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ABSTRACT In this work, an innovative approach is proposed for three-dimensional (3D) organ volume
reconstruction from a single planar X-ray, namely X2V network. Such capability holds pivotal clinical
potential, especially in real-time image-guided radiotherapy, computer-aided surgery, and patient follow-
up sessions. Traditional methods for 3D volume reconstruction from X-rays often require the utilization of
statistical 3D organ templates, which are employed in 2D/3D registration. However, these methods may not
accurately account for the variation in organ shapes across different subjects. Our X2V model overcomes
this problem by leveraging neural implicit representation. A vision transformer model is integrated as an
encoder network, specifically designed to direct and enhance attention to particular regions within the X-ray
image. The reconstructed meshes exhibit a similar topology to the ground truth organ volume, demonstrating
the ability of X2V in accurately capturing the 3D structure from a 2D image. The effectiveness of X2V is
evaluated on lung X-rays using several metrics, including volumetric Intersection over Union (IoU). X2V
outperforms the state-of-the-art method in the literature for lungs (DeepOrganNet) by about 7-9% achieving
IoU’s between 0.892-0.942 versus DeepOrganNet’s IoU of 0.815-0.888.

INDEX TERMS 3D reconstruction, X-ray, 3D organ topology, neural implicit methods, vision transformers.

I. INTRODUCTION
Medical imaging, particularly computed tomography (CT),
plays a vital role in providing three-dimensional (3D) views
of internal organ positions and shapes. This patient-specific
topological information is crucial for accurate diagnosis, pre-
treatment planning and interventional surgical operations.
The higher radiation dose to healthy organs in CT scans [1],
[2] is a clinical concern, and the cost associated with CT
scans presents challenges in resource allocation. The imaging
dose in CT can be reduced by reducing the number of X-
ray projections. Due to the limited number of projections,
this approach significantly compromises the image quality
in 3D-CT reconstructions obtained through conventional
methods.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yi Zhang .

Image-based navigation, poised as the next evolution
in minimally invasive surgery, aims to enhance access
to safe, precise, and reproducible surgery by integrating
with modern workflows and enabling mixed reality and
autonomous, robot-assisted operations. Scientific efforts
have been directed towards refining solutions to derive real-
time 3D organ shapes from X-rays during Image-Guided
Radiation Therapy (IGRT). The primary focus has been
on the 2D/3D registration of organ templates and learning
deformations from average organ shapes [3].

2D/3D image registration serves as a crucial role in various
image-guided interventions, including radiation therapy,
radiosurgery, and minimally invasive therapy to estimate
the spatial relationships between different dimensionalities
of the information present in the body [4]. This process
involves aligning 3D images as pre-interventional data
with 2D images as intra-interventional data, creating a
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fused representation that enhances intervention precision
while minimizing invasiveness. Soft tissue deformations and
respiratory motions during thoracic and abdominal surgeries
are common problems that occur during IGRT procedures.
Different positioning of the patient during the preoperative
CT scan and the continuous movement of the organs due to
respiration can lead to inaccuracies in the 2D/3D registration
process. Another challenge is the computational complexity
of the 2D/3D image registration algorithms [3]. Depending
on the registration method used, the analytical solutions can
be computationally intensive and time-consuming, especially
for real-time applications.

FIGURE 1. a) CT; b) DRR; c) triangular mesh representations of a patient’s
thorax region.

The emergence of machine learning-oriented strategies
for imaging issues, which utilize highly adaptive parametric
models to approximate the desired functional mapping,
presents a promising solution to some of the well-known
difficulties in 2D/3D registration [3]. Wu et al. [5] and
Wang et al. [6] introduced methods for 3D reconstruction
of lung models using convolutional neural networks (CNNs)
and data augmentation, with the latter focusing on learning
space deformation fields from 2D images. Tong et al. [7]
employed real CT-DRR (Digital Reconstructed Radiograph)
pairs and 2D CNNs to reconstruct liver shapes. Nakao et al.
later enhanced this approach with 2D deformation mapping
and introduced the Image-to-Graph Convolutional Network
(IGCN) [8], which was further developed into the IGCN+

network [9], adeptly predicting 3D organ mesh deformations
and demonstrating clinical accuracy in anticipating organ
motion and deformation in radiation therapy.

In medical imaging, deep learning models that rely on
deformation-based learning are constrained when it comes to
predicting the morphology of organs with disrupted topology.
This limitation stems from their dependence on the mean
shape derived from the dataset, which does not account for
significant topological variations often found in pathological
cases. This paper introduces the X2V network, which does
not learn from the initial template shape of the organ. X2V
network utilizes the occupancy probability to learn whether
a point lies inside the surface of the organ or not. A total
of 6,392 CT cases were curated from the National Lung
Screening Trial (NLST) dataset. For each case, DRRs were
generated using a ray-tracing algorithm tailored for this
purpose. Corresponding lung meshes were extracted via a
U-Net-based architecture (see Figure 1). The resulting pairs
of DRRs and lung meshes were then utilized to train the

neural network. TheX2Vnetwork can predict any topological
variations at infinite resolution.

This research leverages the occupancy network frame-
work [10], enhancing the image encoder’s ability to effi-
ciently extract both global and local shape deviation for
accurate computation of the actual volume of the examined
3D organ shape. Our approach can generate multiple organs
from a planar x-ray by encoding topological features and
implicitly representing the 3D organ volume surface as a
continuous decision boundary through a deep neural network
classifier with an en-to-end framework. This allows for the
encoding of 3D structures at an infinite resolution without
a significant memory impact. The aim of our study is to
reconstruct a 3D organ shape from a patient’s 2D planar
X-ray image, eliminating the need for the relevant organ’s
3D mean template shapes. Our method employs neural
implicit representations, learning the organ’s 3D geometry
and computing the continuous 3D mapping.

In summary, the contributions of this study are as follows:
• To our knowledge, this is the first study to reconstruct
3D organ volume from a planar X-ray by utilizing
neural implicit representations, using a lightweight and
effective architecture and without a 3D template organ
volume reconstruction.

• For this study, we created the largest available real
patient dataset of 3D mesh organ volumes with their
corresponding DRRs.

• Since it is not a template based model, the proposed
network is capable of extracting the targeted volume
when it is adapted to other organs, even when the default
body has lost its topological properties such as bone
fraction and tumor volume extraction.

• This paper is the first to use occupancy functions in deep
learning-based 2D-3D medical reconstruction.

• The proposed model achieves state-of-the-art results
in 3D reconstruction accuracy, using metrics such as
Chamfer-L1 distance, IoU, and F-score, when compared
to recent existing approaches.

II. RELATED WORK
In this study, the literature pertaining to three pivotal domains
within the realm of image analysis will be explored: single
image reconstruction networks, 2D-3D registration methods,
and deformation learning. Each of these thematic areas
presents unique methodologies and challenges in the context
of 3D shape reconstruction from X-ray images, thereby
providing a comprehensive framework to understand and
innovate upon existing paradigms in the field.

Addressing the notable challenges of substantial radiation
exposure and computational complexity in extracting 3D
topology and volumetric data of human anatomy from
Computed Tomography (CT), a wealth of research has
been conducted in recent years. Investigations have spanned
various anatomical structures, including skeletal elements
(such as the knee, femur, spine, tibia, fibula, pelvis, lower
extremity, and knee joint) [11], [12] and soft organs (like
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the lung, liver, stomach, duodenum, kidneys, and pancreas)
[5], [6], [7], [8], [9], each with distinct X-ray transmittance
or Hounsfield Unit (HU) values and subject to unique
topological deformations in various diseases and temporal
phases, thereby necessitating the exploration of diverse
solution architectures to accommodate phenomena like soft
organ deformations and bone fractures. The single image
reconstruction methods are more favored to study since it is
clinically almost impossible to take 2 or more correspondent
x-ray imagery to reconstruct the 3D shape.

A. SINGLE IMAGE 2D-3D RECONSTRUCTION METHODS
In recent times, the field of 3D reconstruction has witnessed
a substantial influx of research efforts, culminating in the
emergence of single-image reconstruction as a pivotal and
popular domain within image processing.

Various methods exist for 3D shape representation in a
scene, including depth and normal maps for partial geometry
and orientation, and point clouds, meshes, and voxels for
more comprehensive 3D depictions, each with their own
advantages and limitations in portraying surface and solid
models. While depth and normal maps offer a ‘‘2.5D’’
perspective due to their single viewpoint, point clouds,
meshes, and voxels provide a fuller 3D representation, albeit
with challenges related to computational memory and data
downsampling [13].
Bednarik et al. [14] and Patch-Net [15] employ similar

architectures to reconstruct 2.5D shapes from textureless
surfaces using normal and depth maps, with the latter
implementing a patch-based strategy to notably enhance
depth and angular accuracy. Shimada et al. introduced
HDM-Net [16] and IsMo-GAN [17], which utilize various
network improvements and adversarial training, respectively,
to enhance 3D mesh reconstruction, with IsMo-GAN also
demonstrating proficiency in 3D point cloud reconstruc-
tion through additional network modifications. Pixel2Mesh
(P2M) [18] and VANet [19] utilize dual-lane architectures for
3D mesh reconstruction, with VANet achieving a substantial
reduction in Chamfer distance error by enhancing its feature
extraction capabilities. Lastly, Salvi et al. [20] introduced an
attentioned occupancy network that employs self-attention
blocks within its encoder to reconstruct 3D shapes as continu-
ous functions, achieving significantly improved Chamfer-L1
distances compared to P2M.

B. 2D/3D REGISTRATION-BASED APPROACHES
Initial studies in the domain of 2D-3D registration pre-
dominantly focused on deriving 3D volumes of skeletal
system elements, potentially due to bones having higher
HU values compared to other tissues and their boundaries
not being subject to immediate, continuous deformations.
The pivotal role of image registration in numerous medical
image analysis applications has been notably enhanced by
the advent of deep learning [21], leading to substantial
improvements in algorithmic performance across various

computer vision tasks. 2D/3D registration in deformable
contexts grapples with the complexity and ambiguity arising
from high-dimensional parameter spaces and challenging
parameter modifications due to scarce information [21].
Humbert et al. [22] and Chaibi et al. [23] presented

parametric models to represent spine and femur bones from
biplanar X-rays. Cresson et al. [24] devised an algorithm
to infer obscured spinal regions using a two-step process
involving a 2D/3D registration procedure and refining
reconstructions with a Statistical Shape Model (SSM) with
the 2D bone contours extracted from the patients planar
radiograph. Zhang et al. [25] developed a technique that
automatically identifies vertebral orientations and positions
by aligning vertebral contours, employing an extended
generalized Hough transform method and a strategy that
tolerates deformation. This method seeks optimal alignment
of 3D primitive projections with biplanar radiographs.

2D/3D Registration methods align 2D images with 3D
models, which might not always result in high-resolution
models, especially when the available 2D images are of low
quality or when they do not cover all the aspects of the 3D
shape.

C. DEFORMATION LEARNING BASED APPROACHES
As foundational studies in 3D reconstruction, P2M and
PointNet have paved the way for generating 3D structures
from 2D images in computer vision, each introducing
unique methodologies and subsequent challenges in the
field, particularly in the context of deformation learning and
medical applications.

Recent advancements in deep learning have enhanced
2D/3D deformable registration, with Pointnet [26] creating
3D point clouds from single-viewpoint images, albeit losing
some topological information. Conversely, Wang et al.’s
P2M [18] generates a 3D mesh from a 2D image by
deforming an ellipsoid template using latent image features.

Wu et al. [5] introduce a new 3D shape reconstruction
method tailored for lung surgeries, addressing the challenge
of data scarcity in the medical field by utilizing a deformable
statistical model of the 3D lungs and employing data augmen-
tation techniques alongside CNNs. Despite its innovations,
the reliance on point clouds leads to significant frailties,
notably the neglect of essential surface details and the loss of
topological data concerning vertex relationships. Wang et al.
[6] utilized the P2Mnetwork and developed a CNNmethod to
reconstruct 3D/4D lung models from single 2D images, such
as 3D/4D-CT projections or X-ray images, by learning space
deformation fields from synthetically crafted multiple initial
templates.

Tong et al. [7] have utilized the real CT-DRR pairs for
the first time to reconstruct the liver shape of the actual
patients using 2D CNN and a graph convolutional surface
deformation network. Since low contrast or invisible contours
can generate problems for 2D/3D registration, in their next
paper [8], Nakao et al. have added 2D deformation mapping
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and stated a mean distance error of 3.6mm for reconstruction
of liver shapes from a planar DRR and called the network
image-to-graph convolutional network (IGCN). The authors
have also introduced the IGCN+ network [9] that adeptly
predicts multi-3D organ mesh deformations from 2D images
of abdominal organs, demonstrating clinically acceptable
accuracy in anticipating respiratory motion and deformation
across multiple abdominal organs and pancreatic cancer in
radiation therapy contexts.

Template deformation methods deform a template mesh
to fit the target shape, which might introduce artifacts or
lose details if the template is not sufficiently detailed or if
it does not closely resemble the target shape. Depending
on the complexity of the target shape and the template,
template deformation might result in self-intersections,
especially in regions with high curvature or complex
geometry.

In contrast to the 2D/3D registration and template defor-
mation learning methods, this paper shows that utilizing the
occupancy function leads to high resolution closed surfaces
without self intersections and achieves highly accurate
reconstructions without requiring any template meshes from
the same object class.

III. PROPOSED APPROACH
This section introduces the X2V deep network model
architecture for X-ray to 3D lung mesh reconstruction and
explains the details of network training and inference.

A. X2V MODEL ARCHITECTURE
Neural implicit methods, leveraging neural networks, rep-
resent 3D shapes indirectly through a continuous function,
typically providing a smooth and differentiable shape
representation beneficial for gradient-based optimization.
On the other hand, The ViT (Vision Transformer) model has
revolutionized the field of computer vision by applying trans-
formers, traditionally used in natural language processing,
to image classification tasks [27]. This paper applies a novel
ViT based neural implicit model, conditioned on the input
X-ray image, for 3D lung mesh reconstruction.

The X2V model architecture is shown in Figure 2a.
The network accepts as input a DRR image of size
224 × 224 and a set of 3D-coordinates of T random points
in space. The network predicts the occupancy probability
(i.e. the probability that a point in space is occupied) of
each point at its output. To reconstruct a 3D surface from a
DRR image, the occupancy function is conditioned on the
antero-posterior DRR image. The occupancy function [10],
central to our methodology, implicitly represents the lung
surface as a decision boundary. This approach generates
high-resolution, non-self-intersecting closed surfaces without
relying on input template meshes.

In the X2V network, a low complexity Vision Transformer
(ViT) model is employed as a feature extractor to condition
the occupancy probability of 3D points in space on the
input DRR image. The transformer divides the image

into 16 × 16 pixel patches; these patches are linearly
embedded and augmented with absolute positional encodings
to retain their spatial information. The core of the model
consists of a transformer encoder that employs multi-
head self-attention and feed-forward layers, leveraging the
transformer’s capacity to capture long-range dependencies
within the image. A classification head, typically connected
to the output associated with a special ‘‘class token,’’
generates the final prediction. This model strikes a balance
between computational efficiency and performance, making
it suitable for a broad range of image-related tasks.

In our approach, the ViT model extracts rich, high-
dimensional features from the input DRR image, hence
transforms the input image into a latent feature represen-
tation, which effectively summarizes the visual information
necessary for 3D reconstruction. This integration of ViT
network with neural implicit models represents a novel
approach to harnessing the power of transformers in image
reconstruction tasks, aiming to improve the quality and
fidelity of the generated 3D models.

The Vision Transformer (specifically, ViT-B/16) model
[28], [29] for feature extraction is altered by removing
its original classification head. This modification shifts the
model’s focus from classifying images to providing a dense
feature representation. Following this, a projection layer
linearly transforms the 768-dimensional feature vector into
a higher-dimensional space of 1024 features. The purpose of
this transformation is to expand the feature space, potentially
capturing more complex relationships within the data and
making the representation more suitable for downstream
tasks that require a richer feature set.

The occupancy network model takes the output of
ViT-B/16 (represented as codevector c) and a batch of T 3D
points (formatted as a T ×3 dimensional matrix) as input and
produces the occupancy probability of each 3D point at the
output. The input points are passed through a fully connected
layer to produce a 256 dimensional feature vector for each
point. The feature vectors are passed through 4DenseNet [30]
blocks that first apply conditional batch normalization
enabling dynamic adjustment of normalization parameters
based on the conditional codevector c (See Figure 2a).
Conditional Batch Normalization (CBN) [31] is an advanced
normalization technique that modifies the traditional batch
normalization process to be dependent on additional external
information, often in the form of a conditional vector c.
Linear layers (γ (c) and β(c)) generate scale and shift
factors from c, modulating the normalized output to adapt to
different conditions dynamically. This approach allows the
normalization process to be finely tuned based on contextual
information, making it highly versatile for applications
requiring responsive adjustments to input variations, thereby
enhancing the model’s ability to process conditionally varied
data efficiently.

Initially, the conditioning vector c that represents external
information such as a 2D image, derived from the encoder
network, passes through two separate fully-connected layers,
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FIGURE 2. X2V network architecture training and inference phases.

resulting in 256-dimensional vectors β(c) and γ (c). Sub-
sequently, the 256-dimensional input feature vector fin of
each CBN layer is normalized using its mean and variance,
followed by a scaling operation with γ (c) and an addition
of the bias term β(c). CBN layer applies the following
normalization to the input feature vectors fin:

CBNi(c, fin) = γi(c)
(
fin − µ

√
σ 2 + ϵ

)
+ βi(c) (1)

The densenet blocks integrate conditional batch nor-
malization and convolutional layers, including a ReLU
activation function, to process and transform the input
tensor. The blocks facilitate a two-step transformation—
initial normalization and transformation of input, followed by
concatenation with the original input, another transformation
and projection to the desired output dimension.

As seen in Figure 2a, each DenseNet block employs skip
connections in order to transfer shallow layer features to

deeper layers and to facilitate better gradient flow during
back-propagation. The dense connectivity in the architecture
ensures comprehensive feature integration, as each layer
is fed inputs from all previous layers, thus enhancing the
depth and subtlety of feature fusion. The inclusion of CBN
allows for dynamic adjustment of normalization parameters,
tailored to the specific attributes of the input DRR image.
Overall, the joint use of ViT-based encoding, CBN layers
and DenseNet architecture make substantial contributions to
the 2D-to-3D reconstruction performance of the proposed
X2V model.

B. TRAINING
Ideally, our aim is to discern the occupancy not merely at
fixed, discrete 3D locations but at every conceivable 3D point
p ∈ R3. The function

o : R3
→ {0, 1}
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is termed the occupancy function of the 3D object. A key
insight is that this 3D function can be approximated by
a neural network, assigning each location p an occupancy
probability between 0 and 1, effectively utilizing the decision
boundary of a binary classification network to implicitly
represent the object’s surface. The network, represented as
f : R3

× X → R, conditions the task of 3D reconstruction
on an observation x ∈ X by mapping the pair (p, x) to a real
number that indicates the probability of occupancy.

In the context of a binary-classification network, training
involves evaluating the mini-batch loss LB(θ ) at randomly
sampled points within the 3D bounding volume of the object.
This is defined as:

LB(θ ) =
1

|B|

|B|∑
i=1

L(fθ (pi, xi), oi) (2)

where xi is the ith observation of batch B, oi ≡ o(pi) denotes
true occupancy at point pi, and L(·, ·) is binary cross-entropy
classification loss. In this case, the method’s effectiveness is
influenced by the scheme used for sampling the locations pi
employed during training. Optimal results are obtained with
uniform sampling inside the object’s bounding box [10].
In all conducted experiments, the Adam optimizer [32]

was employed for training, configured with a learning rate
(η) of 10−4. Regarding the Adam optimizer’s additional
hyperparameters, the default settings provided by PyTorch
were adopted: β1 = 0.9, β2 = 0.999, and ϵ = 10−8.

C. INFERENCE
Figure 2b depicts the inference of 3D lung meshes from
occupancy predictions at the X2V network output. In the X2V
implementation, a version of the Multiresolution IsoSurface
Extraction (MISE) algorithm [10], originally detailed in
the occupancy network inference approach, is integrated.
This integration facilitates efficient high-resolution mesh
extraction from our network. Our process begins with the
initial discretization of the volumetric space, followed by
an evaluation against the occupancy values at this base
resolution. The voxelization involves setting a threshold
to determine whether each voxel, or 3D pixel, is inside
or outside the object. Essentially, the threshold helps in
classifying voxels based on their likelihood of being part of
the object, as predicted by the deep learning model. This step
is crucial for transforming the model’s probabilistic outputs
into a clear, discrete 3D representation, enabling the accurate
reconstruction of objects from single image viewpoint.
A critical aspect of our approach is the identification
and marking of grid points exceeding a certain occupancy
threshold, which is the sole parameter determining the
thickness of the extracted 3D surface. To choose the threshold
parameter τ for our method, we opt for the optimum value
τ = 0.2, which yields a good trade-off between accuracy and
completeness, as indicated in the ONet article [10].

Subsequently, active voxels are detected and subdivided,
which are characterized by adjacent grid points with differing

occupancy predictions. This iterative subdivision continues
until the desired resolution is reached. At this final resolution,
the Marching Cubes algorithm is employed to generate the
initial mesh.

To refine the initial mesh, Fast-Quadric-Mesh-
Simplification algorithm [33], which is based on iterative
edge contraction and quadric error metrics, is employed,
followed by a gradient-based optimization process. This
ensures both the simplification and enhancement of the mesh
quality. Our method ensures convergence to an accurate
mesh, contingent on the initial resolution encapsulating all
necessary components of the mesh’s interior and exterior.
In our application, an initial resolution of 323 voxels has
proven to be effective.

IV. DATASET
In this paper, X2V network, strategically designed to isolate
various organs from X-ray images using a singular network,
is trained for lung organ extraction due to the high availability
of lung data and its higher HU contrast compared to other
tissues, since it is filled with air. Early experimentation with
various organ segmentation models revealed the superior
accuracy ofU-net(R231) [34], guiding our focus towards lung
segmentation. The selection of the organ and architectural
approach was thus influenced by data accessibility and the
accuracy of the mesh segmented from its CT. The dataset
generation steps are summarized as below:

• Data collection through The Cancer Imaging Archive
(TCIA) [35].

• Lung segmentation from CT images as watertight
manifold meshes via U-net (R231) network [34].

• Occupancy value calculation for the points in the lung
meshes.

• Collecting corresponding DRR images of the CT scans
from an antero-posterior (AP) view.

• Applying CLAHE contrast enhancement to obtain
enhanced DRR images.

A part of the NLST dataset [36], [37] is down-
loaded from TCIA [35] using NBIA Data Retriever Tool.
A volumetric analysis and visualization in 3D Slicer
(https://www.slicer.org/) is performed [38], [39], [40], [41]
via the Lung CT Analyzer project with U-net(R231) net-
work architecture [34], [42] on NLST dataset leveraging
SimpleITK library. For the purpose of training and validating
our proposed CT reconstruction approach, an ideal dataset
would consist of a large collection of paired X-rays and
corresponding CT reconstructions. However, such datasets
are not readily available and the process of collecting them
can be expensive. To overcome this challenge, the digitally
reconstructed radiographs (DRR) technology [43] is utilized
to synthesize the corresponding X-rays using a real CT
volume, as depicted in Fig. 1. In our study, approximately
2560 subjects from the publicly available National Lung
Screening Trial (NLST) dataset are selected [37] that
comprises the low-dose CT scans from 26,254 of the subjects
in TCIA [35].
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After eliminating CT scans that do not encompass the
entire lungs and dicom cases with flawed CT images, suitable
rotation matrices are employed to align CT scans that
are not similarly oriented, ensuring uniform direction and
alignment with respect to the anterior, posterior, left, and right
anatomical planes of the patients.The second elimination step
involves removing low-quality segmentations following the
3D organ mesh creation phase. In the segment of the NLST
dataset [37] that is compiled, for each patient, one randomCT
scan from various years for their examination are selected,
in cases where multiple CT scans per year are available.

A. 3D ORGAN MESHES
6392 3D-CT scans were collected from 2560 selected
subjects, and 3D organ meshes were segmented via the
Lung CT Analyzer which has a Dice Similarity Coefficient
(DSC) of 0.98 ± 0.03 on the test dataset [35]. A Python
script was crafted to streamline the segmentation process,
employing the Python interactor of the 3D Slicer software.
This script automatically loads the DICOM file into 3D
Slicer, triggering the Lung CT Analyzer module—a 3D
Slicer extension—that segments the left and right lungs
independently and amalgamates them according to their
CT orientation, ensuring that the segmented lungs’ position
and volume align with the CT without necessitating further
object orientation [38], [39], [40], [41]. Essentially, the code
resamples the DICOM to a 1.5mm × 1.5mm × 1.5mm
spacing using B-spline interpolation, segments the lung
regions, exports the closed surface representation of multiple
segments to files, and merges all segments into a singular
mesh.

B. PLANAR DRR IMAGES
6,392 3D-CT scans are collected from 2,560 subjects and
resampled to a resolution of 512 × 512 × 512 pixels with
a voxel size of 1.0mm × 1.0mm × 1.0mm. 512 × 512
DRR images with 1.0 × 1.0 spacing are generated using a
Siddon Ray Tracing algorithm on a GPU [43], [44]. In this
study, Contrast Limited Adaptive Histogram Equalization
(CLAHE) is applied to DRR images to enhance the contrast
and resolution of local details.

C. DATA PREPROCESSING
The trimesh Python library is utilized to confirm the
watertightness of the acquired meshes, a necessary condition
for determining whether a point resides within a mesh’s
interior (e.g., for calculating IoU) [10]. All meshes are
centered and rescaled, ensuring the 3D bounding box of each
mesh is centered at (0,0,0) and the longest edge across the
dataset measures 1 so that the meshes are aligned with the
voxelization forms. The maximum value among the x, y,
and z dimensions of the bounding box measurements of the
acquired 3D lung volumes is used to uniformly normalize all
meshes. As in the context of Occupancy Networks (ONet)
[10], voxel representations facilitate efficient querying of

occupancy probabilities in the 3D space, enabling the
generation of detailed and accurate 3D reconstructions [10].
Employing the voxelization method from Choy et al. [45],

the voxelizations of 323 are generated. The dataset is parti-
tioned into training, validation, and test subsets using a 7:2:1
ratio, with the training subset further divided into additional
training and validation sets. All voxels intersecting the mesh
surface are identified and labeled as occupied. Subsequently,
an evaluation is performed by selecting an arbitrary point
within each voxel to determine its position relative to the
mesh, either inside or outside. If the point is situated inside,
the corresponding voxel is labeled as occupied. 100k points
are generated within a padded unit cube and their positions
are determined relative to the watertight mesh by counting
intersections with a z-axis parallel ray; an even count signifies
an external point, odd indicates internal (see Figure 4). Both
the 100k point coordinates and their occupancies are saved,
and a 2048-point subset is randomly selected during the
training phase.

FIGURE 3. Illustration of the method for calculating occupancy values.
A ray is drawn from a 3D point along the z-axis, which intersects the
mesh surface. Points of intersection are marked in green. If the ray
intersects the mesh an even number of times, the point is considered as
external, indicated by a red dot. Conversely, an odd number of
intersections make the point labelled as internal, shown by a blue dot.

The ground truth and predicted meshes and their corre-
sponding distance heatmaps are shown in Figure 3. X2V
model outputs are displayed sequentially from left to right,
starting with the Digital Reconstructed Radiographs (DRRs).
These are followed by the anterior views of the Ground
Truth (GT) and the predicted 3D structures. Adjacent to
these are the Euclidean distance maps, which quantify the
spatial discrepancy between the GT and predicted models.
Completing the sequence, the posterior views of both the
GT and predicted structures are presented for comprehensive
visual comparison.

V. EXPERIMENTS
This section covers the simulation results and comparative
analysis of X2V network. Evaluation metrics are explained
and the results are discussed in detail. The 3D reconstruction
performance of X2V is compared against two recent 2D-3D
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FIGURE 4. Real-size lung volume analysis of GT and X2V network output: (a) Single anteroposterior DRR with CLAHE of lungs as input to networks;
(b) Ground truth lung mesh front-view(-f); (c) Front side of the lung high resolution mesh generated by the X2V network; (d) Distance heatmap between
GT and predicted mesh front-view; (e) Ground truth lung mesh back-view(-b); (f) Back side of the lung mesh generated by the X2V network; (g) Distance
heatmap between GT and predicted mesh from back-view; (h) color scalar bar ( blue min −22.5 mm, red +22.5 mm with mean −0.328mm and std
2.825mm).

reconstruction models from the literature, namely, Point Set
Generation Network (PSGN) [46] and P2M Network [18].

A. COMPARATIVE STUDIES
This section explains the details of PSGN and P2M models,
which are used for performance comparison.

1) POINT SET GENERATION NETWORK
The Point Set Generation Network (PSGN) [46], a 3D
reconstruction model, generates 2048 3D point coordinates
from a single image input. It utilizes a ResNet-50 encoder and
a decoder with four fully connected layers.Models are trained
for 10 hours on an Nvidia GTX 4090 GPU, with a batch size
of 64. In the PSGN [46], normalization of the 3D ground
truth point clouds is achieved by moving their centroid to
the origin and scaling them to fit within a standard volume,
such as a unit cube, ensuring consistent scale. Uniformity in
point density across these point clouds is attained by sampling
a fixed number of points using the farthest point sampling
method.

2) PIXEL2MESH
P2M [18] applies a mesh-focused technique to reconstruct
3D structures from individual images, iteratively adjusting an
initial ellipsoid mesh to approximate the object by harnessing
perceptual features from the input. The network operates with
a sequence of three consecutive mesh deformation stages.
Each stage enhances the mesh’s resolution and refines the
positions of the vertices. These updated vertex coordinates
serve to gather perceptual features from the 2D image
via a CNN, informing the subsequent deformation stage
with Graph based ResNet (G-ResNet). In our experiments,
P2M is trained using our DRR-CT lung dataset, while
conforming to the slightly altered implementation from the
P2M paper [18] via changing the perceptual feature pooling
layer from VGG-16 to ResNet-50 network architecture.
Additionally, it is important to mention that our method
employs uniformly sampled points from CAD models for
ground truth, in contrast to the P2M approach, which uses
Poisson-disk sampling. The comparative analysis in the
subsequent section demonstrates that the proposed X2V
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model significantly outperforms the P2M method in terms of
IoU, Chamfer-L1 distance, and F-score metrics.

A starting template mesh, typically an ellipsoid or sphere,
is selected for the deformation process in P2M [18]. This
mesh is then scaled to the target mesh’s dimensions for
consistency. To enhance the starting configuration, features
from the input image are superimposed onto the mesh.
Connectivity between vertices is depicted through an adja-
cency matrix, essential for the graph convolutional network
(GCN) layers, while the graph Laplacian is calculated to
embody the mesh structure, aiding deformation learning.
The vertices’ coordinates are incorporated into the feature
vector for network input. Additionally, camera parameters are
employed to transform the initial mesh to align with the input
image’s perspective.

B. EVALUATION METRICS
In this research, the proposed method and established base-
lines are quantitatively evaluated using the IoU, Chamfer-
L1 (C-L1) distance, F-score and normal consistency score
metrics. The Chamfer L1 distance [10], denoted as C-L1,
serves as a pivotal metric for assessing the similarity between
two 3D shapes. It quantifies the discrepancy by computing
the average nearest-point Euclidean distance between corre-
sponding points on the surfaces of both a predicted 3D model
and a ground truthmodel. This metric is inherently symmetric
and normalized, facilitating a comprehensive and robust
comparison of 3D reconstruction accuracy. To calculate the
Chamfer L1 distance, for each vertex p in the predicted mesh
(PR), p ∈ ∂MPR, the nearest vertex q ∈ ∂MGT within the
ground truth (GT) mesh is identified, and conversely, for each
vertex in the GT mesh, the nearest vertex in the predicted
mesh is determined. The sum of these minimum distances
is then averaged, providing a measure that encapsulates the
overall spatial deviation between the two meshes.

C-L1(MPR,MGT) ≡
1

2|∂MPR|

∫
∂MPR

min
q∈∂MGT

∥p−q∥dp

+
1

2|∂MGT|

∫
∂MGT

min
p∈∂MPR

∥p−q∥dq.

(3)

IoU for 3D meshes is the ratio of their intersecting volume
to the volume of their union. In evaluating 3D point cloud
similarity, the voxelized IoU is calculated by first converting
each point cloud into a voxel grid, marking voxels as occupied
or not. The IoU is then determined by dividing the count
of voxels occupied in both grids (intersection) by the count
of voxels occupied in at least one grid (union), where PPR
and PGT are the sets of occupied voxels for predicted and
ground truth meshes, respectively. This metric ranges from 0
(no overlap) to 1 (perfect overlap), providing a standardized
measure of spatial congruence between two 3D models.

IoU(PPR,PGT) ≡
|PPR ∩ PGT|

|PPR ∪ PGT|
. (4)

A higher IoU indicates greater overlap and similarity
between the meshes, useful for evaluating accuracy in 3D
reconstructions. The meshes and point clouds are voxelized
with voxel size of 0.5 to calculate IoU values. Voxelized
approach is adopted due to the inherent limitations of the
P2M and PSGN methods used for comparison, which do
not generate watertight meshes. Normally, the PSGNmethod
produces point clouds; however, for comparison with our
method, meshes are generated from point clouds using the
ball pivoting algorithm [47].

Normal consistency (NC) between two meshes is assessed
by calculating the absolute dot product of surface normals
from one mesh with those of the nearest neighbors in the
other mesh. This measure reflects the alignment accuracy
of corresponding surface elements, focusing solely on
geometric correspondence without being affected by the
positive or negative directionality of the normals.

The F-score is a widely recognized metric for assessing
the accuracy of 3D mesh reconstructions, encapsulating both
precision and recall into a singular measure. The F-score
between two meshes is a balanced measure combining
precision and recall, calculated as the harmonic mean of the
proportion of correctly identified points in the predicted mesh
(i.e. precision) and the proportion of actual mesh points that
are correctly identified (i.e. recall). This score effectively
evaluates the accuracy of 3D mesh reconstructions, with a
higher F-score indicating better accuracy and similarity. The
F-score is computed as follows:

F-score = 2 ×
Precision × Recall

Precision + Recall + ϵ
(5)

Precision and recall are defined based on the Euclidean
distance between corresponding points in the ground truth
and predicted meshes, with respect to a predefined threshold
t . Specifically,

Precision =

∑NPR
i=1 ⊮(d iPR < t)

NPR
(6)

Recall =

∑NGT
i=1 ⊮(d iGT < t)

NGT
(7)

In these equations, NPR and NGT denote the number of
points in the predicted and ground truth meshes, respectively.
The function ⊮(·) is an indicator function that returns 1 if
the condition within is true (i.e., the Euclidean distance d
between a point in one mesh and its nearest neighbor in the
other mesh is less than the threshold t), and 0 otherwise.
This threshold t is crucial as it defines the sensitivity of the
metric to the distance between corresponding points, thereby
influencing the assessment of reconstruction accuracy. In the
experiments, t is set as 0.02. A small constant ϵ = 10−8 is
added in F-score calculation to avoid division by zero.

C. SIMULATION RESULTS AND DISCUSSIONS
This section compares the performance three tested methods,
X2V, PSGN and P2M, first visually and then using the
objective evaluation metrics.
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FIGURE 5. Comparison for lung volume analysis. (a) Single antero-posterior DRR of lungs as input to networks. (b) Ground truth lung mesh.
(c) high-accuracy, real-size, watertight lung mesh generated by the X2V network. (d) and (e) separately processed left (e) and right (d) lung meshes,
modified from initial ellipsoid shapes due to deformations, using the P2M algorithm. (f) PSGN derived point cloud lacking connectivity, subsequently
converted into a mesh (g) using the Ball Pivoting Algorithm, exhibiting non-manifold characteristics.

Figure 5 shows that each tested method effectively
replicates the 3D geometry from an antero-posterior DRR.
The PSGN method demonstrates the ability to produce
relatively high-quality outputs; however, it exhibits limita-
tions inmaintaining structural connectivity. This shortcoming
necessitates the implementation of lossy post-processing
techniques, such as the ball pivoting algorithm, for mesh
reconstruction. Conversely, P2M shows proficiency in gen-
erating visually appealing meshes but encounters difficulties
in accurately rendering openings in the presence of complex
topologies. This challenge is particularly evident around
the adjacent corresponding surface areas in the predicted
P2M-R and P2M-L lung meshes, as illustrated in Figure 5,
which displays non-manifold surface properties and holes
throughout the surface of the meshes. In P2M, the inherent
complexity of lung shapes poses challenges when attempting
to model them with a basic deformable mesh originating
from a standard lung. Especially, capturing precise details
of complex or slender structures is difficult, which leads
to inaccuracies such as holes or meshes that are not
watertight.

The X2V model demonstrates the capability to accurately
predict the left and right lungs within their respective 3D
spaces, achieving a real-size mesh prediction accuracy of
0.5 mm, as illustrated in Figure 3. Note that, the results
depicted in Figure 5 are normalized within a unit cube. Close
examination of X2V-derived meshes reveals that corners
of the lung meshes and detailed topological features align
closely with the ground truth. Furthermore, the meshes
produced by the X2V model are watertight, indicating no
gaps or holes, which is crucial for maintaining the integrity
of the 3D representations.

In Figure 6, the ground truth mesh and the X2V predicted
mesh share nearly identical global topological characteristics,
although some disparities in local properties are evident when
viewed from the side of the meshes. Specifically, the rib
imprints on the lung meshes are not as discernible on the
predicted meshes.

Tables 1 and 2 present quantitative comparison of our X2V
approach against standard benchmarks in single image 3D
reconstruction, utilizing our test set. The values in Tables 1
and 2 are calculated by averaging metrics over 632 test data.
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IoU, Chamfer-L1 distance, F-Score and normal consistency
(NC) metrics are calculated for X2V, P2M and PSGN
network model outputs, with respect to the ground truth
meshes.

In the P2M experimental framework, the P2M model is
deployed for the prediction of a singular (left or right) lung
mesh from a single-view input image. Utilizing the initial
template provided by P2M, the process generates a single
mesh in alignment with the methodologies established in the
foundational work.

FIGURE 6. Different views for a sample lung mesh. (a) ground truth lung
mesh. (b) lung mesh generated by X2V network.

The resolution of the output mesh for PSGN predictions
stands at 2048 points. In the case of P2M-L and P2M-R,
the resolution is 2466 for each, attributable to the default
initial mesh in P2M featuring 2466 vertices. Meanwhile, the
X2V model employs 2048 and 4932 vertices for comparison
in Tables 2 and 1 respectively, matching the resolutions of
PSGN and P2M predictions.

TABLE 1. Comparison of X2V and P2M in terms of IoU, Chamfer-L1,
F-score and NC metrics for mesh reconstruction accuracy.

TABLE 2. Comparison of X2V and PSGN in terms of IoU, Chamfer-L1,
F-score and NC metrics for mesh reconstruction accuracy.

In the assessment, lower values of Chamfer-L1 are
indicative of improved performance, whereas for the IoU,
F-score and NC, higher values are favorable. Our approach
outperforms the two state-of-the-art methods across each of
thesemetrics. In evaluatingmesh quality using IoU, Chamfer-
L1, and F-score metrics, the mean and standard deviation
offer key insights. The mean calculation involves summing
each metric’s values across the test dataset and dividing by

the number of observations, indicating average performance.
The standard deviation, calculated as the square root of the
averaged squared deviations from the mean, gauges result
variability. A lower standard deviation suggests consistent
mesh quality, while a higher one indicates variability.
These statistics collectively provide a succinct overview of
mesh evaluation, highlighting both average performance and
consistency in terms of IoU, Chamfer-L1, F-score and NC
metrics.

In Table 3, X2V assessment of lung meshes at higher
resolution (10,000 points) reveals significant enhancement
in IoU metrics, surpassing previous research benchmarks.
Specifically, the IoU attains an impressive score of 0.94,
exceeding the prior standard of 0.88 in [6]. This improvement
is indicative of our model’s superior accuracy in capturing
the overlapping regions of lung meshes, demonstrating a
considerable advancement over existing methodologies.

TABLE 3. X2V performance evaluation at different mesh resolutions.

The F-score, which measures model accuracy, displays
remarkable stability especially at medium-to-high resolu-
tions. The consistency of an F-score of about 0.97, whether
at a resolution of 4,932 points or the higher resolution
of 10,000 points, emphasizes the reliability of our model.
Such uniformity in performance, irrespective of mesh detail,
underscores the model’s robustness, a critical attribute for
precision in complex simulations. Additionally, our model
achieves an exceptional NC score of 0.938. As a pivotal
metric for evaluating the alignment precision of mesh
normals, this high score reflects a significant level of
congruence in our model’s mesh normals. It corroborates the
model’s effectiveness in accurately replicating the intricate
geometric structures of lung tissues, thereby reinforcing its
applicability in detailed anatomical simulations.

As for the time complexity, X2Vmodel, utilizingmarching
cubes, exhibits an average inference time of 0.21 s, which
is slightly higher in comparison to the baseline algorithms,
where PSGN operates at 0.08 s and Pixel2Mesh at 0.17 s.

VI. CONCLUSION
Our X2V model has distinctly established itself as a superior
tool in the domain of single-image 3D reconstruction, par-
ticularly in generating lung meshes, outperforming existing
methods like PSGN and P2M in crucial metrics like IoU,
Chamfer-L1 distance, F-Score and normal consistency. Its
exceptional performance is most notable in high-resolution
mesh evaluations, where it achieves an IoU of 0.94 and main-
tains consistent F-scores across different resolutions. This
success underscores X2V’s adeptness in accurately capturing
complex geometries, a key aspect for realistic anatomical
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simulations. The model’s high normal consistency score
further reinforces its ability to precisely replicate the intricate
structures of lung tissues.

Future enhancements of the X2V approach will primarily
focus on expanding its applications beyond lung tissue
reconstruction to a broader range of complex anatomical
structures. This extension aims to evaluate and boost the
model’s versatility and broaden its application in medical
simulations. Efforts will also be directed towards fostering
closer collaborations with medical professionals to incorpo-
rate clinical data, enhancing the model’s real-world accuracy
and relevance. Another significant area of development will
involve integrating X2V with various imaging modalities,
such asMRI, CT scans, and ultrasound. This integration seeks
to offer a more comprehensive view of internal anatomy,
thereby improving the efficacy of diagnosis and treatment
planning. Furthermore, the integration of automated features
for detecting pathological conditions in segmented organs
will be a key goal. This feature aims to facilitate early diag-
nosis and timely medical intervention, potentially improving
patient outcomes. These strategic enhancements are poised to
further establish the X2V model as an invaluable asset in the
field of medical imaging and analysis.

ACKNOWLEDGMENT
During the preparation of this work the authors usedChatGPT
language model in order to rephrase author-written text into
more concise and grammarly correct content. After using
this tool/service, the authors reviewed and edited the content
as needed and take full responsibility for the content of the
publication.

REFERENCES
[1] M. K. Islam, T. G. Purdie, B. D. Norrlinger, H. Alasti, D. J. Moseley,

M. B. Sharpe, J. H. Siewerdsen, and D. A. Jaffray, ‘‘Patient dose
from kilovoltage cone beam computed tomography imaging in radiation
therapy,’’ Med. Phys., vol. 33, no. 6, pp. 1573–1582, Jun. 2006, doi:
10.1118/1.2198169.

[2] W. Y. Song, S. Kamath, S. Ozawa, S. Al Ani, A. Chvetsov, N. Bhandare,
J. R. Palta, C. Liu, and J. G. Li, ‘‘A dose comparison study between
XVI and OBI CBCT systems,’’ Med. Phys., vol. 35, no. 2, pp. 480–486,
Feb. 2008, doi: 10.1118/1.2825619.

[3] M. Unberath, C. Gao, Y. Hu, M. Judish, R. H. Taylor, M. Armand,
and R. Grupp, ‘‘The impact of machine learning on 2D/3D registration
for image-guided interventions: A systematic review and perspective,’’
Frontiers Robot. AI, vol. 8, Aug. 2021, doi: 10.3389/frobt.2021.716007.

[4] P. Markelj, D. Tomaževič, B. Likar, and F. Pernuš, ‘‘A review of 3D/2D
registration methods for image-guided interventions,’’ Med. Image Anal.,
vol. 16, no. 3, pp. 642–661, Apr. 2012, doi: 10.1016/j.media.2010.03.005.

[5] S. Wu, M. Nakao, J. Tokuno, T. Chen-Yoshikawa, and T. Matsuda,
‘‘Reconstructing 3D lung shape from a single 2D image during the
deaeration deformation process using model-based data augmentation,’’ in
Proc. IEEE EMBS Int. Conf. Biomed. Health Inform. (BHI), May 2019,
pp. 1–4, doi: 10.1109/BHI.2019.8834454.

[6] Y.Wang, Z. Zhong, and J. Hua, ‘‘DeepOrganNet: On-the-fly reconstruction
and visualization of 3D/4D lung models from single-view projections by
deep deformation network,’’ IEEE Trans. Vis. Comput. Graphics, vol. 26,
no. 1, pp. 960–970, Jan. 2020, doi: 10.1109/TVCG.2019.2934369.

[7] F. Tong, M. Nakao, S. Wu, M. Nakamura, and T. Matsuda, ‘‘X-ray2Shape:
Reconstruction of 3D liver shape from a single 2D projection image,’’ in
Proc. 42nd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2020,
pp. 1608–1611, doi: 10.1109/EMBC44109.2020.9176655.

[8] M. Nakao, F. Tong, M. Nakamura, and T. Matsuda, ‘‘Image-to-graph
convolutional network for deformable shape reconstruction from a single
projection image,’’ in Proc. Int. Conf. Med. Image Comput. Comput.
Assist. Intervent. (MICCAI), vol. 12904, Sep. 2021, pp. 259–268, doi:
10.1007/978-3-030-87202-1_25.

[9] M. Nakao, M. Nakamura, and T. Matsuda, ‘‘Image-to-graph convolutional
network for 2D/3D deformable model registration of low-contrast organs,’’
IEEE Trans. Med. Imag., vol. 41, no. 12, pp. 3747–3761, Dec. 2022, doi:
10.1109/TMI.2022.3194517.

[10] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger,
‘‘Occupancy networks: Learning 3D reconstruction in function space,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4455–4465, doi: 10.1109/CVPR.2019.00459.

[11] P. Maken and A. Gupta, ‘‘2D-to-3D: A review for computational 3D image
reconstruction from X-ray images,’’ Arch. Comput. Methods Eng., vol. 30,
no. 1, pp. 85–114, Jan. 2023, doi: 10.1007/s11831-022-09790-z.

[12] B. Goswami and S. Kr., ‘‘3D modeling of X-ray images: A review,’’ Int.
J. Comput. Appl., vol. 132, no. 7, pp. 40–46, Dec. 2015.

[13] M. S. U. Khan, A. Pagani, M. Liwicki, D. Stricker, and M. Z. Afzal,
‘‘Three-dimensional reconstruction from a single RGB image using deep
learning: A review,’’ J. Imag., vol. 8, no. 9, p. 225, Aug. 2022, doi:
10.3390/jimaging8090225.

[14] J. Bednarik, P. Fua, and M. Salzmann, ‘‘Learning to reconstruct
texture-less deformable surfaces from a single view,’’ in Proc. Int.
Conf. 3D Vis., Sep. 2018, pp. 606–615, doi: 10.1109/3DV.2018.
00075.

[15] A. Tsoli and Antonis. A. Argyros, ‘‘Patch-based reconstruction of a
textureless deformable 3D surface from a single RGB image,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. Workshop (ICCVW), Oct. 2019,
pp. 4034–4043, doi: 10.1109/ICCVW.2019.00498.

[16] V. Golyanik, S. Shimada, K. Varanasi, and D. Stricker, ‘‘HDM-Net:
Monocular non-rigid 3D reconstruction with learned deformation model,’’
in Proc. 15th EuroVR Int. Conf., Virtual Reality Augmented Reality,
Oct. 2018, pp. 51–72.

[17] S. Shimada, V. Golyanik, C. Theobalt, and D. Stricker, ‘‘IsMo-GAN:
Adversarial learning for monocular non-rigid 3D reconstruction,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2019, pp. 2876–2885.

[18] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y. G. Jiang, ‘‘Pixel2Mesh:
Generating 3D mesh models from single RGB images,’’ in Proc. Eur.
Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 52–71, doi: 10.1007/978-3-
030-01252-6_4.

[19] Y. Yuan, J. Tang, and Z. Zou, ‘‘VANet: A view attention guided network
for 3D reconstruction from single and multi-view images,’’ in Proc.
IEEE Int. Conf. Multimedia and Expo. (ICME), Jul. 2021, pp. 1–6, doi:
10.1109/ICME51207.2021.9428171.

[20] A. Salvi, N. Gavenski, E. Pooch, F. Tasoniero, and R. Barros,
‘‘Attention-based 3D object reconstruction from a single image,’’ in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1–8, doi:
10.1109/IJCNN48605.2020.9206776.

[21] X. Chen, A. Diaz-Pinto, N. Ravikumar, and A. Frangi, ‘‘Deep learning in
medical image registration,’’ Prog. Biomed. Eng., vol. 3, no. 1, Feb. 2021,
Art. no. 012003, doi: 10.1088/2516-1091/abd37c.

[22] L. Humbert, J. A. De Guise, B. Aubert, B. Godbout, and W. Skalli,
‘‘3D reconstruction of the spine from biplanar X-rays using
parametric models based on transversal and longitudinal inferences,’’
Med. Eng. Phys., vol. 31, no. 6, pp. 681–687, Jul. 2009, doi:
10.1016/j.medengphy.2009.01.003.

[23] Y. Chaibi, T. Cresson, B. Aubert, J. Hausselle, P. Neyret, O. Hauger,
J. A. de Guise, and W. Skalli, ‘‘Fast 3D reconstruction of the lower
limb using a parametric model and statistical inferences and clinical
measurements calculation from biplanar X-rays,’’ Comput. Methods
Biomech. Biomed. Eng., vol. 15, no. 5, pp. 457–466, May 2012, doi:
10.1080/10255842.2010.540758.

[24] T. Cresson, D. Branchaud, R. Chav, B. Godbout, and J. A. de Guise,
‘‘3D shape reconstruction of bone from two X-ray images using 2D/3D
non-rigid registration based on moving least-squares deformation,’’
Proc. SPIE, vol. 7623, Mar. 2010, Art. no. 76230F, doi: 10.1117/
12.844098.

[25] J. Zhang, L. Lv, X. Shi, Y. Wang, F. Guo, Y. Zhang, and H. Li,
‘‘3-D reconstruction of the spine from biplanar radiographs based on
contour matching using the Hough transform,’’ IEEE Trans. Biomed. Eng.,
vol. 60, no. 7, pp. 1954–1964, Jul. 2013.

VOLUME 12, 2024 50909

http://dx.doi.org/10.1118/1.2198169
http://dx.doi.org/10.1118/1.2825619
http://dx.doi.org/10.3389/frobt.2021.716007
http://dx.doi.org/10.1016/j.media.2010.03.005
http://dx.doi.org/10.1109/BHI.2019.8834454
http://dx.doi.org/10.1109/TVCG.2019.2934369
http://dx.doi.org/10.1109/EMBC44109.2020.9176655
http://dx.doi.org/10.1007/978-3-030-87202-1_25
http://dx.doi.org/10.1109/TMI.2022.3194517
http://dx.doi.org/10.1109/CVPR.2019.00459
http://dx.doi.org/10.1007/s11831-022-09790-z
http://dx.doi.org/10.3390/jimaging8090225
http://dx.doi.org/10.1109/3DV.2018.00075
http://dx.doi.org/10.1109/3DV.2018.00075
http://dx.doi.org/10.1109/ICCVW.2019.00498
http://dx.doi.org/10.1007/978-3-030-01252-6_4
http://dx.doi.org/10.1007/978-3-030-01252-6_4
http://dx.doi.org/10.1109/ICME51207.2021.9428171
http://dx.doi.org/10.1109/IJCNN48605.2020.9206776
http://dx.doi.org/10.1088/2516-1091/abd37c
http://dx.doi.org/10.1016/j.medengphy.2009.01.003
http://dx.doi.org/10.1080/10255842.2010.540758
http://dx.doi.org/10.1117/12.844098
http://dx.doi.org/10.1117/12.844098


G. Guven et al.: X2V: 3D Organ Volume Reconstruction From a Planar X-Ray Image

[26] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, ‘‘PointNet: Deep learning
on point sets for 3D classification and segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2017, pp. 77–85, doi:
10.1109/CVPR.2017.16.

[27] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, ‘‘An image is worth 16 × 16 words:
Transformers for image recognition at scale,’’ in Proc. 9th Int. Conf. Learn.
Represent., 2021.

[28] B. Wu, C. Xu, X. Dai, A. Wan, P. Zhang, Z. Yan, M. Tomizuka,
J. Gonzalez, K. Keutzer, and P. Vajda, ‘‘Visual transformers: Token-
based image representation and processing for computer vision,’’ 2020,
arXiv:2006.03677.

[29] J. Deng, W. Dong, R. Socher, L. -J. Li, K. Li, and L. Fei-Fei,
‘‘ImageNet: A large-scale hierarchical image database,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 248–255, doi:
10.1109/CVPR.2009.5206848.

[30] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
‘‘Densely connected convolutional networks,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2261–2269, doi:
10.1109/CVPR.2017.243.

[31] H. D. Vries, F. Strub, J. Mary, H. Larochelle, O. Pietquin, and A. Courville,
‘‘Modulating early visual processing by language,’’ in Proc. Adv. Neural
Inf. Process. Syst., vol. 30, 2017.

[32] D. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ in
Proc. 3rd Int. Conf. Learn. Represent., 2015.

[33] M. Garland and P. S. Heckbert, ‘‘Simplifying surfaces with color and
texture using quadric error metrics,’’ in Proc. Visualizat., Oct. 1998,
pp. 263–269, doi: 10.1109/VISUAL.1998.745312.

[34] J. Hofmanninger, F. Prayer, J. Pan, S. Röhrich, H. Prosch, and G. Langs,
‘‘Automatic lung segmentation in routine imaging is primarily a data
diversity problem, not a methodology problem,’’ Eur. Radiol. Experim.,
vol. 4, no. 1, Aug. 2020, doi: 10.1186/s41747-020-00173-2.

[35] K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore,
S. Phillips, D. Maffitt, M. Pringle, L. Tarbox, and F. Prior, ‘‘The cancer
imaging archive (TCIA): Maintaining and operating a public information
repository,’’ J. Digit. Imag., vol. 26, no. 6, pp. 1045–1057, Dec. 2013, doi:
10.1007/s10278-013-9622-7.

[36] National Lung Screening Trial Research Team, (2013), ‘‘Data from the
national lung screening trial (NLST) [data set],’’ The Cancer Imaging
Archive, doi: 10.7937/TCIA.HMQ8-J677.

[37] National Lung Screening Trial Research Team,D. R. Aberle, A.M.Adams,
C. D. Berg, W. C. Black, J. D. Clapp, R. M. Fagerstrom, I. F. Gareen,
C. Gatsonis, P. M. Marcus, and J. D. Sicks, ‘‘Reduced lung-cancer mor-
tality with low-dose computed tomographic screening,’’ New England J.
Med., vol. 365, no. 5, pp. 395–409, 2011, doi: 10.1056/NEJMoa1102873.

[38] R. Kikinis, S. D. Pieper, and K. G. Vosburgh, ‘‘3D slicer: A platform
for subject-specific image analysis, visualization, and clinical support,’’ in
Intraoperative Imaging and Image-Guided Therapy. New York, NY, USA:
Springer, 2013, pp. 277–289, doi: 10.1007/978-1-4614-7657-3_19.

[39] T. Kapur et al., ‘‘Increasing the impact of medical image computing using
community-based open-access hackathons: The NA-MIC and 3D slicer
experience,’’ Med. Image Anal., vol. 33, pp. 176–180, Oct. 2016, doi:
10.1016/j.media.2016.06.035.

[40] A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin,
S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti,
S. Aylward, J. V. Miller, S. Pieper, and R. Kikinis, ‘‘3D slicer as
an image computing platform for the quantitative imaging network,’’
Magn. Reson. Imag., vol. 30, no. 9, pp. 1323–1341, Nov. 2012, doi:
10.1016/j.mri.2012.05.001.

[41] S. Pieper, B. Lorensen, W. Schroeder, and R. Kikinis, ‘‘The NA-MIC
kit: ITK, VTK, pipelines, grids and 3D slicer as an open platform
for the medical image computing community,’’ in Proc. 3rd IEEE
Int. Symp. Biomed. Imag., Macro Nano, May 2006, pp. 698–701, doi:
10.1109/ISBI.2006.1625012.

[42] R. Bumm. Lung CT Analyzer. Accessed: Jul. 7, 2023. [Online]. Available:
https://github.com/rbumm/SlicerLungCTAnalyzer

[43] R. L. Siddon, ‘‘Fast calculation of the exact radiological path for a three-
dimensional CT array,’’Med. Phys., vol. 12, no. 2, pp. 252–255,Mar. 1985,
doi: 10.1118/1.595715.

[44] M. de Greef, J. Crezee, J. C. van Eijk, R. Pool, and A. Bel, ‘‘Accelerated ray
tracing for radiotherapy dose calculations on a GPU,’’Med. Phys., vol. 36,
no. 9, pp. 4095–4102, Sep. 2009.

[45] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, ‘‘3D-R2N2:
A unified approach for single and multi-view 3D object reconstruction,’’
in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2016,
pp. 628–644, doi: 10.1007/978-3-319-46484-8_38.

[46] H. Fan, H. Su, and L. J. Guibas, ‘‘A point set generation network for
3D object reconstruction from a single image,’’ in Proc. 30th IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2017, pp. 605–613, doi:
10.1109/CVPR.2017.264.

[47] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin,
‘‘The ball-pivoting algorithm for surface reconstruction,’’ IEEE Trans.
Vis. Comput. Graphics, vol. 5, no. 4, pp. 349–359, Oct. 1999, doi:
10.1109/2945.817351.

GOKCE GUVEN received the B.S. degree in chem-
istry fromKoc University, Istanbul, in 2010, where
her research was focused on superconductor mod-
eling, and the M.Sc. degree in materials science
and nanoengineering from Sabanci University,
Istanbul, in 2013. She is currently pursuing the
Ph.D. degree with Özyeğin Üniversitesi, Istanbul,
Turkey. Her Ph.D. research is dedicated to leverag-
ing deep learning techniques for medical imaging,
with the goal of enhancing diagnostic procedures

through technological advancements. Her professional experience began
from 2009 to 2010 as a Research Assistant with the Max Planck Institute
for Chemical Physics of Solids. From 2015 to 2019, she expanded her
expertise to include software development and research, working with
various companies. Since 2020, she has been the Chief Technology Officer
of Osteoid Health Technologies.

HASAN F. ATES (Senior Member, IEEE) received
the Ph.D. degree from the Department of Elec-
trical Engineering, Princeton University, in 2004.
Hewas a Research Associate with Sabanci Univer-
sity, from 2004 to 2005. He held positions of an
Assistant, an Associate, and a Full Professorship
with Isik University, from 2005 to 2018. He was
with Istanbul Medipol University, from 2018
to 2022. Since September 2022, he has been
a Professor with the Department of Computer

Science, Özyeğin Üniversitesi. He is the author/coauthor of more than
80 peer-reviewed publications in the areas of image/video processing/coding
and computer vision.

H. FATIH UGURDAG (Senior Member, IEEE)
received the B.S. degree in EE and physics from
Boğaziçi University, Istanbul, Turkey, in 1986,
and the M.S. and Ph.D. degrees in EE from Case
Western Reserve University, Cleveland, OH, USA,
in 1989 and 1995, respectively. He was involved
full-time with industry for 13 years before joining
academia, in 2004. His tenure in the industry was
mostly in silicon valley and spanned companies,
such as GE, GM, Lucent, Juniper, and Nvidia.

He is currently a Full Professor with Özyeğin Üniversitesi, Istanbul, Turkey.
His research interests include ASIC/SoC/FPGA implementation of various
compute-intensive algorithms, design automation, and computer arithmetic.
He is a long-time IEEE volunteer and is currently the Secretary of the IEEE
Turkey Section.

50910 VOLUME 12, 2024

http://dx.doi.org/10.1109/CVPR.2017.16
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/VISUAL.1998.745312
http://dx.doi.org/10.1186/s41747-020-00173-2
http://dx.doi.org/10.1007/s10278-013-9622-7
http://dx.doi.org/10.7937/TCIA.HMQ8-J677
http://dx.doi.org/10.1056/NEJMoa1102873
http://dx.doi.org/10.1007/978-1-4614-7657-3_19
http://dx.doi.org/10.1016/j.media.2016.06.035
http://dx.doi.org/10.1016/j.mri.2012.05.001
http://dx.doi.org/10.1109/ISBI.2006.1625012
http://dx.doi.org/10.1118/1.595715
http://dx.doi.org/10.1007/978-3-319-46484-8_38
http://dx.doi.org/10.1109/CVPR.2017.264
http://dx.doi.org/10.1109/2945.817351

