-
dorf/Wesenitz dataset. Notably, the considered state-of-the-
art models exhibited slightly greater robustness than SAM.
SAM’s results included limited FN and FP errors attributed
to reflected shadows and floating vegetation in the shallow
river water. These findings are reinforced by the comparative
results of the DL models, as presented in Table 4.

Table 4 shows that the metrics for all models are in the
range of 0.99, signifying their robust capability in detecting
river water within the Elbersdorf/Wesenitz dataset. This
high level of performance is further verified by Fig. 13(b),
illustrating that all methods achieved an ‘‘Excellent’’ rating
over all 301 test data of this dataset. Upon closer inspection,
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FIGURE 11. Training and validation loss on the considered datasets when (a) U-Net(ResNet50), (b) PSPNet(ResNet50), (c) DeeplabV3+(ResNet50),
(d) PAN(ResNet50), (e) LinkNet(ResNet50), and (f) SAM were used as DL models for river water segmentation.

it becomes apparent that SAM’s model exhibited a slightly
weaker performance compared to other models, as previously
noted in the visual analysis of Fig. 14. The box plots in
Figure Fig. 13(a) provide clearer insights into differences in
model performance. As depicted, U-Net(ResNet50) exhibited

superior performance, with the results densely clustered
around its median. In contrast, SAM displayed a lower
median than the other models, signifying its comparatively
weaker performance in river segmentation within this
case.
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FIGURE 12. Some examples of river water segmentation results on the Kaggle WaterNet dataset. (a) Images and segmentation results generated by
(b) U-Net(ResNet50), (c) PSPNet(ResNet50), (d) DeeplabV3+(ResNet50), (e) PAN(ResNet50), (f) LinkNet(ResNet50), and (g) SAM were used as DL models for river
water segmentation.Green: False Positives (FP) detection, Pink: False Negatives (FN) detection, Blue: correct detection of river water.

TABLE 4. Comparison results of DL segmentation models on the
Elbersdorf/Wesenitz dataset. (Red: the best, blue: second best).

3) RESULTS OBTAINED ON THE RIWA.v1DATASET
In contrast to the previous dataset, all considered models
displayed varying performances in segmenting river water
in the RIWA.v1 dataset, as depicted in Fig. 15. In several
instances (cases 4, 5, 6, and 12) of the RIWA.v1 dataset,
SAM demonstrated superior visual segmentation of river
water compared to other models. However, common models
exhibited both false positive (FP) and false negative (FN )
errors in identifying the river zone in cases 2 and 5 (refer to
columns 2 and 5 of Fig. 15(a)-(f)). Interestingly, in certain
instances, particularly cases 8-13, many models performed
comparably well or even surpassed SAM in segmenting river
water (refer to columns 8-13 of Fig. 15(a)-(g)).

Table 5 provides a comprehensive assessment of the
considered segmentation models on all test samples of the
RIWA.v1 dataset. Upon scrutinizing the results in Table 5,
it is evident that the U-Net(ResNet50) model demonstrated
the best overall performance in terms of all metrics,
except for precision, where SAM achieved a better result.

TABLE 5. Comparison results of DL segmentation models on the RIWA.v1
dataset. (Red: the best, blue: second best).

DeepLabV3+(ResNet50) ranked as the second-best model in
river water segmentation, with a slight difference (approx-
imately 0.5% on average) compared to U-Net(ResNet50),
closely followed by LinkNet(ResNet50). Although SAM and
PAN(ResNet50) produced similar segmentation results, SAM
visually appeared to have superior performance. Conversely,
PSPNet(ResNet50) emerged as the least effective model in the
segmentation of river water in the RIWA.v1 dataset, with its
IoU and κ metrics being almost 4.5% lower than those of the
best-performing model.

These results are strongly supported by the boxplots
presented in Fig. 13(a), where U-Net(ResNet50) exhibited
higher median values, shorter boxes, and fewer outliers than
other models, indicating its general robustness regarding κ ,
IoU , and Fs. Moreover, in 64 test samples, the performance
of the U-Net(ResNet50) model was classified as ‘‘Excellent,’’
confirming the findings of Table 5 and Fig. 15, as illustrated in
Fig. 13 (b). In contrast, PSPNet(ResNet50) displayed the worst
performance, as evidenced by lowermedian values, elongated
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FIGURE 13. (a) Box plots depicting segmentation performance of DL models on the considered datasets, evaluated with κ , IoU , and FS metrics. Each
box represents the median, with edges indicating the 25t h and 75t h percentiles, (b) Success levels of DL models on considered datasets using
predefined IoU thresholds.

boxes, and numerous outliers (see Fig. 13 (a)). Furthermore,
it had the lowest rate of successful segmentation compared to

others, with its performance classified as ‘‘Excellent’’ in less
than 50% of test samples (approximately ∼ 52 samples) for
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FIGURE 14. Some examples of river water segmentation results on the Elbersdorf/Wesenitz dataset. (a) Images and segmentation results generated
by (b) U-Net(ResNet50), (c) PSPNet(ResNet50), (d) DeeplabV3+(ResNet50), (e) PAN(ResNet50), (f) LinkNet(ResNet50), and (g) SAM were used as DL models for
river water segmentation.Green: False Positives (FP) detection, Pink: False Negatives (FN) detection, Blue: correct detection of river water.

the RIWA.v1 dataset (see Fig. 13 (b)). Although the SAM
model visually appeared to have good performance in the
cases presented in Fig. 16, its performancewas only classified
as ‘‘Excellent’’ in 54 test samples, just 2 samples more than
the worst model (PSPNet(ResNet50)) and 10 samples lower
than the best model (U-Net(ResNet50)). However, in 25 test
samples, the performance of SAMwas classified as ‘‘Good,’’
the highest number in this success rate among all considered
models.

4) RESULTS OBTAINED ON THE LuFI-RiverSnap.v1 DATASET
As expected, the diverse characteristics of the LuFI-
RiverSnap.v1 dataset led to varying performances among
the considered segmentation models, as illustrated in the
showcased examples in Fig. 16. In this case, a visual
comparison of the segmentation results displayed in Fig. 16
verifies the exceptional capabilities of SAM in providing river
water bodies very close to the ground truth. This heightened
accuracy is particularly evident in cases 4, 11, and 12,
where SAM significantly outperformed other models (refer
to columns 4, 11, and 12 in Fig. 16(a)-(g)). The segmentation
results obtained from U-Net(ResNet50), LinkNet(ResNet50),
DeepLabV3+(ResNet50), and PAN(ResNet50) were closely
matched, with PAN(ResNet50) and DeepLabV3+(ResNet50)

exhibiting slightly superior visual performance. The dis-
tinctions among these models become more apparent in
cases 1, 3, and 5, where U-Net(ResNet50), PAN(ResNet50),
and LinkNet(ResNet50) demonstrated comparable segmen-
tation results, respectively (see columns 1, 3, and 5 in
Fig. 16(a)-(f)). Conversely, in line with previous datasets,
PSPNet(ResNet50) exhibited poor performance, consistently
failing to accurately detect the river water area in most
instances (see Fig. 16(a) and (c)). Table 6 presents the
quantitative segmentation results of the models considered
for the RiverSnap dataset to enhance the analysis further.
As depicted in Table 6, the SAM model demonstrated
superior performance to other models in most metrics, except
for OA and Recall, where PAN(ResNet50) and U-Net(ResNet50)
achieved slightly better results. DeepLabV3+(ResNet50) was
the second-best model for river water segmentation, closely
followed by PAN(ResNet50) and U-Net(ResNet50). Notably,
LinkNet(ResNet50) also delivered a commendable perfor-
mance, with metric values slightly close to those of the
PAN(ResNet50) and U-Net(ResNet50) methods. On the other
hand, PSPNet(ResNet50) had the worst quantitative results
regarding all metrics. These quantitative findings align
seamlessly with our visual analyses, as highlighted in
Fig. 16.
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FIGURE 15. Some examples of river water segmentation results on the RIWA.v1. (a) Images and segmentation results generated by (b) U-Net(ResNet50),
(c) PSPNet(ResNet50), (d) DeeplabV3+(ResNet50), (e) PAN(ResNet50), (f) LinkNet(ResNet50), and (g) SAM were used as DL models for river water
segmentation.Green: False Positives (FP) detection, Pink: False Negatives (FN) detection, Blue: correct detection of river water.

TABLE 6. Comparison results of DL segmentation models on the
LuFI-RiverSnap.v1 dataset. (Red: the best, blue: second best).

These findings are reinforced by the boxplots presented in
Fig. 13(a) and the success levels depicted in Fig. 13(b). For
instance, as shown in Fig. 13(a), SAM displayed outstanding
performance with higher median values, shorter boxes, and
fewer outliers than other models. This remarkable result
was corroborated by SAM’s results in Fig. 13(b), where
it achieved an ‘Excellent’ rating for approximately 78%
of the testing data (∼ 183 test images), with a minimal
failure rate of roughly 5%. Following SAM, PAN(ResNet50),
and U-Net(ResNet50) showcased commendable performance,
both earning an ‘Excellent’ rating for 66% of the RiverSnap
test data. Notably, PAN(ResNet50) exhibited greater robust-
ness compared to U-Net(ResNet50), evidenced by its failure
rate being only half that of U-Net(ResNet50), along with
higher median values, shorter boxes, and fewer outliers
(see Fig. 13(a) and (b)). In contrast, PSPNet(ResNet50)’s
performance was described as ‘Excellent’ for only 113 (less
than 50%) RiverSnap test samples, as indicated in Fig. 13(b).
It also achieved lower median values, larger boxes, and

fewer outliers compared to other models, explaining its
comparatively poor performance in this case.

C. EXPERIMENTAL ANALYSIS AND DISCUSSION
Using the evaluation framework from the previous
subsection, we thoroughly evaluated six DL models across
four datasets for river water segmentation. This assessment
aimed to uncover performance trends, highlighting each
model’s strengths and weaknesses across different met-
rics. This section summarizes the key findings of these
evaluations.

In our assessment, SAM demonstrated visually and
quantitatively superior water segmentation results on the
Kaggle WaterNet and LuFI-RiverSnap.v1 datasets compared
to other models (see Table 3 and Table 6). This exceptional
performance can be attributed to its robust ViT encoder [43],
significantly enhancing its capabilities. However, SAM
demonstrated comparable performance but did not perform as
effectively as most of the considered models in some cases of
the RIWA.v1 dataset. This can be attributed to the limitations
of SAM, as discussed in [44], primarily related to incorrect
predictions, brokenmasks, or significant errors in challenging
river scene cases. Additionally, while SAM showed compa-
rable performance in segmenting Elbersdorf/Wesenitz data,
it did not perform as well as other models in segmenting
rivers with clear water and distinct structures. This stems from
SAM’s original design, which was developed to accurately
segment everything, not specific object segmentation [35].
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FIGURE 16. Some examples of river water segmentation results on the LuFI-RiverSnap.v1. (a) Images and segmentation results generated by
(b) U-Net(ResNet50), (c) PSPNet(ResNet50), (d) DeeplabV3+(ResNet50), (e) PAN(ResNet50), (f) LinkNet(ResNet50), and (g) SAM were used as DL models for
river water segmentation.Green: False Positives (FP) detection, Pink: False Negatives (FN) detection, Blue: correct detection of river water.

TABLE 7. Qualitative assessment and summary of the performance of considered DL models for river water segmentation in terms of accuracy for the
Entire image (overall) and each test image (image-wise), visual quality, simplicity and speed(computing time), generality.

The U-Net(ResNet50) was the best model in river water
segmentation for the RIWA.v1, which aligns with the
finding in [3] in which this model was the best on this
dataset. Furthermore, all models demonstrated promising
performance in the Elbersdorf/Wesenitz dataset. This can be
attributed to the fact that this data includes images captured by
a sensor with specific characteristics in a distinct river scene
over time, resulting in limited variability. This characteristic
makes these data well-suited for adaptation by most deep
learning methods, as observed in the comparable results
achieved by SegNet and FCN models presented in [11]. The
PSPNet(ResNet50) yielded the poorest results in river water
segmentation in all cases, primarily due to its comparatively
lightweight architecture compared to the other models tested
in this study.

To synthesize the findings presented in the previous
section and the observations outlined above, a comprehensive
summary of the performance analysis of the evaluated DL
models has been presented in Table 7. SAM performed
exceptionally well in all aspects but ranked the lowest among
the DL models in terms of simplicity and computation time.
Hence, it proves to be a suitable choice for river segmentation
tasks in which both accuracy and stability are of inter-
est. U-Net(ResNet50) exhibited a well-balanced performance
(moderate to high scores across all criteria) across various
criteria. This makes it an adaptable choice for general river
segmentation tasks. PAN(ResNet50), DeepLabV3+(ResNet50),
and LinkNet(ResNet50) provided a reasonable balance between
qualitative/quantitative accuracy and speed. This makes
them well suited for segmenting river waters, where a
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trade-off between these factors is acceptable. Although the
PSPNet(ResNet50) model was the fastest and the easiest to use,
it was inferior in other categories, making it less suitable for
more demanding applications of water segmentation.

The prospects of this work revolve around the application
of DL segmentation models not only for river water
body detection but also for a broader range of tasks,
including general water body detection, wetland or lake
scene assessment, urban flood extent assessment, as well as
water level detection from close-range RS images. Although
the comparative analysis we presented yielded promising
results, it is important to acknowledge certain limitations. For
instance, the decision to resize images to 512 × 512 pixels
was driven by our resource constraints, enabling us to conduct
DL model comparisons. However, future research can delve
into the impact of image size on model performance and
explore alternative approaches, especially under different
resource scenarios. One such avenue could involve splitting
inputs into overlapped/no overlapped patches, as discussed
in [3], but our computational resources constrained us from
pursuing this path. Moreover, comparison with multi-scale
fusion backbones-basedmethods [45], [46], which are known
to excel in segmenting large instances, can provide further
insights into the performance of DL segmentation models for
water segmentation.

Additionally, data augmentation could be a valuable
tool in tasks involving river water segmentation under
diverse environmental conditions, lighting variations, or other
challenges, as demonstrated in [3]. However, our focus
on the intrinsic capabilities of DL models for river water
segmentation, coupled with limitations in computation units,
led us to forego data augmentation in this comparison. While
confident that identified limitations have not hindered the
study’s primary objectives, future research could benefit from
additional controls.

IV. CONCLUSION
This study presented an exhaustive comparison of U-Net,
PSPNet, DeeplabV3+, PAN, and LinkNet backboned with
predefined ResNet50 and SAM in the river water segmenta-
tion task. The experimental results were conducted on three
benchmark river water segmentation and a newly introduced
LuFI-RiverSnap.v1 dataset. These experiments provide rich
information on the efficacy and adaptability of the models
and valuable insights for future advancements in river water
segmentation research and applications. The experimental
results show that considered DL models can satisfactorily
result in river water segmentation from close-range RS
images with high variations in water color, illumination, sky,
and structural reflection on the surface water. The SAM
and U-Net(ResNet50) were more accurate on average than the
other tested models in river water segmentation; however,
both were slower in computing. Pan, DeepLabV3+(ResNet50),
and LinkNet(ResNet50) also achieved a good tradeoff between
accuracy and computing time. Moreover, PSPNet(ResNet50)
was the worst model among the tested models, although

FIGURE 17. Success levels of fine-tuned MobileSAM (TinyViT), SAM
(ViT-B), and SAM (ViT-L) models on the LuFI-RiverSnap.v1 dataset using
predefined IoU thresholds.

it was the most efficient model regarding computation
time.

The LuFI-RiverSnap.v1 dataset provided in this study
can fulfill the requirement for river water segmentation
from close-range RS images, rivers with various colors,
and structural reflections. This dataset can support analyses
such as trend analysis in river water levels, short-term
monitoring of river overflows, and flood extent detection
from close-range images. While the dataset is currently
undergoing refinement, future versions aim to include a
more diverse range of river scene images from around the
world. Additionally, the fine-tuning SAM process discussed
in this study is not limited to river water segmentation but
can be applied or/and integrated with other DL models
for diverse object segmentation tasks. Furthermore, As we
discard the prompt encoder from the SAM segmentation for
a fair comparison, one can explore advanced promptable
segmentation DL models to achieve better results in the task
of river water segmentation.

APPENDIX A
To validate the effectiveness of employing a ViT (91M)
backbone in SAM fine-tuning, we compared its performance
with larger ViT (315M) backbone as well as MobileSAM
with TinyViT (5.3 M) backbone [47] on LuFI-RiverSnap.v1
dataset. The number of parameters and average training time
per epoch have been reported in Table 8, while the compara-
tive performance results quantitatively and qualitatively have
been presented in Table 9, Fig. 17, and Fig. 18.

As can be seen from Table 9 and Fig. 18, SAM (ViT-L)
outperformed SAM (ViT-B) and MobileSAM (TinyViT) in
both quantitative and qualitativemeasures. Specifically, SAM
(ViT-L) demonstrated superior performance in 192 test cases,
showcasing its capability in accurate river water segmentation
(see Fig. 17). However, SAM (ViT-L) required significantly
more computational time per epoch (five times longer than
SAM (ViT-B) and twenty times longer than SAM (TinyViT)),
making it less practical for river water segmentation (see
Table 8).
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FIGURE 18. Some examples of river water segmentation results on the LuFI-RiverSnap.v1. (a) Images and segmentation results generated by
(b) MobileSAM (TinyViT), (c) SAM (ViT-B), (d) and SAM (ViT-L).

FIGURE 19. (a) Example test images from the LuFI-RiverSnap.v1 dataset, predicted by (b) fine-tuned SAM on 512 × 512, and (c) fine-tuned SAM on the
input original size.

TABLE 8. The number of parameters and average training time per epoch
for MobileSAM (TinyViT), SAM (ViT-B), and SAM (ViT-L).

On the other hand, SAM (TinyViT) emerged as the
most time-efficient method for river water segmentation
(see Table 8). However, this efficiency came at a cost,
as SAM (TinyViT) exhibited weaker performance both
quantitatively and qualitatively compared to SAM (ViT-L)

TABLE 9. Comparison results of fine-tuned MobileSAM (TinyViT), SAM
(ViT-B), and SAM (ViT-L) models on the LuFI-RiverSnap.v1 dataset. (Red:
the best, blue: second best).

and SAM (ViT-B) (see Table 9 and Fig. 18)). Moreover,
although SAM (TinyViT) achieved a higher success rate in
segmenting river water than SAM (ViT-B), it led to failure
results in the same proportion (see Fig. 17).

Conversely, the quantitative and qualitative results of SAM
(ViT-B) closely aligned with those of SAM (ViT-L), but were
achieved in significantly less time (see Table 8, Table 9 and
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Fig. 18). Therefore, a trade-off between accuracy and time
became more apparent when fine-tuning SAM with ViT-B,
making it the preferred choice in our comparative study.

APPENDIX B
In our workflow, we employed inputs with a size of 512×512,
which were subsequently upsampled to 1024× 1024 to meet
SAM’s requirements. SAM was also trained using inputs
at their original size from the LuFI-RiverSnap.v1 dataset to
improve the understanding of this issue (see Fig. 19).

The results illustrated in Fig. 19 clearly showcase accurate
segmentation of river water, particularly in challenging cases,
when SAM was fine-tuned using the original image size
rather than the 512 × 512 input images. Importantly, this
improvement is not unique to the SAM model; instead, it is
expected that the performance of other models tested would
similarly benefit from training on the original input size.
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