
Received 14 March 2024, accepted 31 March 2024, date of publication 5 April 2024, date of current version 12 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3385442

Sharing of Topped-Off Compressed Test
Sets Among Logic Blocks
IRITH POMERANZ , (Fellow, IEEE)
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA

e-mail: pomeranz@purdue.edu

ABSTRACT Test data compression implies that a compressed test set is stored on a tester, and an on-chip
decompression logic produces tests that can be applied to the circuit from compressed tests. Test data
compression is used for reducing the test data volume and test application time. In a design that consists of
several logic blocks, distributed test data compression refers to the case where each logic block has dedicated
test data compression logic and compressed test set. Test generation procedures that are specific to this
scenario attempt to share compressed tests among logic blocks to minimize the overall storage requirements.
This article considers the problem of sharing a compressed test set among logic blocks when the goal is to
detect faults from several different fault models. Considering a single logic block, a common practice is to
consider the fault models one by one, and top off the test set as each additional fault model is considered.
The sharing procedure described in this article takes advantage of the topped-off test sets of the logic blocks
to consider the fault models one by one. For every fault model it considers the logic blocks one by one.
This structure of the procedure provides opportunities to share compressed tests among all the logic blocks.
Experimental results using benchmark circuits demonstrate the ability of the procedure to share tests for
stuck-at, single-cycle gate-exhaustive and four-way bridging faults in groups of four logic blocks.

INDEX TERMS Bridging faults, linear-feedback shift-register (LFSR), single-cycle gate-exhaustive faults,
test data compression, test generation.

I. INTRODUCTION
Test data compression is used universally to reduce the test
data volume and test application time [1], [2], [3]. With test
data compression, a compressed test set is stored on the tester.
An on-chip decompression logic accepts compressed tests
and produces tests that can be applied to the circuit.

In a design that consists of several logic blocks, such
as an SoC or a processor with multiple cores, each logic
block may have dedicated test data compression logic and
compressed test set. This is referred to as distributed test data
compression, and it is analogous to distributed logic built-
in self-test [4]. Figure 1 illustrates this scenario considering
two logic blocks, B0 and B1. The logic block marked M0 is
the decompression logic of B0, and the logic block marked
M1 is the decompression logic of B1. In general, a design may
contain logic blocks B0, B1, . . ., Bn−1 with decompression

The associate editor coordinating the review of this manuscript and

approving it for publication was Poki Chen .

logic represented by M0, M1, . . ., Mn−1, respectively. For
0 ≤ i < n, the set of target faults for Bi is denoted by Fi, and
its test set is denoted by Ti. The notation used in this article for
the general case of distributed test data compression is shown
in Table 1.
Test generation procedures that are specific to distributed

test data compression attempt to share compressed tests
among logic blocks to minimize the overall storage require-
ments [5], [6], [7]. This is illustrated in Figure 1 by the test
set denoted by W . For the procedure from [5], Mi stands for
the number of data channels used for Bi. For the procedures
from [6] and [7], the decompression logic is based on a linear-
feedback shift-register (LFSR), and tests are compressed into
seeds (initial states) for the LFSR. For this case, Mi stands
for the length of the LFSR used for logic block Bi. The
two interpretations of Mi are analogous and serve a similar
purpose of representing the width of the compressed test data.

The test generation procedure described in [5] considers
groups of logic blocks such that all the logic blocks in the

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 49895

https://orcid.org/0000-0002-5491-7282
https://orcid.org/0000-0003-0749-4181

I. Pomeranz: Sharing of Topped-Off Compressed Test Sets Among Logic Blocks

FIGURE 1. Test data compression logic.

TABLE 1. Notation.

same group have the same number of data channels. Thus,
two logic blocksBi andBj are placed in the same group only if
Mi = Mj. Moreover, the procedure from [5] considers all the
logic blocks in a group together as one circuit. Under these
restrictions, the procedure from [5] applies a conventional
test generation procedure to obtain a compressed test set for
the group of logic blocks. The procedures from [6] and [7]
remove the restrictions imposed in [5] by using the following
building blocks to perform test generation.

(BB1) The test generation procedures from [6] and [7]
construct the shared test set W by considering logic blocks
one by one. When they extend W to detect faults from Fi,
for 0 ≤ i < n, they ensure that the fault coverages already
achieved byW for other logic blocks are not affected.
(BB2) If ta is an Mi-bit compressed test (seed) for Bi, and

Mj ≤ Mi, the procedures may use the first j bits of ta as a
seed forBj. The resulting seed is denoted by ta/j. For example,
if Mi = 8, Mj = 6 and ta = 00001111, the procedures may
use ta/j = 000011 as a seed for Bj. This building block was
introduced in [6] for static test compaction, and used in [7] as
well. It allows a seed to be shared with logic blocks that have
smaller LFSR lengths.
(BB3) When the dynamic test compaction procedure

from [7] targets a fault of a logic block Bi, it either adds
a new seed to W , or extends an existing seed. If tb ∈ W
is an Mj-bit seed for Bj, and Mi > Mj, the procedure may
decide to extend tb into an Mi-bit seed for Bi by adding
Mi − Mj bits. For example, if Mj = 6, Mi = 8 and
tb = 000111 is included in W , the procedure may replace
tb and use tb = 00011100 instead. Because of BB2, the
seed tb/j = 000111 will be available in W for Bj using the
first six bits of the extended seed tb. This building block
allows faults to be detected by adding fewer bits to the storage
requirements of W than the number of bits required when
adding a new seed.

These building blocks allow the procedures from [6]
and [7] to consider any number of logic blocks with any LFSR

lengths, and they are used in this article as well. To use both
BB2 and BB3, the procedures from [6] and [7] are iterative.
In a single iteration they use either BB2 or BB3.

This article considers the problem of sharing a compressed
test set W among logic blocks when the goal is to detect
faults from several different fault models. Test generation
procedures consider several fault models to provide a
comprehensive coverage of defects that may occur during
fabrication or during the lifetime of a chip. A common
practice when targeting a single logic block with several
fault models is to consider the fault models one by one,
and top off the test set as each additional fault model is
considered [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17]. The procedures from [6] and [7] consider a single set
of faults Fi. If a logic block Bi has m sets of target faults,
Fi,0, Fi,1, . . ., Fi,m−1, from m fault models, it is possible to
define a set of faults Fi = Fi,0 ∪ Fi,1 ∪ . . . ∪ Fi,m−1, and
apply the procedures from [6] and [7] with Fi. However, the
computational effort will increase significantly if all the fault
models are considered together. Therefore, the goal of this
article is to allow both the logic blocks and the fault models
to be considered one by one as in a top-off procedure.

The main contribution of this article is the observation that
the structure of the topped-off test sets allows all of BB1,
BB2 and BB3 to be applied in a single iteration where both
the logic blocks and the fault models are considered one by
one. To achieve this goal, the sharing procedure described in
this article considers the fault models one by one, and the
logic blocks one by one for every fault model. This order
ensures that the lengths of the seeds inW alternate, and seeds
have both shorter and longer seeds ahead of them in the
shared test set. The longer seeds allow BB2 to be applied, and
the shorter seeds allow BB3 to be applied. This is achieved
without the more computationally-intensive iterative parts of
the procedures from [6] and [7].

The article reports on academic research. The problem
formulation and the algorithm it develops are general and
applicable to any design. However, several simplifying
assumptions are made to allow the study of the problem
and algorithm to be carried out in an academic environment
using academic software tools. In particular, an academic
version of a test data compression approach is used, where
a test is compressed into a single LFSR seed. In addition,
the sharing procedure is implemented using an academic
fault simulation tool, and it is applied to benchmark circuits.
With access to commercial tools that use a state-of-the-
art compression architecture, fault models, fault simulation
and test generation procedures it may be expected that the
algorithm developed in this article can be implemented in an
industrial environment and applied to industrial designs. The
importance of addressing the problem can be seen from the
discussion of distributed test data compression in [5], and
the discussion of top-off procedures in [11], [12] and [14].

Experimental results for groups of four benchmark circuits
demonstrate the ability of the sharing procedure suggested
in this article to share compressed tests for single stuck-at,

49896 VOLUME 12, 2024

I. Pomeranz: Sharing of Topped-Off Compressed Test Sets Among Logic Blocks

FIGURE 2. Test set sharing.

single-cycle gate-exhaustive [18] and four-way bridging [19]
faults among logic blocks with different LFSR lengths.
The article is organized as follows. Section II describes

the problem addressed and the solution suggested in this
article. Section III describes baseline procedures that create
shared test sets. Section IV describes the sharing procedure
suggested in this article for topped-off test sets. Section V
presents experimental results. Section VI analyzes the
extent of sharing possible among logic blocks. Section VII
concludes the article.

II. PRELIMINARIES
For simplicity of discussion, the sharing procedure is
developed as a static test compaction procedure. Thus, it is
assumed in this article that test generation was already
performed for every one of the logic blocks individually using
a top-off procedure. The article focuses on the structure of a
sharing procedure whose goal is to share compressed tests
among several logic blocks with several fault models in a
single iteration while considering the logic blocks and the
fault models one by one. Once the structure of the sharing
procedure is established, it is possible to incorporate a test
generation procedure, as well as perform several iterations to
increase the level of sharing.

For illustration of the problem considered and the solution
suggested in this article, Figure 2 considers the case where
the number of logic blocks is n = 2 and the number of fault
models is m = 2. The logic blocks are such that M0 > M1.
For i = 0 and 1, logic block Bi has two sets of faults, Fi,0 and
Fi,1. Accordingly, the test set Ti,0 for Fi,0 is topped off with
a test set Ti,1 for Fi,1 to obtain the test set Ti for Bi. Without
any sharing, the test set W0 = T0,0T0,1T1,0T1,1 is shown in
Figure 2(a).
Figure 2(b) illustrates the use of BB2 for reducing the

number of seeds. In this case, the sets of faults are considered
in the order F0,0, F0,1, F1,0, F1,1. When F1,0 and then F1,1
is considered, fault simulation of F1,0 or F1,1 under T0,0 and
T0,1 makes some of the seeds in T1,0 or T1,1 unnecessary. The
resulting test set is denoted byW1, and it is smaller thanW0.
A higher level of sharing, implying a higher level of test

compaction, requires BB3 to be used as well. To provide
opportunities for both BB2 andBB3 to be applied, Figure 2(c)
illustrates the case where the sets of faults are considered in
the order F0,0, F1,0, F0,1, F1,1. In Figure 2(c), BB2 is used
for reducing the number of tests added from T1,0 and T1,1
when F1,0 and then F1,1 are considered. This is possible since

longer seeds from T0,0 are available when F1,0 is considered,
and longer seeds from T0,0 and T0,1 are available when F1,1
is considered. The resulting test set is denoted byW2.1.

BB3 is applied in Figure 2(d). Figure 2(d) is similar to
Figure 2(c), except that seeds from T1,0 are extended to detect
faults from F0,1 when they are considered. This allows fewer
seeds from T0,1 to be added to the shared test set as new seeds.
Thus, in Figure 2(d), BB2 is used for reducing the number of
seeds added from T1,0 and T1,1, and BB3 is used for reducing
the number of seeds added from T0,1. The resulting test set is
denoted by W2, and it is smaller than W0, W1, and W2.1. The
sharing procedure described in this article produces the test
set W2 illustrated by Figure 2(d).
A baseline for comparison is established in this article by

procedures that produce test sets as shown in Figure 2(a)
and (b). The procedures from [6] and [7] are not applied since
they are not geared toward the consideration of several fault
models, and they require several iterations to apply both BB2
and BB3. If the basic test compaction procedure from [6] is
extended to use several fault models in a single iteration, it
will produce a test set similar toW1 illustrated by Figure 2(b).
Specifically, the basic test compaction procedure from [6]
initially assigns W = W0, and pads all the seeds in W
randomly into M0-bit seeds. For every seed wb ∈ W , the
procedure assigns l(wb) = 0 initially to indicate that wb is
not used for detecting any faults. During the procedure, l(wb)
will be changed to Mi if the first Mi bits of wb are used for
detecting faults from Fi. With M0 ≥ M1 ≥ . . . ≥ Mn−1,
the procedure considers the logic blocks in the order B0, B1,
. . ., Bn−1. When Bi is considered, the procedure simulates Fi
under the seeds inW with l(wb) = l, for l = M0, . . .,Mi−1, 0.
For every seed wb ∈ W in this order, it simulates Fi under the
test produced by the first Mi bits of wb with fault dropping.
If wb detects any faults, and l(wb) < Mi, the procedure
assigns l(wb) = Mi. When the procedure terminates, seeds
with l(wb) = 0 can be removed from W , and the padding
beyond l(wb) bits can be ignored to obtain the final test setW .

To use both BB2 and BB3, the iterative process from [6]
introduces a new padding for the seed at the end of the shared
test set, rotates the test set, and then applies the basic test
compaction procedure again. For the new seed at the top of
the test set, padding has a similar effect to BB3 since a seed
that originally had fewer than M0 bits now has M0 bits and
can be used for any logic block.

For a shared test set W , the number of iterations in [6] is
on the order of |W |.
The dynamic test compaction procedure from [7] has two

forms, one with a lower and one with a higher computational
effort. The former is described next. The procedure starts
from a shared test setW = Tn−1. It considers the logic blocks
in the orderMn−2,Mn−3, . . .,M0. WhenMi is considered, the
procedure performs the following steps. It first selects the test
from Ti that detects the largest number of faults from Fi. Let
the selected test be ta. The procedure considers two options
for ta. The first option is to add ta to W as a new seed. The
second option is to pad one of the seeds from W using the

VOLUME 12, 2024 49897

I. Pomeranz: Sharing of Topped-Off Compressed Test Sets Among Logic Blocks

extra bits from ta. Of all the seeds inW , the procedure selects
the one that yields the largest number of detected faults. Let
the selected seed bewb ∈ W . Between adding ta as a new seed
and padding wb the procedure selects the option that detects
more faults. It finalizes this option, and continues to the next
test from Ti until all the faults from Fi are detected.
The dynamic test compaction procedure from [7] performs

on the order of |Ti| steps for every logic block. In every step
it requires fault simulation of all the tests from Ti, and all the
tests fromW .
These more computationally intensive procedures from [6]

and [7] are not considered in this article.

III. BASELINE PROCEDURES
This section describes baseline procedures for sharing test
sets among logic blocks.

Using the notation from Sections I and II, for 0 ≤ i < n,
Bi is a logic block with a set of faults Fi, and a compressed
test set Ti that consists of seeds for an LFSR of lengthMi. The
logic blocks are ordered such thatM0 ≥ M1 ≥ . . . ≥ Mn−1.

Withm fault models, Fi consists of subsets Fi,j for 0 ≤ j <
m. The test set Ti is partitioned into subsets Ti,j for 0 ≤ j < m,
where Ti,j is added to Ti to detect faults from Fi,j that are not
detected by Ti,0, . . ., Ti,j−1.

The test set W0 is illustrated by Figure 2(a) for n = 2 and
m = 2. It is obtained by concatenating Ti,j for i = 0, 1, . . .,
n− 1 and j = 0, 1, . . ., m− 1. No sharing of seeds occurs in
this case.

The test set W1 is illustrated by Figure 2(b) for n = 2 and
m = 2, and produced by Procedure 1. Sharing of seeds
occurs inW1 by using BB2. Specifically, before adding seeds
from Ti,j to detect faults from Fi,j, Procedure 1 simulates Fi,j
under seeds that already exist in W1. Because of the order
of the logic blocks from high to low LFSR length, a seed
wb ∈ W1 has at leastMi bits whenBi is considered. Therefore,
the firstMi bits of the seed can be used for Bi.
Initially in Procedure 1, W1 = ∅. For i = 0, 1, . . ., n −

1 and j = 0, 1, . . ., m− 1, fault simulation of Fi,j underW1 is
carried out first by calling Procedure fsim(). For later use, the
length of a seed wb is denoted by l(wb), and Procedure fsim()
simulates a seed wb only if l(wb) ≥ Mi. This added condition
is not needed forW1, but it will be useful later.
Next in Procedure 1, tests from Ti,j that detect faults from

Fi,j are added toW1 to obtain complete fault coverage for Fi,j.
Procedure addtests() is used for this purpose.
Procedure 1: Shared test setW1

1) AssignW1 = ∅.
2) For i = 0, 1, . . ., n− 1:

a) For j = 0, 1, . . ., m− 1:
i) Call Procedure fsim(1, i, j).
ii) Call Procedure addtests(1, i, j).

Procedure fsim(s, i, j):

1) For every seed wb ∈ Ws, if l(wb) ≥ Mi:
a) Let wb/i consist of the firstMi bits of wb.

b) Simulate Fi,j under the test produced by wb/i with
fault dropping.

Procedure addtests(s, i, j):
1) For every seed ta ∈ Ti,j:

a) Simulate Fi,j under the test produced by ta with fault
dropping.

b) If ta detected any faults, add it toWs.

IV. SHARING PROCEDURE FOR TOPPED-OFF TEST SETS
This section describes the procedure suggested in this article
for sharing of compressed topped-off tests among logic
blocks. The procedure is referred to as Procedure 2. The
shared test set it produces is denoted byW2.

A. PROCEDURE OVERVIEW
Procedure 2 considers one fault model at a time. For every
fault model it considers the logic blocks one by one. Using
only Procedures fsim() and addtests(), this would result in a
shared test set denoted byW2.1, and illustrated by Figure 2(c)
for n = 2 and m = 2.
Procedure 2 includes two additional procedures that apply

BB3 to the seeds in W2, Procedure extend() and Procedure
unextend(). The two procedures are described considering a
logic block Bi and a set of faults Fi,j.
Procedure 2: Shared test setW2
1) AssignW2 = ∅.
2) For j = 0, 1, . . ., m− 1:

a) For i = 0, 1, . . ., n− 1:
i) Call Procedure fsim(2, i, j).
ii) Call Procedure extend(2, i, j).
iii) Call Procedure addtests(2, i, j).
iv) Call Procedure unextend(2, i, j).

Procedure extend(s, i, j):
1) For every seed wb ∈ Ws assign lprev(wb) = l(wb).
2) For every seed wb ∈ Ws such that l(wb) < Mi:

a) For every seed ta ∈ Ti,j:
i) Find the extended seed wb,a.
ii) Simulate Fi,j under wb,a and find the number of

detected faults, d(wb,a).
3) Select the extended seed wb,a with the largest value of

d(wb,a), and the smallest value ofMi − l(wb).
4) If d(wb,a) = 0, stop.
5) Replace wb with wb,a in Ws. Perform fault simulation

with fault dropping of Fi,j under wb. Go to Step 2.
Procedure unextend(s, i, j):
1) For lprev = Mn−1, Mn−2, . . ., Mi−1:

a) For every seed wb ∈ Ws such that l(wb) > lprev(wb)
and lprev(wb) = lprev:
i) Let Ftarg consist of all the faults from Fi,j that are

detected by wb.
ii) Simulate Ftarg underWs \ {wb} and mark detected

faults.
iii) If all the faults inFtarg are marked detected, assign

l(wb) = lprev(wb).

49898 VOLUME 12, 2024

I. Pomeranz: Sharing of Topped-Off Compressed Test Sets Among Logic Blocks

TABLE 2. Extending seeds.

B. PROCEDURE EXTEND()
Procedure 2 calls procedure extend() after simulating Fi,j
under W2. Fault simulation removes faults that are already
detected byW2. Procedure extend() applies BB3 to the seeds
in W2. Thus, the procedure extends some of the seeds in W2,
whose length is lower than Mi, into Mi-bit seeds. The goal
of the extension is to detect additional faults from Fi,j. This
reduces the number of Mi-bit seeds that will be added when
Procedure addtests() is applied. Thus, instead of Mi bits for
every new seed, smaller numbers of bits will be added for
detecting faults from Fi,j
Procedure extend() uses the seeds in Ti,j as a source of

extensions for the seeds in W2. Considering a seed wb ∈

W2 such that l(wb) < Mi, and a seed ta ∈ Ti,j, the procedure
obtains an extended seedwb,a whose first l(wb) bits are copied
from wb, and lastMi − l(wb) bits are copied from ta.
Table 2 shows several examples based on a group of logic

blocks referred to later as G0. The group consists of n =

4 logic blocks with M0 = 27, M1 = 25, M2 = 14, and
M3 = 12. The number of fault models considered is m = 3.
In the example, after considering Fi,0 for i = 0, 1, 2 and 3, the
setW2 consists of 51 seeds of length 27, 44 seeds of length 25,
62 seeds of length 14, and 10 seeds of length 12. When F0,1
is considered next, fault simulation of F0,1 under W2 shows
that 88.536% of the faults in F0,1 are detected. Table 2 shows
several of the extensions considered for detecting additional
faults from F0,1. Every triple of rows in Table 2 shows a seed
wb ∈ W2 on the first row, a seed ta ∈ T0,1 on the second
row, and the extended seed wb,a on the third row. The third
row also shows the number of faults from F0,1 that will be
detected if wb,a replaces wb inW2. The best option is w107,37
with 16 detected faults.

In general, the procedure iterates through a process where,
in every iteration, it considers every seed wb ∈ W2 such that
l(wb) < Mi, and every seed ta ∈ Ti,j. It obtains the extended
seed wb,a. It then performs fault simulation of Fi,j under wb,a
to find the number of detected faults. Of all the options for
wb,a, the procedure selects the one that detects the largest
number of faults. If a choice exists, the procedure prefers the

option for which l(wb) is the largest since this will result in
the smallest number of additional bits forW2.

The procedure repeats the selection of an extended seed as
long as it can detect additional faults from Fi,j.

Several observations are used for speeding up the
procedure.
(1) For a seed wb ∈ W2, two different seeds ta0 ∈ Ti,j and

ta1 ∈ Ti,j may result in the same extended seed if the last
Mi − l(wb) bits of ta0 and ta1 are the same. Procedure
extend() considers only ta0 for extending wb in this case.
For example, with Mi − l(wb) = 2, at most four seeds
from Ti,j will be considered, with the last two bits being
00, 01, 10 or 11.

(2) After computing the number of detected faults d(wb,a)
for wb ∈ W2 and ta ∈ Ti,j in an arbitrary iteration,
the value of d(wb,a) obtained in the next iteration cannot
increase. This is because faults from Fi,j are removed
from consideration at the end of an iteration. Procedure
extend() stores the previous value obtained for d(wb,a) in
a variable denoted by dprev(wb,a). It considers the pairs
wb ∈ W2 and ta ∈ Ti,j from high to low value of
dprev(wb,a), and from low to high value of Mi − l(wb).
As it considers pairs of seeds, it stores the best number of
detected faults for the iteration in a variable denoted by
dbest . It does not consider a pair wb ∈ W2 and ta ∈ Ti,j
if dprev(wb,a) < dbest or dprev(wb,a) = 0 since such a pair
will not be selected.

C. PROCEDURE UNEXTEND()
Procedure addtests() is applied after Procedure extend() to
add seeds from Ti,j to W2 for faults from Fi,j that are not
detected by W2. Some of the seeds added by Procedure
addtests() may make some of the extensions made by
Procedure extend() unnecessary. The goal of Procedure
unextend() is to identify such extensions and eliminate them
to reduce the storage requirements ofW2.

To allow Procedure unextend() to identify the extensions
made by Procedure extend(), Procedure extend() stores the
previous length of every seed wb ∈ W2 in a variable denoted
by lprev(wb). An extension was made if l(wb) > lprev(wb).
Procedure unextend() considers the seeds in W2 from

low to high value of lprev(wb). This gives a preference to
recovering shorter seeds, with a smaller contribution to the
storage requirements ofW2.
For a seed wb ∈ W2 with l(wb) > lprev(wb), to be able to

undo the extension, it is necessary to consider all the faults
from Fi,j that are detected by wb. This subset of faults is
denoted by Ftarg. The procedure simulates Ftarg under the
other seeds in W2. If all the faults in Ftarg are detected, the
procedure assigns l(wb) = lprev(wb) to undo the extension
of wb.

V. EXPERIMENTAL RESULTS
This section presents experimental results for groups of
benchmark circuits that are considered as logic blocks in a
design.

VOLUME 12, 2024 49899

I. Pomeranz: Sharing of Topped-Off Compressed Test Sets Among Logic Blocks

TABLE 3. Logic blocks.

Three sets of target faults are considered for every logic
block, stuck-at, single-cycle gate-exhaustive [18], and four-
way bridging [19] faults. A test set Ti is produced for every
logic block Bi by topping off a stuck-at test set considering
the fault models in this order. The number of bits required for
storing Ti is equal toMi|Ti|.
Table 3 shows information about the logic blocks consid-

ered. The logic blocks are ordered from low to high value of
Mi|Ti|. In Table 3, after the index i of a logic block, column
block shows the name of Bi, column inp shows the number
of inputs of Bi, column lfsr shows the lengthMi of the LFSR,
column seeds shows the number of seeds in Ti, and column
bits shows the number of bitsMi|Ti|.
Groups of four benchmark circuits are considered as

follows. In the order of the logic blocks given in Table 3,
every four consecutive logic blocks are considered as a group.
For 0 ≤ i ≤ 23, the group Gi consists of the four logic
blocks starting from Bi, i.e., Bi, Bi+1, Bi+2 and Bi+3. Using
logic blocks with similar storage requirements ensures, to the
extent possible, that no single logic block dominates the
results.

The goal of considering every four consecutive logic
blocks as a group is to produce a large number of datapoints
for studying the results of Procedures 1 and 2. It is not
expected that all the groups will be used for the same design.
Nonoverlapping groups are considered in Section VI.
Three shared test sets are considered in this section,W0 for

which no sharing is attempted, W1 obtained by Procedure 1,
and W2 obtained by Procedure 2. As discussed earlier,
W1 represents a test set that would be produced by the
non-iterative part of the procedure from [6] if it is extended to
consider several fault models, and the more computationally
intensive procedures from [6] and [7] are not used in this
article.

TABLE 4. Shared test sets W0, W1 and W2 for groups of four logic blocks.

For a shared test setWs, where s = 0, 1 or 2, the number of
bits required for storing it is denoted by S(Ws). The fraction
σ (Ws) = S(Ws)/S(W0) shows the reduction in the storage
requirements whenWs is used instead ofW0.
Table 4 compares the test sets W0, W1 and W2. For every

test set Ws, where s = 0, 1 or 2, column group shows the
name of the group it is computed for. Column lfsr shows the

49900 VOLUME 12, 2024

I. Pomeranz: Sharing of Topped-Off Compressed Test Sets Among Logic Blocks

FIGURE 3. Normalized runtime.

maximum length of an LFSR for a logic block in the group.
Column s shows the index of the shared test set Ws. Column
tests shows the total number of tests inWs. Column bits shows
the total number of bits required for storing Ws, denoted by
S(Ws). Column frac shows the number of bits required for
Ws divided by the number of bits required forW0, denoted by
σ (Ws) = S(Ws)/S(W0). This fraction provides the reduction
in the number of bits achieved by Procedures 1 and 2. Column
ntime shows the runtime for obtaining Ws divided by the
runtime for fault simulation of W0. This is referred to as the
normalized runtime, and measures the computational effort
of Procedures 1 and 2. Column Mi, for 0 ≤ i ≤ 3, shows the
number of seeds of lengthMi inWs. In the row forW0, this is
typically the number of seeds in Ti (exceptions occur if two
logic blocks have the same LFSR length, and their numbers
of tests are added; this occurs for G3, G20 and G21).
The following points can be seen from Table 4.

(1) By applying both BB2 and BB3, Procedure 2 is able to
reduce the storage requirements of the shared test set
significantly compared with W0 and W1. The reductions
are similar for different groups of logic blocks of different
sizes.

(2) The normalized runtime is also similar for different
groups of logic blocks, and groups with larger logic
blocks sometimes have lower normalized runtimes. This
is a result of the fact that Procedure 2 is based on fault
simulation, and thus, scales similar to a fault simulation
procedure. To demonstrate this point, Figure 3 plots
the normalized runtime for the computation of W2 as a
function of the size of W0 that measures the size of the
group. Figure 3 demonstrates that the normalized runtime
does not increase with the size ofW0. This again supports
the conclusion that the procedure scales similar to a fault
simulation procedure.

(3) It is possible to extract from W2 individual test sets for
the logic blocks. The numbers of tests under columnsMi,
for 0 ≤ i ≤ 3, provide an indication of the numbers of
tests that would be obtained. Based on these columns,
sharing of seeds typically results in an increase in the
number of seeds required for B0, and a reduction in the
numbers of seeds required for the other logic blocks.

Overall, the number of seeds in W2 is lower than the
number of seeds in W0 that does not share seeds among
the logic blocks.

VI. ANALYSIS OF SHARING
As noted in [6], the ability to share compressed tests among
logic blocks in a group varies with the group. The extent of
sharing for a group can be assessed by considering pairs of
logic blocks in the group. Moreover, it is possible to select
groups of logic blocks for which the extent of sharing is
expected to be high by using information about the sharing
possible for pairs. This section computes the extent of sharing
for pairs of logic blocks, and demonstrates that it is possible
to construct groups for which significant sharing will be
obtained when several fault models are targeted by a top-off
procedure.

Table 5 shows some of the results obtained when
Procedures 1 and 2 are applied to all the pairs of logic
blocks from Table 3. A pair that consists of logic blocks Bi0
and Bi1 is denoted by Pi0.i1 , where 0 ≤ i0 < i1 ≤ 26.
Following the name of the pair, Table 5 shows the fractions of
storage requirements, σ (W1) = S(W1)/S(W0) and σ (W2) =

S(W2)/S(W0), obtained by Procedures 1 and 2, respectively.
The pairs in each part of Table 5 are ordered from low to high
value of σ (W2). In the first part of Table 5, all the pairs for
which σ (W2) < 0.820 are shown. Additional pairs are shown
in the other parts of Table 5 as discussed later.
From Table 5 it can be seen that, similar to the case where

groups of four are considered, σ (W2) < σ (W1) is obtained
for pairs as well. Moreover, a lower value of σ (W1) does not
predict a lower value of σ (W2), and the two fractions vary
independently.

Another important observation from the first part of Table 5
is that the lowest values of σ (W2) are obtained for logic
blocks Bi0 and Bi1 such that i1 − i0 is small. For example,
for σ (W2) < 0.75 it is the case that i1 − i0 ≤ 4. This is to be
expected when the logic blocks are ordered based on their
storage requirements, and sharing is more effective when
none of the logic blocks dominates the storage requirements.

The first part of Table 5 identifies pairs of logic blocks for
which the extent of sharing is the highest. These pairs can
be used for forming larger groups for which the extent of
sharing is expected to be high. For example, using the first
two pairs of logic blocks in Table 5, P1.5 and P13.14, the group
that consists of B1, B5, B13 and B14 would be formed.

However, the selection of nonoverlapping pairs, such as
P1.5 andP13.14, may include in the same group pairs for which
the extent of sharing is low. For example, the use of P1.5 and
P13.14 to form a group includes in the group the pairs P1.13,
P1.14, P5.13 and P5.14, for which the reductions in storage
requirements are 0.946, 0.945, 0.871 and 0.871, respectively.

The data in the first part of Table 5 is considered again,
this time with overlapping pairs. After using P1.5 to initialize
a group, the pairs P3.5 and P5.7, that overlap with the logic
blocks in the group, may be used for forming a group that
consists of B1, B5, B3 and B7. This group is denoted by Q0.

VOLUME 12, 2024 49901

I. Pomeranz: Sharing of Topped-Off Compressed Test Sets Among Logic Blocks

TABLE 5. Pairs of logic blocks.

Let the set of all the pairs of logic blocks be 9. After
selecting the group Q0 based on 9, it is possible to remove
from 9 every pair Pi0.i1 such that either Bi0 or Bi1 is already

TABLE 6. Shared test sets W0, W1 and W2 for groups selected by
procedure 3.

included in Q0. The selection process can then be repeated to
select a group Q1 that does not overlap with Q0. This can be
repeated for j ≥ 0 to select a group Qj that does not overlap
with Q0, . . ., Qj−1.
Procedure 3 summarizes this process when the goal is to

create nonoverlapping groups of size0. Step 4 of Procedure 3
considers all the pairs from 9 in every iteration for the
following reason. It is possible that a pair Pi0.i1 will not be
added to Qj in one iteration because neither Bi0 nor Bi1 is
included in Qj. If one of the two logic blocks is added to Qj
in a later iteration, it is important to consider Pi0.i1 again.

Procedure 3: Forming groups Q0, Q1, . . .

1) Compute 9. Sort the pairs in 9 from low to high value
of σ (W2).

2) Assign j = 0.
3) Select the first pairPi0.i1 ∈ 9 and assignQj = {Bi0 ,Bi1}.
4) For every pair Pi0.i1 ∈ 9, in the order of the sorted set,

if exactly one of Bi0 and Bi1 is included in Qj:
a) If only Bi0 is included in Qj, add Bi1 to Qj.
b) If only Bi1 is included in Qj, add Bi0 to Qj.
c) Go to Step 5.

5) If |Qj| < 0, go to Step 4.
6) Remove from 9 every pair Pi0.i1 such that either Bi0 ∈

Qj or Bi1 ∈ Qj.
7) If |9| ≥ 0, assign j = j+ 1 and go to Step 3.

Based on Table 5, the first group selected by Procedure 3
with 0 = 4 is Q0 = {B1, B5, B3, B7}. After removing the
pairs that include the logic blocks of Q0, the pairs shown
in the second part of Table 5 remain. Based on these pairs,
Procedure 3 constructs Q1 = {B13, B14, B16, B10}. Table 5
also shows the pairs that remain for constructing Q2 = {B23,
B26, B25, B22}, Q3 = {B0, B2, B4, B8}, Q4 = {B11, B18, B15,
B17}, Q5 = {B21, B24, B12, B20}, and Q6 = {B9, B19, B6}.
It should be noted that 27 logic blocks from Table 3 were
divided into groups of four, leaving only three logic blocks
for Q6.

49902 VOLUME 12, 2024

I. Pomeranz: Sharing of Topped-Off Compressed Test Sets Among Logic Blocks

Table 6 shows the results obtainedwhenW0,W1 andW2 are
computed for Q0, Q1, Q2, Q3, Q4, Q5 and Q6. The following
points can be seen from Table 6.
(1) The results in Table 6 support the expectation that

significant sharing will be obtained for the groups
produced by Procedure 3.

(2) As in Table 4, Procedure 2 is able to reduce the storage
requirements of the shared test set significantly compared
with W0 and W1.

(3) The reductions are overall larger for the logic blocks
selected earlier, for which more sharing is expected.

VII. CONCLUDING REMARKS
Under distributed test data compression, each logic block
in a design has dedicated on-chip decompression logic and
compressed test set. When generating a test set that targets
several fault models for a logic block, a common practice is
to top off the test set by considering the fault models one
by one. In this scenario, this article considered the problem
of sharing a compressed test set among the logic blocks of
a design. Earlier procedures that allow unrestricted sharing
of compressed tests among logic blocks consider a single set
of faults for every logic block, and the logic blocks one by
one. They use several iterations to ensure that every logic
block can benefit from sharing of compressed tests. The
sharing procedure suggested in this article considers the fault
models one by one. For every fault model it considers the
logic blocks one by one. This structure of the procedure
provides the flexibility for the procedure to share compressed
tests among all the logic blocks in a single iteration,
avoiding the computationally-intensive iterative parts of the
earlier procedures. Experimental results for groups of four
benchmark circuits demonstrated the ability of the procedure
to share tests for stuck-at, single-cycle gate-exhaustive and
four-way bridging faults among logic blocks.

REFERENCES
[1] C. Barnhart, V. Brunkhorst, F. Distler, O. Farnsworth, B. Keller,

and B. Koenemann, ‘‘OPMISR: The foundation for compressed ATPG
vectors,’’ in Proc. Int. Test Conf., Nov. 2001, pp. 748–757.

[2] J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee, R. Thompson, K.-H.
Tsai, A. Hertwig, N. Tamarapalli, G. Mrugalski, G. Eide, and J. Qian,
‘‘Embedded deterministic test for low cost manufacturing test,’’ in Proc.
Int. Test Conf., Oct. 2002, pp. 301–310.

[3] N. A. Touba, ‘‘Survey of test vector compression techniques,’’ IEEE
Design Test Comput., vol. 23, no. 4, pp. 294–303, Apr. 2006.

[4] P. H. Bardell, W. H. McAnney, and J. Savir, Built—In Test for VLSI
Pseudorandom Techniques. Hoboken, NJ, USA: Wiley, 1987.

[5] Y. Huang, M. Kassab, J. Jahangiri, J. Rajski, W.-T. Cheng, D. Han, J. Kim,
and K. Y. Chung, ‘‘Test compression improvement with EDT channel
sharing in SoC designs,’’ in Proc. IEEE 23rd North Atlantic Test Workshop,
May 2014, pp. 22–31.

[6] I. Pomeranz, ‘‘Sharing of compressed tests among logic blocks,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 31, no. 4, pp. 421–430,
Apr. 2023.

[7] I. Pomeranz, ‘‘Dynamic test compaction of a compressed test set shared
among logic blocks,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 43, no. 1, pp. 394–402, Jan. 2024.

[8] L. N. Reddy, I. Pomeranz, and S.M. Reddy, ‘‘COMPACTEST-II: Amethod
to generate compact two-pattern test sets for combinational logic circuits,’’
in Proc. IEEE/ACM Int. Conf. Computer-Aided Design, Nov. 1992,
pp. 568–574.

[9] R. Desineni, K. N. Dwarkanath, and R. D. Blanton, ‘‘Universal test
generation using fault tuples,’’ in Proc. Int. Test Conf., Oct. 2000,
pp. 812–819.

[10] G. Chen, S. Reddy, I. Pomeranz, J. Rajski, P. Engelke, and B. Becker,
‘‘A unified fault model and test generation procedure for interconnect
opens and bridges,’’ in Proc. Eur. Test Symp. (ETS), May 2005, pp. 22–27.

[11] S. Goel and R. A. Parekhji, ‘‘Choosing the right mix of at-speed structural
test patterns: Comparisons in pattern volume reduction and fault detection
efficiency,’’ in Proc. 14th Asian Test Symp. (ATS), Dec. 2005, pp. 330–336.

[12] D. Kim, M. E. Amyeen, S. Venkataraman, I. Pomeranz, S. Basumallick,
and B. Landau, ‘‘Testing for systematic defects based onDFMguidelines,’’
in Proc. IEEE Int. Test Conf., Oct. 2007, pp. 1–10.

[13] S. Alampally, R. T. Venkatesh, P. Shanmugasundaram, R. A. Parekhji,
and V. D. Agrawal, ‘‘An efficient test data reduction technique through
dynamic pattern mixing across multiple fault models,’’ in Proc. 29th VLSI
Test Symp., May 2011, pp. 285–290.

[14] F. Hapke, W. Redemund, A. Glowatz, J. Rajski, M. Reese, M. Hustava,
M. Keim, J. Schloeffel, and A. Fast, ‘‘Cell-aware test,’’ IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 9, pp. 1396–1409,
Sep. 2014.

[15] C.-H. Wu and K.-J. Lee, ‘‘Transformation of multiple fault models to a
unified model for ATPG efficiency enhancement,’’ in Proc. IEEE Int. Test
Conf. (ITC), Nov. 2016, pp. 1–10.

[16] Y.-C. Kung, K.-J. Lee, and S. M. Reddy, ‘‘Generating single- and
double-pattern tests for multiple CMOS fault models in one ATPG run,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 6,
pp. 1340–1345, Jun. 2020.

[17] R. Asami, T. Hosokawa, M. Yoshimura, and M. Arai, ‘‘A multiple target
test generation method for gate-exhaustive faults to reduce the number of
test patterns using partial MaxSAT,’’ in Proc. IEEE Int. Symp. Defect Fault
Tolerance VLSI Nanotechnol. Syst. (DFT), Oct. 2020, pp. 1–6.

[18] E. J. McCluskey, ‘‘Quality and single-stuck faults,’’ in Proc. IEEE Int. Test
Conf. - (ITC), Oct. 1993, p. 597.

[19] S. Sengupta, S. Kundu, S. Chakravarty, P. Parvathala, R. Galivanche,
G. Kosonocky, M. Rodgers, and T. M. Mak, ‘‘Defect-based test: A key
enabler for successful migration to structural test,’’ Intel Technol. J., vol. 1,
pp. 1–4, Jul. 1999.

IRITH POMERANZ (Fellow, IEEE) received the
B.Sc. (summa cum laude) and D.Sc. degrees
from the Department of Electrical Engineer-
ing, Technion—Israel Institute of Technology, in
1985 and 1989, respectively.

From 1989 to 1990, she was a Lecturer with
the Department of Computer Science, Technion—
Israel Institute of Technology. From 1990 to 2000,
she was a Faculty Member of the Department
of Electrical and Computer Engineering, The

University of Iowa. In 2000, she joined Purdue University, West Lafayette,
IN, USA, where she is currently the Cadence Professor in the Elmore Family
School of Electrical and Computer Engineering.

Prof. Pomeranz is a Golden Core Member of the IEEE Computer Society.
She was a recipient of the NSF Young Investigator Award, in 1993, and The
University of Iowa Faculty Scholar Award, in 1997. Three of her conference
papers won best paper awards, and four other papers were nominated
for best paper awards. One of the papers she coauthored was selected
by the 2016 International Test Conference as the most significant paper
published ten years before. She delivered a keynote speech at the 2006 Asian
Test Symposium. Shewas one of the very first three featured authors on IEEE
Xplore, posted in February 2020. She served as Associate Editor for ACM
Transactions on Design Automation, IEEE TRANSACTIONS ON COMPUTERS, and
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. She
served as a Guest Editor for IEEE TRANSACTIONS ON COMPUTERS, in January
1998, Special Issue on Dependability of Computing Systems, and the
Program Co-Chair for the 1999 Fault-Tolerant Computing Symposium. She
served as the Program Chair for the 2004 and 2005 VLSI Test Symposium
and the General Chair for the 2006 VLSI Test Symposium.

VOLUME 12, 2024 49903

