
Received 23 March 2024, accepted 3 April 2024, date of publication 5 April 2024, date of current version 12 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3385499

Detecting Top-𝑘 Flows Combining Probabilistic
Sketch and Sliding Window
KEKE ZHENG 1, WENZHU CHEN1, BOTAO FENG 2, (Senior Member, IEEE),
AND HANXIN ZHANG3
1College of Information Science and Technology, Jinan University, Guangzhou 510632, China
2College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
3School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

Corresponding author: Keke Zheng (kekezheng_coco@163.com)

ABSTRACT Efficient real-time top-𝑘 flows measurement plays a pivotal role in enhancing both network
performance and security, including tasks such as timely traffic scheduling, optimizing network latency and
identifying potential security threats. However, traditional methods for detecting top-𝑘 flows suffer from
decreased accuracy and high memory overhead. Furthermore, many existing methods overlook finer-grained
measurements, such as the detection within the latest short time intervals. With the increasing expansion
scale and link speed of the network, an accurate real-time top-𝑘 flows identified method is required. This
paper proposes wSketch, a novel sketch-based method for real-time top-𝑘 flows detection. The innovations
of wSketch are that it combines with the sliding window model and circular queue model, and introduces
a novel probabilistic update solution. The probabilistic update mechanism gives the larger flow a greater
chance of retention, the sliding window model focuses on the latest flow in the last W time units, and the
circular queue reduces memory consumption. Therefore, wSketch provides insights into the current network
situation and does well in anticipating future trends. The experimental results showcase wSketch’s superior
performance, achieving over 96% accuracy with a small memory size of 20KB.

INDEX TERMS Network measurement, sketch, sliding window, top-k flows detection, approximate
measurement, network monitoring.

I. INTRODUCTION
Identifying the top-𝑘 flows (i.e., the largest 𝑘 flows) within
network traffic stands as a crucial endeavor in enhancing
network performance and security management. Detecting
the top-𝑘 flows precisely holds paramount importance for
various network functionalities, including traffic engineer-
ing [1], [2], [3], flow scheduling [4], [5], load balance [6],
[7], [8], frequency estimation [9], [10], and abnormal traffic
behaviors detection [11], [12] (e.g., heavy hitters [13], [14],
[15] and heavy changers [16]). Therefore, detecting top-𝑘
flows is highly beneficial for many network applications [17],
[18].

With the rapid expansion of network scale and of
traffic volume, it is challenge to store all flows within
network devices (e.g., switches) due to their limited memory
resources [19]. Therefore, it is impractical to assign a counter
to each flow because of the large memory consumption.

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Khalil Afzal .

Besides, the increasing network link speeds also make it
challenging to accurately detect top-𝑘 flows under high-speed
network conditions.

In the realm of real network traffic, it’s widely known that
the flow sizes distribution is highly skewed [20], [21], [22]. In
other words, the majority of flows are small in size, which we
refer to as ‘‘mice flows,’’ while a minor portion of flows are
large flows, known as ‘‘elephant flows.’’ Despite the elephant
flows are fewer in number, it account for a substantial portion
of the total traffic volume. whereas the number of mice flows
is more enormous than elephant flows. In the context of top-
𝑘 flow detection, more attention should be paid to elephant
flows to improve accuracy, while reducing the storage of
mice flows to reduce memory consumption. Consequently,
approximate detection methods have been proposed in the
previous literature and gained wide acceptance [13], [23],
[24].

Previous research on approximated top-𝑘 flows can be
divided into three categories: (1) Methods based on counter:
These techniques, such as Space Saving [24], maintain a

50376

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0000-2091-5302
https://orcid.org/0000-0003-3662-0183
https://orcid.org/0000-0002-6161-1310

K. Zheng et al.: Detecting Top-𝑘 Flows Combining Probabilistic Sketch and Sliding Window

summary of flows within a table and update it by replacing
the smallest flow. However, the accuracy is compromised
due to the skewed shape of network traffic distribution [22].
(2) Methods based on sample: This methods [25], [26]
record packets at a predefined sampling rate to reduce
memory consumption. Nevertheless, achieving high accuracy
becomes challenging due to the dilemma of selecting an
appropriate sampling rate. A high sampling rate can ensure
high precision but entails increased memory overhead.
Conversely, a low sampling rate is memory-friendly but will
also decrease accuracy. (3) Methods based on sketch: These
methods [13], [27], [28], [29] achieve approximated top-𝑘
flows measurement with high accuracy by counting flows
within a compact data structure (i.e., sketch) shared among
different flows. For example, Count Min Sketch [13] utilizes
a two-dimensional array with 𝑑 rows and 𝑠 columns. It maps
each flow to 𝑑 buckets according to the hash functions of each
row and returns the minimum value among 𝑑 mapped buckets
as the measurement result.

The simple structure and low memory overhead of
sketch make it efficiently handle network flows and have
been widely researched recently. By combining with other
structures, sketch show great promise in top-𝑘 flows detec-
tion [30]. However, the former methods usually detect top-𝑘
flows within a long period of time. But the rapid development
of the Internet prompts the applications to focus more on
the latest flow statistics [19], so the significance of traffic
information decreases over time. Consequently, the detection
and analysis of top-𝑘 flows should focus on the most recent
time to reflect the current network situation and future trends.
To achieve this purpose, the sliding window model [31] can
be applied to the design of the sketch, which is also called
sliding window sketch [32].
In this paper, we propose wSketch, a novel probabilistic

slidingwindow sketchmethod to detect real-time top-𝑘 flows.
Compared with traditional sketch-based methods, wSketch
combines the sliding window model, circular queue model
and probabilistic calculation. Specifically, wSketch focus
on the top-𝑘 flows stored in the current window while
ignoring the flow information that has already been moved
out of the sliding window to capture the most recent network
situation. An important feature of circular queue is the reuse
of memory space, which can be used to reduce memory
consumption. In addition, wSketch updates the sketch in a
probabilistic manner and gives the large flows a greater
chance of preservation. When the hash collision occurs,
wSketch calculates the probability based on the recorded flow
size and the frequency of hash collision to determine whether
to replace the flow in the sketch. By using the dynamic
probability mechanism, there is a high chance of retention
for top-𝑘 flows, and vice versa, and the accuracy of flow size
estimation is also be improved. Therefore,wSketch can detect
the real-time top-𝑘 flowswith high accuracy and lowmemory
consumption.

In short, this paper makes the following contributions:

(1) A novel sliding window sketch model is proposed to
identify the real-time top-𝑘 flows. wSketch combines
the sliding window model and circular queue to focus
on the latest top-𝑘 flows detection with less memory
consumption.

(2) wSketch proposes a new dynamic probability calcu-
lation mechanism and update strategy, which greatly
improves the accuracy of top-𝑘 flows detection and
flow size estimation with less memory consumption.

(3) A mathematical analysis is developed for wSketch
to theoretically prove its high precision. In addition,
extensive experiments are conducted to demonstrate
the high accuracy of wSketch. The experimental results
show that wSketch can achieve an accuracy of more
than 96% with only 20KB of memory.

The rest of this paper is organized as follows. Section II
outlines the background and related works. Section III
introduces the design of wSketch in detail. The experiment
setup and results are provided in Section IV. Finally, wemake
a conclusion and discuss the future work in Section V.

II. RELATED WORKS
We compare and summarize some of the existing works on
measuring top-𝑘 flows as illustrated in Table 1. These works
can be classified into three types: methods based on counter,
methods based on sample, and methods based on sketch.

A. METHODS BASED ON COUNTER
The core idea underlying counter-based methods [23], [24],
[33], [34], [35] is centered around maintaining counters to
monitor the most frequent flows within the network. For
example, Space Saving (SS) [24] utilizes amin-heap structure
to manage each incoming flow, and each node stores a <

𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 > pair. When the min-heap is full and a new flow
arrives, the update strategy of SS is to replace the smallest
flows and increase the smallest counter by 1. However,
as 𝑘 increases, the precision of detection diminishes unless
additional memory resources are allocated to accommodate
the expanding set of top-𝑘 flows. WCSS [23] extends Space
Saving to detect heavy hitters over a sliding window that
counts the most recent𝑊 items.
Lossy Counting [33], employs a flow table supplemented

with associated counters to keep the top-𝑘 flows. When new
flow arrives, Lossy Counting either increments the counter
associated with the flow or replaces the smallest flow to
maintain the set of top-𝑘 flows.

CELL [34] utilizes estimators, which uses fewer bits than
the counter, to estimate the frequency of the flow. CELLmaps
a flow to a specific level according to its frequency. The level
is saved in an estimator. The increase in flow size will also
increase the level of the flow.

The counter-based methods exhibit relatively good perfor-
mance under the conditions of sufficient memory or limited
network traffic volume. However, the scale of network traffic

VOLUME 12, 2024 50377

K. Zheng et al.: Detecting Top-𝑘 Flows Combining Probabilistic Sketch and Sliding Window

TABLE 1. Comparison with existing solutions.

is growing exponentially, which poses significant challenges
to memory overhead and detection accuracy.

B. METHODS BASED ON SAMPLE
Sampling presents a solution by collecting packets at a
predefined rate and transmitting flow statistics to collectors
for further analysis. The accuracy of sample-based methods
heavily depends on the chosen sampling rate and the
characteristics of network traffic. It’s worth noting that a
higher sampling rate can improve accuracy but results in
significant bandwidth overhead and transmission delays.
Conversely, lower sampling rates alleviate resources but
may compromise the accuracy of detection. Therefore,

determining the optimal sampling rate is a significant
challenge task, requiring a careful trade-off between accuracy
and resource utilization(i.e., SRAM).

The escalating volume of network traffic, combined
with limited memory resources, presents a challenge for
sample-based methodologies. As network traffic continues to
grow exponentially, finding efficient and accurate sampling
strategies and striking the right balance is crucial.

C. METHODS BASED ON SKETCH
Sketch-based methodologies, such as Count Min [13],
LUSketch [27], sketch-BF [28], Cuckoo Counter [36],
CountMax [37], FCM-Sketch [38], ActiveGuardian [35] and

50378 VOLUME 12, 2024

K. Zheng et al.: Detecting Top-𝑘 Flows Combining Probabilistic Sketch and Sliding Window

FIGURE 1. Example of count min sketch.

others [39], [40], have been extensively researched. Count
Min, as shown in FIGURE 1, maps each incoming flow into
𝑑 buckets based on respective hash functions and returns the
minimum value from these buckets. Despite its simplicity
and efficiency, Count Min is susceptible to overestimation
issues, because of its continuous increase in the value of the
mapped counter without distinguishing different flows. This
problem becomes more serious under conditions of limited
memory and growing traffic volumes, where hash collisions
occur more frequently.

CountMax [37], an improvement over Count Min,
mitigates the issue of overestimation by maintaining <

𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 > pairs. In cases of hash collisions, it calculates
the difference between the current and recorded values,
and retains the larger flow with the difference. Ultimately,
CountMax derives its estimate by selecting the maximum
value across 𝑑 rows.
Heavy Keeper [22] adopts a min-heap structure to monitor

the top-𝑘 flows and achieves relatively high accuracy.
However, a larger 𝑘 may strain memory usage, as the min-
heap necessitates additional nodes to accommodate the top-𝑘
flows.

ActiveGuardian [35] separate potential elephant flows
from mice flows. It consists of a filtering module evicting
mice flows as well as low-arrival-rate flows and a guarding
module identifying active elephant flows.

HashPipe [41] introduces a rolling eviction mechanism
to potentially replace small flows. Nonetheless, it faces
challenges in scenarios with skewed network traffic [20],
where subsequent arrivals of small flows can compromise
the accuracy of preserved top-𝑘 flows due to the mandatory
replacement strategy of the first row.

Although the above methods have achieved relatively good
performance, these methods are all aimed at top-𝑘 flows
detection within a long period, and less consideration is given
to the factor that as timemigrates, the impact of previous flow
information gradually decreases.

In this paper, we propose a novel sliding window sketch
method that updates in a probabilistic manner, namely

TABLE 2. Symbols and notations.

wSketch. Specifically, wSketch uses the sliding window
sketch model to achieve the goal of measuring real-time top-
𝑘 flows in the most recent period. And the use of the circular
queue helps wSketch reduce the memory overhead caused by
sliding windows through reusing memory. Besides, wSketch
introduces a probabilistic calculation manner in the sketch,
where large flows can be better preserved according to the
skewed shape of network traffic. Therefore, wSketch can
achieve high-precision real-time top-𝑘 flows detection and
flow size estimation with a small memory overhead, making
wSketch well suited for different network applications [18],
[42].

III. STRUCTURE DESIGN OF WSKETCH
This section describes the structure and processing logic of
wSketch, and introduces how wSketch accurately detects real-
time top-𝑘 flows with low memory cost through the sliding
window model and probabilistic update mechanism. The
symbols used frequently in the paper are shown in Table 2.

A. STRUCTURE OVERVIEW
Due to the skewed shape of traffic flow in real networks
as discussed above [22] and the inevitable hash collisions
in sketch, wSketch adopts a probabilistic update strategy in
sketch to enhance the accuracy of top-𝑘 flows detection.
As depicted in FIGURE 2, the structure ofwSketch comprises
two main components: the Elephant part (i.e., a sketch) and
the Mice part (i.e., an array).

The Elephant part consists of 𝑑 rows (𝑟1, 𝑟2, · · · , 𝑟𝑑)
and 𝑠 columns, with each row associated with a distinct
hash function (H1, H2, · · · , H𝑑). Different from the former
solutions, wSketch utilizes a new parameter (i.e., Counter).
So each bucket in the Elephant part stores three parameters

VOLUME 12, 2024 50379

K. Zheng et al.: Detecting Top-𝑘 Flows Combining Probabilistic Sketch and Sliding Window

FIGURE 2. Structure design of wSketch.

<Key, Counter, and Counter>, where Counter is used to
differentiate different flows, Counter is used to record flow
size, while Counter is used to tally hash collisions. wSketch
updates the bucket in Elephant part with dynamically
probabilities adjusted based on Counter and Counter values.
This ensures that larger flows have a higher chance of
retention, optimizing the preservation of top-𝑘 flows while
disregarding smaller ones.

The Mice part is an array storing <Counter, Counter>
tuples. Initially, large flows may possess small Counter and
risk being replaced in the Elephant part. In such cases, the
Mice part serves to prevent inadvertent loss of large flows
and further enhancing detection accuracy.

As shown in FIGURE 3(a), traditional sketch-based
methods primarily focus on counting all the network flows
at each bucket in a long period (from time beginning to time
ending).When querying, it summarizes all the flows that have
passed and returns the measurement results. Besides, many
methods face problem of high memory and low accuracy. To
address this issue and better detect the latest traffic flows,
wSketch combined with a sliding windowmodel for real-time
top-𝑘 flows detection.
Each bucket of wSketch (including Elephant part andMice

part) is divided into several windows based on the detection
time (suppose it is divided into 𝑁 windows as shown in
FIGURE 3 (b)). The measure time of each window is the
same, so as to realize time-sharing statistics. wSketch only
focuses on the flows in the latestW (W ≤ 𝑁) windows, as it
reflects the latest network conditions.

However, recording all the passing flows is a memory
challenge duo to the large amount of traffic transmitted in
the network. Since the outdated flows are not important
for current statistics and predictions, so we can consider
directly ‘‘discarding’’ these outdated flows to optimize
memory overhead. Therefore, wSketch adopts a Circular
Queue model (as shown in FIGURE 4) to optimize memory
overhead. Assuming the task is to detect top-𝑘 flows from
up to the pastW windows, the length of the Circular Queue
will be set to W. This circular approach ensures that the
latest top-𝑘 flows can be detected while effectively reducing
memory overhead.

To further reduce the memory usage due to the sliding
window, the Elephant part merges the parameter Counter at
each window into one and shares it (as shown in FIGURE 5).
Suppose that the Counter occupies 32 bits, the Counter
occupies 16 bits, the Counter occupies 16 bits, and the
number of windows is 5 (i.e. W = 5). Then, the memory
overhead of each bucket before the improvement is (32 +
16 + 16) × 5 = 320 bits, after merging Counter, the memory
overhead of each bucket is (32 + 16) × 5 + 16 = 256 bits.

The internal processing logic and step of wSketch is
illustrated in FIGURE 6. And in the following, we will
provide a detailed introduction to the operations of each part

B. OPERATIONS OF WINDOW UPDATE
Regarding the issue of cross-window updates in wSketch,
let’s assume that the measurement task needs to count flows
from up to the past 5 time windows (i.e. W = 5), and the
current detect window is 𝑣. For each window cycle’s update
operation, there are mainly the following two situations:

(1) When in the window 𝑣 (1 ≤ 𝑣 ≤ W − 1). The flows
arriving within this window time are directly inserted
into window 𝑣 until the end of this window time. When
it comes to the next cycle, the flows will be inserted
into the next window 𝑣 + 1.

(2) When in the window 𝑣(𝑣 ≥ W − 1). All windows
(totally W windows) have recorded flow information.
When the next cycle reaches, there is no empty window
in the circular queue to store new flows’ information.
The strategy wSketch adopts is to refresh and cover the
information in window 𝑣%W.

For example, if it is currently in period 3, the packet will
be inserted into window 4 in the next period. If it is currently
in period 5, then the packet will be inserted into window (5+
1)%5 = 1 in the next period. Besides, whenever the window
updates, the shared Collision will refresh to 0.

C. OPERATIONS IN ELEPHANT PART
To differentiate between newly arrived flows and those
already stored in the Elephant part, we label the new flow
as K𝑛𝑒𝑤 and the recorded flow as K𝑜𝑙𝑑 .

The operations within the Elephant part (i.e., the sketch
operations) primarily involve insertion, updating, and evic-
tion of flows. Specifically, when a new flow K𝑛𝑒𝑤 arrives,
wSketch maps K𝑛𝑒𝑤 to 𝑑 buckets based on distinct hash
functions H𝑖 at each row. (1) If the mapped bucket is empty,
wSketch inserts K𝑛𝑒𝑤 directly into this bucket. (2) If the
mapped bucket is not empty and K𝑛𝑒𝑤 = K𝑜𝑙𝑑 , wSketch
increases the Counter by 1. (3) If the mapped bucket is not
empty and K𝑛𝑒𝑤 ≠ K𝑜𝑙𝑑 , wSketch increases the Counter
by 1 and calculates the probability to determine whether to
replace K𝑜𝑙𝑑 or not. If the randomly generated 𝑟𝑎𝑛𝑑𝑜𝑚 is
less than 𝑟𝑒𝑠 (i.e., 𝑟𝑎𝑛𝑑𝑜𝑚 < 𝑟𝑒𝑠), wSketch evicts K𝑜𝑙𝑑 to
the Mice part and inserts K𝑛𝑒𝑤 into this bucket. Otherwise,
wSketch evicts K𝑛𝑒𝑤 into the Mice part and retains K𝑜𝑙𝑑 in

50380 VOLUME 12, 2024

K. Zheng et al.: Detecting Top-𝑘 Flows Combining Probabilistic Sketch and Sliding Window

FIGURE 3. Processing Model of sliding window sketch.

FIGURE 4. Circular queue model of wSketch.

FIGURE 5. Merging counter among multiple windows.

the Elephant part. The probability formula is as follows:

𝑝 = 𝑏𝑎𝑠𝑒−𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ∗ 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛. (1)

By using probability, wSketch can effectively preserve
large flows and improve measurement accuracy.

D. OPERATIONS IN MICE PART
The Mice part comprises a standard one-dimensional array
primarily performing two operations: insertion and updating.
Upon eviction from the Elephant part, wSketch inserts K𝑛𝑒𝑤

into the Mice part. Three distinct operations in the Mice
part should be considered. Firstly, if K𝑛𝑒𝑤 is already stored,
wSketch increases V𝑜𝑙𝑑 by V𝑛𝑒𝑤 , updating the bucket to
<K𝑜𝑙𝑑 ,V𝑛𝑒𝑤 +V𝑜𝑙𝑑>. Secondly, ifK𝑛𝑒𝑤 isn’t present and an
empty bucket exists, wSketch directly insertsK𝑛𝑒𝑤 , updating
the empty bucket to <K𝑛𝑒𝑤 , V𝑛𝑒𝑤>. Thirdly, if K𝑛𝑒𝑤 isn’t
stored and no empty buckets exist, wSketch replaces the entry
with the smallest Counter with K𝑛𝑒𝑤 . This updates the entry
to <K𝑛𝑒𝑤 , V𝑛𝑒𝑤>, while K𝑜𝑙𝑑 is regarded as a small flow,
ignored, and removed from theMice part.

E. UPDATE AND QUERY OPERATION OF WSKETCH
In this section, we use a simple example to illustrate the
update operations of wSketch’s Elephant part. For simplicity,
we use a single window to illustrate. Assume that the
Elephant part has 3 rows, and all rows have stored flow
information. As shown in FIGURE 7, when flow K1 arrives,
the Elephant part has the following update situations:
(1) When the flow stored in the mapped bucket is the same

as the arrival flow (i.e., K1 = K1), as depicted in the
first row 𝑟1, wSketch increases Counter by 1 directly.

(2) When the arrival flow is different from the flow stored
in the mapped bucket (i.e., K1 ≠ K3), wSketch
increases Counter by 1 and calculates the probability
𝑟𝑒𝑠 to decide whether the stored flow K3 should be
replaced by the arrival flow K1. Specifically, wSketch
generates a random number 𝑟𝑎𝑛𝑑, and there are two
cases here:
(i) If 𝑟𝑎𝑛𝑑 > 𝑟𝑒𝑠, no replacement will occur.
As depicted in the second row 𝑟2, the flow in the

VOLUME 12, 2024 50381

K. Zheng et al.: Detecting Top-𝑘 Flows Combining Probabilistic Sketch and Sliding Window

FIGURE 6. Internal processing logic and steps of wSketch.

FIGURE 7. Update operations of wSketch.

mapped bucket remains unchanged and is still K3.
At this time, wSketch increases Counter by 1, which is
added from 1 to 2.
(ii) If 𝑟𝑎𝑛𝑑 ≤ 𝑟𝑒𝑠, the arrival flow K1 will replace the
stored flowK2. As depicted in the third row 𝑟3, the flow
in the mapped bucket will be modified from < K2, 4 >

to < K1, 1 >, where the Counter is refreshed to 1, and
Counter is refreshed to 0.

For query operation, if the flow can be found in the
Elephant part, wSketch returns the maximum value among
𝑑 rows in the Elephant part (whether the flow is stored in
the Mice part); Conversely, if the flow can only be found
in the Mice part, wSketch returns the value in the Mice part
directly;

As shown in FIGURE 8, the query result of K1 is
𝑚𝑎𝑥(14, 9) = 14 (the flow information of K1 in the Mice
part is ignored), while the query result ofK2 is 10 (K2 only be
found in theMice part). In addition, flowK5,K6, andK7 only
stores in the Mice part, so the value in the Mice part is the
query result. Thus, the query result of K7 is 11, K5 is 2, and
K6 is 1.

FIGURE 8. Query operation of wSketch.

F. MATHEMATICAL ANALYSIS
1) TIME COMPLEXITY OF WSKETCH
The structure of wSketch consists of two parts, i.e., the
Elephant part and the Mice part. The sliding window
and circular update does not affect the calculation of time
complexity. Therefore, the time complexity of wSketch is
considered from these two parts.

a: INSERTION
For the Elephant part (i.e. sketch), the operation is to insert
the flows into 𝑑 rows in the sketch, so the time complexity
is 𝑂 (𝑑). For the Mice part (i.e. one-dimensional array), the
operation is to traverse the array, so the time complexity is
𝑂 (𝑛).

Therefore, the time complexity of wSketch inserting flow
is 𝑂 (𝑑) +𝑂 (𝑛), where 𝑑 is the number of rows.

50382 VOLUME 12, 2024

K. Zheng et al.: Detecting Top-𝑘 Flows Combining Probabilistic Sketch and Sliding Window

b: QUERY
For theElephant part, the querywill search from 𝑑 rows in the
sketch, so the time complexity is𝑂 (𝑑). For theMice part, the
query will traverse the array, so the time complexity is 𝑂 (𝑛).
Therefore, the time complexity of wSketch querying is also

𝑂 (𝑑) +𝑂 (𝑛).

2) ERROR BOUND OF WSKETCH
For clearer expression, we mark K𝑒 to record the query
flow in wSketch (assuming that each flow can be queried in
wSketch). 𝑓𝑒 is the real size of the query flow, while 𝑓𝑒 is the
estimated flow size.

The flows inMice part are all evicted from Elephant part,
thus theMice partwill not cause overestimation. Specifically,
the chance of estimation error of wSketch mainly has the
following situations: If one of the mapped buckets of K𝑒 in
Elephant part is not replaced, the estimated result is correct
(i.e., 𝑓𝑒 = 𝑓𝑒). Otherwise, if the replacement of K𝑒 occurs
at all rows, and K𝑒 is recorded or not recorded in Mice part,
then 𝑓𝑒 ≤ 𝑓𝑒.
Given a small number Z , and an top-𝑘 flow K𝑒 is held in

Elephant part, wSketch has the error bound as follows:

𝑃𝑟
{
𝑓𝑒 ≥ 𝑓𝑒 − ZN

}
≥ 1 −

𝑑∏
𝑟=1

(
1

𝑠 · Z

)
, (2)

where N is the total number of packets, 𝑓𝑒 is the real size of
K𝑒, and 𝑓𝑒 is the estimated size of K𝑒, respectively, Z is an
arbitrarily small positive number, 𝑑 means the total number
of rows in Elephant part, and 𝑠 is the width of each row.

To simplify the analysis, we focus on a single row of
wSketch and the flow K𝑒 is correctly reported in H(K𝑒). Let
𝑇𝑒,𝑣 be a binary random variable that defined as:

𝑇𝑒,𝑣 =

{
1 (𝑒 ≠ 𝑣) 𝑎𝑛𝑑 (H(K𝑒) = H(K𝑣)),
0 (𝑒 = 𝑣).

(3)

𝑇𝑒,𝑣 = 1 means different flows K𝑒 and K𝑣 are held at the
same bucket. Thus, the expectations about the hash collision
probability is:

𝐸 (𝑇𝑒,𝑣) = 𝑃𝑟 {(H(K𝑒) = H(K𝑣)) 𝑎𝑛𝑑 (𝑒 ≠ 𝑣)} ≤ 1
𝑠
. (4)

We define a random variable 𝑌𝑒 to represent estimation error
caused by hash collision in H(K𝑒) as follows:

𝑌𝑒 =

𝑛∑︁
𝑣=1

𝑇𝑒,𝑣 · 𝑓𝑣 , (5)

where 𝑛 is the total number of flows. If the arrival packet
belongs to flow K𝑒, the Counter is incremented by 1.
Otherwise, the Counter will be replaced with a certain
probability. Thus, we have the range of estimated size as
follows:

𝑓𝑒 − 𝑌𝑒 ≤ 𝑓𝑒 ≤ 𝑓𝑒 . (6)

If all packets that do not belong to flow K𝑒 replace this flow,
then 𝑓𝑒 = 𝑓𝑒 − 𝑌𝑒. Otherwise, 𝑓𝑒 = 𝑓𝑒. The following shows
the expected number of hash collisions:

𝐸 (𝑌𝑒) = 𝐸 (
𝑛∑︁

𝑣=1

𝑇𝑒,𝑣 · 𝑓𝑣)

=

𝑛∑︁
𝑣=1

𝑓𝑣 · 𝐸 (𝑇𝑒,𝑣)

≤ N
𝑠
. (7)

Given a random small number Z , where Z > 0, we have

𝑃𝑟
{
𝑓𝑒 ≤ 𝑓𝑒 − Z · N

}
≤ 𝑃𝑟 { 𝑓𝑒 − 𝑌𝑒 ≤ 𝑓𝑒 − Z · N}
≤ 𝑃𝑟 {𝑌𝑒 ≥ Z · N}

≤ 𝑃𝑟

{
𝑌𝑒

𝐸 (𝑌𝑒)
≥ Z · 𝑠

}
. (8)

Based on Markov inequality, we can obtain the formula as
follow:

𝑃𝑟
{
𝑓𝑒 ≤ 𝑓𝑒 − ZN

}
≤ 𝑃𝑟

{
𝑌𝑒

𝐸 (𝑌𝑒)
≥ Z · 𝑠

}

≤
𝐸

(
𝑌𝑒

𝐸 (𝑌𝑒)

)
Z · 𝑠

=

(
1

𝑠 · Z

)
. (9)

Therefore, we have

𝑃𝑟
{
𝑓𝑒 ≥ 𝑓𝑒 − ZN

}
= 1 − 𝑃𝑟

{
𝑓𝑒 ≤ 𝑓𝑒 − ZN

}
≥ 1 −

(
1

Z · 𝑠

)
. (10)

In wSketch, Elephant part has 𝑑 rows, so the boundary of
estimation error is:

𝑃𝑟
{
𝑓𝑒 ≥ 𝑓𝑒 − Z

}
≥ 1 −

𝑑∏
𝑟=1

(
1

𝑠 · Z

)
.

IV. EVALUATION
A. EXPERIMENT SETUP
We have implemented wSketch on server equipped with
16-core (Intel(R) Core(TM) i7-10700 server @ 2.90GHz
2.90GHz and 16GB total Systemmemory). All methods used
in the comparative experiment are implemented in C++ and
executed on the same platform. In addition, all methods are
allocated the same memory when conducting experiments,
and each method is further subdivided according to its own
design. For wSketch that deploys on server, the column
number 𝑤 of Elephant part is determined by the allocated
memory size, whileMice part is fixed in a small size.

In the experiment, we compared wSketch with Count Min
Sketch (CM), CountMax (CMax), HashPipe (HP), andHeavy
Keeper (HK) respectively.

VOLUME 12, 2024 50383

K. Zheng et al.: Detecting Top-𝑘 Flows Combining Probabilistic Sketch and Sliding Window

B. DATASET
For the experiments, we utilize the publicly accessible
University of Wisconsin Data Center Measurement trace
dataset. More precisely, we employ the UNI1 dataset [43] for
our experimentation.

C. METRICS
1) Precision: Precision is expressed as [

𝑘
, where [denotes

the number of correctly detected top-𝑘 flows. Precision
serves as the accuracy in identifying top-𝑘 flows, with
higher precision indicating superior performance.

2) Average Relative Error (ARE): ARE is expressed as
1
|Ψ |

∑
𝑓𝑖∈Ψ

𝑛𝑖−𝑛𝑖
𝑛𝑖

, where Ψ represents the set of top-𝑘
flows, 𝑛𝑖 denotes the estimated size of flow 𝑓𝑖 , and 𝑛𝑖
signifies the real size of flow 𝑓𝑖 . ARE quantifies the
error rate in reported flow size estimates, with lower
values indicating superior performance.

3) Average Absolute Error (AAE): AAE is expressed as
1
|Ψ |

∑
𝑓𝑖∈Ψ |𝑛𝑖 − 𝑛𝑖 |, where Ψ, 𝑛𝑖 , and 𝑛𝑖 carry the same

definitions as in ARE. AAE gauges the accuracy of
size estimates, with superior performance indicated by
lower AAE values.

4) Throughput: We perform insertions of the packets
at each window and calculate the throughput. The
throughput is defined as NT , whereN is the total number
of packets, and T is the measured time at each window.
We use Million of insertions per second (Mps) to
measure the throughput.

D. EXPERIMENT RESULTS
In this section, we perform an experimental comparison
between wSketch and several existing methods, evaluating
their performance across three key metrics: Precision,
Average Relative Error (ARE), and Average Absolute Error
(AAE).

Throughout all experiments, we conduct 5 sets of exper-
iments. In each set of experiments, we measure 20 results,
remove the best and worst results, and average the remaining
18 data as the result of one group. Finally, we derive the
average result of the 5 groups as the final measurement result.

1) PERFORMANCE OF WSKETCH AT EACH WINDOW
MEASUREMENTS.
We conducted a comparative analysis of accuracy, ARE
(Absolute Relative Error), and AAE (Average Absolute
Error) measured by various methods in each time window,
as depicted in FIGURE 9. It is evident from FIGURE 9a
thatwSketch consistently exhibits the highest accuracy across
all window units compared to other methods. For instance,
considering the detection performance in window 1, denoted
as 𝑤1 in FIGURE 9a, the accuracy rates for HK, HP, CMax,
and CM stand at 82%, 54%, 31%, and 3% respectively,
whereas wSketch achieves an accuracy of 98%.
The relatively lower accuracy observed with the traditional

Count-Min (CM) sketch can be attributed to the allocation
of a small and fixed memory space. This results in an

increased frequency of hash collisions during the measure-
ment process, leading to overestimation issues. In contrast,
wSketch employs a probability-based approach within the
‘‘Elephant part’’ to adjust the replacement process when hash
collisions occur. Moreover, by integrating the ‘‘Mice part,’’
wSketch effectively preserves large flows, thereby yielding
more accurate estimation results.

In the experiment concerning ARE, as depicted in
FIGURE 9b, the estimated error of wSketch is notably lower
compared to other methods. Specifically, the ARE ofwSketch
is 2 to 8 times lower than HK, 8 to 20 times lower than HP,
and 7 to 15 times lower than CMax. Moreover, as illustrated
in FIGURE 9c, itwSketch consistently outperforms all other
methods in window detection. The AAE (Average Absolute
Error) of wSketch is 2 to 15 times lower than HK, 77 to
114 times lower than HP, 36 to 140 times lower than CMax,
and more than 200 times lower than CM, respectively.

2) PERFORMANCE OF WSKETCH FOR THE PAST FEW
WINDOW MEASUREMENTS.
In this section, we evaluated the performance of different
methods across the lastW windows, where we setW = 5 for
our experiment (this value can be adjusted to suit different
scenarios). Specifically, as depicted in FIGURE 10 through
FIGURE 12, we assessed the performance over the past
one window (referred to as 𝑝1 in the figures), the past two
windows (𝑝2), and so forth up to the past five windows (𝑝5).
Our evaluation encompassed the accuracy and estimation
error of various methods under different memory sizes and
for different values of 𝑘 .

In FIGURE 10, with a memory size set to 50KB and a
detection threshold of top-50 (i.e., 𝑘 = 50), wSketch exhibits
the highest accuracy in flow detection and the most precise
flow size estimation among all methods. In the past five
window unit (i.e., 𝑝2 in figure), the accuracy of CM is
between 6.3% ∼ 8%, CMax is 62.5% ∼ 64%, HS is 56.3% ∼
64.7%, HK is 87.4% ∼ 95%, and wSketch reaches 96.7% ∼
87.8%. The ARE of wSketch in the past five window units
is 84 to 123 times lower than CMax, 80 to 102 times lower
than HP, 1.16 to 1.8 times lower than HK, and more than
a thousand times lower than CM. In addition, wSketch also
performs well in the measurement results of AAE. The AAE
of wSketch is 150 to 302 times lower than CMax, 195 to
381 times lower than HP, 1.2 to 3 times lower than HK, and
much lower than CM.

As shown in FIGURE 11, when the memory is 50KB and
the top-100 is detected, the accuracy of CM for the past two
window units is 7%, CMax is 48%, HP is 57%, HK is 86%,
and wSketch reaches 95%. As shown in FIGURE 10b, the
ARE of wSketch is 0.01636, which is 34 times lower than
CMax, 20 times lower than HP, 3 times lower than HK, and
more than a thousand lower than CM. The AAE of wSketch
is also much lower than the compared methods.

When 𝑘 remains unchanged and memory increases to
100KB as illustrated in FIGURE 12, the accuracy of all
methods improves, but overall, wSketch performs best. The

50384 VOLUME 12, 2024

K. Zheng et al.: Detecting Top-𝑘 Flows Combining Probabilistic Sketch and Sliding Window

FIGURE 9. Performance of wSketch for each window when memory is fixed to 20KB and 𝑘 is fixed to 50.

FIGURE 10. Performance of wSketch on the past few windows when memory is fixed to 50KB and 𝑘 is fixed to 50.

accuracy of each method improved. In the past two windows,
the accuracy of CM is 12%, CMax is 64%, HP is 63%, HK is
96%, and wSketch reaches 98.6%. For the estimation error,
the ARE of wSketch is 64 times lower than CMax, 38 times
lower than HP, 1,2 times lower than HK, and much lower than
CM. The results of AAE are similar to that of ARE.

As shown in the comparison of FIGURE 10a and
FIGURE 11a, as 𝑘 increases while memory size remains
constant, the accuracy of comparative methods experiences
a decline to some extent, whereas wSketch maintains
consistently high accuracy. This emphasizes wSketch’s
adaptability to scenarios with limited memory and large
traffic compared to other methodologies. This adaptability
stems from wSketch’s utilization of probabilistic mechanisms
for flow replacement, ensuring that elephant flows are
more likely to be retained, thereby enhancing measurement
accuracy. Conversely, mice flows, which are easily replaced
and overlooked, help mitigate memory overhead. Despite the
mice flows having a small individual size, the sheer volume
necessitates a certain level of memory allocation for accurate
preservation and differentiation.

In all, the experimental results demonstrate that wSketch
maintains high accuracy and low estimation error even with
limited SRAM and a large value of 𝑘 . By employing the
probabilistic update sketch approach, wSketch effectively
prioritizes the retention of large flows over small ones.

Additionally, the incorporation of the Mice part aids in
enhancing the accuracy of top-𝑘 flows detection. wSketch
adopts a Circular Queue detection structure, further mini-
mizing memory overhead for detection purposes. Ultimately,
wSketch excels in achieving precise measurements with
constrained memory resources. In addition, we conduct a
brief mathematical analysis of the error boundary ofwSketch,
and in fact, the error boundary of wSketch is smaller than the
analyzed values.

E. PERFORMANCE OF WSKETCH ON THROUGHPUT
In this section, wemeasure the performance of the throughput
of different methods. Since we focus on the measurement of
the pastW windows, where each window has the same time
period. Therefore, the throughput is defined as the packet
number that can be processed within a single window.

As shown in FIGURE 13, the throughput of wSketch
performs relatively well among these methods. In fact, the
experimental results of throughput are related to the number
of packets processed, while the speed of packet processing
is closely related to factors such as the server equipment
used. If the server performance is good, the throughput
will also increase. Therefore, we are more concerned about
the throughput performance of wSketch compared to other
methods, and whether it will lead to a decrease in throughput.
Experimental result proves that wSketch will not cause the

VOLUME 12, 2024 50385

K. Zheng et al.: Detecting Top-𝑘 Flows Combining Probabilistic Sketch and Sliding Window

FIGURE 11. Performance of wSketch on the past few windows when memory is fixed to 50KB and 𝑘 is fixed to 100.

FIGURE 12. Performance of wSketch on the past few windows when memory is fixed to 100KB and 𝑘 is fixed to 100.

FIGURE 13. Performance of throughput.

processing speed to drop significantly. Some other methods
include min-heap adjustment, etc., so the throughput drops
obviously. Overall, wSketch performs well in terms of
processing speed and throughput.

V. CONCLUSION
The identification of top-𝑘 flows in high-speed networks is
an important yet challenging issue in many security analysis

scenarios. In real networks, the latest flows are often more
important than historical flows. In this paper, we propose
wSketch, a sliding window sketch method that combines the
sliding window model, circular queue model, and probability
calculation to detect real-time top-𝑘 flows.wSketch combines
the advantages of sketch and sliding window, focusing on
the latest flow statistic, while the circular queue reduces the
cost of memory consumption by reusing memory. Besides,
the use of probability calculation assigns different weights for
large flows and small flows, resulting in higher retention of
large flows, while small flows are ignored and not recorded,
ultimately reducing memory overhead further. We conducted
different experiments, and the results show that wSketch is
superior to other methods and can cope with the gradual
increase in volume in network traffic with low memory
overhead.

There is also an ability wSketch needs to improve. For
example, due to the use of sliding windows and relatively
complex calculations (i.e., probability calculation), wSketch
has limitations when migrating to different platforms, such
as being deployed on a programmable data plane. In future
work, we can consider approximating wSketch so as to
migrate it to the data plane for faster processing speed.
Meanwhile, the probabilistic approach adopted by wSketch

50386 VOLUME 12, 2024

K. Zheng et al.: Detecting Top-𝑘 Flows Combining Probabilistic Sketch and Sliding Window

can be applied to INT measurement. Through probabilistic
reverse inference, the packets can reduce the amount of
information collected at network nodes, and thus reduce
bandwidth overhead.

REFERENCES
[1] D. Yu, ‘‘dShark: A general, easy to program and scalable framework for

analyzing in-network packet traces,’’ in Proc. 16th USENIX Symp. Netw.
Syst. Design Implement. (NSDI), 2019, pp. 207–220.

[2] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang,
B. Pang, H. Chen, Z.-W. Lin, and V. Kurien, ‘‘Pingmesh: A large-scale
system for data center network latency measurement and analysis,’’ in
Proc. ACM Conf. Special Interest Group Data Commun., Aug. 2015,
pp. 139–152.

[3] T. Benson, A. Anand, A. Akella, and M. Zhang, ‘‘MicroTE: Fine grained
traffic engineering for data centers,’’ in Proc. 7th Conf. Emerg. Netw.
EXperiments Technol., Dec. 2011, pp. 1–12.

[4] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao, M. Zhang,
F. Kelly, M. Alizadeh, and M. Yu, ‘‘HPCC: High precision congestion
control,’’ in Proc. ACM Special Interest Group Data Commun., Aug. 2019,
pp. 44–58.

[5] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy, ‘‘Approximating
fair queueing on reconfigurable switches,’’ in Proc. 15th USENIX Symp.
Netw. Syst. Design Implement. (NSDI), 2018, pp. 1–16.

[6] G. Dittmann and A. Herkersdorf, ‘‘Network processor load balancing
for high-speed links,’’ in Proc. Int. Symp. Perform. Eval. Comput.
Telecommun. Syst., vol. 735, 2002, pp. 1–9.

[7] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-
Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein, ‘‘A
fast and reliable software network load balancer,’’ in Proc. 13th USENIX
Symp. Netw. Syst. Design Implement. (NSDI), 2016, pp. 523–535.

[8] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown,
‘‘Programmable packet scheduling at line rate,’’ in Proc. ACM SIGCOMM
Conf., Aug. 2016, pp. 44–57.

[9] P. Roy, A. Khan, and G. Alonso, ‘‘Augmented sketch: Faster and more
accurate stream processing,’’ in Proc. Int. Conf. Manage. Data, Jun. 2016,
pp. 1449–1463.

[10] L. Jie, C. Hongchang, S. Penghao, H. Tao, and Z. Zhen, ‘‘OrderSketch:
An unbiased and fast sketch for frequency estimation of data streams,’’
Comput. Netw., vol. 201, Dec. 2021, Art. no. 108563.

[11] A. Lakhina, M. Crovella, and C. Diot, ‘‘Characterization of network-wide
anomalies in traffic flows,’’ in Proc. 4th ACM SIGCOMM Conf. Internet
Meas., Oct. 2004, pp. 201–206.

[12] X. Li, F. Bian, M. Crovella, C. Diot, R. Govindan, G. Iannaccone, and
A. Lakhina, ‘‘Detection and identification of network anomalies using
sketch subspaces,’’ in Proc. 6th ACM SIGCOMM Conf. Internet Meas.,
Oct. 2006, pp. 147–152.

[13] G. Cormode and S. Muthukrishnan, ‘‘An improved data stream summary:
The count-min sketch and its applications,’’ J. Algorithms, vol. 55, no. 1,
pp. 58–75, Apr. 2005.

[14] B. Chen, Z. Lv, X. Yu, and Y. Liu, ‘‘Sliding window top-K monitoring
over distributed data streams,’’ Data Sci. Eng., vol. 2, no. 4, pp. 289–300,
Dec. 2017.

[15] R. Harrison, Q. Cai, A. Gupta, and J. Rexford, ‘‘Network-wide heavy hitter
detection with commodity switches,’’ in Proc. Symp. SDN Res., Mar. 2018,
pp. 1–7.

[16] R. Schweller, A. Gupta, E. Parsons, and Y. Chen, ‘‘Reversible sketches
for efficient and accurate change detection over network data streams,’’ in
Proc. 4th ACM SIGCOMM Conf. Internet Meas., Oct. 2004, pp. 207–212.

[17] M. Etemadi, M. Ghobaei-Arani, and A. Shahidinejad, ‘‘A cost-efficient
auto-scaling mechanism for IoT applications in fog computing environ-
ment: A deep learning-based approach,’’ Cluster Comput., vol. 24, no. 4,
pp. 3277–3292, Dec. 2021.

[18] A. Shakarami, M. Ghobaei-Arani, A. Shahidinejad, M. Masdari, and
H. Shakarami, ‘‘Data replication schemes in cloud computing: A survey,’’
Cluster Comput., vol. 24, no. 3, pp. 2545–2579, Sep. 2021.

[19] Z. Zeng, L. Cui, M. Qian, Z. Zhang, and K. Wei, ‘‘A survey on sliding
window sketch for network measurement,’’ Comput. Netw., vol. 226,
May 2023, Art. no. 109696.

[20] M. H. ur Rehman, C. S. Liew, A. Abbas, P. P. Jayaraman, T. Y. Wah,
and S. U. Khan, ‘‘Big data reduction methods: A survey,’’ Data Sci. Eng.,
vol. 1, no. 4, pp. 265–284, Dec. 2016.

[21] T. Benson, A. Akella, and D. A. Maltz, ‘‘Network traffic characteristics of
data centers in the wild,’’ in Proc. 10th ACM SIGCOMM Conf. Internet
Meas., Nov. 2010, pp. 267–280.

[22] T. Yang, H. Zhang, J. Li, J. Gong, S. Uhlig, S. Chen, and X. Li,
‘‘HeavyKeeper: An accurate algorithm for finding top-𝑘 elephant flows,’’
IEEE/ACM Trans. Netw., vol. 27, no. 5, pp. 1845–1858, Oct. 2019.

[23] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner, ‘‘Heavy hitters in
streams and sliding windows,’’ in Proc. IEEE INFOCOM 35th Annu. IEEE
Int. Conf. Comput. Commun., Apr. 2016, pp. 1–9.

[24] A. Metwally, D. Agrawal, and A. El Abbadi, ‘‘Efficient computation of
frequent and top-k elements in data streams,’’ in Proc. Int. Conf. Database
Theory, 2004, pp. 398–412.

[25] SFlow. Accessed: May 15, 2023. [Online]. Available: https://sflow.org/
[26] Networks, C. NetFlow. Accessed: May 15, 2023. [Online]. Available:

https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-
netflow/index.html

[27] J. Lu, H. Chen, and Z. Zhang, ‘‘LUSketch: A fast and precise sketch for
top-k finding in data streams,’’ in Proc. Int. Conf. Comput. Commun. Netw.
(ICCCN), Jul. 2022, pp. 1–10.

[28] J. Lu, H. Chen, Z. Zhang, Z. Zhang, and L. Wang, ‘‘Sketch-BF: A
fast algorithm for finding top-k flows,’’ Electron. Lett., vol. 58, no. 11,
pp. 429–431, May 2022.

[29] J. Huang, W. Zhang, Y. Li, L. Li, Z. Li, J. Ye, and J. Wang, ‘‘ChainSketch:
An efficient and accurate sketch for heavy flow detection,’’ IEEE/ACM
Trans. Netw., vol. 31, no. 2, pp. 738–753, Apr. 2023.

[30] H. Huang, J. Yu, Y. Du, J. Liu, H. Dai, and Y.-E. Sun, ‘‘Memory-efficient
and flexible detection of heavy hitters in high-speed networks,’’Proc. ACM
Manage. Data, vol. 1, no. 3, pp. 1–24, Nov. 2023.

[31] M. Datar, A. Gionis, P. Indyk, and R. Motwani, ‘‘Maintaining stream
statistics over sliding windows,’’ SIAM J. Comput., vol. 31, no. 6,
pp. 1794–1813, Jan. 2002.

[32] S. Li, L. Luo, D. Guo, Q. Zhang, and P. Fu, ‘‘A survey of sketches in traffic
measurement: Design, optimization, application and implementation,’’
2020, arXiv:2012.07214.

[33] G. S. Manku and R. Motwani, ‘‘Approximate frequency counts over data
stream,’’ inProc. 28th Int. Conf. Very LargeDatabases, 2002, pp. 346–357.

[34] R. Shahout, R. Friedman, and D. Adas, ‘‘CELL: Counter estimation for
per-flow traffic in streams and sliding windows,’’ in Proc. IEEE 29th Int.
Conf. Netw. Protocols (ICNP), Nov. 2021, pp. 1–12.

[35] B. Xiong, Y. Liu, R. Liu, J. Zhao, S. He, B. Zhao, K. Yang, and K. Li,
‘‘ActiveGuardian: An accurate and efficient algorithm for identifying
active elephant flows in network traffic,’’ J. Netw. Comput. Appl., vol. 224,
Apr. 2024, Art. no. 103853.

[36] Q. Shi, Y. Xu, J. Qi, W. Li, T. Yang, Y. Xu, and Y. Wang, ‘‘Cuckoo
counter: Adaptive structure of counters for accurate frequency and top-
k estimation,’’ IEEE/ACM Trans. Netw., vol. 31, no. 4, pp. 1854–1869,
Aug. 2023.

[37] X. Yu, H. Xu, D. Yao, H. Wang, and L. Huang, ‘‘CountMax: A
lightweight and cooperative sketch measurement for software-defined
networks,’’ IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2774–2786,
Dec. 2018.

[38] C. H. Song, P. G. Kannan, B. K. H. Low, and M. C. Chan, ‘‘FCM-sketch:
Generic network measurements with data plane support,’’ in Proc. 16th Int.
Conf. Emerg. Netw. EXperiments Technol., Nov. 2020, pp. 78–92.

[39] P. Chen, D. Chen, L. Zheng, J. Li, and T. Yang, ‘‘Out of many we are
one: Measuring item batch with clock-sketch,’’ in Proc. Int. Conf. Manage.
Data, Jun. 2021, pp. 261–273.

[40] Z. Sun, Y. E. Sun, and Y. Du, ‘‘Persistent sketch: A memory-efficient and
robust algorithm for finding top-k persistent flows,’’ in Proc. Int. Conf.
Algorithms Archit. Parallel Process. Singapore: Springer, 2023, pp. 19–38.

[41] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, ‘‘Heavy-hitter detection entirely in the data plane,’’ in Proc.
Symp. SDN Res., Apr. 2017, pp. 164–176.

[42] A. Shahidinejad, M. Ghobaei-Arani, A. Souri, M. Shojafar, and S. Kumari,
‘‘Light-edge: A lightweight authentication protocol for IoT devices in an
edge-cloud environment,’’ IEEE Consum. Electron. Mag., vol. 11, no. 2,
pp. 57–63, Mar. 2022.

[43] DataSet for IMC 2010 Data Center Measurement. Accessed:
May 15, 2023. [Online]. Available: https://pages.cs.wisc.
edu/tbenson/~IMC10_Data.html

VOLUME 12, 2024 50387

K. Zheng et al.: Detecting Top-𝑘 Flows Combining Probabilistic Sketch and Sliding Window

KEKE ZHENG received the B.E. degree
from Guangzhou University, Guangzhou, China,
in 2021. She is currently pursuing the mas-
ter’s degree with the Department of Computer
Science, Jinan University. Her current research
interests include network measurement, state-
ful data plane/programmable data plane, and
software-defined networking (SDN).

WENZHU CHEN received the B.S. degree from
the School of Mathematics and Statistics, Zhao-
qing College of China, in 2021. She is currently
pursuing theM.S. degree with the College of Infor-
mation Science and Technology, Jinan University,
Guangzhou, China. Her current research interests
include machine learning, computer vision, and
computer networks.

BOTAO FENG (Senior Member, IEEE) was born
in Guangdong, China, in 1980. He received
the B.S. and M.S. degrees in communication
engineering from Chongqing University of Posts
and Telecommunications (CQUPT), Chongqing,
China, in 2004 and 2009, respectively, and the
Ph.D. degree in communication and informa-
tion system from Beijing University of Posts
and Telecommunications (BUPT), Beijing, China,
in 2015.

He joined the Dongguan Branch, Nokia Mobile Phones Ltd., China, as a
Senior Communication Engineer, in 2004. From 2009 to 2012, he was a
Senior Research Fellow and a Chief Executive with Guangdong Branch,
China United Network Communications Company Ltd., where he received
the Award of Breakout Star of the Year and the title of a Technical Innovation
Expert. He is currently a Postgraduate Advisor and a Postdoctoral Advisor
with Shenzhen University, Guangdong, China. He is also the Head of the

Laboratory of Wireless Communication, Antennas and Propagation,
Shenzhen University; also the Deputy Director of the Department of
Electronic Science and Technology; also the Director of the Joint Laboratory
of Antenna and Electromagnetic Propagation, Shenzhen University, Rihai
Communication Technology Company Ltd.; also the Director of the Joint
Laboratory, Shenzhen ZhongkeWireless Technology Company Ltd., and the
Group of Wireless Communication, Antennas and Propagation, Shenzhen
University; also the Director of the Joint Laboratory of Antenna and
Microwave Technology, Shenzhen University, Skywave Communication
Technology Company Ltd.; also the Chief Scientist with Shenzhen
Nandouxing Technology Company Ltd.; and the President of Shenzhen
Taobida Technology Company Ltd. His research teammembers are currently
conducting more than 20 projects on antenna development and design for
5G/THz and future communications, which are supported by natural science
research funds and industrial cooperation research and development funds.
His several antenna designs for 5G applications have been widely used by
Chinese communication operators. He has authored or coauthored more than
50 science citation index (SCI)- and engineering index (EI)-articles and holds
more than 20 invention patents. It is estimated that the related total production
value is approximately 200million RenMinBi (RMB). His research interests
include antennas and mobile communications.

Dr. Feng has obtained the Award of the Outstanding Instructor of the
First Prize in National Graduate Electronic Contest and has been the Tencent
Outstanding Teacher Award, since 2017. He also serves as a regular peer
reviewer, a technical committeemember, the section chair, and aGuest Editor
for IEEE/IET, Elsevier, Wiley, and Springer journals and conferences on
microwave technique and antenna development.

HANXIN ZHANG was born in Guangdong,
China, in 1999. He received the B.E.E. degree in
automation from the University of Science and
Technology Beijing, Beijing, China, in 2017. He is
currently pursuing theM.S. degree with the School
of Automation Science and Electrical Engineer-
ing, Beihang University, Beijing. His research
interests include control strategy of PM machines,
induction machine, and computer science.

50388 VOLUME 12, 2024

