IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 14 March 2024, accepted 31 March 2024, date of publication 5 April 2024, date of current version 12 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3385442

== RESEARCH ARTICLE

Sharing of Topped-Off Compressed Test
Sets Among Logic Blocks

IRITH POMERANZ ", (Fellow, IEEE)

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA

e-mail: pomeranz @purdue.edu

ABSTRACT Test data compression implies that a compressed test set is stored on a tester, and an on-chip
decompression logic produces tests that can be applied to the circuit from compressed tests. Test data
compression is used for reducing the test data volume and test application time. In a design that consists of
several logic blocks, distributed test data compression refers to the case where each logic block has dedicated
test data compression logic and compressed test set. Test generation procedures that are specific to this
scenario attempt to share compressed tests among logic blocks to minimize the overall storage requirements.
This article considers the problem of sharing a compressed test set among logic blocks when the goal is to
detect faults from several different fault models. Considering a single logic block, a common practice is to
consider the fault models one by one, and top off the test set as each additional fault model is considered.
The sharing procedure described in this article takes advantage of the topped-off test sets of the logic blocks
to consider the fault models one by one. For every fault model it considers the logic blocks one by one.
This structure of the procedure provides opportunities to share compressed tests among all the logic blocks.
Experimental results using benchmark circuits demonstrate the ability of the procedure to share tests for
stuck-at, single-cycle gate-exhaustive and four-way bridging faults in groups of four logic blocks.

INDEX TERMS Bridging faults, linear-feedback shift-register (LFSR), single-cycle gate-exhaustive faults,
test data compression, test generation.

I. INTRODUCTION logic represented by My, M1, ..., M,_1, respectively. For

Test data compression is used universally to reduce the test
data volume and test application time [1], [2], [3]. With test
data compression, a compressed test set is stored on the tester.
An on-chip decompression logic accepts compressed tests
and produces tests that can be applied to the circuit.

In a design that consists of several logic blocks, such
as an SoC or a processor with multiple cores, each logic
block may have dedicated test data compression logic and
compressed test set. This is referred to as distributed test data
compression, and it is analogous to distributed logic built-
in self-test [4]. Figure 1 illustrates this scenario considering
two logic blocks, By and Bj. The logic block marked M is
the decompression logic of By, and the logic block marked
M is the decompression logic of B;. In general, a design may
contain logic blocks By, Bj, ..., B,—1 with decompression

The associate editor coordinating the review of this manuscript and

approving it for publication was Poki Chen

0 < i < n, the set of target faults for B; is denoted by F;, and
its test set is denoted by 7;. The notation used in this article for
the general case of distributed test data compression is shown
in Table 1.

Test generation procedures that are specific to distributed
test data compression attempt to share compressed tests
among logic blocks to minimize the overall storage require-
ments [5], [6], [7]. This is illustrated in Figure 1 by the test
set denoted by W. For the procedure from [5], M; stands for
the number of data channels used for B;. For the procedures
from [6] and [7], the decompression logic is based on a linear-
feedback shift-register (LFSR), and tests are compressed into
seeds (initial states) for the LFSR. For this case, M; stands
for the length of the LFSR used for logic block B;. The
two interpretations of M; are analogous and serve a similar
purpose of representing the width of the compressed test data.

The test generation procedure described in [5] considers
groups of logic blocks such that all the logic blocks in the

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

49895

https://orcid.org/0000-0002-5491-7282
https://orcid.org/0000-0003-0749-4181

IEEE Access

I. Pomeranz: Sharing of Topped-Off Compressed Test Sets Among Logic Blocks

w
Lom] |
B, B,
FIGURE 1. Test data compression logic.
TABLE 1. Notation.
symbol meaning
B; logic block
M; decompression logic and length of LFSR for B;
F; set of target faults for B;
Fi; subset of F; from fault model j
T; test set for B;
T subset of tests added to 7; to detect faults from F; ;

same group have the same number of data channels. Thus,
two logic blocks B; and B; are placed in the same group only if
M; = M;. Moreover, the procedure from [5] considers all the
logic blocks in a group together as one circuit. Under these
restrictions, the procedure from [5] applies a conventional
test generation procedure to obtain a compressed test set for
the group of logic blocks. The procedures from [6] and [7]
remove the restrictions imposed in [5] by using the following
building blocks to perform test generation.

(BB1) The test generation procedures from [6] and [7]
construct the shared test set W by considering logic blocks
one by one. When they extend W to detect faults from Fj,
for 0 < i < n, they ensure that the fault coverages already
achieved by W for other logic blocks are not affected.

(BB2) If ¢, is an M;-bit compressed test (seed) for B;, and
M; < M;, the procedures may use the first j bits of 7, as a
seed for B;. The resulting seed is denoted by #,/;. For example,
if M; = 8, M; = 6 and t, = 00001111, the procedures may
use t,/; = 000011 as a seed for B;. This building block was
introduced in [6] for static test compaction, and used in [7] as
well. It allows a seed to be shared with logic blocks that have
smaller LFSR lengths.

(BB3) When the dynamic test compaction procedure
from [7] targets a fault of a logic block B;, it either adds
a new seed to W, or extends an existing seed. If 1, €¢ W
is an M;-bit seed for Bj, and M; > M;, the procedure may
decide to extend #, into an M;-bit seed for B; by adding
M; — M; bits. For example, if M; = 6, M; = 8 and
t, = 000111 is included in W, the procedure may replace
tp and use t, = 00011100 instead. Because of BB2, the
seed #/; = 000111 will be available in W for B; using the
first six bits of the extended seed #,. This building block
allows faults to be detected by adding fewer bits to the storage
requirements of W than the number of bits required when
adding a new seed.

These building blocks allow the procedures from [6]
and [7] to consider any number of logic blocks with any LF'SR

49896

lengths, and they are used in this article as well. To use both
BB2 and BB3, the procedures from [6] and [7] are iterative.
In a single iteration they use either BB2 or BB3.

This article considers the problem of sharing a compressed
test set W among logic blocks when the goal is to detect
faults from several different fault models. Test generation
procedures consider several fault models to provide a
comprehensive coverage of defects that may occur during
fabrication or during the lifetime of a chip. A common
practice when targeting a single logic block with several
fault models is to consider the fault models one by one,
and top off the test set as each additional fault model is
considered [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17]. The procedures from [6] and [7] consider a single set
of faults F;. If a logic block B; has m sets of target faults,
Fio, Fi1, ..., Fim—1, from m fault models, it is possible to
define a set of faults F; = Fio U F;; U...UF;,_1, and
apply the procedures from [6] and [7] with F;. However, the
computational effort will increase significantly if all the fault
models are considered together. Therefore, the goal of this
article is to allow both the logic blocks and the fault models
to be considered one by one as in a top-off procedure.

The main contribution of this article is the observation that
the structure of the topped-off test sets allows all of BBI,
BB2 and BB3 to be applied in a single iteration where both
the logic blocks and the fault models are considered one by
one. To achieve this goal, the sharing procedure described in
this article considers the fault models one by one, and the
logic blocks one by one for every fault model. This order
ensures that the lengths of the seeds in W alternate, and seeds
have both shorter and longer seeds ahead of them in the
shared test set. The longer seeds allow BB2 to be applied, and
the shorter seeds allow BB3 to be applied. This is achieved
without the more computationally-intensive iterative parts of
the procedures from [6] and [7].

The article reports on academic research. The problem
formulation and the algorithm it develops are general and
applicable to any design. However, several simplifying
assumptions are made to allow the study of the problem
and algorithm to be carried out in an academic environment
using academic software tools. In particular, an academic
version of a test data compression approach is used, where
a test is compressed into a single LFSR seed. In addition,
the sharing procedure is implemented using an academic
fault simulation tool, and it is applied to benchmark circuits.
With access to commercial tools that use a state-of-the-
art compression architecture, fault models, fault simulation
and test generation procedures it may be expected that the
algorithm developed in this article can be implemented in an
industrial environment and applied to industrial designs. The
importance of addressing the problem can be seen from the
discussion of distributed test data compression in [5], and
the discussion of top-off procedures in [11], [12] and [14].

Experimental results for groups of four benchmark circuits
demonstrate the ability of the sharing procedure suggested
in this article to share compressed tests for single stuck-at,

VOLUME 12, 2024

I. Pomeranz: Sharing of Topped-Off Compressed Test Sets Among Logic Blocks

IEEE Access

(@) Wy (b) W, (c) Wy, @ W,
Too Too Too Too
Ty, To.1 Tio ‘ Tip [Tol
T,
T 3
Tio Tio > Ty,
I T, |

Ty,

FIGURE 2. Test set sharing.

single-cycle gate-exhaustive [18] and four-way bridging [19]
faults among logic blocks with different LFSR lengths.

The article is organized as follows. Section II describes
the problem addressed and the solution suggested in this
article. Section III describes baseline procedures that create
shared test sets. Section IV describes the sharing procedure
suggested in this article for topped-off test sets. Section V
presents experimental results. Section VI analyzes the
extent of sharing possible among logic blocks. Section VII
concludes the article.

Il. PRELIMINARIES

For simplicity of discussion, the sharing procedure is
developed as a static test compaction procedure. Thus, it is
assumed in this article that test generation was already
performed for every one of the logic blocks individually using
a top-off procedure. The article focuses on the structure of a
sharing procedure whose goal is to share compressed tests
among several logic blocks with several fault models in a
single iteration while considering the logic blocks and the
fault models one by one. Once the structure of the sharing
procedure is established, it is possible to incorporate a test
generation procedure, as well as perform several iterations to
increase the level of sharing.

For illustration of the problem considered and the solution
suggested in this article, Figure 2 considers the case where
the number of logic blocks is n = 2 and the number of fault
models is m = 2. The logic blocks are such that My > M.
For i = 0 and 1, logic block B; has two sets of faults, F; o and
F; 1. Accordingly, the test set T; o for F; o is topped off with
atest set 7; 1 for F; 1 to obtain the test set 7; for B;. Without
any sharing, the test set Wo = T0,070,171,071,1 is shown in
Figure 2(a).

Figure 2(b) illustrates the use of BB2 for reducing the
number of seeds. In this case, the sets of faults are considered
in the order Fy o, Fo,1, F1,0, F1,1. When F ¢ and then F ;
is considered, fault simulation of F ¢ or F 1 under 7o 0 and
To.1 makes some of the seeds in 7 ¢ or 71,1 unnecessary. The
resulting test set is denoted by Wy, and it is smaller than W.

A higher level of sharing, implying a higher level of test
compaction, requires BB3 to be used as well. To provide
opportunities for both BB2 and BB3 to be applied, Figure 2(c)
illustrates the case where the sets of faults are considered in
the order Fy 0, F1,0, Fo,1, F1,1. In Figure 2(c), BB2 is used
for reducing the number of tests added from 7,9 and 77 ;
when F o and then F'| | are considered. This is possible since

VOLUME 12, 2024

longer seeds from Ty ¢ are available when F' g is considered,
and longer seeds from T ¢ and Tp,; are available when F| |
is considered. The resulting test set is denoted by W> ;.

BB3 is applied in Figure 2(d). Figure 2(d) is similar to
Figure 2(c), except that seeds from 77 ¢ are extended to detect
faults from Fy 1 when they are considered. This allows fewer
seeds from T(1 to be added to the shared test set as new seeds.
Thus, in Figure 2(d), BB2 is used for reducing the number of
seeds added from 7' o and 77,1, and BB3 is used for reducing
the number of seeds added from 7y ;. The resulting test set is
denoted by W,, and it is smaller than Wy, Wy, and W5 1. The
sharing procedure described in this article produces the test
set W, illustrated by Figure 2(d).

A baseline for comparison is established in this article by
procedures that produce test sets as shown in Figure 2(a)
and (b). The procedures from [6] and [7] are not applied since
they are not geared toward the consideration of several fault
models, and they require several iterations to apply both BB2
and BB3. If the basic test compaction procedure from [6] is
extended to use several fault models in a single iteration, it
will produce a test set similar to W illustrated by Figure 2(b).
Specifically, the basic test compaction procedure from [6]
initially assigns W = W), and pads all the seeds in W
randomly into My-bit seeds. For every seed w, € W, the
procedure assigns [(wp) = O initially to indicate that wy is
not used for detecting any faults. During the procedure, I(wp)
will be changed to M; if the first M; bits of wy, are used for
detecting faults from F;. With My > M| > ... > M,_1,
the procedure considers the logic blocks in the order By, Bj,
..., Bp_1. When B; is considered, the procedure simulates F;
under the seeds in W with [(wp) = [, forl = My, ...,M;_1,0.
For every seed wj, € W in this order, it simulates F; under the
test produced by the first M; bits of w;, with fault dropping.
If wp detects any faults, and I(wp) < M;, the procedure
assigns /(wp) = M;. When the procedure terminates, seeds
with I(wp) = O can be removed from W, and the padding
beyond /(wp) bits can be ignored to obtain the final test set W.

To use both BB2 and BB3, the iterative process from [6]
introduces a new padding for the seed at the end of the shared
test set, rotates the test set, and then applies the basic test
compaction procedure again. For the new seed at the top of
the test set, padding has a similar effect to BB3 since a seed
that originally had fewer than M bits now has M bits and
can be used for any logic block.

For a shared test set W, the number of iterations in [6] is
on the order of |W/|.

The dynamic test compaction procedure from [7] has two
forms, one with a lower and one with a higher computational
effort. The former is described next. The procedure starts
from a shared test set W = T,,_1. It considers the logic blocks
in the order M,,_», M,,_3, . .., My. When M; is considered, the
procedure performs the following steps. It first selects the test
from 7; that detects the largest number of faults from F;. Let
the selected test be #,. The procedure considers two options
for t,. The first option is to add 7, to W as a new seed. The
second option is to pad one of the seeds from W using the

49897

IEEE Access

I. Pomeranz: Sharing of Topped-Off Compressed Test Sets Among Logic Blocks

extra bits from 7,. Of all the seeds in W, the procedure selects
the one that yields the largest number of detected faults. Let
the selected seed be w, € W. Between adding 7, as anew seed
and padding wj, the procedure selects the option that detects
more faults. It finalizes this option, and continues to the next
test from 7; until all the faults from F; are detected.

The dynamic test compaction procedure from [7] performs
on the order of |T;| steps for every logic block. In every step
it requires fault simulation of all the tests from 77, and all the
tests from W.

These more computationally intensive procedures from [6]
and [7] are not considered in this article.

lll. BASELINE PROCEDURES
This section describes baseline procedures for sharing test
sets among logic blocks.

Using the notation from Sections I and II, for 0 < i < n,
B; is a logic block with a set of faults F;, and a compressed
test set 7; that consists of seeds for an LFSR of length M;. The
logic blocks are ordered such that My > M| > ... > M, .

With m fault models, F; consists of subsets F; j for0 < j <
m. The test set T; is partitioned into subsets 7; j for 0 < j < m,
where T j is added to T; to detect faults from F; ; that are not
detected by T,',(), ceey T,"j_l.

The test set Wy is illustrated by Figure 2(a) for n = 2 and
m = 2. It is obtained by concatenating T;; fori = 0, 1, ..,
n—1landj=0,1,...,m— 1. No sharing of seeds occurs in
this case.

The test set Wy is illustrated by Figure 2(b) for n = 2 and
m = 2, and produced by Procedure 1. Sharing of seeds
occurs in W1 by using BB2. Specifically, before adding seeds
from T; ; to detect faults from F; j, Procedure 1 simulates Fj ;
under seeds that already exist in W;. Because of the order
of the logic blocks from high to low LFSR length, a seed
wp € W1 has atleast M; bits when B; is considered. Therefore,
the first M; bits of the seed can be used for B;.

Initially in Procedure 1, W; = . Fori = 0,1, ..., n —
landj=0,1,...,m~— 1, fault simulation of F; ; under W is
carried out first by calling Procedure fsim(). For later use, the
length of a seed wy, is denoted by I(wj), and Procedure fsim()
simulates a seed wy, only if /(wp) > M;. This added condition
is not needed for Wy, but it will be useful later.

Next in Procedure 1, tests from T;; that detect faults from
F; j are added to W to obtain complete fault coverage for F; ;.
Procedure addtests() is used for this purpose.

Procedure 1: Shared test set W

1) Assign Wi = 0.
2) Fori=0,1,...,n—1:
a) Forj=0,1,...,m—1:
i) Call Procedure fsim(1, i, j).
ii) Call Procedure addtests(1, i, j).
Procedure fsim(s, i, j):
1) For every seed wyp € Wy, if I(wp) > M;:
a) Let wyp; consist of the first M; bits of wp.

49898

b) Simulate F;; under the test produced by wy;; with
fault dropping.
Procedure addtests(s, i, j):
1) Forevery seed 1, € T;;:
a) Simulate F;; under the test produced by #, with fault
dropping.
b) If 7, detected any faults, add it to W;.

IV. SHARING PROCEDURE FOR TOPPED-OFF TEST SETS
This section describes the procedure suggested in this article
for sharing of compressed topped-off tests among logic
blocks. The procedure is referred to as Procedure 2. The
shared test set it produces is denoted by W5.

A. PROCEDURE OVERVIEW

Procedure 2 considers one fault model at a time. For every
fault model it considers the logic blocks one by one. Using
only Procedures fsim() and addtests(), this would result in a
shared test set denoted by W> 1, and illustrated by Figure 2(c)
forn =2and m = 2.

Procedure 2 includes two additional procedures that apply
BB3 to the seeds in W», Procedure extend() and Procedure
unextend(). The two procedures are described considering a
logic block B; and a set of faults Fj ;.

Procedure 2: Shared test set W,

1) Assign W, = 0.

2) Forj=0,1,....,m—1:
a) Fori=0,1,...,n—1:
i) Call Procedure fsim(2, i, j).
ii) Call Procedure extend(2, i, j).
iii) Call Procedure addtests(2, i, j).
iv) Call Procedure unextend(2, i, j).
Procedure extend(s, i, j):
1) For every seed wy, € Wy assign ey (Wp) = (wp).
2) For every seed wy, € Wy such that I(wp) < M;:
a) For every seed 1, € T} j:
i) Find the extended seed wp, 4.
ii) Simulate F;; under wy , and find the number of
detected faults, d(wp 4).
3) Select the extended seed wy, , with the largest value of
d(Wp,q), and the smallest value of M; — I[(wp).
4) It d(wp q) = 0, stop.
5) Replace wy, with wp , in Wy. Perform fault simulation
with fault dropping of F; ; under wjp. Go to Step 2.

Procedure unextend(s, i, j):

1) For by, = S Mg
a) For every seed wp € Wy such that I(wp) > lprey(wp)

and lprey(Wp) = lprey:
1) Let Furg consist of all the faults from F; ; that are
detected by wp.
ii) Simulate F,., under Wy \ {wp} and mark detected
faults.
iii) If all the faults in Fy,,, are marked detected, assign

I(wp) = lprev(Wb)-

n—1, Mn—2’ ..

VOLUME 12, 2024

I. Pomeranz: Sharing of Topped-Off Compressed Test Sets Among Logic Blocks

IEEE Access

TABLE 2. Extending seeds.

ind seed det
51 1000001010011101010100100

0 0100001100101000010100110 10
51,0 1000001010011101010100100 10 1
51 1000001010011101010100100

1 0000100100101100100111001 01
51,1 1000001010011101010100100 01 2
95 00110010000000
0 01000011001010 0001010011010
95,0 00110010000000 0001010011010 1
95 00110010000000
1 00001001001011 0010011100101
95,1 00110010000000 0010011100101 3
107 01001000111011
37 01010011101011 1100100110010
107,37 | 01001000111011 1100100110010 16
157 011101101011
0 010000110010 100001010011010
157,0 011101101011 100001010011010 6
157 011101101011
1 000010010010 110010011100101
157,1 011101101011 110010011100101 3

B. PROCEDURE EXTEND()

Procedure 2 calls procedure extend() after simulating Fj;
under W;. Fault simulation removes faults that are already
detected by W». Procedure extend() applies BB3 to the seeds
in W5. Thus, the procedure extends some of the seeds in W5,
whose length is lower than M;, into M;-bit seeds. The goal
of the extension is to detect additional faults from F; ;. This
reduces the number of M;-bit seeds that will be added when
Procedure addtests() is applied. Thus, instead of M; bits for
every new seed, smaller numbers of bits will be added for
detecting faults from F; ;

Procedure extend() uses the seeds in 7;; as a source of
extensions for the seeds in W>. Considering a seed w;, €
W such that [(wp) < M;, and a seed t, € T, the procedure
obtains an extended seed wp, , whose first [(wp) bits are copied
from wp, and last M; — I(wp) bits are copied from z,.

Table 2 shows several examples based on a group of logic
blocks referred to later as Gg. The group consists of n =
4 logic blocks with My = 27, My = 25, M, = 14, and
M3 = 12. The number of fault models considered is m = 3.
In the example, after considering F; o fori = 0, 1, 2 and 3, the
set W» consists of 51 seeds of length 27, 44 seeds of length 25,
62 seeds of length 14, and 10 seeds of length 12. When Fj ;
is considered next, fault simulation of Fo 1 under W shows
that 88.536% of the faults in Fo ; are detected. Table 2 shows
several of the extensions considered for detecting additional
faults from Fy 1. Every triple of rows in Table 2 shows a seed
wp € W on the first row, a seed 7, € Tp,1 on the second
row, and the extended seed wy, , on the third row. The third
row also shows the number of faults from Fp that will be
detected if wy, 4 replaces wy, in Wa. The best option is wig7,37
with 16 detected faults.

In general, the procedure iterates through a process where,
in every iteration, it considers every seed w;, € W such that
I(wp) < M;, and every seed ¢, € T; ;. It obtains the extended
seed wp, 4. It then performs fault simulation of F; j under wy, 4
to find the number of detected faults. Of all the options for
Wp.a, the procedure selects the one that detects the largest
number of faults. If a choice exists, the procedure prefers the

VOLUME 12, 2024

option for which I(wy,) is the largest since this will result in

the smallest number of additional bits for W5.

The procedure repeats the selection of an extended seed as
long as it can detect additional faults from F; ;.

Several observations are used for speeding up the
procedure.

(1) For a seed w, € W», two different seeds #,, € T;; and
tq, € T;j may result in the same extended seed if the last
M; — I(wp) bits of t,, and ¢4, are the same. Procedure
extend() considers only #,, for extending wy, in this case.
For example, with M; — [(wp) = 2, at most four seeds
from T; ; will be considered, with the last two bits being
00,01, 10 or 11.

(2) After computing the number of detected faults d(wy 4)
for wp € Wz and t, € T;; in an arbitrary iteration,
the value of d(wyp,,) obtained in the next iteration cannot
increase. This is because faults from F;; are removed
from consideration at the end of an iteration. Procedure
extend () stores the previous value obtained for d(wy,) in
a variable denoted by dpe,(Wp o). It considers the pairs
wp, € W and t, € T;; from high to low value of
dprev(Wp,q), and from low to high value of M; — I(wp).
As it considers pairs of seeds, it stores the best number of
detected faults for the iteration in a variable denoted by
dpes:- It does not consider a pair wp, € Wr and 1, € T;
if dprev(Wp,a) < dpest OF dprey(Wp,q) = 0 since such a pair
will not be selected.

C. PROCEDURE UNEXTEND()

Procedure addtests() is applied after Procedure extend() to
add seeds from 7;; to W> for faults from F;; that are not
detected by W,. Some of the seeds added by Procedure
addtests() may make some of the extensions made by
Procedure extend() unnecessary. The goal of Procedure
unextend() is to identify such extensions and eliminate them
to reduce the storage requirements of W5.

To allow Procedure unextend() to identify the extensions
made by Procedure extend(), Procedure extend() stores the
previous length of every seed w, € W» in a variable denoted
by Iprev(Wp). An extension was made if I(wp) > Lprey(Wp).

Procedure unextend() considers the seeds in W, from
low to high value of [y, (wp). This gives a preference to
recovering shorter seeds, with a smaller contribution to the
storage requirements of W5.

For a seed w, € Wy with I(wp) > Iprey(wp), to be able to
undo the extension, it is necessary to consider all the faults
from F;; that are detected by wj. This subset of faults is
denoted by Fjur,. The procedure simulates F,., under the
other seeds in W,. If all the faults in F,,, are detected, the
procedure assigns [(wp) = Iprey(Wp) to undo the extension
of wp.

V. EXPERIMENTAL RESULTS

This section presents experimental results for groups of
benchmark circuits that are considered as logic blocks in a
design.

49899

IEEE Access

I. Pomeranz: Sharing of Topped-Off Compressed Test Sets Among Logic Blocks

TABLE 3. Logic blocks.

i block inp Ifsr seeds bits
0 sasc 132 12 154 1848
1 usb_phy 112 27 128 3456
2 systemcdes 320 14 251 3514
3 s1423 91 25 144 3600
4 b07 53 18 286 5148
5 $35932 1763 40 145 5800
6 pei_spoci_ctrl 83 25 340 8500
7 b04 78 39 245 9555
8 des_area 367 13 736 9568
9 i2c 145 52 306 15912
10 | simple_spi 146 59 339 20001
11 | bl4 280 39 747 29133
12 | s5378 214 57 600 34200
13 | wb_dma 738 62 619 38378
14 | s9234 247 48 816 39168
15 systemcaes 928 71 716 50836
16 | bl5 483 53 1057 56021
17 | b20 527 61 1208 73688
18 | tv80 372 56 1576 88256
19 | s13207 700 79 1189 93931
20 | aes_core 788 51 2127 108477
21 s15850 611 76 1608 122208
22 | s38584 1464 97 1376 133472
23 | spi 274 76 2113 160588
24 | wb_conmax 1900 54 3146 169884
25 | s38417 1664 86 2902 249572
26 | bl7 1444 94 3840 360960

Three sets of target faults are considered for every logic
block, stuck-at, single-cycle gate-exhaustive [18], and four-
way bridging [19] faults. A test set T; is produced for every
logic block B; by topping off a stuck-at test set considering
the fault models in this order. The number of bits required for
storing T; is equal to M;|T;|.

Table 3 shows information about the logic blocks consid-
ered. The logic blocks are ordered from low to high value of
M;|T;]. In Table 3, after the index i of a logic block, column
block shows the name of B;, column inp shows the number
of inputs of B;, column [fsr shows the length M; of the LFSR,
column seeds shows the number of seeds in 7;, and column
bits shows the number of bits M;|T;|.

Groups of four benchmark circuits are considered as
follows. In the order of the logic blocks given in Table 3,
every four consecutive logic blocks are considered as a group.
For 0 < i < 23, the group G; consists of the four logic
blocks starting from Bj, i.e., B, Bi+1, Bit+2 and B;y3. Using
logic blocks with similar storage requirements ensures, to the
extent possible, that no single logic block dominates the
results.

The goal of considering every four consecutive logic
blocks as a group is to produce a large number of datapoints
for studying the results of Procedures 1 and 2. It is not
expected that all the groups will be used for the same design.
Nonoverlapping groups are considered in Section VI.

Three shared test sets are considered in this section, Wy for
which no sharing is attempted, W obtained by Procedure 1,
and W, obtained by Procedure 2. As discussed earlier,
W1 represents a test set that would be produced by the
non-iterative part of the procedure from [6] if it is extended to
consider several fault models, and the more computationally
intensive procedures from [6] and [7] are not used in this
article.

49900

TABLE 4. Shared test sets W,, W, and W, for groups of four logic blocks.

group | Ifsr | s tests bits frac ntime | MO Ml M2 M3
GO [27 |0 677 12418 1.000 1.00 128 144 251 154
GO |27 |1 509 10166 0.819 1.62 128 136 185 60
GO |27 |2 418 8832 0.711 7.70 130 126 114 48
Gl 27 10 809 15718 1.000 1.00 128 144 286 251
Gl 27 |1 627 12938 0.823 175 128 136 250 113
Gl 27 |2 542 11445 0728 7.97 133 128 180 101
G2 |40 |0 826 18062 1.000 1.00 145 144 286 251
G2 |40 |1 652 15459 0.856 1.10 145 139 258 110
G2 | 40 |2 539 12903 0.714 51.05 | 125 121 194 99
G3 |40 |0 915 23048 1.000 1.00 145 484 484 286
G3 |40 |1 827 21219 0921 1.04 145 449 449 233
G3 |40 |2 714 18506 0.803 75.67 | 124 418 418 172
G4 |40 |0 1016 29003 1.000 1.00 145 245 340 286
G4 |40 |1 917 26584 0917 0.96 145 219 327 226
G4 | 40 |2 794 23433 0.808 6832 | 125 217 262 190
G5 40 | 0 1466 33423 1.000 1.00 145 245 340 736
G5 40 [1 1285 30238 0.905 1.17 145 219 327 5%
G5 40 |2 1139 27053 0.809 9850 | 122 216 278 523
G6 |52 |0 1627 43535 1.000 1.00 306 245 340 736
G6 |52 |1 1375 39157 0.899 141 306 216 311 542
G6 | 52 |2 1248 37461 0.860 11.55 | 331 204 252 461
G7 |59 |0 1626 55036 1.000 1.00 339 306 245 736
G7 |59 |1 1370 50200 0912 1.65 339 300 196 535
G7 |59 |2 1250 48798 0.887 12.11 | 421 234 156 439
G8 |59 |0 2128 74614 1.000 1.00 339 306 747 736
G8 |59 |1 1668 67048 0.899 3.73 339 300 695 334
G8 |59 |2 1449 58506 0.784 21.61 | 389 227 497 336
G9 |59 |0 1992 99246 1.000 1.00 339 600 306 747
G9 |59 |1 1887 94809 0.955 8.53 339 594 288 666
G9 |59 |2 1572 82387 0.830 3382 | 391 577 221 383
GIO | 62 | 0O 2305 121712 1.000 1.00 | 619 339 600 747
GI0 | 62 | 1 2078 110259 0.906 6.02 | 619 236 570 653
GI0O | 62 |2 1637 91476 0.752 3897 | 625 221 491 300
GI1 | 62 |0 2782 140879 1.000 1.00 | 619 600 816 747
Gll | 62 | 1 2530 129584 0.920 7.41 619 579 695 637
GIl | 62 |2 1850 100202 0.711 46.29 | 574 626 398 252
GI2 [71 [0 2751 162582 1.000 1.00 | 716 619 600 816
GI2 | 71 | 1 2490 148734 0915 443 716 553 556 665
GI12 | 71 |2 2080 131497 0.809 114.17 | 997 379 380 324
GI3 [71 [0 3208 184403 1.000 1.00 | 716 619 1057 816
GI13 | 71 |1 2861 166228 0901 539 | 716 553 938 654
GI3 | 71 |2 2086 130035 0.705 81.35 | 961 411 410 304
Gl4 | 71 [0 3797 219713 1.000 100 | 716 1208 1057 816
Gl4 | 71 | 1 3406 199538 0908 6.84 | 716 1159 903 628
Gl4 | 71 |2 2582 159942 0.728 7859 | 929 963 424 266
GI5 | 71 | 0 4557 268801 1.000 1.00 | 716 1208 1576 1057
GI5 | 71 | 1 4124 245124 0912 8.69 | 716 1159 1464 785
GI5 | 71 |2 3309 202838 0.755 98.18 | 910 1003 1019 377
Gl16 [79 [0 5030 311896 1.000 1.00 | 1189 1208 1576 1057
Gl6 | 79 | 1 4534 284652 00913 11.08 | 1189 1141 1436 768
Gl6 | 79 | 2 3553 238109 0.763 106.05 | 1592 718 888 355
G17 [79 [0 6100 364352 1.000 1.00 | 1189 1208 1576 2127
G17 | 79 | 1 5341 324273 0.890 299 | 1189 1141 1436 1575
G17 | 79 |2 4825 302503 0.830 32.70 | 1631 665 822 1707
GI8 [79 [0 6500 412872 1.000 1.00 | 1189 1608 1576 2127
GI8 | 79 | I 5695 370657 0.898 291 | 1189 1598 1394 1514
GI8 | 79 | 2 5291 355334 0.861 28.04 | 1566 1551 574 1600
G19 [97 [0 6300 458088 1.000 1.00 | 1376 1189 1608 2127
GI19 | 97 | 1 5609 421569 0.920 2.01 | 1376 1163 1586 1484
G19 | 97 |2 5088 391185 0.854 212.41 | 1981 532 1027 1548
G20 | 97 [0 7224 524745 1.000 1.00 | 1376 3721 3721 2127
G20 | 97 | 1 6048 455119 0867 1.85 | 1376 3335 3335 1337
G20 | 97 | 2 5567 428867 0.817 298.62 | 1950 2210 2210 1407
G21 [97 |0 8243 586152 1.000 1.00 | 1376 3721 3721 3146
G21 | 97 | 1 6729 495904 0846 256 | 1376 3335 3335 2018
G21 | 97 |2 5938 454368 0.775 28579 | 1870 2423 2423 1645
G22 [97 |0 9537 713516 1.000 1.00 | 1376 2902 2113 3146
G22 | 97 | 1 7325 575340 0806 292 | 1376 2875 1301 1773
G22 | 97 |2 6523 526586 0.738 208.51 | 1932 2188 966 1437
G23 | 94 | 0 12001 941004 1.000 1.00 | 3840 2902 2113 3146
G23 | 94 | 1 9028 753834 0.801 3.12 | 3840 2811 1035 1342
G23 | 94 |2 8160 693000 0.736 97.38 | 3997 2417 688 1058

For a shared test set W, where s = 0, 1 or 2, the number of
bits required for storing it is denoted by S(Wj). The fraction
o(Wy) = S(Wy)/S(Wp) shows the reduction in the storage
requirements when W is used instead of Wj.

Table 4 compares the test sets Wy, W and W,. For every
test set Wy, where s = 0, 1 or 2, column group shows the
name of the group it is computed for. Column Ifsr shows the

VOLUME 12, 2024

I. Pomeranz: Sharing of Topped-Off Compressed Test Sets Among Logic Blocks

IEEE Access

ntime A
300 o
200 1 ° °
1007oo °o K ° o
of:)o;;oo o o500000 1000000 W,

FIGURE 3. Normalized runtime.

maximum length of an LFSR for a logic block in the group.
Column s shows the index of the shared test set Wy. Column
tests shows the total number of tests in W. Column bits shows
the total number of bits required for storing Wy, denoted by
S(Wy). Column frac shows the number of bits required for
W; divided by the number of bits required for Wy, denoted by
o (W) = S(Wy)/S(Wy). This fraction provides the reduction
in the number of bits achieved by Procedures 1 and 2. Column
ntime shows the runtime for obtaining W divided by the
runtime for fault simulation of W,. This is referred to as the
normalized runtime, and measures the computational effort
of Procedures 1 and 2. Column Mi, for 0 < i < 3, shows the
number of seeds of length M; in W;. In the row for Wy, this is
typically the number of seeds in 7; (exceptions occur if two
logic blocks have the same LFSR length, and their numbers
of tests are added; this occurs for Gz, Gg and Gyy).
The following points can be seen from Table 4.

(1) By applying both BB2 and BB3, Procedure 2 is able to
reduce the storage requirements of the shared test set
significantly compared with W, and Wj. The reductions
are similar for different groups of logic blocks of different
sizes.

(2) The normalized runtime is also similar for different
groups of logic blocks, and groups with larger logic
blocks sometimes have lower normalized runtimes. This
is a result of the fact that Procedure 2 is based on fault
simulation, and thus, scales similar to a fault simulation
procedure. To demonstrate this point, Figure 3 plots
the normalized runtime for the computation of W as a
function of the size of Wy that measures the size of the
group. Figure 3 demonstrates that the normalized runtime
does not increase with the size of Wy. This again supports
the conclusion that the procedure scales similar to a fault
simulation procedure.

(3) It is possible to extract from W» individual test sets for
the logic blocks. The numbers of tests under columns Mji,
for 0 < i < 3, provide an indication of the numbers of
tests that would be obtained. Based on these columns,
sharing of seeds typically results in an increase in the
number of seeds required for By, and a reduction in the
numbers of seeds required for the other logic blocks.

VOLUME 12, 2024

Overall, the number of seeds in W, is lower than the
number of seeds in W that does not share seeds among
the logic blocks.

VI. ANALYSIS OF SHARING

As noted in [6], the ability to share compressed tests among
logic blocks in a group varies with the group. The extent of
sharing for a group can be assessed by considering pairs of
logic blocks in the group. Moreover, it is possible to select
groups of logic blocks for which the extent of sharing is
expected to be high by using information about the sharing
possible for pairs. This section computes the extent of sharing
for pairs of logic blocks, and demonstrates that it is possible
to construct groups for which significant sharing will be
obtained when several fault models are targeted by a top-off
procedure.

Table 5 shows some of the results obtained when
Procedures 1 and 2 are applied to all the pairs of logic
blocks from Table 3. A pair that consists of logic blocks B,
and B;, is denoted by P;,;,, where 0 < iy < i1 < 26.
Following the name of the pair, Table 5 shows the fractions of
storage requirements, o (W1) = S(W1)/S(Wyp) and o(W3) =
S(W»)/S(Wy), obtained by Procedures 1 and 2, respectively.
The pairs in each part of Table 5 are ordered from low to high
value of o (W). In the first part of Table 5, all the pairs for
which o(W>) < 0.820 are shown. Additional pairs are shown
in the other parts of Table 5 as discussed later.

From Table 5 it can be seen that, similar to the case where
groups of four are considered, o (W,) < o (W) is obtained
for pairs as well. Moreover, a lower value of o (W7) does not
predict a lower value of o (W), and the two fractions vary
independently.

Another important observation from the first part of Table 5
is that the lowest values of o (W) are obtained for logic
blocks Bj, and B;, such that ij — iy is small. For example,
for o(W5) < 0.75 it is the case that i; — iy < 4. This is to be
expected when the logic blocks are ordered based on their
storage requirements, and sharing is more effective when
none of the logic blocks dominates the storage requirements.

The first part of Table 5 identifies pairs of logic blocks for
which the extent of sharing is the highest. These pairs can
be used for forming larger groups for which the extent of
sharing is expected to be high. For example, using the first
two pairs of logic blocks in Table 5, P; 5 and P13.14, the group
that consists of By, Bs, B13 and B4 would be formed.

However, the selection of nonoverlapping pairs, such as
P15 and P13 14, may include in the same group pairs for which
the extent of sharing is low. For example, the use of P 5 and
P13.14 to form a group includes in the group the pairs Pq 13,
P1.14, P5.13 and Ps 14, for which the reductions in storage
requirements are 0.946, 0.945, 0.871 and 0.871, respectively.

The data in the first part of Table 5 is considered again,
this time with overlapping pairs. After using P 5 to initialize
a group, the pairs P35 and P57, that overlap with the logic
blocks in the group, may be used for forming a group that
consists of By, Bs, Bz and B7. This group is denoted by Qp.

49901

IEEE Access

I. Pomeranz: Sharing of Topped-Off Compressed Test Sets Among Logic Blocks

TABLE 5. Pairs of logic blocks.

pair procl proc2
P15 0939 0.719
P13.14 | 0957 0.745
P3.5 0987 0.747
P5.7 0934 0.766
P13.16 | 0965 0.777
P10.14 | 0961 0.792
P0.5 0.969 0.799
P45 0972 0.800
P59 0.805 0.814
P25 0982 0.816

pair procl proc2
P13.14 | 0957 0.745
P13.16 | 0965 0.777
P10.14 | 0961 0.792
P2326 | 0.882 0.831
P16.17 | 0955 0.838

pair procl proc2
P23.26 | 0.882 0.831
P0.2 0.875 0.853
P0.4 0.887 0.857
P2.4 0.877 0.859
P0.8 0.859 0.861
P23.25 | 0.901 0.863
P2223 | 0908 0.871
P24.26 | 0915 0.874
P11.18 | 0972 0.874

pair procl proc2
P0.2 0.875 0.853
P0.4 0.887 0.857
P24 0.877 0.859
P0.8 0.859 0.861
P11.18 | 0972 0.874
P2.8 0947 0.878
P4.8 0.933 0.896
P15.18 | 0979 0.900
P2.6 0918 0.903
P17.18 | 0976 0.905

pair procl proc2
P11.18 | 0972 0.874
P15.18 | 0979 0.900
P17.18 | 0976 0.905
P17.24 | 0969 0912
P18.21 0.968 0913
P11.17 | 0.971 0.914

pair procl proc2
P21.24 | 0963 0.924
P12.21 | 0984 0.931
P20.24 | 0938 0.932
P19.24 | 0.971 0.946
P9.21 0.990 0.946
P12.19 | 0986 0.952
P20.21 | 0985 0.959

pair procl proc2
P9.19 | 0986 0.965
P6.9 0975 0972
P6.19 | 0989 0.995

Let the set of all the pairs of logic blocks be W. After
selecting the group Qg based on W, it is possible to remove
from W every pair P;, ;, such that either B;, or B;; is already

49902

TABLE 6. Shared test sets W, W; and W, for groups selected by
procedure 3.

group | Ifsr [s tests bits frac ntime | MO MI M2 M3
Q0 |40 [0 662 22411 1.000 1.00 145 245 128 144
Q0 | 40 |1 554 19221 0.858 0.93 145 219 65 125
Q0 | 40 |2 448 16164 0.721 1561 | 132 208 36 72
Ql 62 |0 2831 153568 1.000 1.00 | 619 339 1057 816
Ql 62 |1 2506 136425 0.888 628 | 619 236 975 676
Ql 62 |2 1860 103262 0.672 16.57 | 596 183 725 356
Q2 |97 |0 10231 904592 1.000 1.00 | 1376 3840 2902 2113
Q2 | 97 |1 8859 797990 0.882 592 | 1376 3785 2768 930
Q2 | 97 |2 7722 712774 0.788 88.63 | 2090 3569 1777 286
Q3 18 |0 1427 20078 1.000 1.00 | 286 251 736 154
Q3 18 |1 1080 15636 0.779 134 | 286 175 610 9
Q3 18 |2 99 14564 0.725 5.01 296 148 540 12
Q4 | 71 |0 4247 241913 1.000 1.00 | 716 1208 1576 747
Q4 | 71 |1 3942 227036 0939 624 | 716 1159 1464 603
Q4 | 71 | 2 3021 184747 0.764 122.06 | 908 958 988 167
Q5 76 | 0 7481 434769 1.000 1.00 | 1608 600 3146 2127
Q5 76 | 1 6326 374634 0.862 1.82 | 1608 556 2824 1338
Q5 | 76 |2 6045 362295 0.833 24.06 | 1749 464 2497 1335
Q6 |79 |0 1835 118343 1.000 1.00 | 1189 306 340 -
Q6 | 79 | 1 1744 115258 0974 136 | 1189 276 279 -
Q6 | 79 |2 1594 113128 0.956 10534 | 1277 160 157 -

included in Qp. The selection process can then be repeated to
select a group Q; that does not overlap with Qp. This can be
repeated for j > 0 to select a group Q; that does not overlap
with Qp, ..., Qj_1.

Procedure 3 summarizes this process when the goal is to
create nonoverlapping groups of size I". Step 4 of Procedure 3
considers all the pairs from W in every iteration for the
following reason. It is possible that a pair P;,; will not be
added to Q; in one iteration because neither B;, nor B;, is
included in Q;. If one of the two logic blocks is added to Q;
in a later iteration, it is important to consider P;; ; again.

Procedure 3: Forming groups Qo, QO1, . ..

1) Compute V. Sort the pairs in W from low to high value
of o(W>).
2) Assignj = 0.
3) Selectthe first pair P;, ;; € W and assign Q; = {B,, B, }.
4) For every pair P;, ;; € W, in the order of the sorted set,
if exactly one of B;, and B;, is included in Q;:
a) If only Bj, is included in Q;, add B;, to Q;.
b) If only B;, is included in Qj, add B;; to Q.
¢) Go to Step 5.
5) If |Qj] < T, go to Step 4.
6) Remove from W every pair P;,;, such that either B;,
QjorB; € Q.
7) If |W| > T, assignj = j + 1 and go to Step 3.

Based on Table 5, the first group selected by Procedure 3
with I' = 4 is Qg9 = {Bj, Bs, B3, B7}. After removing the
pairs that include the logic blocks of Qp, the pairs shown
in the second part of Table 5 remain. Based on these pairs,
Procedure 3 constructs Q1 = {B13, B4, Bis, B1o}. Table 5
also shows the pairs that remain for constructing @, = {B»3,
Bog, Bas, B}, O3 = {Bo, B2, B4, Bg}, Q4 = {B11, B1s, B1s,
B17}, Qs = {B21, By, B2, By}, and Q¢ = {By, B19, Bg}.
It should be noted that 27 logic blocks from Table 3 were
divided into groups of four, leaving only three logic blocks
for Qg.

VOLUME 12, 2024

I. Pomeranz: Sharing of Topped-Off Compressed Test Sets Among Logic Blocks

IEEE Access

Table 6 shows the results obtained when Wy, Wi and W, are
computed for Qop, Q1, O2, O3, Q4, Q5 and Qg. The following
points can be seen from Table 6.

(1) The results in Table 6 support the expectation that
significant sharing will be obtained for the groups
produced by Procedure 3.

(2) As in Table 4, Procedure 2 is able to reduce the storage
requirements of the shared test set significantly compared
with Wy and W;.

(3) The reductions are overall larger for the logic blocks
selected earlier, for which more sharing is expected.

VII. CONCLUDING REMARKS

Under distributed test data compression, each logic block
in a design has dedicated on-chip decompression logic and
compressed test set. When generating a test set that targets
several fault models for a logic block, a common practice is
to top off the test set by considering the fault models one
by one. In this scenario, this article considered the problem
of sharing a compressed test set among the logic blocks of
a design. Earlier procedures that allow unrestricted sharing
of compressed tests among logic blocks consider a single set
of faults for every logic block, and the logic blocks one by
one. They use several iterations to ensure that every logic
block can benefit from sharing of compressed tests. The
sharing procedure suggested in this article considers the fault
models one by one. For every fault model it considers the
logic blocks one by one. This structure of the procedure
provides the flexibility for the procedure to share compressed
tests among all the logic blocks in a single iteration,
avoiding the computationally-intensive iterative parts of the
earlier procedures. Experimental results for groups of four
benchmark circuits demonstrated the ability of the procedure
to share tests for stuck-at, single-cycle gate-exhaustive and
four-way bridging faults among logic blocks.

REFERENCES

[1] C. Barnhart, V. Brunkhorst, F. Distler, O. Farnsworth, B. Keller,
and B. Koenemann, “OPMISR: The foundation for compressed ATPG
vectors,” in Proc. Int. Test Conf., Nov. 2001, pp. 748-757.

[2] J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee, R. Thompson, K.-H.
Tsai, A. Hertwig, N. Tamarapalli, G. Mrugalski, G. Eide, and J. Qian,
“Embedded deterministic test for low cost manufacturing test,” in Proc.
Int. Test Conf., Oct. 2002, pp. 301-310.

[3] N. A. Touba, “Survey of test vector compression techniques,” [EEE
Design Test Comput., vol. 23, no. 4, pp. 294-303, Apr. 2006.

[4] P. H. Bardell, W. H. McAnney, and J. Savir, Built—In Test for VLSI
Pseudorandom Techniques. Hoboken, NJ, USA: Wiley, 1987.

[5] Y.Huang, M. Kassab, J. Jahangiri, J. Rajski, W.-T. Cheng, D. Han, J. Kim,
and K. Y. Chung, “Test compression improvement with EDT channel
sharing in SoC designs,” in Proc. IEEE 23rd North Atlantic Test Workshop,
May 2014, pp. 22-31.

[6] I. Pomeranz, “Sharing of compressed tests among logic blocks,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 31, no. 4, pp. 421-430,
Apr. 2023.

[7] 1. Pomeranz, “Dynamic test compaction of a compressed test set shared
among logic blocks,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 43, no. 1, pp. 394-402, Jan. 2024.

[8] L.N.Reddy,I. Pomeranz, and S. M. Reddy, “COMPACTEST-II: A method
to generate compact two-pattern test sets for combinational logic circuits,”
in Proc. IEEE/ACM Int. Conf. Computer-Aided Design, Nov. 1992,
pp. 568-574.

VOLUME 12, 2024

[9] R. Desineni, K. N. Dwarkanath, and R. D. Blanton, “Universal test
generation using fault tuples,” in Proc. Int. Test Conf., Oct. 2000,
pp. 812-819.

[10] G. Chen, S. Reddy, 1. Pomeranz, J. Rajski, P. Engelke, and B. Becker,
“A unified fault model and test generation procedure for interconnect
opens and bridges,” in Proc. Eur. Test Symp. (ETS), May 2005, pp. 22-27.

[11] S. Goel and R. A. Parekhji, “Choosing the right mix of at-speed structural
test patterns: Comparisons in pattern volume reduction and fault detection
efficiency,” in Proc. 14th Asian Test Symp. (ATS), Dec. 2005, pp. 330-336.

[12] D. Kim, M. E. Amyeen, S. Venkataraman, I. Pomeranz, S. Basumallick,
and B. Landau, “Testing for systematic defects based on DFM guidelines,”
in Proc. IEEE Int. Test Conf., Oct. 2007, pp. 1-10.

[13] S. Alampally, R. T. Venkatesh, P. Shanmugasundaram, R. A. Parekhji,
and V. D. Agrawal, “An efficient test data reduction technique through
dynamic pattern mixing across multiple fault models,” in Proc. 29th VLSI
Test Symp., May 2011, pp. 285-290.

[14] F. Hapke, W. Redemund, A. Glowatz, J. Rajski, M. Reese, M. Hustava,
M. Keim, J. Schloeffel, and A. Fast, “Cell-aware test,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 9, pp. 1396-1409,
Sep. 2014.

[15] C.-H. Wu and K.-J. Lee, “Transformation of multiple fault models to a
unified model for ATPG efficiency enhancement,” in Proc. IEEE Int. Test
Conf. (ITC), Nov. 2016, pp. 1-10.

[16] Y.-C. Kung, K.-J. Lee, and S. M. Reddy, “Generating single- and
double-pattern tests for multiple CMOS fault models in one ATPG run,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 6,
pp. 1340-1345, Jun. 2020.

[17] R. Asami, T. Hosokawa, M. Yoshimura, and M. Arai, “A multiple target
test generation method for gate-exhaustive faults to reduce the number of
test patterns using partial MaxSAT,” in Proc. IEEE Int. Symp. Defect Fault
Tolerance VLSI Nanotechnol. Syst. (DFT), Oct. 2020, pp. 1-6.

[18] E.J. McCluskey, “Quality and single-stuck faults,” in Proc. IEEE Int. Test
Conf. - (ITC), Oct. 1993, p. 597.

[19] S. Sengupta, S. Kundu, S. Chakravarty, P. Parvathala, R. Galivanche,
G. Kosonocky, M. Rodgers, and T. M. Mak, ‘“Defect-based test: A key
enabler for successful migration to structural test,” Intel Technol. J., vol. 1,
pp. 1-4, Jul. 1999.

IRITH POMERANTZ (Fellow, IEEE) received the
B.Sc. (summa cum laude) and D.Sc. degrees
from the Department of Electrical Engineer-
ing, Technion—Israel Institute of Technology, in
1985 and 1989, respectively.

From 1989 to 1990, she was a Lecturer with
the Department of Computer Science, Technion—
Israel Institute of Technology. From 1990 to 2000,
she was a Faculty Member of the Department
of Electrical and Computer Engineering, The
University of Iowa. In 2000, she joined Purdue University, West Lafayette,
IN, USA, where she is currently the Cadence Professor in the Elmore Family
School of Electrical and Computer Engineering.

Prof. Pomeranz is a Golden Core Member of the IEEE Computer Society.
She was a recipient of the NSF Young Investigator Award, in 1993, and The
University of Iowa Faculty Scholar Award, in 1997. Three of her conference
papers won best paper awards, and four other papers were nominated
for best paper awards. One of the papers she coauthored was selected
by the 2016 International Test Conference as the most significant paper
published ten years before. She delivered a keynote speech at the 2006 Asian
Test Symposium. She was one of the very first three featured authors on IEEE
Xplore, posted in February 2020. She served as Associate Editor for ACM
Transactions on Design Automation, IEEE TRANSACTIONS ON COMPUTERS, and
IEEE TRANSACTIONS ON VERY LARGE ScALE INTEGRATION (VLSI) SysteEms. She
served as a Guest Editor for IEEE TrANsacTIONS ON COMPUTERS, in January
1998, Special Issue on Dependability of Computing Systems, and the
Program Co-Chair for the 1999 Fault-Tolerant Computing Symposium. She
served as the Program Chair for the 2004 and 2005 VLSI Test Symposium
and the General Chair for the 2006 VLSI Test Symposium.

49903

