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ABSTRACT The Industrial Internet of Things (IIoT) is the recent innovation that had revolutionized
the industries by enabling interconnected devices and systems to exchange intelligent data. However,
implementing and operating such IIoT systems have various challenges. This article addresses those
challenges pertained to task offloading in IIoT in which the resource-intensive tasks are transmitted and
executed on remote cloud servers. To optimize the task offloading decisions this work propose the integration
of Digital Twins, which are the computer-generated replicas of physical objects. By using the functionalities
of Digital Twins along with real-time monitoring, and metaheuristic optimization algorithms this work
presents a task offloadingmodel for IIoT. Through this combined framework, the proposedmodel attempts to
minimize the task execution time by considering the server capacity, bandwidth constraints, and device power
consumption. The proposed Offloading with Digital Twins and Raindrop Algorithm (ODTRA) algorithm
that is based on the water cycle metaphor and the Probabilistic Recursive Local (PRL) search algorithm had
efficiently optimizes offloading performance which was proven through different experiment simulation and
analysis.

INDEX TERMS IIoT, digital twins, task offloading, metaheuristic optimization, water cycle metaphor,
decision-making system.

I. INTRODUCTION
The Industrial Internet of Things (IIoT), which is a
fundamental component of the term Industry 4.0, has
resulted in significant developments in different domains
by helping interlinked devices and networks to exchange

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

and communicate data freely. By making the effective use
of devices such as sensors, actuators, and advanced data
analysis, the IIoT efficiently connects digital techniques
and physical processes in a single process, consequently
improving operational efficiency, productivity as a whole,
and decision-making services [1], [2], [3], [4], [5].While IIoT
offers enormous chances, it also faces significant challenges.
The successful implementation and operation of IIoT systems
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require overcoming many hurdles. Some primary challenges
include [6], [7], [8], [9], and [10].

A. DATA VOLUME AND VELOCITY
IIoT environments generate massive volumes of data from
interconnected devices, sensors, and systems. It poses
challenges in terms of data storage, processing, and analysis.
Advanced data management and analytics measures are vital
to effectively controlling the high data volume, velocity, and
variety [11], [12].

B. RESOURCE CONSTRAINTS
Edge Devices (ED) in IIoT ecosystems have limited com-
putational power, memory, and energy resources. It poses
challenges when performing complex computations and
processing large volumes of data locally. Efficient resource
consumption and Task Allocation (TA) methods are nec-
essary to optimize system performance while minimizing
resource consumption [13], [14].

C. REAL-TIME DECISION-MAKING
Timely decision-making is crucial in IIoT applications.
Limited processing capabilities, network delays, and variable
data availability make real-time decision-making challeng-
ing. Organizations need fast and accurate Decision-Making
Systems (DMS) using real-time data and advanced analytics
[15], [16].

D. DYNAMIC ENVIRONMENTS
IIoT systems operate in dynamic environments with device
mobility, changing network conditions, and shifting resource
availability. Maintaining constant connectivity, managing
handovers, and maintaining dynamic network and resource
conditions are essential [17], [18].

E. SECURITY AND PRIVACY
The interconnected nature of IIoT systems increases their
vulnerability to security threats. Unauthorized access, data
breaches, and malicious attacks can have severe conse-
quences. Robust security measures such as authentication,
encryption, access controls, and continuous monitoring are
required to protect IIoT systems and ensure privacy [19], [20].

F. INTEROPERABILITY AND STANDARDIZATION
Lack of interoperability and standardization in the IIoT
environment makes participating devices and systems from
multiple vendors challenging. The design is necessary to
continue advancing attempts toward standardized procedures,
protocols, and freely accessible gateways in order to ensure
an integrated exchange of information and communication
among the different elements of the IIoT [21], [22].
The data from sensors that have connections to other

devices defies the processing power of ED. Additionally,
there is a probability that analyzing this data nearby will
result in a shortage of resources, issues with delay, and a

boost in Energy Consumption (EC) [23], [24], [25]. The
principle of Task Offloading (TO), in which tasks that
require considerable resources are assigned to remote server
locations in the cloud and executed by those servers, has come
to prominence as an achievable approach for overcoming
these problems. The initial implementation of TO in IIoT
presents several significant issues [13], [26], [27], [28], [29].
The very first phase in the technique, when deciding which
tasks should be offloaded and which should be run locally,
involves paying close attention to several variables, like the
unique features of the tasks, the amounts of resources that
are available, the state of the network, and environmental
restrictions.

Offloading decisions are made even more complicated
by the unpredictable nature of IIoT environments, which
are defined by changing network bandwidth, the mobility
of devices, and the availability of resources. In the IoT,
it is of the utmost importance to have effective practices
for Resource Allocation (RA), Task Scheduling (TS), and
optimization [29], [30], [31], [32], [33].

In the framework of the IIoT, the deployment of Digital
Twins (DT) is an approach with demonstrated promise
for addressing the problems that have been highlighted
by TO [31], [31], [34], [35], [36]. Real-time data for
research, management, and development can be achieved
by the use of computer-aided DT of physical objects or
systems [34], [37], [38], [39], [40]. In addition to improved
access and predictiveness, IIoT-DT additionally supports
resource management. The actual application of DT in TO
for immediate tracking and evaluation of IIoT systems allows
proactive decision-making and dynamic TA, which in turn
generates data on the effectiveness of the system, the efficient
use of resources, and the state of the network [41], [42], [43],
[44], [45].

DT analyses and tests the impacts of offloading decisions
on the functionality of the system and its financial perfor-
mance [46]. Metaheuristic approaches have the potential to
significantly enhance IIoT-TO decision-making through the
application of factors such as evolutionary processes, swarm
intelligence, and optimization approaches [47]. These mathe-
maticalmethods resolve complicated optimization challenges
successfully and efficiently without ensuring the optimal
global solution, but they frequently result in near-optimal
solutions within a feasible time limit [48]. The present work
introduces a Task Offloading Model (TOM) for IIoT, which
makes use of DT and a Metaheuristic Optimization (MO)
methodology intended for offloading [49]. The framework
that is proposed has the ultimate goal of significantly
reducing the total TET while simultaneously taking into
consideration the computation capacity of servers, bandwidth
limitations, and the EC rate of ED [50].
The proposed work’s main contributions are listed below:
• Development of the odtra algorithm:AMO algorithm
for TO in IIoT networks, which includes DT, has
been proposed and designated the acronym ODTRA.
By assuming server capacity, the volume of bandwidth,
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and device EC, ODTRA attempts to minimize Task
Execution Time (TET) to the highest level possible.
For the TO method in the most efficient procedure,
the algorithm generated the use of the Probabilistic
Recursive Local Search (PRLS) method and integrated
the Water Cycle Metaphor (WCM).

• Integration of DT: The use of DT is implemented in
the Task Offloading Model (TOM) in order to improve
TA decisions more in environments connecting IIoT.
The system is able to make smarter TO decisions
because it can take advantage of real-time monitoring
and predictive modeling. Proactive RA and TO have
been rendered attainable by this fusion, which results in
enhanced system efficiency and use of the system.

• Optimization of offloading performance: By examin-
ing the proper domain and applying the PRLS algorithm,
ODTRA is able to optimize the efficiency of offloading.
This iterative method is responsible for finding state-
of-the-art results, which in turn optimizes system
efficiency by drastically minimizing latency, improving
energy efficiency, and sustaining the quality of service
standards.

• Potential for practical implementation: A practical
example of the feasible deployment of IIoT scenarios in
the real world is presented by the ODTRA algorithm.
Considering several restrictions and efficiency, RA pro-
vides a viable solution for OTO performance. The
integration of DT further enhances its applicability by
enabling real-time monitoring and up-to-date decision-
making during offloading.

The article is systematized as follows: Section II analyses
background studies in IIoT-TO; Section III presents the meth-
ods employed in the proposed TOM; and Section IV describes
the detailed methodology and steps in implementing the
ODTRA algorithm for TO in IIoT. Section V presents the
proposed model’s experimental setup, simulation results, and
performance evaluation. Finally, Section VI concludes the
article, summarizing the key contributions and highlighting
the significance of the proposed TOM using DT and the
ODTRA algorithm in IIoT environments.

II. RELATED WORKS
Researchers, including [51], have explained and discussed the
advancements and challenges in DT. They explored several
sectors, such as healthcare, industry, and smart cities. They
highlighted technologies used in creating DT, including IoT,
IIoT, REST, SOAP, cloud computing, Machine Learning
(ML): (a) Supervised Learning (SL) and (b) Unsupervised
Learning (UL), and Deep Learning (DL) [52]), diverse
databases (MongoDB, Redis, MySQLi), and data analytics
with recognized smart manufacturing as an advanced model
with cognitive abilities, proposing a DT-based model that
employed intelligent methods for autonomous manufactur-
ing [53]. Reference [54] discussed the emergence of Industry
4.0, which promotes modernizing traditional manufacturing

through technology-driven approaches. Recent technologies
innovations such as IIoT, big data analytics, Augmented
Reality (AR)/Virtual Reality (VR), and Artificial Intelligence
(AI) [55] are pivotal in advancing smart manufacturing. The
idea of DT involves creating digital replicas of physical
objects [56]. In the Smart Manufacturing Systems (SMS)
context, a remote semi-physical debugging method employ-
ing DT is proposed to address system issues [57]. This
method is validated through a case study focusing on smart-
phone assembly line debugging [58]. Authors [59] introduce
a multidimensional torsional model for driveline components
in DT, enabling monitoring of remaining service life. The
authors optimize and adjust data collection in virtual models
to improve DT performance [60]. The virtual data obtained
from DT displays consistency with actual data, facilitating
predictive maintenance [61]. Their work [62] studied the
DT’s role in optimizing EC in industrial manufacturing, with
experimental results demonstrating improved efficiency and
reduced EC.

Reference [63] investigated integrating DT technology in
sustainable manufacturing to enhance quality, productivity,
and flexibility in intelligent manufacturing. They aimed to
leverage these technologies for the overall enhancement of
manufacturing operations [64]. A related study [65] stressed
the challenges of difficult operating conditions, leading
to frequent mishaps and accidents and high maintenance
costs. The authors [66] proposed implementing DT system
applications with automated processes to address these
challenges to enhance security, automation, monitoring, and
control in different domains–the comprehensively analyzed
technologies and tools for improving DT technologies [67].
By employing 5D models, they tried to present their findings
and facilitate better comprehension of the results [68].
In their study [69], their colleagues examined the fusion
of DT, ML, and IoT for model-based system engineering
with DT technology. They aimed to seamlessly integrate
these technologies within DT systems, ensuring efficient
application [70], [71]. Authors [72] designed an open-source
framework to address integration challenges in the IIoT.
The framework is a web application for communication
protocol [73]. It provides developers with flexibility in
protocol selection, testing, security enhancement, storage
analysis, and issue resolution, offering valuable solutions for
IIoT integration [67].

Today, there are numerous fields where DT is employed
along with edge computing, as demonstrated in studies
conducted by [74]. These studies explore the deployment
of DT to enhance edge computing tasks such as offloading
and RA [75]. Reference [76] emphasized that creating DT
for physical entities can improve edge computing systems’
task management and resource consumption. To address
the challenge of minimizing End-to-End Delay (EED) in
DT-assisted Mobile Edge Computing (MEC) for industrial
automation, [77] proposed a solution that leverages the
DT of MEC servers. In industrial backgrounds [78], this
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approach demands the real-time monitoring of physical
counterparts to assess the computational capabilities of MEC
servers. Doing so optimizes EED, enhances overall perfor-
mance, and improves efficiency. Reference [79] introduced
a TOM using a DT framework that focuses on selecting
consistent MEC servers based on channel state information
and blockchain technology. The goal is to make OTO
decisions in MEC environments, ensuring efficient resource
consumption. In their study published by [80], they devised a
Federated Learning (FL) method empowered by blockchain
technology, which applies digital replicas to capture terminal
devices’ operational conditions and actions. The use of this
method ensures a secure environment of learning and the
confidentiality of data, which helps ensure an improvement
in the level of security and privacy in FL environments [81].
Another study [82] exploited DT in order to develop a

virtual representation of MEC networks, which permitted
intelligent decisions to be made regarding lane changes in
connected vehicles. This virtual replica assists in evaluating
and orchestrating lane-changing strategies, helping more
intelligent DMS [83]. Their study [84] proposed a system
for Mobile Users (MUs) to minimize EED when TO→edge
servers nearby. The method used DT to evaluate the
edge server’s state, enabling efficient offloading decisions
while considering the constraint of long-term migration
cost.

In work by [85], a DT system assisted MUs in selecting
high-quality MEC servers. The system managed real-time
network status to enable the MUs to offload the tasks to MEC
servers by achieving reduced EC and latency. Reference [86]
explored the use of DT in supporting aerial-assisted Internet
of Vehicles (IoV). Based on network resource demands,
two incentive mechanisms maximized vehicle support and
energy efficiency [87]. The DT was crucial in optimizing
network performance and RA in aerial-assisted IoV net-
works. DT technology monitors Electronic Devices (EDs)
and real-time errors between the DT and physical entities,
improving task efficiency and reducing system error [88].
Combining edge computing and this approach enhances
network performance and resource optimization. Air-assisted
IoV’s dynamic DT was proposed in another study [89].
An Unmanned Aerial Vehicle (UAV) with a DT system
improved energy efficiency and resource scheduling in
air-assisted IoV networks [90].

The Accelerated Particle Swarm Optimization (APSO)
algorithm, introduced by [91], is a dynamic programming-
based PSO scheme designed to optimize computing time
and minimize service costs in edge computing environments
by efficiently TS and ensuring load balancing. Offloading
communication and computing in-vehicle edge comput-
ing were developed. To save time and be cost-effective,
offload decision-making and RA. Crowd Search-based Local
Search (CSLS) and Particle Swarm Optimization based
on Computational Offloading (PSOCO) improved edge
resource scheduling system performance. A Biogeographic

Optimization (BO) algorithm optimized multiple factors and
enhanced system performance [92].

Researchers have recently improved the Water Cycle
Algorithm (WCA), a Water-based Metaheuristic Optimiza-
tion (WMO) algorithm, to find optimal solutions across
domains [93]. Using flexible formulations and global search,
the WCA solved the Job-Shop Scheduling Problem (JSSP)
and Multi-Processor Scheduling Problem (MPSP) better
than other algorithms [94]. WCA, a mathematical model,
optimizes the Reliability-Redundancy Allocation Problem
(RRAP) better than previous methods. Remanufacturing
Rescheduling Problem (RRP) and LS operator integration
model to improve Discrete Water Cycle Algorithm (DWCA)
efficiency are the focus of the study. This approach
solves real-world remanufacturing cases, proving the DWCA
algorithm’s value in optimization problems [95].

Reference [96] present an intelligent TSO that leverages
AI integration in EC. This model is robust in its adaptability,
security features, and ability to achieve low processing
delays, making it highly effective in dynamic environments.
However, it may not fully address the challenges in heteroge-
neous edge computing environments. Reference [97] propose
an AI-enhanced offloading framework for IIoT, focusing on
maximizing service accuracy within edge computing. This
framework effectively balances the trade-off between delay
and service accuracy. Nonetheless, it might not completely
cater to the diverse computational capabilities present in
complex IIoT scenarios.

Reference [98] introduce an optimal TSO in Mobile Edge
Computing (MEC) and Device-to-Device (D2D) commu-
nication frameworks, applying Q-learning for minimizing
EC and executing EED. While it shows promising energy
efficiency and EED reduction results, its primary focus
on MEC and D2D might limit its general applicability.
Reference [99] develop a joint TO and RA system, targeting
accuracy-aware ML-based IIoT applications in edge-cloud
network architectures. This model is adept at minimizing
the long-term average system cost, considering the inference
accuracy of ML models. However, the complexity of its
implementation and the potential requirement for extensive
computational resources are notable limitations.

Tables 1 to 4 comprised the holistic overview of the
scientific research based on categories.

III. METHODS
A. WATER CYCLE ALGORITHM (WCA)
The WCA [100] utilizes a metaphorical representation of
raindrops and bodies of water to conceptualize its optimiza-
tion process. The initial population, raindrops, represents
optimization problem solutions. The best individual is
analogous to a sea, while the promising raindrops are
depicted as rivers. The remaining raindrops converge into
streams, merging into rivers, ultimately finding their way
to the sea. Figure 1 presents the block chart for the WCA.
In terms of the WCA, a raindrop or a single solution to the
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TABLE 1. Literature summary of DT technology in smart manufacturing and performance enhancement.

optimization problem is denoted as a 1 × Nvar dimensional
array, represented as Equation (1):

Raindrop =
[
X1,X2, . . . ,XNvar

]
(1)

In the optimization problem, Nvar represents the problem’s
dimension. The cost function ( Cost i ) for each raindrop is
calculated to determine its effectiveness using the following
Equation (2):

Costi =

∫ (
X i1,X

i
2, . . . ,X

i
Nvar

)
, i = 1, 2, 3, . . . ,Npop (2)

where the population count of the raindrops is represented by
Npop . The direction of flow for the raindrops, whether they
go into the sea or the rivers, is determined by the following
Equation (3), considering the strength of the flow:

NSn

= round

{∣∣∣∣∣ Costn∑NSr Cost i
i=1 |

∣∣∣∣∣× NRaindrops

}
, n = 1, 2, . . . ,Nsr

(3)

where Nsr represents the sum of rivers and a single sea,
and NRaindrops indicates the population of raindrops that
either directly flow into the rivers or enter the sea. Streams
are produced due to rainfall, which later converge to form
rivers or directly flow into the ocean. The sea is the ultimate
destination for all rivers and streams, representing the best
optimal point. The following Equations (4) and (5) determine

the updated positions of the rivers and streams:

X i+River = X iRiver + rand × C ×

(
X iSea − X iRiver

)
(4)

X i+Stream = X iStream + rand × C ×

(
X iRiver − X iStream

)
(5)

Here, the value of C lies within the range of 1 to 2, and
rand corresponds to a random number uniformly distributed
between 0 and 1. The stream and the river could interchange
their roles if the solution represented by the stream is better
than the rivers. Similarly, the sea and the rivers can also swap
their roles. The inclusion of the parameter dmax. It plays a
crucial role in deciding whether to encourage or restrict an
expanded search around the sea, representing the optimal
solution. Its value is updated according to the Equation (6):

d i+1
max = d imax −

d imax

Iter_Max
(6)

Following evaporation, rain occurs, giving rise to new
streams. These streams consist of newly formed rain-
drops located at various positions, which are defined as
Equation (7):

Xnew
Stream = LB+ rand × (UB− LB) (7)

Here, LB and UB represent the lower and upper bounds,
respectively, defining the range within which the positions
of the new raindrops are randomly determined. The ‘‘rand’’
term means a uniformly distributed random number between
0 and 1, used to calculate the offset from the lower bound
to obtain the position of each new raindrop in the stream.
To enhance the algorithm’s performance and convergence in
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TABLE 2. Literature summary of DT and edge computing integration.

TABLE 3. Literature summary of MO in edge computing.

constrained problems, Equation (7) is explicitly employed for
streams that flow directly into the sea. Using Equation (8), the
streams’ new positions are determined:

Xnew
Stream = Xsea +

√
µ × randn (1,Nvar ) (8)

The coefficient ‘µ’ plays a significant role in defining
the search range near the sea. By adjusting the value of µ,
the algorithm’s behaviour is controlled. Specifically, ‘γµ’
is the standard deviation in generating normally distributed
random number randn. It is essential to highlight that a higher
value of ‘µ’ expands the feasible search area, allowing for

exploring a broader region. In contrast, a reduced weight of
‘µ’ constrains the search to a narrower space near the sea.
In essence, ‘µ’ is referred to as a measure of variance; the
distribution of individuals, generated with a variance of ‘µ’,
around the optimal point is determined, represented by the
sea.

B. PROBABILISTIC RECURSIVE LOCAL SEARCH (PRLS)
PRLS, an expansion of traditional Local Search (LS) meth-
ods, shares similarities with multi-start LS by conducting
multiple LSs. However, it distinguishes itself by adopting
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TABLE 4. Literature summary of advancements in MOA.

Algorithm 1Water Cycle Algorithm
Input:

• Nvar : Variable count.
• Npop : Raindrops count.
• Nsr : the sum of rivers and the sea.
• LB: Lower bound of the search parameter.
• UB: Upper bound of a search parameter.
• Iter Max: maximum iterations.

Output:
• The algorithm found the best solution.

Step 1: Initialization
• Generate Npop raindrops as the initial population.
• Evaluate the cost function for each raindrop.
• Select the best raindrop as the sea.

Step 2: Water Flow
• For each raindrop ‘i’, calculate the normalized strength of the flow using Equation (3)
• Assign each raindrop to a river or the sea based on the strength of its flow.
• Calculate the new positions for each stream and river using Equations (4) and (5)
• If a stream has a better solution than the river it flows into, its roles are exchanged.
• When rivers offer a better solution, seas take over.

Step 3: Evaporation and Rainfall
• Update the value of dmax using the Equation (6)
• For each stream that flows into the sea, generate a new raindrop with the Equation (8).
• For each stream that flows into a river, update its position with a new random value between LB and UB.

Step 4: Termination
• Return the best solution after the maximum iterations.
• Otherwise, go back to Step 2 and repeat the water flow process.

a probabilistic approach when selecting the starting point.
Instead of randomly selecting a location in the state space, the
PRLS method determines a point from the recently explored
LS trajectory. It is guaranteed that the set point is at least
improved over the initial starting point and holds the potential
for achieving a superior outcome. The process continues with
a new LS branch, identifying the next optimal transition
operation until no further improvements are possible, follow-
ing the termination condition of traditional LS. Moreover,
as part of the recursive process, this approach involves
revisiting the branch from which the current unit originated,

aligning with the behaviour exhibited in depth-first search
algorithms.

The algorithm concludes when one of the termination
conditions is met: either the specified number of individual
PRLS has been performed or the desired solution cost is
achieved. In the case of the former scenario, an individual
PRLS concludes when the root, which represents the initial
LS route, has thoroughly travelled all of its branch points,
commonly known as search trees. The primary parameter
for PRLS is the branching probability, which determines the
likelihood of branching at a specific end along the trajectory
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FIGURE 1. WCA block chart.

of the LS. Increasing the branching probability increases
the possibility of generating densely populated search trees.
Conversely, reducing the branching chance leads to forming
search trees with a sparser distribution. A comprehensive
algorithm for PRLS is outlined in detail as follows:

IV. PROPOSED MODEL
A. SYSTEM DESCRIPTION
The proposed edge-based DT framework is depicted in
Figure 2. Industrial devices and machines are equipped
with IoT sensors connected to EDs and gateways within an
industrial setting. Each Edge Node is provided with an Edge
Computing server that manages processing tasks obtained
from industrial devices. It is assumed that the devices can
start communication with Edge Nodes via wireless or wired
connections, and there is no overlap in the coverage areas of
the individual Edge Nodes.

Furthermore, the devices are set up to communicate
with cloud servers and a central controller through Base
Stations (BS) or gateways. The DT idea is applied to
each industrial device, generating a virtual representation
with information such as device status, sensor data, and
operational parameters–the DT exchanges data, enabling
them to collect comprehensive global information about the
industrial system. The DT has offloaded DMS to optimize
task execution and resource utilization.

In order to facilitate efficient offloading decision-making,
the Offloading with Digital Twins and Raindrop Algorithm
(ODTRA) has been implemented within the framework. The
capabilities of DT and the Raindrop Algorithm are combined
in ODTRA in order to make intelligent decisions regarding
the offloading of work that is performed by industrial devices.
IoT sensors provide device status, sensor readings, and other
operational data to industrial machines’ DT. Cloud-based DT
offload based on system state, network connectivity, task
requirements, and resource availability using the ODTRA
algorithm. Signal strength and predicted data transfer rates

FIGURE 2. System architecture.

are network connectivity, while task requirements are data
size and computing resources.

The architecture incorporates a DMS for TO that considers
both bandwidth and EC. DT within the system utilizes
the ODTRA algorithm to decide on TO, factoring in the
available bandwidth to prevent network congestion and
the EC of devices to ensure efficient use of resources.
The algorithm prioritizes TO to edge servers with sufficient
bandwidth and results in lower EC than local processing,
thus optimizing the operation based on these two critical
parameters. The decision findsminimizing EED,maximizing
resource utilization, and optimizing EC. After selecting the
offloading decision, the DT relays the decision to either
the local device or the Edge Node for execution. After
task execution, the DT updates its parameters based on
the device’s status and other relevant information. It then
proceeds to make offloading decisions for subsequent tasks,
considering the updated system state and applying the
ODTRA algorithm iteratively.

In IIoT, the motivation is frequently to confirm reliable
and efficient communication within an industrial atmosphere.
Hence, it is vital to consider network handovers when a
device changes outside the coverage range of an Edge
Node connectivity issue. To optimize network resource
utilization, task data (without execution output) is typically
not communicated between Edge Nodes. As a result, when
a device transitions outside the network coverage region
of the present Edge Node, any awaiting tasks that have
not been transmitted are rejected. By applying ODTRA,
which participates in the abilities of DT and the Raindrop
Algorithm, this improved model for the IIoT allows it to be
the real-time application for industrial devices to make smart
offloading decisions, efficient task execution, and effective
resource management.

B. THE COMPUTATION TOM
TOM functioned with DT for the IIoT investigation. The
design that is proposed for edge computing involves both a
server and a device at the edge of the network, and each task
is encircled by a specific set of N ≡ {1, 2 . . . n}. A wireless
base station, which is marked by the symbol ‘s’, is available in
order to improve communication among the users of the edge
computing servers and the edge computing users. DT, which
describes digital representations of real objects or systems,
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Algorithm 2 Probabilistic Recursive Local Search
Input:

• α: the probability of branching at a point on the LS trajectory
• Max_Iterations: the maximum number of individual PRLS to perform
• Target_Cost: the solution cost at which to terminate the overall algorithm

Output:
• Best_Solution
• Best_Cost

Step 1. Set Best_Solution=null and Best_Cost=infinity.
Step 2. Initialize iteration = 1
Step 3. While iteration<=Max_Iterations and Best_Cost > Target_Cost:
Step 4. Select an initial point in the state space.
Step 5. Set Current_Solution=initial point and Current_Cost = cost (Current_Solution).
Step 6. While true:
Step 7. Perform a LS from Current_Solution to find the best neighbouring solution.
Step 8. The Current Cost is higher than the best neighbouring solution.
Step 9. Set Current_Solution=best neighboring solution and Current_Cost=cost (Current_Solution).
Step 10. If Current_Cost<Best_Cost:
Step 11. Set Best_Solution=Current_Solution and Best_Cost=Current_Cost.
Step 12. With probability ‘α’, select a point within the recently completed LS trajectory.
Step 13. If no such point is selected, terminate the current PRLS and return to step 3.
Step 14. A branch from the selected point and perform a new LS from the branched solution.
Step 15. Increment iteration.
Step 16. Return Best_Solution and Best_Cost.

has the ability to improve the performance of the computation
offloading process by providing a virtual model of the actual
system that is both more precise and contains all of its
components – (TO and RA). The DT hypothesis, combined
with the communication and computation models, provides
the potential to offload computations in edge computing
successfully.

1) COMMUNICATION MODEL
In the framework that has been suggested, every single ED
user has access to a related digital twin, which is also known
as a ‘DTi’. This ‘DTi’ acts as a digital copy of the physical
device and can provide help in making decisions regarding
computation offloading. A channel coordinator for the User
Nodes (UNs) and the edge computing server is the wireless
base station, which is denoted by the symbol ‘s’. The group
M = {1, 2, 3 . . .m} is applied to signify the total number
of wireless channels that the Base Station (BS) permits
activation. The offloading decisions made by each ED are
represented by the decision vector X = (x1, x2, . . . , xn),
where xi(i = 1, 2 . . . n) indicates the fraction of the task
ED ‘i’ chooses to offload for execution on edge servers. The
remaining fraction of the task, (1 − xi) × 100% is executed
locally on the ED. These functions offloading decisions
originate with the support of the DT linked with each ED,
DTi, which makes use of its intimate understanding of the
computing power and tasks of the device.

To determine the transmission rate ri of device ‘i’, the
communication model accounts for various factors, such
as the channel gain among BS ‘s’ and ED ‘i’ (hi), the
transmission power of ED ‘i’ (pi), the background noise
power

(
σ 2
)
, and the effects from other nodes and their

DT
(
−pihi +

∑n
j=1 pjhj + τ 2DTj + λ2

DTj , where τ 2j and λ2
j are

the power levels of the interference caused by the DT
of ED ‘j’ and the cross-talk from neighbouring channels.
The transmission rate ri is computed using the following
Equation (9):

ri = ω log2

(
1 +

pihi
σ 2 +

∑n
j=1 pjhj + τ 2DTj + λ2

DTj − pihi

)
ri

(9)

The communication model considers the bandwidth ‘ω’ of
the channel. It acknowledges that simultaneous offloading
of computation by multiple EDs and their DT through
the same channel can result in significant intrusion and
reduced data rates, ultimately impacting the performance of
edge computing. DT optimizes ED offloading decisions to
improve system performance and minimize interference.

2) COMPUTATION MODEL
For the computation model, C ≡ {c1, c2 . . . cB} refers to the
tasks, with ci representing the computation task for user ‘i’,
measured in CPU cycles. Also,B = {b1, b2 . . . bn} represents
the data size, with each ‘bi’ meaning the task data size for user
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‘i’. The set ‘C’ represents computation tasks, where each task
‘i’ has a total CPU cycle count ‘ci’. Similarly, the setB is used
to represent the data sizes, where each task ‘i’ is associated
with a data size denoted as bi.
Furthermore, the set U represents the available EDs,

denoted as U = {u1, u2 . . . un}, while the set E represents the
available edge servers for computation of TO, denoted asE =

{e1, e2 . . . en}. The set S represents the resources managed
by each edge server, denoted as S = {s1, s2, . . . , sn}.
The DT associated with each resource device in the edge
server provides real-time information on resource usage
and is represented as DTr = {r1, r2 . . . rn}, where ri =

{q1, q2 . . . qn}, and qi represents a specific resource of ri.
Then the set as J = {j1, j2 . . . jl} is used to denote the edge
server’s task model, where the ith task is ji = {y1, y2 . . . ym},
and yi represents the demand for a resource for a particular
task.

RA, usage schedules obtained from the DT and the specific
computation and data required for the task are all considered
for view by the RA system.

a: LOCAL COMPUTING
In local computing, the task is executed in the local device ‘n’,
leveraging the support and assistance the deployed DT
provides. The DT stores real-time data on resource usage,
enabling the ED to optimize its computation capability.
The TET as T Li of user task ‘i’, when executed locally,
is expressed as the following Equation (10)

T Li =
u

ZLi + Di
(10)

Here, ZLi represents the initial computation capability of
ED user ‘i’, Di is the delay caused by DT processing, and
u = (1 − xi) ci.xi. The decision vector ‘x’, as mentioned
earlier, is used as a balance factor between local computing
and offloading. Regarding the EC of the computation, it is
described by the Equation (11):

ELi = η

((
ZLi + Di

)2
+ B2i

)
u (11)

In the equation, ‘η’ represents a parameter related to the EC
per CPU cycle, ZLi + Di is the total computation time for
task ‘i’ (including the DT processing delay), Bi represents the
data size associated with task ‘i’, and ‘u’ is the computation
capability adjusted by the decision vector xi. The term
B2i represents the EC of data transmission between the ED
and the DT. It is proportional to the square of the data size
Bi. It indicates that EC increases exponentially as the data
size increases, emphasizing the importance of efficient data
transmission devices in minimizing EC.

b: OFFLOAD COMPUTING
In the remote computing approach using the DT, the task
is offloaded to the edge servers from EDs ‘i’ through BS
(s). Nevertheless, the process of computation offloading
introduces additional overhead in terms of time and EC, as it

requires the transmission of computation data. To calculate
the time overhead incurred by ED ‘i’ when the task is
offloaded to the edge servers, the following Equation (12) is
used:

TMi = v+
k

zMi + DTMi
(12)

where ‘v’ represents the time required for data transmission
and ‘k’ is a constant factor. The term ZMi denotes the
user i ‘s computation capability while DTMi represents the
information provided by the DT specific to user ‘i’. Assuming
that each user has a similar computation capability, it is as
ZM1 = ZM2 = · · · = ZMn · v =

xibi
ri

, k = xici ∗ bi. The time
required for data transmission, ‘v’, is calculated as xibiri , where
xi denotes the offloading decision of user ‘i’, bi is the data size
associated with the user i ’s task, and ri is a fixed factor.

Additionally, ‘k’ is defined as xici ∗ bi, which denotes the
data transmission time to the server by each user ‘i’. The term

k
ZMi +DTMi

represents the server’s processing time for each
received task from user ’ i ’, considering the computation
capability ZMi and the information provided by the DT layer,
DTMi . In this context, the time overhead associated with
sending back the computation results is considered negligible
because the result data size is smaller than the input data size.
The following Equation (13) displays the EC for ED ‘i’ to
conduct task offload to the edge server:

EMi = piv+ η

((
ZMi + DTMi

)2
+ B2i

)
k (13)

where, piv represents the EC generated by user ‘i’ dur-
ing the data transmission to the edge servers. The term
η
((
ZMi + DTMi

)2
+ B2i

)
k represents the EC required by

the servers to execute the user i′ s task, considering the
computation capability

(
ZMi

)
and the information provided

by the digital twin layer
(
DTMi

)
. The data size of the task is

represented by Bi.
The optimization model for the problem is defined as

following Equations (14) to (16)

minF(X ) = (f1(X ), f2(X )) (14)

f1(X ) =

n∑
i=1

(
T Li + TMi

)
(15)

f2(X )=
n∑
i=1

(
ELi + EMi

)
s.t X = (x1, x2, . . . , xn)

xi ∈ [0, 1]

i=1, 2, . . . . . . , n (16)

where F(X ) represents the objective function to be mini-
mized, consisting of two components: f1(X ) and f2(X ).The
objective is to find the optimal values of X that minimize
the total computation time (f1(X )) and the total EC (f2(X ))
for all the tasks. f1(X ) represents the sum of execution times
for all tasks, including the local execution time

(
T Li
)
and the
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TABLE 5. Notation and description.

offloading TET
(
TMi

)
, as discussed in the previous section.

It captures the overall time required to compute all the tasks.
f2(X ) represents the total EC for all tasks, including the
local EC

(
ELi
)
and the offloading EC

(
EMi

)
. It captures the

overall EC in performing the computation tasks. The decision
variables X = (x1, x2, . . . , xn) Does each ED user make the
offloading decisions xi is the fraction of the TO (between
0 and 1). The constraints ensure that the values of xi are within
the valid range for each device user. The notations used in this
work are summarized in Table 5.

C. PROBABILISTIC RECURSIVE LOCAL SEARCH (PRL)
OPTIMIZED WATER CYCLE ALGORITHM (WCA) (PRL-WCA)
The WCA simulates nature’s water cycle with a population-
basedMO. The algorithm generates a population of raindrops

representing potential solutions to the optimization problem.
Raindrops flow from streams to rivers and the sea, and the
process is repeated until an acceptable solution is found.
While the WCA is a robust optimization algorithm, it still
has advantages from additional optimization techniques. The
PRLS is a Probabilistic Local Search (PLS) technique that
enhances the exploration and exploitation capabilities of the
optimization algorithm–recursively searching for the best
solution and accepting a new key if it improves the objective
function value. The PRLS could effectively enhance the
performance ofmany optimization algorithms, includingGA,
simulated annealing, and PSO.

To use the PRLS to optimize the WCA, PRLS is
incorporated as a LS operator within the WCA framework.
After the WCA generates an initial population of raindrops,
PRLS is applied to each raindrop to refine its position
within the solution space. To be more apparent, the PRLS is
performed on the raindrop that was determined to be the best
in the initial set of samples, and the solution that results is
used as the baseline for theWCA cycles. The PRLS is used to
apply to the finest raindrops in the population after the water
flow step in each iteration of the WCA. This is done in order
to refine the raindrop’s position within the resulting domain
while the WCA is being performed. This can be achieved
through utilizing the PRLS to execute a recursive search in
a nearby area of the best solution that is currently available
and then accepting novel ideas that improve the value of the
objective function in a method that is probabilistic. When the
PRLS is employed as an LS operator in a WCA, its levels
of exploration and exploitation are enhanced, which in turn
increases the possibility of the WCA finding a high-quality
result. The collective use of the PRLS and the WCA can,
in more familiar terms, contribute to improved optimization
performance. The algorithm’s LS capabilities are enhanced
by PRLS and WCA. This methodology could prove helpful
in complex and robust solution environments where theWCA
may have problems finding a solution that is of high quality.

D. OFFLOADING WITH DIGITAL TWINS AND RAINDROP
ALGORITHM (ODTRA)
With DT, the offloading problem in edge cloud computing
settings can be addressed with the help of ODTRA, which
is a MO method. By examining parameters such as server
resources, ED-server bandwidth, and energy consumption
rate, the ODTRA technique is able to decrease the overall
time required to finish tasks significantly. The metaphor used
is based on the water cycle, where the water cycle symbolizes
the best solution, and each raindrop shows a possible solution.
There are five stages to the algorithm: starting, moving
water, using probabilistic iterative LS, addressing rainfall and
evaporatedwater, and finally employingDT to offload. A cost
function that includes TET, server computation resources, the
amount of bandwidth, and device EC generates the cost of
each raindrop. The raindrop collection is bombarded with
the water flow process, which represents the flow of water
from optimal to defiled solutions. Raindrops are divided into
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rivers or the sea according to their capacity, which is directly
correlated to the cost of each one, by continuously changing
their functions in accordance with the quality of each stream’s
and river’s solution. This is because the system is able to
investigate better solutions by reversing its functions when
a stream’s solution is better than the river it integrates into or
when a river’s solution is better than the sea’s.

Assuming a random set of solutions and a set of candidate
solutions generated from causing variables, the PRLSmethod
is then applied to each raindrop. For each solution, the cost
function is evaluated, and the one with the most significant
result is selected as the preferred solution. Their comparable
quality is used to determine and continuously improve the
PRLS methodology. If the technique is better, it substitutes
the raindrop and refreshes flow strength. The evaporation and
rainfall process is then applied, which involves reducing the
maximum flow strength (dmax) and generating new raindrops
(or) updating the positions of existing ones based on their
flow. DT offloads each task and device to a cloud-based
server with minimal execution time. DT changes state with
task execution. Steps 2-5 are repeated until the threshold for
stopping is reached, generating the best solution. Edge cloud
computing offloading optimization method ODTRA is good.

V. SIMULATION AND RESULTS
Simulation experiments were conducted to evaluate the
proposed model and solution method. Simulations were run
on a PC with a 3.7 GHz Intel Core i9-10900K processor
with 64 GB RAM. In order to prove that the assessments
were conducted effectively and that accurate results could
be attained, this set-up was the best choice. By applying
this setup, the performance and effectiveness of the model
are evaluated, and the result is advanced under practical
scenarios.

A. SIMULATION SETUP
To assess the performance measure of the ODTRA system in
IIoT environments, this work considered a simulation setup
encompassing a range of node configurations and functional
variables. This setup mimics diverse functional scenarios,
ranging from small-scale to large-scale IIoT environments,
providing a complete knowledge of ODTRA’s capabilities.

These research simulations included a difference in node
counts to signify dissimilar scales of IIoT environments.
Select a series from 20 to 100 nodes. This range was selected
to simulate settings from localized, minimum networks
(20 nodes) to maximum networks (100 nodes), thus laying
a broad spectrum of real-world IIoT environments.

This network simulation combined three dissimilar task
sizes: Small (1 KB), Medium (500 KB), and Large
(1000 KB). These sizes were ideal to signify an extensive
array of data processing and computational requirements
distinctive in IIoT environments.

The standard benchmark test performance of the ODTRA
system was related to numerous well-developed optimization
approaches, namely ACO, PSO, GWO, WOA, and WCA.

Algorithm 3 Offloading With DT and Raindrop Algorithm
Input:

• M: Sum of EDs
• N: Sum of cloud servers
• D: Sum of tasks to be offloaded
• E: Execution time for each task on each device
• C: Computation capacity of each server
• T: Sum of TET on all devices
• Npov : Sum of raindrops in the initial population.
• Nsr : Sum of rivers and the sea.
• LB: the lower bound of the search parameters.
• UB: the upper bound of the search parameters.
• Iter rMax : the maximum number of iterations.
• PRLiter : the number of iterations for PRLS.
• PRLstep : the step size for PRLS.
• B: the bandwidth between the local device and each ED.
• P: the EC rate of each ED.

Output:
• The algorithm found the best solution.

Step 1: Initialization
(a) Generate Npop: raindrops as the initial population.
(b) Evaluate the cost function for each raindrop using the

offloading problem Equation (17):

Cost i =

D∑
d=1

Ed
1 + (B× Di)

P× Fi
+

N∑
n=1

Cnmax(T−

D∑
d=1

Ed × F(n,d), o

(17)

(c) where Di and Fi are the decision variables for raindrop i
and F(n,d) is the computation capacity of server ’ n ’ for
task ’ d ’.

(d) Select the best raindrop as the sea.
(e) Set the current iteration count to 0.
Step 2: Water Flow
(a) For Each raindrop ‘i’, calculate the normalized strength

of the flow as follows Equation (18)

NSn= round

{∣∣∣∣∣ Costn∑Nsr
i=1 Cost i

∣∣∣∣∣× Npop

}
,n=1, 2, . . . ,Nsr

(18)

(b) Assign Each raindrop to a river or the sea based on the
strength of its flow.

(c) Compute the new positions for each stream and river
using the following Equations (19) and (20):

X i+Stream =X iStream + rand × C ×

(
X iRiver − X iStream

)
(19)

X i+River =X iRiver + rand × C ×

(
X iSea − X iRiver

)
(20)
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Here, C denotes a value ranging from 1 to 2, and
rand represents a randomly generated number uniformly
distributed between 0 and 1.

(d) If the solution represented by a stream is better than the
one described by the river it flows into, exchange their
roles.

(e) If the solution represented by a river is superior to the
solution represented by the sea, their roles are swapped.

Step 3: Apply PRLS
(a) For Each raindrop ‘i’, select a random neighbourhood ni

of size Nn such that Nn ≪ Npop .
(b) For Each raindrop ‘i’, generate a set of candidate solu-

tions Si by perturbing the variables in its neighborhood
ni.

(c) Evaluate the cost function for each candidate solution in
Si.

(d) For Each raindrop ‘i’, apply the following PRLS
procedure:
(i) Select the best candidate solution in Si as the current

solution.
(ii) Setk = 1.
(iii) While k < PRLiter r:

∗ Select a random neighbour of the current solu-
tion.

∗ If the neighbour is better than the current
solution, set the neighbour as the current solution
and set k = 1.

∗ Otherwise, with the probability PRLstep , set the
neighbour as the current solution, and increment
k by 1.

(iv) If the current solution is better than the original
raindrop, replace the original raindrop with the
current solution.

(e) Update the strength of the flow for each raindrop.
Step 4: Evaporation and Rainfall
(i) Update the value of dmax using the following

Equation (21):

d i+1
max = d imax −

d imax

Iter Max
(21)

(ii) For Each stream that flows into the sea, generate a new
raindrop with the following Equation (22):

Xnew
Stream = Xsea +

√
µ × randn (1,Nvar ) (22)

where µ is a coefficient that controls the search range
and rand n is a normally distributed random number.

(iii) For each stream that flows into a river, update its position
with a new random value between LB and UB.

Step 5: Offloading with DT
(i) For Each task ‘D’ and each ED ‘M ’, select the server ‘n’

with the lowest execution time when using the DT for
deviceM .

(ii) Offload task D from device M to server ‘n’.

(iii) Update the state of the DT for device M based on the
executed task.

(iv) Update the TET ‘D’ on device M to be the execution
time obtained when offloading to server ‘n’.

(v) Update the total TET to ‘T ’ tasks and devices.
(vi) Repeat Steps 2-5 until the stopping criterion is met.
Step 6: Termination
(a) If the maximum number of iterations IterMax is reached,

return the best solution found so far.
(b) Otherwise, increment the iteration count and go to

Step 2.

This proportional method lets us contextualize ODTRA’s
performance within the current optimization techniques
environment. All the simulation tests were shown using
MATLAB Release 2018a (R2018a).

Specific parameters for each algorithm for the analysis are
listed below:

(a) Ant Colony Optimization (ACO): Set with a pheromone
evaporation rate of 0.5 and 100 ants, tailoring it for
network pathfinding tasks in IIoT environments.

(b) Particle Swarm Optimization (PSO): Configured with
particle velocities having an inertia weight of 0.5 and
social and cognitive parameters set to 2, ensuring
effective convergence in network optimization.

(c) GreyWolf Optimizer (GWO): Adjusted with a pack size
of 50 and a maximum iteration count of 100, optimizing
its efficiency for network-related tasks.

(d) Whale Optimization Algorithm (WOA): Calibrated with
a spiral constant of 1.5 for spiral updating position,
and bubble-net behavior engaged every ten iterations,
aligning with the dynamic nature of IIoT environments.

(e) Water Cycle Algorithm (WCA): Set with a raindrop
evaporation rate of 0.05 and flow rate parameters
optimized for searching network solutions.

The simulation parameters are described below:

(a) cs: It is the size of small tasks, which is 1KB
(kilobyte). Small tasks typically involve processing (or)
transmitting a relatively small volume of data.

(b) cm : It is the size of medium tasks, which is 500 KB.
Medium tasks are more significant than small tasks and
require more computational resources.

(c) cb: This symbol represents the size of large tasks,
1000 KB. Large tasks are the largest among the three
groups and may require considerable computational
capabilities.

(d) P: It has the maximum transmission power and has a
value range from 10 to 100 W. It indicates the total
energy that is used for transmitting data between nodes.

(e) f l : It is the computation capacity of local devices with a
value range from 0.5 to 1GHz. It indicates the processing
energy or computational ability of the individual devices
in the network.
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(f) f c: It is the computation capacity of edge servers and has
a value of 10GHz. Edge servers are typicallymore potent
than local devices and manage complex computations.

(g) L: This symbol represents the distance between local
devices and edge servers, ranging from 1 to 30 m.
The distance between devices affects the quality and
efficiency of communication.

(h) ω: It is the channel bandwidth, which is 5.0× 10−3GHz.
It signifies the maximum data transfer rate or capacity
of the communication channel.

(i) σ2: It is the background noise power, which is 1.0 ×

10−13 W. It represents the redundant or random noise
present in the communication channel.

By varying these simulation parameters and observing
their impact on the performance metrics, such as latency,
throughput, or EC, the simulation aims to compare the
proposed model with other algorithms. Let’s find out
how well the proposed approach performs under different
scenarios and get a few recommendations for how to improve
on it more successfully with this examination. Network EC,
cumulative delay, and the total amount of tasks offloaded are
the three primary parameters evaluated to assess the results
achieved by the models. For the aim of performing accurate
testing, the values for T (delay) and E (energy) have been
specified as 0.5. This shows that both factors have been
assigned similar weights.

Every node’s average time delay and EC are considered
when measuring the total performance. The objective is
to mitigate EC and EED within the entire network by
incorporating network-widemetrics with consideration, com-
pared to emphasizing particular nodes in the network. With
the above approach, the entire network as a whole gets
advantages from offloading decisions that take neighboring
nodes’ requirements into account. To better discover the
algorithms’ success and effectiveness and to make intelligent
choices about TOM, these network-level parameters have
been investigated.

B. NETWORK ENERGY CONSUMPTION
A key variable in the functional batteries and performance
of Internet of Things (IoT) devices is energy, an abundant
resource on the network that supports them. Research into the
EC connected with tasks of different sizes in the field of IoT
is presented for the purpose of analysis of resultant graphs.
On trivial tasks, as demonstrated in Figure 3a, the ODTRA
approach frequently outperforms its peers like ACO, PSO,
GWO, andWOA. In ODTRA, the EC data were significantly
reduced irrespective of the task count, and the WCA
subsequently followed the match. The design highlights how
well the technique optimizes EC for trivial tasks, which
is essential for devices with minimum power resources.
If we look at small to medium-sized tasks in Figure 3b,
ODTRA is additionally the most successful algorithm in
EC. The ability of this algorithm to attain lower EC metrics
for small to medium-sized tasks, despite the task count,
constantly sets it ahead of similar algorithms. Reduced energy

FIGURE 3. Analysis of EC for different-sized tasks.

use during computation implies that ODTRA can optimize
EC and extend the functional lifespan of IoT devices.
Figure 3c, requiring significant tasks into consideration,
additionally demonstrates how ODTRA executes higher in
terms of EC. ODTRA achieves decreased levels of EC and
is reliably superior to comparable algorithms as the task
count increases. The present study deals with power-related
issues in enormous-scale IoT deployments by illustrating
how the methodology effectively uses energy resources for
challenging computational functions.

The ODTRA method has been able to minimize energy
on tasks that have various sizes compared to the aggregate
analysis. For Internet of Things (IoT) devices, ODTRA
increases EC by typically superior to other approaches in
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the context of EC value. The consequences for boosting the
energy utilization of IoT systems as a whole, reducing the
amount of time for charging or replacement of batteries, and
prolonging the life span of particular devices are substantial.

In addition, the findings demonstrate which EC correlates
positively with task size, subject to whether the task has
been assigned or implemented locally. Also, there is a
corresponding increase in EC usage when the total number of
tasks gets higher. The results of this study have been linked to
the higher load of computation on the IoT device or the edge
server, according to the specific circumstances.

The utilization of CPU resources is one of the primary
sources of EC in local computation. However, EC evolves
with tasks that are offloaded whenever data is sent from
the IoT device to the edge server and then obtained and
returned by the device–the overall EC advantages from these
additional communication processes.

The significance of implementing task size as well as
quantity of tasks into consideration when improving EC in
IoT devices and edge servers is made clear by this research.
In order to minimize EC and boost efficiency, it is vital to
properly manage all of these variables and select optimal
offloading methods.

C. ANALYSIS OF COMPUTATION LATENCY
The total amount of time that expires between an IoT device
receiving or analyzing a data input and then resulting in
output is known as computation latency, which is additionally
referred to as delay. With the increasing number of appli-
cations that function in real-time in the IoT environment,
reducing delay is of greater significance than ever before for
ensuring user requirements. The new ODTRA methodology
has been investigated empirically by contrasting its findings
against the outcomes of different methods previously in use.
Finding the best method of action that would have resulted
in a minimal impact on the computation of time for a
definite task was the objective. The end result from graphical
representations, marked ‘‘Small,’’ ‘‘Medium,’’ and ‘‘Large,’’
depending on the task sizes, illustrate the conclusions of this
research.

The following graphs explain how methods perform in
computation delay for Small, Medium, and Large tasks.
For real-time IoT applications to function appropriately,
computation latency–the time from input sensing to output–is
significant. Reducing latency enhances the user experience.
Evaluating the data in the tables shows that the recommended
ODTRAmethod outperformed every other algorithm consid-
ered across all task types. In Figure 4a, ODTRA consistently
performs better than WCA, along with additional algorithms
in tasks with small latency values, irrespective of task count.
Research shows that ODTRA proves helpful in reducing the
negative impacts of computation latency on tasks of a smaller
scale.

In medium tasks, Figure 4b follows the pattern that has
been observed. ODTRA significantly reduces delay across
all task counts, which is superior to other algorithms. The

FIGURE 4. Delay analysis for different task sizes.

algorithm’s function to operate effectively and decrease
computation latency, even for small to medium-sized tasks,
is made clear here. Figure 4c indicates that when large tasks
are factored in, ODTRA is once again the most appropriate
selection. As the number of tasks gets higher, it continually
attains decreased delay values when compared with other
similar algorithms. That ODTRA is capable of minimizing
computation latency for large tasks can be seen from this
problem. In optimizing computation latency over different
task sizes and counts, the research emphasizes the successful
performance of the ODTRA method. By decreasing delays,
ODTRA enhances the user experience and performance in
cases where delays are essential to the success of an Internet
of Things (IoT) application.
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D. NUMBER OF TASK OFFLOADING
The selection of tasks must be optimal in order to succeed in
efficient computation offloading. One of the most significant
actions to take is to develop a balance between offloading
tasks to the edge server and performing them locally on
emergency devices. The server may become overloaded,
resulting in delays if every task is offloaded. In addition,
the device’s battery energy may be consumed if all tasks
are performed locally. When evaluating whether or not to
offload, the computational workload is considered. Tasks that
demand a higher amount of CPU cycles are more likely
to be offloaded. Smaller tasks are better suited for local
execution, EC, reducing bandwidth usage, and optimizing
server utilization. The required CPU cycles and input data
size influence the decision to offload a task. Local execution
is preferred for tasks with larger input data sizes and a lower
CPU cycle-to-data size ratio. This helps minimize the energy
and time consumed during data transmission. Optimally,
TO can improve energy efficiency, bandwidth utilization,
and overall system performance by considering CPU cycle
requirements, task size, and data transmission overhead.

The illustration of the result graphs the distribution of TO
across different execution scenarios at a specific point in
time. The result provides insights into offloading tasks based
on their sizes (Small, medium, and large) using different
optimization algorithms. In Figure 5a, which focuses on small
tasks, ODTRA consistently outperforms the other algorithms
by offloading more tasks at all task counts. It indicates
that ODTRA effectively identifies small tasks that require a
more considerable number of CPU cycles for execution and
selects them for offloading. Among the other algorithms, the
WCA presented better results than the others; the GWO and
WOA also demonstrate competitive performance, offloading
a relatively higher number of tasks than PSO and ACO.
Moving to Figure 5b, representing medium tasks, ODTRA
excels in TO by offloading more tasks than the other
algorithms that WCA follows. It highlights ODTRA’s ability
to identify medium tasks that meet the offloading criteria.

Similarly, GWO and WOA show promising results by
many TOs, surpassing PSO and ACO. In Figure 5c, focusing
on significant tasks, ODTRA again stands out by offloading
more tasks than the other algorithms. It indicates that ODTRA
effectively recognizes large tasks that require substantial
computational resources and selects them for offloading.
WCA also demonstrates competitive performance in large
TO, outperforming other models.

The analysis of the tables highlights the effectiveness
of ODTRA in selecting TO, regardless of their sizes.
By selecting tasks that require higher CPU cycles to execute,
the ODTRA algorithm achieves reduced resource utilization
and improved response time in the system. These findings
emphasize the importance of selecting an appropriate opti-
mization algorithm for offloading that considers the features
and requirements of the tasks, ultimately achieving a balance
between EC, response time, and server utilization. ODTRA’s

FIGURE 5. Analysis for varied sizes of task.

ability to select the optimal set of TO contributes to EC and
reduced execution time for all available tasks.

E. ENERGY AND DELAY TRADEOFF ANALYSIS
Typically, small tasks require higher energy to offload to
an edge server than large tasks, as they need additional
communication overhead. Concurrent execution of multiple
tasks on the Edge server can lead to higher response times
and potential overloading, resulting in increased latency.
The communication overhead raises EC when small tasks
are offloaded to the Edge server. These factors are crucial
in low-latency, low-battery applications. To address this,
TO selection for offloading is vital, considering factors such
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FIGURE 6. Energy-delay tradeoff for small task size.

as task size, communication overhead, and energy limitations
of IoT devices. The aim is to minimize EC while meeting the
response time requirements of delay-sensitive applications.

Figure 6 presents the EC values for different optimization
algorithms when executing a small task size (1 KB) over
an Edge server. The delay (milliseconds (ms)) measures
response time. ODTRA consistently achieves minimal EC
across all delay values compared to the other algorithms.
As the delay increases, there is a general trend of decreasing
EC for all algorithms. It is expected since a higher delay
allows more time for task execution, resulting in minimal
EC. Among the other algorithms, WCA exhibits maximum
EC compared to other models. ODTRA achieves the
most significant reduction in EC, providing a substantial
improvement over the different algorithms.

Figure 7 presents the EC values for the same optimization
algorithms when executing a larger task size (1000 KB)
over an Edge server. Once again, ODTRA consistently
achieves the minimum EC values across all delay values,
outperforming the other algorithms. As the delay increases,
there is a general trend of decreasing EC for all algorithms;
WCA exhibits higher EC followed by GWO and WOA;
further, ODTRA demonstrates the most significant reduction
in EC, highlighting its effectiveness in OTO decisions
for large task sizes. The resultant graphs underline the
superiority of ODTRA in minimizing EC for small and
large task sizes, leading to improved energy efficiency in
offloading decisions. ODTRA consistently outperforms the
other optimization algorithms, offering a better tradeoff
between delay and EC. ODTRA is an excellent choice
for delay-sensitive applications in IoT environments where
minimizing EC is crucial to preserve limited battery energy
and improve the system’s overall efficiency.

F. ENERGY AND DELAY TRADEOFF ANALYSIS
The study evaluation was conducted to assess the cost
performance of the proposed ODTRA approach and to
analyze the effects of the number of UNs in order to minimize
the overall system cost. The count of UNs is a crucial factor
in general cost considerations, reflecting the TO competition
in edge servers and cloud networks. Figure 8 presents the
total cost results for different models, including the ODTRA

FIGURE 7. Energy-delay tradeoff for large task size.

FIGURE 8. Cost analysis based on average computational resource
requirements of tasks.

algorithm, compared to other models. The analysis focuses
on the number of UNs in the system.
From the results, specific key observations can be made:

1) COMPARISON WITH OTHER MODELS
ODTRA consistently outperforms the other models regarding
cost efficiency, demonstrating significantly lower total costs
across all UN counts. The percentage differences in total
costs between ODTRA and the other models highlight the
substantial cost reductions achieved by ODTRA. ODTRA
performs cost savings from around 21% to nearly 100%
against these algorithms.

The analysis reveals ODTRA’s cost efficiency, particularly
at lower node counts, where it exhibits near-complete cost
reductions compared to most models. ODTRA maintains
a considerable cost advantage as the number of nodes
increases, with savings from about 21% to over 75%
relative to other algorithms, even in more significant network
scenarios. This trend reflects ODTRA’s scalability and ability
to adapt to numerous operational scales.

2) IMPACT OF UN COUNT
To competition increases costs as UNs increase, increasing
the total cost. As UNs increase, ODTRA’s efficiency in
managing TO competition and resource allocation lowers
total cost.
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FIGURE 9. DT influence on TO time.

FIGURE 10. DT influence on energy usage.

The ODTRA algorithm reduces costs by 99.73% to
99.99%, making the offloading method more economically
efficient. A cost-effective offloading solution for IIoT
systems, ODTRA reduces costs and improves economic
viability, according to the study.

G. ANALYSIS OF DT’S IMPACT ON OFFLOADING TIME AND
ENERGY USAGE
The analysis compares the EC and TO time of numerous
algorithms in IIoT systems with and without DT, with
results presented in Figures 9 and 10, respectively. Energy
efficiency and TO time are better than other algorithms,
showing that ODTRA optimizes offloading decisions and
reduces IIoT-EC. Without DT proof, it outperforms other
models in TO time. These findings indicate that ODTRA can
optimize IIoT offloading, promoting sustainable and efficient
environments.

H. STATE-OF-THE-ART (SOTA) COMPARISON
In the conducted comparative analysis of various SOTA-TOM
in the context of IIoT, ODTRA was evaluated against four
other SOTAmodels across key performance metrics for small
tasks, generating perceptive results. The details of the models
used for comparison are presented in Table 6.
Regarding network EC (Figure 11), ODTRA consistently

exhibited superior energy efficiency, maintaining the lowest

TABLE 6. Analysis of the differences between the various SOTA-TOS.

FIGURE 11. Task count vs. energy.

FIGURE 12. Task count vs delay.

EC across all task counts. This starkly contrasted to Model 1,
which generally recorded the highest EC, while Models 2, 3,
and 4 demonstrated intermediate energy efficiencies.
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FIGURE 13. Number of TO.

FIGURE 14. Influence of node count on cost.

When analyzing computation latency, ODTRA excelled in
reducing processing delays (Figure 12), especially at lower
task counts, and maintained competitive performance even as
the task count increased. This efficiency in latency reduction
was critical, particularly when compared to Models 1 and 2,
which exhibited increasing delays with higher task counts,
hinting at potential scalability challenges.

Regarding the number of TO (Figure 13), a key metric
in assessing offloading efficiency, ODTRA proved robust
capabilities, outperforming the other models, especially at
higher task counts.WhileModels 2 and 4 showed competitive
offloading performance, they did not match the efficiency of
ODTRA. Models 1 and 3 lagged in this regard, indicating
lesser offloading efficiency.

Perhaps most notably, ODTRA demonstrated significant
cost advantages regarding the effect of User Nodes (UNs) on
system costs (Figure 14). It consistently incurred the lowest
system costs across various node counts, starkly contrasting
with Model 1, which tended to be the costliest. Models 2 and
4 offeredmoderate cost performances, whileModel 3, despite
showing some cost efficiency, did not approach the extent of
ODTRA’s cost-effectiveness.

Overall, the comparative analysis highlighted ODTRA’s
comprehensive superiority across all evaluated metrics,
including energy efficiency, latency reduction, TO efficiency,
and cost-effectiveness. This positions ODTRA as a potent
model in IIoT environments, adept at addressing the multi-
faceted demands of high energy efficiency, rapid processing,
effective TO, and optimized system costs.

VI. CONCLUSION AND FUTURE WORK
Task Offloading (TO) is crucial in managing the high
volume of data generated in IIoT environments. Transferring
resource-intensive tasks to remote cloud servers reduces the
burden on Edge Devices (ED), mitigates resource constraints,
andminimizes latency. The proposedmodel leverages Digital
Twins (DT) as the virtual counterparts of IIoT systems,
enabling real-time monitoring, predictive analysis, proactive
decision-making, and efficient resource management. The
ODTRA algorithm, designed for TO in IIoT with DT,
optimizes performance by considering server capacity, band-
width constraints, and device Energy Consumption (EC).
It explores the solution space iteratively using the WCM
and PRLS algorithms, generating high-quality solutions to
minimize Task Execution Time (TET) and improve system
efficiency. The model offers a viable solution for OTO per-
formance with the potential for practical implementation in
real-world IIoT scenarios. The integration of DT enhanced its
applicability by providing real-time monitoring and informed
decision-making. This innovative approach addresses the
challenges of TO in IIoT, presenting opportunities to
enhance system performance, reduce latency, improve energy
efficiency, andmeet quality service requirements. As the IIoT
evolves, innovative solutions will be crucial to realizing its
full potential and driving advancements in industrial sectors.
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