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ABSTRACT In the realm of renewable energy, wind turbines play a pivotal role in efficiently harnessingwind
power, especially in offshore environments, where their significance is amplified. These turbines require
vigilant monitoring due to the elevated risk of operational faults. Moreover, vast labeled data is scarce in
industrial settings due to the cost associated. Hence, there is a need for fault diagnosis methods that can
diagnose precisely with minimal data. This research addresses that problem by proposing an architecture
built using prototypical network, few-shot learning, and a modified ultra-lightweight SqueezeNet model
specifically made for fault diagnosis. Central to our approach are thermal image datasets captured through
infrared (IR) cameras, which enable the detection of subtle temperature variations indicative of faults. The
proposed architecture excels in data scarcity. It can swiftly generalize from limited samples, thus reducing
the dependence on extensive labeled data and reducing training time. Moreover, the modified model stands
out for its highly efficient architecture, featuring 16x lower trainable parameters than SqueezeNet. Despite
being ultra-lightweight, our model outperforms the original SqueezeNet by achieving 98% accuracy, 10%
higher than the original model, and achieves similar or greater accuracy than other models with significantly
more trainable parameters. The proposed architecture achieves optimal computational efficiency while
maintaining precise diagnostics. The potential of this technology lies in its ability to be used in real-time
fault diagnosis applications on lightweight devices.

INDEX TERMS Few-shot learning, fault diagnosis, deep learning, limited data, prototypical network,
induction generator, offshore wind turbine, inter-turn faults, condition monitoring, infrared thermal imaging.

I. INTRODUCTION
Fault diagnosis has received much attention recently, espe-
cially in the context of data-driven methodologies used with
condition monitoring data [1]. One of the most common
electricmotors today, inductionmotors, is crucial in operating
various industrial and commercial applications. However,
numerous issues can affect induction motors and cause
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costly repairs and downtime. By monitoring the temperature
distribution of themotor, thermal imaging is a non-destructive
diagnostic method that may be used to identify and diagnose
problems with induction motors. Recent years have seen
an increase in the importance of wind energy, which is
now the foundation of both large-scale and small-scale
energy systems, alongside considerable projected expansion
in the coming years. According to the GWEC Global Wind
Report 2023, approximately 380 GW of new offshore wind
capacity will be installed over the next ten years, opening up a
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newmarket for the technology [2]. Onshore wind turbines are
built on land and use the air’s natural movement to produce
energy. Offshore wind turbines are situated at sea and use the
stronger winds that travel over the ocean in amore predictable
direction than they do on land to produce power.

In contrast to offshore wind farms situated at sea, onshore
wind farms are often found in rural regions with few
structures to impede the wind. Because the winds at sea
are more robust and reliable, offshore wind farms can
produce more power than onshore wind farms. Offshore
wind farms are desirable for this effort because of these
advantages. When acceptance costs are considered, onshore
wind development does not offer a definite cost advantage
over offshore wind development, according to research
in [3]. In addition, they cost more to operate and maintain,
accounting for between 10 and 35 percent of their overall
life costs, and are more likely to fail or malfunction [4].
To save maintenance costs and operational hazards and
prevent catastrophic consequences, it is essential to detect
generator degradation and electrical faults in offshore wind
systems early. Therefore, deep learning (DL) approaches
have evolved over the past several years to aid in defect
identification and cost reduction [5], [6]. Researchers have
been employing various techniques to identify defects in
advance and maintain the motors appropriately to last a long
time and save money on motor repair.

Data scarcity poses a significant challenge in fault diagno-
sis, particularly in industries reliant on machinery, compared
to other classification or detection problems [7]. Obtaining
data from these systems is often rare and costly, hindering the
development of accurate diagnostic models. Due to the high
expense and logistical constraints associated with collecting
sufficient data, fault diagnosis processes are frequently
impeded, leading to increased downtime, maintenance costs,
and operational inefficiencies. Traditional deep-learning
models require a large amount of data to achieve exceptional
performance, which may not be a feasible option in this
scenario [8]. As a result, strategies for effectively leveraging
limited data resources become paramount in the pursuit of
robust fault detection and prevention methodologies. The
limited and expensive nature of machinery data amplifies the
complexity of fault diagnosis tasks, necessitating innovative
approaches to overcome these obstacles and ensure accurate
and timely detection of potential issues.

Few-shot learning strategies attempt to enhance the
capabilities of conventional machine learning (ML) and DL
approaches by training models using a few labeled sam-
ples [9]. A model is trained to produce accurate predictions
using a few instances from each class in the ML paradigm
known as few-shot learning. Despite having little training
data, the model can generalize effectively to new, unknown
data thanks to this method [10].
This research paper introduces a new few-shot learning

architecture for diagnosing induction motor faults using
thermal imaging. Despite having a relatively light design
and minimal training parameters, it achieves extremely high

accuracy. The thermographic picture dataset used in the
study had relatively small data. Thus, few-shot learning was
the ideal method to find errors without the requirement of
data augmentation. The dataset was first introduced in [11]
and was applied in [12] and [13] for fault diagnosis. The
previous work used complex methods to identify the part of
the image that is most important for diagnosis. The proposed
system takes a different approach, making the process faster
and more efficient. This significant improvement makes the
system more practical for use in the real world. For example,
it could be a viable option in portable devices that have low
computational capability to diagnosemotor failures on the go.

This study makes several significant contributions to
wind turbine fault diagnosis. These contributions collectively
enhance the state-of-the-art in renewable energy infrastruc-
ture monitoring and are as follows:

• We introduce a modified SqueezeNet model that is
designed to be flexible with input size to tackle
the challenging task of fault diagnosis while being
extremely lightweight. Our novel approach offers a
resource-efficient solution that does not compromise
accuracy, making it an ideal candidate for real-world
applications

• We propose a prototypical network driven few-shot
learning strategy to increase the flexibility of our model
in settings with minimal data, as data is extremely
limited and expensive in industrial fault diagnosis. This
model can successfully generalize from small samples,
decreasing the need for large amounts of labeled data
and speeding up training.

• Thermal image datasets obtained from IR cameras play
a crucial role in our strategy. This creative application of
IR imaging enables us to gain unique insights into the
temperature changes within wind turbine components.
By identifying minor temperature anomalies early on,
we can proactively spot flaws and prevent potential
issues beforehand.

• In this research, we employed several models, such
as ResNet-18, ResNet-50, ShuffleNet, DenseNet,
MobileNetv3 Large, and the original SqueezeNet, to test
and compare the effectiveness of our proposed model.
This has allowed us to assess the reliability of our model.
Through this evaluation process, we gained valuable
insights into the performance of our model.

The remainder of the paper is organized as follows.
Section II is the literature review. Moreover, the proposed
methodology in this study is described in section III.
In section IV, we have discussed our findings. Finally,
in section V, we discussed our result and compared it
with other related studies. In section VI, we concluded our
research study.

II. LITERATURE REVIEW
Wind turbines play a pivotal role in the global shift towards
sustainable energy sources [14], [15]. However, their reliable
and uninterrupted operation is contingent upon effective fault
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diagnosis and maintenance [4]. Strong winds, temperature
variations, and mechanical wear are just a few of the
environmental stressors that wind turbines are subjected
to [16], [17], which can lead to an array of potential
defects and failures. Not only is it essential to identify
and address these issues as soon as possible, but doing so
will also prolong the life of wind turbines while increasing
energy output and reducing maintenance costs [18]. The
requirement for fault diagnosis in wind turbines becomes
even more apparent when considering the growth in scale
of wind farms and the connection of the turbines to the
broader energy grid. According to a study conducted in [19],
a single defective turbine in a wind farm can have a domino
impact on electricity output and grid stability. Therefore,
there is a pressing need for advanced and accurate fault
diagnosis methods that can identify issues swiftly, allowing
for targeted maintenance and minimizing disruptions in
energy production.

In this context, researchers and engineers have been
exploring innovative techniques to improve fault diagnosis
capabilities in wind turbines. Among these approaches,
DL methods have gained substantial attention for their ability
to analyze and interpret complex data automatically [20],
including thermal data, as shown in [21], which can be
instrumental in detecting thermal anomalies associated with
faults. Another study conducted in [22] has a different point
of view and incorporates a hybrid approach in fault diagnosis
on an enormous scale. This paradigm shift in fault diagnosis
is also evident in recent studies. Authors in [23] and [24]
have taken hybrid approaches where the former study divides
the methodology into three different segments, and the latter
has achieved an F1-score of 0.998 with an input size of only
32 × 32 in a Hilbert transformed dataset and a long short-
termmemory (LSTM) basedmodel, demonstrating the recent
advances in the field of fault diagnosis from traditional DL to
hybrid methods.

In addition to hybrid methods that fuse DL techniques
with other procedures, Transfer Learning techniques have
also been applied to enhance the performance of DL models
in wind turbine fault diagnosis. Researchers leverage pre-
trained models, often trained on vast image datasets, and
fine-tune them on wind turbines [25], [26], [27]. This
approach capitalizes on the knowledge and feature extraction
capabilities embedded in pre-trained models, significantly
reducing the need for extensive labeled training data and
accelerating model development, as shown in research
conducted in [28] and [29].
In recent years, few-shot learning, a specialized area of

ML, has gained prominence in wind turbine fault detection
due to the scarcity of labeled data for rare faults. The
study [30] sheds some light on the potential of few-
shot learning and its prospects. Authors in [31] propose
a novel few-shot learning based technique to diagnose
faults in bearing data while also comprehensively comparing
one-shot and few-shot approaches. This study achieves
notable accuracy with a minimal amount of data. Another

study conducted in [32] introduces another model adept at
extracting vector features with the help of auto-encoders,
achieving satisfactory results even under noisy environments.
Already established models can also be incorporated into
few-shot learning with a few tweaks to make it suitable
to detect intricate textures resembling faults in machines,
especially wind turbine gearboxes, as [33] show.
Alongside these, several feature extraction techniques and

methodologies have been introduced that excel at detecting
faults, especially in induction motors. A study [34] discusses
the importance of transformer health monitoring and accurate
fault diagnosis inminimizing equipment damage and improv-
ing the reliability of electric power systems. It proposes a
novel transformer fault diagnosis method using ensemble
machine learning and the Internet of Things (IoT). It includes
two separate subsystems: one for data measurement and
another for data reception, aiming toward benefits, such
as low power consumption and long-term monitoring and
addressing certain stress factors (electrical, mechanical,
thermal, and environmental) that transformers experience;
as these stresses can result in winding and core faults with
significant impacts on the power grid. The system’s potential
impact on power grid reliability lies in its ability to provide
real-time observation of the health status as well as accurate
fault diagnosis for transformers, thereby reducing financial
loss and improving the overall soundness of electrical power
systems. Additionally, in a study [35], the authors proposed a
Gabor filter and singular value decomposition based extractor
that excels in noisy environments. Furthermore, a notable
study [36] proposed a method utilizing 2D texture features
and multiclass support vector machines, consistently achiev-
ing 100% classification accuracy, surpassing three existing
fault diagnosis algorithms, even in noisy environments.
Moreover, another study [37] discusses the challenges and
methods for analog circuit fault diagnosis, emphasizing the
importance of efficient feature extraction and the application
of deep belief networks (DBN) for unsupervised feature
extraction. The paper introduces the use of a quantum-
behaved particle swarm optimization (QPSO) algorithm for
generating optimal values for the DBN’s learning rates and
the support vector machine’s (SVM) regularization parameter
and width factor. Furthermore, the paper presents an analog
circuit incipient fault diagnosis method using DBN-based
feature extraction, SVM, and QPSO, with a discussion of
the organization of the material. The paper demonstrates the
effectiveness of the proposed method through a comparison
with other typical analog circuit fault diagnosis methods,
showing higher diagnosis accuracy. The proposed method
addresses the challenges of analog circuit fault diagnosis and
provides a promising approach for efficient and accurate fault
diagnosis in analog circuits.

While significant progress has been made in the field
of wind turbine fault detection, research is often focused
on high-accuracy models that are resource-intensive and
suitable for offline analysis, as summarized in Table 1.
Therefore, a notable gap persists—namely, the absence of
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lightweight architectures designed for deployment on low-
powered devices such as cell phones or IoT devices to
detect faults reliably in real-time. In practical operational
scenarios, particularly within wind farm environments,
the demand for real-time or on-the-go fault diagnosis is
undeniable. Extremely light and compact models would
enable immediate fault assessments during routine checks
or maintenance, minimizing downtime and optimizing
energy production. As the wind energy sector grows,
prioritizing lightweight architectures becomes paramount
for reliable fault diagnosis and efficient renewable energy
generation.

III. PROPOSED METHODOLOGY
Few-shot learning proves to be the optimal approach
when confronted with insufficient training data, a common
scenario in nascent or emerging industries and occupations
demanding arduous or costly data collection, such as
industrial defect detection. Employing few-shot learning
techniques and extrapolating insights from a limited dataset
facilitates the acquisition of these tasks. The proposed
methodology advocates the utilization of a prototypical
network featuring a lightweight convolutional neural network
(CNN) comprising only seven layers, tailor-made for few-
shot learning applications. This network incorporates Fire
Modules, each consisting of a squeeze layer and two expand
layers, effectively manipulating channel numbers in the input
feature map to derive meaningful representations. In Fig. 1,
the dataset under examination is revealed to originate from
a 3-phase induction motor. Subsequently, an IR camera,
as elaborated upon in later sections, is used to take different
motor failure pictures, which makes it easier to compile
a thermal dataset. To ensure robust model training and
evaluation, the dataset is partitioned into testing and training
sets in a balanced 50-50 ratio. The goal of keeping the
distribution equal is to improve the model’s ability to identify
and extrapolate patterns between the two groups. The goal
of this tactical strategy is to improve the model’s overall
performance when it comes to new, untested data. The
balanced split gives the model an equal number of cases
from each class throughout the training and evaluation stages,
which promotes generalization and makes robustness testing
easier. This methodical technique helps to provide a more
accurate assessment of the model’s performance in various
circumstances. Under some conditions, a balanced dataset
split becomes essential, especially where impartiality and
justice are critical. By doing this, it is ensured that the
assessment measures accurately represent the performance
of the model and prevent distortion from class imbalances.
The dataset’s emphasis on balance is a fundamental com-
ponent that fosters accuracy and fairness in performance
evaluations.

Leveraging the principles of few-shot learning, a novel
approach is adopted wherein two images from each class
are randomly selected as support images, and four images
from each class are designated as query images. This

deliberate sampling strategy aims to enhance the model’s
ability to generalize and classify faults effectively with
limited examples. Finally, the research culminates in the
application of few-shot learning techniques in conjunction
with a customized architecture tailored for fault classification
in the thermal dataset.

Without a doubt, few-shot learning’s distinctive approach
to model training accounts for its efficacy in cutting training
time and promoting quick generalization. There are a few
important elements that contribute to these attributes. Few-
shot learning often relies on meta-learning approaches,
where the model learns ‘‘how to learn’’ from various
‘‘mini-problems’’ involving few-shot classification. When
compared to typical large-scale training, this meta-learning
feature shortens the total training time by enabling the model
to adapt to new tasks with minimum further training [38].
Rather than remembering individual data points, few-shot
learning models focus on learning correlations and simi-
larities across classes, which allows them to perform well
with fewer parameters. Faster training times result from this,
particularly when working with constrained computational
resources [39].

Fire modules are a type of neural network module that was
designed to be computationally efficient while maintaining
good accuracy [40]. It employs a combination of 1 × 1 and
3×3 convolutions to enhance efficiency without compromis-
ing accuracy, followed by a Rectified Linear Unit (ReLU)
activation function upon concatenating the output feature
maps. Fig. 2 illustrates the composition of fire modules,
which consist of a squeeze layer and an expansion layer. The
proposed architecture deviates from the original SqueezeNet
design by changing the dimension of the first conv layer to
3 × 3, 64 and also excluding the final two Fire Modules.
Instead of the AvgPool2d module, the AdaptiveAvgPool2d
module is used, enabling the model to adapt to varying
input sizes. In Figs. 2 and 3, it is demonstrated more
clearly. This design is particularly suited for lightweight CNN
requirements, such as mobile devices or embedded systems.
SqueezeNet, a revolutionary convolutional neural network
architecture, uses 50x fewer training parameters (4.3 million
vs. 60 million) to attain AlexNet-level accuracy on the
ImageNet classification test. With a mere 0.5 MB of compact
model footprint, this significant size reduction allows for
effective deployment and storage on devices with limited
resources [40]. Additionally, fewer parameters mean much
less memory and processing power needed for inference and
training, which speeds up execution times for embedded and
mobile devices. These benefits open the door for DL on
edge devices and make SqueezeNet a very appealing choice
for applications with constrained computing resources [40].
It proves advantageous in scenarios with limited training
data, thanks to the mitigating effects of the Fire Module
on overfitting risks. Despite having substantially fewer
training parameters (approximately 73k), our architecture
demonstrates comparable or superior accuracy to other CNNs
in this research.
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TABLE 1. Summary of several models and their limitations.

FIGURE 1. The methodology used in this study.

A. DATASET
In this study, stator defects were identified using the dataset
of thermographic IR pictures introduced in [41]. The thermal
images were captured using the Dali-tech T4/T8 IR thermal
imaging camera, the specifications of which can be found in
Table 2.
The proportion of shorted turns during the stator phase is

indicated by the severity of the fault. On a 3-phase induction
motor with a voltage of 380V, 50Hz frequency, 1.1kV, and
with no load, the researchers conducted their tests, more
briefly described in Table 3. They gathered thermal pictures
of the motor under a variety of conditions, such as ‘‘healthy’’,
‘‘blocked rotor,’’ ‘‘cooling fan failure,’’ and ‘‘8 inter-turn

TABLE 2. Dali-Tech T8 thermal camera properties.

faults with varying severity and location’’. To train a model
to recognize problems with the stator in electric motors, this
process produced a dataset of 11 fault classifications.
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FIGURE 2. Workflow of the proposed methodology: Fire module.

FIGURE 3. Design Framework of the proposed methodology: Custom
architecture.

TABLE 3. Equipment specifications.

In Fig. 4, we have demonstrated the images of the dataset.
An image from each faulty class is used to explain the dataset
classes.

Table 4 shows the various categories of faults and
corresponding numbers of images that require identification,
categorized based on fault type and severity.

TABLE 4. Number of images in each field.

B. DATA PREPROCESSING
In order to adjust the input size of each of the six
CNNs employed in the study, the fault pictures are resized.
SqueezeNet has an input size of 227 × 227 pixels,
whereas MobileNet, ResNet-50, ResNet-18, DenseNet-201,
and ShuffleNet all have input sizes of 224 × 224. The input
size for the proposed architecture is also 227 × 227. The
images are then transformed into PyTorch tensors. A tensor in
PyTorch is a multi-dimensional matrix that may represent the
pixel values of an image. The tensor was finally normalized
by deducting themean and dividing by the standard deviation.
It is known as normalization. Normalization is a common
preprocessing step in DL to bring the pixel values to a
standard scale, which helps the neural network converge
faster during training. This process also makes the model
more resilient and less sensitive to the effects of various
illumination situations.

C. FEW-SHOT LEARNING
Few-shot learning was first studied in the 1980s [42] to deal
with the issue of limited data availability, and has become
increasingly popular. It allows us to categorize data with a
small number of occurrences efficiently. Fig. 5 illustrates
the generic few-shot learning method based on prototypical
network. Think about training a model to discriminate
between different things, like dogs and cats. Few-shot
learning takes a more clever technique than traditional
learning, which would require many examples of each. Here’s
how it functions: To train our model, we first need pairs
of data, which might originate from disparate classes (for
example, a dog image and an image of a cat) or from the
equivalent class (like two different images of cats). A function
named f(x, y) must be used to teach the model whether these
pairs of numbers (mathematically denoted as x and y) belong
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FIGURE 4. Classes of the used dataset.

to the equivalent class (y = 1) or disparate classes (y = 0).
Later, we divide our data into the query set and the support
set. The query set evaluates the model’s performance across
many categories, whereas the support set provides examples
from numerous categories to learn from. The twomain testing
strategies are one-shot k-way and N-shot k-way where ‘k’
denotes the number of distinct categories being evaluated.
The one-shot k-way technique assesses the model’s ability
to classify new categories by providing only a single sample
for each category. The objective is to classify the k categories
in the query set using the support set’s knowledge. On the
contrary, the N-shot k-way technique evaluates the model
using N examples from k categories from the query set.
Based on these scant data, the model must produce precise
classifications. In conclusion, few-shot learning was shown
to be an effective approach for categorizing data with a few
examples. A query set and a support set are created from the
data., the model is trained using pairs of samples, and a small
sample size is used to evaluate the model.

Different networks are supported inmodel training through
few-shot learning. To improve the effectiveness of few-shot
learning models, researchers always sought novel approaches
to problems that arise in circumstances with little data.
Authors in [43] provided a detailed summary of algorithms
in the field of few-shot learning. A noteworthy method that
jumps out is prototypical networks, which build category
prototypes from examples in the support set. The samples
in the query set are then quickly and precisely classified
using distance calculations between prototypes and queries.
Additionally, Relation networks have also been shown to
be effective tools for capturing complicated inter-instance

correlations by modeling interactions between input pairs.
Another promising solution is Siamese Networks, which
consist of twin networks that share weights. In cases requiring
distant learning, they are especially helpful since they
use common regions to identify and measure distances or
similarities, improving earlier techniques.

In our study, we used prototypical network, a few-shot
learning method that is simple yet effective [42]. Prototypical
networks use a metric-based technique to generalize to
new classes [44]. In the context of few-shot learning,
prototypical networks have exhibited better performance than
other techniques [1]. These networks compute prototypes
for defined classes and produce feature vectors using an
embedding function. Accurate classification is achieved
by measuring the resemblance between classes, and the
difference between the distance of the query feature vectors
from the prototype of the classes is taken into account to
establish this. For training, a support set comprising N-
labeled samples is provided, denoted as
S = {(x1, y1), . . . , (xn, yn)}where each xiεRD is the dimen-

sional feature vector D and the label of xi is yi{1 . . . k}εRD.
The set Sk refers to the classes within the support set. It is
defined as: Sk = {(xi, yi) ∈ S | yi = k}. An embedding
function, f9RD → RM , is used to calculate the prototype pk .
Therefore, pk =

1
|Sk |

∑
(xi,yi)∈Sk fφ(xi). In order to determine

the classification distance, a distance function d(.) is used.
The probability that query point x is a member of the class k
can be expressed as follows:

Pφ(y = k | x) = log

(
exp

(
−d

(
fφ(x), pk

))∑
k ′ exp

(
−d

(
fφ(x), pk ′

))) (1)
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FIGURE 5. Strategies of few-shot learning paradigm: (a) Training, (b) One-shot testing, (c) N-shot testing.

IV. RESULTS
To determine which model was most effective in locat-
ing faults in thermal pictures, we examined six distinct
CNN models (ResNet-18, ResNet-50, DenseNet201, Large
MobileNetV3, Shufflenet, and Squeezenet1.1). We also
proposed a new model and compared its performance with
the other six models. Leveraging NVIDIA T4GPUs, we were
able to achieve significant speedups in code execution due to
GPU acceleration, in contrast to CPU-only systems. To train
themodels, we used a small number of images from each fault
class.

For training, we utilized 2 images from each of the 11 fault
classes (including 1 healthy class), and for testing, we used
4 images from each class. All imageswere randomly selected.
When the loss stopped improving, we terminated training the
model using the Keras early stopping API because we did
not need to train the model for longer epochs than necessary,
and we were able to save a significant amount of time and
computing resources this way.

A. EVALUATION METRICS
The diagnostic effectiveness of the proposed architecture is
evaluated using various assessment criteria. Equations (2-7)
include accuracy, sensitivity, specificity, precision, F1-score,
and Matthew’s correlation coefficient (MCC) respectively.
Additionally, the performance of the suggested architecture
undergoes evaluation through a confusion matrix. In these
equations, TP (true positive), TN (true negative), FP (false
positive), and FN (false negative) correspond to accurately
classified positive and negative images, as well as incorrectly
classified positive and negative images, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

Precision =
TP

TP + FP
(5)

F1-score =
2 × TP

2 × TP + FP + FN
(6)

MCC =
TP × TN − FP × FN

√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

(7)

B. EXPERIMENTAL RESULTS
Table 5 compares the accuracy and the training time of the
proposed method with six other DL models. The proposed
method achieved one of the best accuracy of 98.94%,
while the other models achieved accuracy between 88.10%
and 99.95%. However, the proposed method also had the
fewest training parameters. If we neglect the 1-2% accuracy
difference, the proposed method is the best because it
has significantly fewer training parameters and requires
substantially less time to train; therefore, it is more efficient.

TABLE 5. Performance comparison of several CNN architectures
(TT=Training time (mins:secs), Acc.=Accuracy, Sen.=Sensitivity,
Spe.=Specificity, Pre.=Precision, F1s=F1-score).

Fig. 6 provides a visual illustration of the accuracy of
CNN models used for experiments. It shows that ResNet-
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18 outperforms all CNN-based architectures with a 99.95%
accuracy, followed by the ResNet-50 with a classification
accuracy of 99.58% while the proposed model obtains a
98.94% accuracy.

FIGURE 6. Accuracy of the models used for experiments.

Fig. 7 visually represents the F1-scores of CNN models
employed in the experiments. It demonstrates that almost
every architecture achieved an F1-score of 0.98 to 1.

FIGURE 7. F1-scores of the architectures.

The training accuracy curve of the suggested architecture
is shown in Fig. 8, providing a visual depiction of the learning
dynamics of the model during training cycles. This curve
illustrates how accuracy scores changed over the training
process, providing information on the model’s ability to
gradually pick up and adjust to the underlying patterns in the
dataset.

FIGURE 8. Training accuracy curve of the proposed architecture.

FIGURE 9. Training loss curve of the proposed architecture.

The training loss curve of the suggested architecture is
shown in Fig. 9, which provides a dynamic representation
of the model’s loss optimization throughout the training
epochs. The curve shows the path of the loss function for
the model and indicates how much the architecture modifies
its parameters to reduce mistakes and improve prediction
accuracy.

The suggested architecture’s confusion matrix, which
provides a thorough evaluation of the model’s classification
performance, is shown in Fig. 10.

Important details about the number of layers and training
parameters for each model used in the study are summarized
in Table 6. The proposed architecture uses only 73k
training parameters to achieve demonstrated accuracy, while
the other CNN classification models require millions of
parameters [45], [46]. Additionally, the layer structure of each
CNN model is more complex than the proposed model, with
more layers and more complex operations per layer, resulting
in a higher computational burden.

C. COMPARISON WITH RELATED STUDIES
We compared our new architecture with other methods
for diagnosing induction machine faults that use the same
thermal image dataset. As summarized in Table 7, our
system is better than the others in several ways. First,
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FIGURE 10. Confusion matrix of the proposed architecture.

TABLE 6. Comparison of model complexity.

our model achieved similar accuracy to the other studies
but required neither segmentation nor data augmentation.
Moreover, it used 3x fewer images to do so. Secondly, it was
faster because it had fewer layers and did not need to do as
many steps of calculation. In general, our new architecture
is a better way to diagnose induction machine faults using
thermal images.

V. DISCUSSION
We evaluated the effectiveness of six distinct CNN models,
along with our own, in identifying faults within thermal
images using a prototypical network powered few-shot learn-
ing technique. In our tests, our proposed model outperformed
the others in terms of training time and resource intensiveness
with a remarkable accuracy of 98.94% while only requiring
73,803 training parameters. On the contrary, the other CNN
models achieved accuracy ranging from 88.10% to 99.95%
but had millions of training parameters.

The outstanding accuracy of our proposed model can
be attributed to its efficient architecture and the usage of

TABLE 7. Comparison of research on induction machine fault diagnosis
using thermogram images (Seg.=Segmentation, DA=Data Augmented,
Cla.=Classes, NoI=Number of Images, AU=Architecture Used, and
Acc.=Accuracy).

few-shot learning. Unlike the other models, our proposed
model has a simple structure with fewer layers and less
complex operations per layer. This reduces the computational
burden while retaining feature extraction capabilities, thus
making the model more efficient. Additionally, the utilization
of few-shot learning has enabled our model to learn from
a small number of training images, which is particularly
important for fault diagnosis, where labeled data are often
limited. Moreover, our model stands out for its quick
training time compared to other CNN models. Because of
its lightweight architecture and minimal parameter count,
coupled with a simpler structure, our proposed model saves
considerable time and computing resources while training.

In conclusion, our approach appears to be a promising
means of identifying flaws in the industrial environment. It is
practical, precise, and requires fewer resources and time than
alternative CNN models.

VI. CONCLUSION
Our research aims to offer concrete advantages to the renew-
able energy sector, demonstrating the connection between
cutting-edge technology and environmental sustainability;
particularly in the diagnosis of wind turbine failures. Our
proposed model has enabled us to achieve a remarkable
balance between computational efficiency and diagnostic
accuracy, thereby opening new avenues for resource-efficient
fault detection.

In addition, based on the experiment results, it is proved
that our model outperforms other alternatives in terms
of training time and resource intensiveness while either
surpassing or maintaining competitive accuracy and reducing
dependency on vast labeled datasets. Its applicability for
real-time fault detection on lightweight devices further
emphasizes its immediate relevance and potential.

As the renewable energy sector continues to grow, there
is a pressing need for efficient and accurate fault diagnosis
tools for wind turbines. Our contributions in this field
aim to enhance the reliability and sustainability of wind
energy production. We believe that this research will inspire
further innovations and advancements in the monitoring
of renewable energy infrastructure, which will ultimately
contribute to a more sustainable and greener future.
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