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ABSTRACT In response to the challenge of three-dimensional path planning for unmanned aerial vehicles
(UAVs), this paper introduces a Multi-Strategy Plant Growth Path Planning (MSPGPP) algorithm. Initially,
a threat sphere and obstacle avoidance cone model are constructed to ensure safety in avoidance and
enhance algorithm accuracy and convergence velocity, while B-spline curves are introduced to improve
the quality of the path. Next, the concept of threat level is incorporated along with UAV maneuverability
to establish a multi-objective optimization function, enabling the algorithm to plan optimal paths. Finally,
an algorithm framework is developed, and comparative simulation results of the improved algorithm against
the original algorithm and other optimization algorithms are presented in a three-dimensional environment.
The results demonstrate that compared to the original algorithm, the improved algorithm better balances
obstacle avoidance safety and UAV maneuverability, planning safer and more effective paths. Additionally,
it achieves higher accuracy and faster convergence. Compared to other optimization algorithms, the improved
algorithm has better optimization capabilities, higher computational efficiency, and superior path quality.

INDEX TERMS Unmanned aerial vehicle, path planning, multi-objective optimization, plant growth,
obstacle avoidance cone.

I. INTRODUCTION
The application field of UAVs is becoming increasingly
broad. In the military domain, UAVs contribute to recon-
naissance, target tracking, and coordinated strikes, sig-
nificantly enhancing the efficiency and success rate of
military operations [1], [2], [3]. In civil domains, UAVs
are used for infrastructure inspection, logistics delivery,
agricultural spraying, search and rescue tasks, showing great
application value and market potential [4], [5], [6], [7]. The
challenges in these application domains can be summarized
as three-dimensional path planning problems for UAVs [8],
which are global optimization problems under multiple con-
straints, considering environmental characteristics, mission
requirements, and UAV performance constraints.

Traditional path planning algorithms such as the
A* algorithm [9], Dijkstra’s method [10], Rapidly expanding
random tree (RRT) algorithm [11], and artificial potential
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field method [12] have matured significantly but are
mostly used in two-dimensional scenarios and prone to
issues like unreachable targets and local minima. In recent
years, many intelligent optimization algorithms inspired by
biological evolution have been successfully applied to UAV
path planning, such as particle swarm optimization [13],
genetic algorithms [14], ant colony algorithms [15], and
newer algorithms like dung beetle algorithm [16], grey wolf
algorithm [17], and artificial bee colony algorithm [18].

The main challenges in UAV three-dimensional path
planning lie in modeling optimization and algorithm
improvement. The former requires consideration of the
rationality and applicability of path planning modeling and
the safety of UAV flight. The latter demands excellent global
optimization capabilities, high computational efficiency,
and accuracy in complex three-dimensional environments.
In terms of modeling optimization, literature [19] have
established UAV path planning models based on terrain and
turning constraints, and combined with fuel consumption and
threat to establish objective functions, utilizing multi-modal
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multi-objective evolutionary algorithms to provide various
effective decisions; and literature [20] has segmented
sub-paths according to the number of hazard sources and
the distance to them, calculating threat costs accordingly.
However, these modeling processes often use the distance
between the UAV and obstacles as the sole criterion, leading
to either excessively large avoidance distances or reduced
safety. Hence, different avoidance distances and their impact
on path scenarios should be considered. Additionally, the
actual flight of UAVs should comprehensively consider
UAV maneuverability to ensure safer and more practical
flight paths. In terms of algorithm improvement, chaos
sequences and various adaptive strategies have been
employed to enhance the search efficiency and precision
of PSO algorithms [21], improving the quality of solutions
for UAV three-dimensional path planning problems. The
proposed Harris Hawks algorithm introduces adaptive chaos
and core population dynamic partition strategies [22],
enhancing the algorithm’s late-stage search capabilities,
combined with adaptive dynamic cloud optimal solution
perturbation strategies, to increase the ability to escape
local optima. These improved algorithms contribute to
better path planning quality, but due to the large search
space and high computational efficiency requirements of
the UAV three-dimensional path planning problem, they are
limited by the characteristics of the algorithms themselves.
A comprehensive UAV three-dimensional path planning
solution based on bionic principles proposes a new Plant
Growth Path Planning (PGPP) algorithm [23], which is
adaptable, stable, and efficient. However, it lacks global
optimization in path planning, resulting in higher path costs.
The original paper also points out the potential application
value of the PGPP algorithm in the field of optimization
problems.

This paper focuses on modeling optimization, introducing
the concept of threat level combined with maneuverability
and path smoothness, considering UAV maneuverability.
In algorithm improvement, it combines the advantages of
the PGPP algorithm with various models and strategies
[24], [25], [26], [27] to propose a new MSPGPP algo-
rithm, validated through simulation in the established UAV
three-dimensional path planning model. The experimental
results show that the improved algorithm plans more
cost-effective and globally optimal UAV flight paths while
maintaining the original algorithm’s rapid and accurate
pathfinding capabilities.

The main contributions of this paper are summarized as
follows:

• Modeling the UAV three-dimensional path planning
problem as a multi-objective optimization problem,
aiming to enhance the capability of the original PGPP
algorithm in solving for optimal paths and reducing path
costs.

• Proposing a multi-strategy improved MSPGPP scheme
for optimal UAV path planning. The proposed scheme
integrates threat spheres, obstacle avoidance cones,

B-spline curves, and multi-objective optimization to
enhance the algorithm’s optimization performance and
improve path quality.

• Implementing the proposed MSPGPP algorithm, the
original PGPP algorithm, and three famous optimization
algorithms including PSO, RRT, and GWO. Simulation
experiments validate the effectiveness of the proposed
model and strategies.

• Assessing the efficacy of the MSPGPP algorithm in
UAV path planning, comparing it with the original
PGPP and other optimization algorithms, verifying the
effectiveness and practicality of the proposed algorithm.

II. UAV THREE-DIMENSIONAL PATH PLANNING
This section describes the problem of three-dimensional path
planning for Unmanned Aerial Vehicles (UAVs). It first
presents the kinematic model of the UAV, then transforms
the path planning problem into a multi-objective optimization
problem through modeling.

A. PROBLEM DEFINITION
UAV path planning refers to generating an optimal flight
path within a known flight area that can go from a mission’s
starting point to a target point, fulfilling various path
planning requirements. In this paper, the UAV flight path
Xi is represented as a collection of n waypoints, with each
waypoint corresponding to coordinates in three-dimensional
space Pij = (xij, yij, zij).

B. UAV KINEMATIC MODEL
This paper assumes a safe radius Ru for the UAV in
three-dimensional space. Considering the shape and motion
uncertainty of obstacles, the obstacle is simplified as a
spherical model. O represents the center of the obstacle, and
Ro represents the threat radius of the obstacle. Taking a certain
moment as an example, the positions of the UAV and the
obstacle are Pu and Po, respectively; the velocity vector of
the UAV is Vu. Thus, the motion model of the UAV can be
represented by equations (1)-(2).

Pu = (xu, yu, zu) (1)

Vu =

 vux
vuy
vuz

 =

 vu cos θu sinϕu
vu cos θu cosϕu
vu sin θu

 (2)

where vu represents the magnitude of the UAV’s velocity
vector, ϕu and θu the angle of the direction of the UAV’s
velocity vector, where ϕu is the yaw angle and θu is the pitch
angle.

C. MULTI-OBJECTIVE OPTIMIZATION
This paper transforms the UAV three-dimensional path
planning problem into a multi-objective optimization prob-
lem and establishes a multi-objective optimization function
associated with constraints like path length, flight altitude,
obstacle avoidance safety, UAV maneuverability, and path
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smoothness. Then, it evaluates the quality of the UAV
flight path Xi as a feasible solution to the multi-objective
optimization function to find the path with the lowest
comprehensive cost as the optimal solution.

1) PATH LENGTH
The cost associated with path length Z1 can be calculated by
equation (3), representing the distance between two adjacent
nodes of the path Xi as

∥∥∥−−−−−→
PijPi,j+1

∥∥∥.
Z1(Xi) =

n−1∑
j=1

∥∥∥−−−−−→
PijPi,j+1

∥∥∥ (3)

2) FLIGHT ALTITUDE
When UAVs perform low-altitude tasks, flight altitude needs
to be considered. First, the UAV path nodes are controlled
within a safe altitude range, then the height difference
between two adjacent nodes is calculated using a two-point
formula to avoid abrupt increases or decreases in flight
altitude. The cost of height difference is given by equation (4),
where hmin and hmax represent the minimum and maximum
flight altitudes of the UAV, and hk represents the unit cost
of height difference. The total cost function related to flight
altitude is shown in equation (5).

Hij =

{
hk

∣∣zi,j+1 − zij
∣∣ , if hmin ≤ zij ≤ hmax

∞, otherwise
(4)

Z2(Xi) =

n−1∑
j=1

Hij (5)

3) THREAT LEVEL
Based on the concept of safe avoidance, this paper introduces
the concept of threat level, considering different distance
scenarios to establish a dangerous area for avoidance. The
threat level includes the cost of threat distance and threat time,
meaning the smaller the distance between the UAV and the
threat, the greater the threat level; the longer the flight time
in the danger zone, the greater the threat level.

The costs of flight time and threat distance are given by
equations (6) and (7), respectively.

Ct (
−−−−−→
PijPi,j+1) =

∥∥∥−−→
d1dn

∥∥∥
vu

(6)
Cd (

−−−−−→
PijPi,j+1) =

n∑
k=1

Dk

Dk =

{
L − lk , if Ro ≤ lk ≤ L
∞, if lk ≤ Ro

(7)

where Ct (
−−−−−→
PijPi,j+1) represents the path flight time cost

function;Cd (
−−−−−→
PijPi,j+1) represents the path threat distance cost

function.

FIGURE 1. Threat Level cost. As shown in Fig. 1, the radius of the
hazardous area is L (which is jointly determined by the safety radius of
the UAV and the radius of the obstacle), and the distance lk between dk
and O can be determined according to the Euclidean distance formula,
and the subpath

−−−→
d1dn consisting of all the nodes dk for which lk is less

than L can be further determined.

The sum of threat time and threat distance costs for all
segments yields the threat level cost function:

Z3(Xi) =

n−1∑
j=1

Ct (
−−−−−→
PijPi,j+1) + Cd (

−−−−−→
PijPi,j+1) (8)

4) MANEUVERABILITY
The path also needs to consider guiding the UAV through the
obstacles in the avoidance range with a qualified and safe
maneuver. Taking the point Pij as an example, the vector
−−−−−→
Pi,j−1Pij and the projection of

−−−−−→
Pi,j−1Pij in the horizontal

direction can be denoted as ki = (xij − xi,j−1, yij − yi,j−1)
and ki+1 = (xi,j+1 − xij, yi,j+1 − yij), respectively, as shown
in equation (9), from which the yaw angle ϕij and pitch angle
θij can be calculated.

ϕij = arccos(
ki

T
ki+1

|ki| · |ki+1|
)

θij = arctan

 ∣∣zi,j+1 − zij
∣∣√

(xi,j+1 − xij)2 +

√
(yi,j+1 − yij)2


(9)

The UAV’s maximum yaw angle is set as ϕmax , and the
maximum pitch angle as θmax . The maneuverability cost is
directly proportional to ϕij and θij and inversely proportional
to ϕmax and θmax . Thus, the turning angle cost function is
shown in equation (10).

Ca(
−−−−−→
PijPi,j+1) = Kt

ϕij

ϕmax
+Kc

θij

θmax
(10)
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where Ca(
−−−−−→
PijPi,j+1) represents the path turning angle cost

function;Kt andKc are the cost coefficients for the yaw angle
and pitch angle, respectively.

The sum of all nodes yields the maneuverability cost
function:

Z4(Xi) =

n−1∑
j=1

Ca(
−−−−−→
PijPi,j+1) (11)

5) MULTI-OBJECTIVE OPTIMIZATION FUNCTION
Considering the costs related to path length, flight altitude,
threat level, maneuverability associated with path Xi, the total
cost function can be defined in the following form:

Z (Xi) =

4∑
k=1

bkZk (Xi) (12)

where Z1 to Z4 are the target cost functions associated with
path length, flight altitude, threat level, maneuverability,
respectively; bk are weight coefficients; Xi is the decision
variable.

With these definitions, the multi-objective optimization
function Z (Xi) is fully determined and can be used as input in
the UAV path planning process.

III. MSPGPP ALGORITHM
This section describes the MSPGPP algorithm. It first
introduces the principles and workflow of the original PGPP
algorithm, followed by various improvement models and
strategies for the original algorithm proposed in this paper.

A. ORIGINAL PGPP ALGORITHM
The Plant Growth Path Planning (PGPP) algorithm, inspired
by the phototropism of plants and their ability to grow
towards light while avoiding shadowy areas, reflects a similar
characteristic in UAVs–navigating towards a target while
avoiding obstacles. As a biomimetic algorithm, The primary
feature of the PGPP algorithm is its inheritance of an adaptive
ability of the plant to its environment. When applied to
UAVs, this enables quick and efficient responses to obstacles.
Additionally, as an incremental rapid search algorithm, PGPP
boasts high computational efficiency and low complexity,
making it suitable for application in optimization fields.
This is particularly relevant for UAV path planning, where
optimal solutions are sought using algorithms with these
characteristics.

The PGPP algorithm simulates plant growth mechanisms
to achieve UAV path planning. The algorithm mimics various
characteristics of plant growth, using the apical bud or
current node as the basic growth unit to calculate and find
the UAV flight path. The growth of the apical bud in the
PGPP algorithm mainly follows phototropism principles and
negative geotropism, branching rules, and other plant growth
mechanisms. Phototropism and negative geotropism are the
main features of the PGPP algorithm.

As an example, taking the starting point Start =

(xS , yS , zS) and the target point Target = (xT , yT , zT ), with

FIGURE 2. Growth principle. As shown in Figure 2, phototropism refers to
the light-oriented growth behavior of plants, described as vector GL.
Target represents the light source, i.e., the target point. The magnitude of
GL is directly proportional to the distance between the bud point and the
target point. Negative geotropism refers to the characteristic of plants
growing away from the ground against gravity, described as a force GR
always pointing towards the target point. This force helps prevent the bud
from falling into local minima when approaching the target point due to a
small GL. The growth vector Gnew for the current cycle, guiding the
growth of the apical bud to generate the UAV path, can be obtained by
summing GL, GR, and the growth vector GLast from the previous cycle.

the obstacle as Po = (xo, yo, zo), and the distance between
the path node and the obstacle as lk , the basic steps of the
algorithm are as follows:

Step 1: Initialization. Initialize variables such as start and
target positions, read map data, set the starting point Start as
the initial growth point bud = (xb, yb, zb), and proceed to
step 2.

Step 2: Light intensity calculation. Calculate the light
intensity of all buds in the search range, and the light intensity
of the range covered by shadows will be weakened. As shown
in Fig. 3, the search range is updated with a radius of d . The
search range can be divided into several cube grids�i,j,k with
a side length of bond . Taking the point bud as the center of the
coordinate axis, the coordinate point

(
xg, yg, zg

)
in the search

range satisfies equation (13).(
xg, yg, zg

)
∈ �i,j,k

�i,j,k =


i · d ≤ xg ≤ (i+ 1) · bond
j · d ≤ yg ≤ (j+ 1) · bond
k · d ≤ zg ≤ (k + 1) · bond

i ∈
[
−floor(

d
bond

+ 0.5),floor(
d

bond
+ 0.5) − 1

]
j ∈

[
−floor(

d
bond

+ 0.5),floor(
d

bond
+ 0.5) − 1

]
k ∈

[
−floor(

d
bond

+ 0.5),floor(
d

bond
+ 0.5) − 1

]
(13)
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FIGURE 3. Obstacle Avoidance Cone. As shown in Figure 3, combining the threat
sphere model, taking point Pu as the current position of the UAV, the straight line Luo
between Pu and Po can be determined using the Euclidean distance formula. At this
time, the length of Luo is less than or equal to Lsafe. Drawing a tangent line through
point Pu that is tangent to the threat sphere model at point Q, the same applies to the
other side, obtaining the obstacle avoidance cone model considering the adaptive safe
distance.

Then, the total light intensity Lsumi, j, k of the grid can
be calculated using equations (14) and (15), and proceed to
step 3.

Li(x, y, z) =


KL

[
(xT − xb)2 + (yT − yb)2 + (zT − zb)2

]
(x − xb)2 + (y− yb)2 + (z− zb)2

,

if lk > Ro
0, otherwise

(14)

Lsumi,j,k =

∑
Li(xg, yg, zg) (15)

Step 3: Random Branching. First, select several buds with
the largest light intensity. According to the number of growth
times, determine whether each bud meets the branching
condition. The age of the bud will be updated after each
growth, and exceeding the limit will turn it into a dead
bud to prevent falling into a local unsolvable state. If the
branching condition is met, determine the probability Pbranch
of generating new buds using equation (16).

Pbranch =
Lsumi,j,k∑
Lsumi,j,k

(16)

where
∑
Lsumi,j,k represents the sum of the light intensities

of all the grids in the search range, and proceed to step 4.
Step 4: Calculation of Growth Vector. Represent the center

of grid �i,j,k as Pcenter = (xc, yc, zc). Calculate the growth
vector for all buds, and combine it with the growth vector
from the previous cycle with equal weights to form a new
growth vector Gnew. The magnitude of the growth vector is
obtained using equation (17). Then, determine the endpoint
[xgrow, ygrow, zgrow] of the growth vector Gnew, which can
determine the growth direction of the bud, i.e., the UAV’s yaw
angle ϕu and pitch angle θu, and proceed to step 5.

GL = (xc − xb)i+ (yc − yb)j+ (zc − zb)k
GR = (xT − xb)i+ (yT − yb)j+ (zT − zb)k
Gnew = K1 · GL + K2 · GR + K3 · GLast

(17)

Step 5: Plant Growth. Each bud grows according to
the branching growth vector. Determine whether each bud
reaches the endpoint during growth. If it reaches the endpoint,
the search ends. Execute step 6. If not, return to step 2 until a
bud reaches the endpoint.

Step 6: Obtain the UAV Flight Path. At the end of the
search, determine the path according to the parent node of
each path point.
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FIGURE 4. The pseudocode of the MSPGPP algorithm. The pseudocode of the
MSPGPP algorithm workflow is shown in Figure 4, where 1-6 belongs to the
model and strategy improvement part, and 7 belongs to the multi-objective
optimization function part.

B. THREAT SPHERE MODEL
The original PGPP algorithm does not consider the safe range
of obstacle avoidance during path planning, resulting in a
short processing time for UAV obstacle avoidance and prone
to collisions. Therefore, this paper expands the initial obstacle
information and constructs an obstacle threat sphere model
based on the obstacle radius, UAV velocity, and safe radius,
ensuring a safe distance and sufficient time for the UAV to
avoid obstacles.

As calculated and analyzed by the model, as shown in
equation (18), taking O as the center of the threat sphere and
r as the expanded radius, a threat sphere model with radius R
is determined.  r = 2 ∥Vu∥

|Ro − Ru|
Ro + Ru

R = Ru + r
(18)

C. OBSTACLE AVOIDANCE CONE
When planning paths, UAVs aim to minimize the number of
calculations and the time taken by the algorithm. In step 3 of
the original PGPP algorithm, a random growth strategy is
used for pathfinding, leading to excessive randomness in the
growth vector calculated in step 4. This may result in too
many calculations to obtain the optimal path, which is not
conducive to the accuracy and timeliness of the algorithm.
Therefore, this paper introduces the obstacle avoidance cone
model to improve the branching growth strategy, as follows:

First, to ensure the safety and accuracy of obstacle
avoidance and improve the utilization rate of the original path
to reduce flight costs, define the UAV’s adaptive safe distance
Lsafe with obstacles, as shown in equation (19).

Lsafe = 3
(
Ro + ∥Vu∥

|Ro − Ru|
Ro + Ru

)
(19)
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FIGURE 5. The Process of Model and Strategy Analysis Experiment. As can be seen from Figures (a) and (b), when the distance between the UAV
and the obstacle is less than Lsafe, the obstacle avoidance cone model is effective and guides the UAV to safely avoid obstacles.
Figure (c) shows that when the UAV faces multiple obstacles, the model prioritizes the closest obstacle. Figures (b) and (d) jointly indicate that
the UAV maintains a safe distance to avoid obstacles.

As analyzed by the algorithm simulation results, the
numerical setting of Lsafe is related to the UAV’s velocity, safe
radius, and the threat radius of obstacles. Lsafe should not be
too small to ensure that the UAV can safely avoid obstacles
while meeting its maneuverability conditions. Lsafe should
not be too large to avoid the UAV prematurely leaving the
original path, leading to conservative obstacle avoidance
issues.

In Figure 3, the angle α between the UAV’s velocityVu and
Luo, and the angle α0 between Luo and LPE can be calculated
using equations (20) and (21).

sinα0 =
R

∥Luo∥
(20)

cosα =
LuoVu

∥Luo∥ ∥Vu∥
(21)

This model is only effective when the distance between the
UAV and the obstacle is less than the adaptive safe distance.
When the UAVneeds to avoidmultiple obstacles, the obstacle
avoidance cone model prioritizes the closest obstacle.

When avoiding obstacles, the UAV needs to change its
velocity vector. As shown in Figure 4, the current velocity
vector of the UAV is Vu. To achieve obstacle avoidance,
the UAV needs to deviate from the obstacle avoidance cone
model, i.e., fly with the desired velocity vector V′

u to achieve
obstacle avoidance. Points E and F are the critical points of
the UAV’s desired velocity vector for obstacle avoidance.
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FIGURE 6. Results of experiments on model and strategy analysis. As can be seen from Figures 6 (a) - (d), the path planned
by the original algorithm passes through the threat sphere, posing a collision risk, while the improved algorithm always
effectively avoids the threat sphere and maintains a safe distance from obstacles, providing higher safety. In addition, the
path planned by the improved algorithm is smoother than that of the original algorithm; from Figure (e) and (f), it can be
seen that the path planned by the improved algorithm has smaller yaw and pitch angle deviations, while the original
algorithm has more deflections and larger deviations, resulting in higher path costs.

Taking the solution of the critical point E of the desired
velocity as an example, set the current coordinates of the
UAV as (xu, yu, zu), the current velocity vector Vu =[
vux , vuy, vuz

]T , and the coordinates of the center O point
of the obstacle as (xo, yo, zo); set the unit vector of LPE as
m = [x, y, z]. The unit vector m of LPE can be determined
using equations (22) to (24).

√
x2 + y2 + z2 = 1 (22)

cosα0 =
x(xo − xu) + y(yo − yu) + z(zo − zu)√
(xo − xu)2 + (yo − yu)2 + (zo − zu)2

(23)

cos(α0 − α) =
xvux + yvuy + zvuz

∥Vu∥
(24)

Then, the desired velocity vector V′
u can be obtained using

equation (27).

V′
u =

[
v′ux , v

′
uy, v

′
uz

]T
= (xvux + yvuy + zvuz)m (25)
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As shown in equations (26) and (27), by solving the desired
velocity vector V′

u, the directional angles ϕ′
u and θ ′

u of the
desired velocity vector can be obtained.

cosϕ′
u =

v′uy√(
v′ux

)2
+

(
v′uy

)2 (26)

cos θ ′
u =

v′uz√(
v′ux

)2
+

(
v′uy

)2
+

(
v′uz

)2 (27)

Finally, the growth direction of the bud that satisfies
equation (28) can be determined, discarding growth vectors
that do not meet the directional angle requirements.{

ϕu ≥ ϕ′
u

θu ≥ θ ′
u

(28)

D. B-SPLINE OPTIMIZATION
The original paths generated by the PGPP algorithm consist
of a series of path nodes, which are relatively scattered and
have excessive deflections, leading to sudden large changes
in direction during UAV flight. This may not meet the
UAV’s maneuverability constraints. Therefore, considering
the UAV’s yaw and pitch angle constraints, the original path
needs to be optimized.

This paper uses B-spline curves to smooth the original
path. B-spline curves are an effective method for construct-
ing curves and surfaces, suitable for UAV path planning
problems. The optimized path is smoother and more stable,
meeting the UAV’s maneuverability constraints and enabling
effective flight mission execution. As shown in equation (29).

P(u) =

n∑
i=0

Bni (u)Pi,

u ∈

{
0,

1
n− 1

,
2

n− 1
, . . . , 1

}
Bni (u) =

n!
i!(n− i)!

ui(1 − u)n−i,

i ∈ {0, 1, . . . , n}

(29)

where n represents the order of the B-spline curve; u is the
position parameter; Pi represents the control point; P(u) is
the new set of path nodes.

IV. SIMULATION AND VALIDATION
The experimental part was conducted in a computer testing
environment with a Win10 (64-bit) system, Intel Core
i7-7700 CPU, 2.8GHz, and 16GB RAM, using Matlab
R2021a software. This section first compares the MSPGPP
algorithm with the original PGPP algorithm, including exper-
imental analyses of the obstacle avoidance cone model and
path optimization strategy, as well as the multi-objective opti-
mization function, to validate the effectiveness and efficiency
of the model and strategies. Then, the improved algorithm
is compared with other intelligent optimization algorithms
under the same conditions in UAV three-dimensional path

planning simulation experiments to verify the effectiveness
of the improved algorithm in path planning problems.

A. COMPARISON WITH THE ORIGINAL ALGORITHM
This section compares theMSPGPP algorithmwith the PGPP
algorithm in path planning simulation experiments.

1) ANALYSIS OF IMPROVED MODELS AND STRATEGIES
To validate the effectiveness and applicability of the model
and strategies, theMSPGPP algorithm,which only introduces
the obstacle avoidance cone model and path optimization
strategy, is compared with the original algorithm.

Digital Elevation Model (DEM) terrain data from
the ALOS PALSAR database was used to construct a

TABLE 1. Model and strategy analysis experimental parameters.

FIGURE 7. Steps of MSPGPP to solve the optimal path. As shown in
Figure 7, after extracting its own and obstacle information, the UAV solves
path nodes through the MSPGPP algorithm. Specific steps include light
intensity calculation, establishing an obstacle avoidance cone model to
determine the branching direction, calculating growth vectors, etc. If the
target point is reached, the path is optimized using B-spline curves;
otherwise, path nodes continue to be solved. After obtaining the path,
it is stored and the total path cost is calculated. In each calculation, only
the solution with the lowest comprehensive cost is retained. Until the
iteration limit is reached, the optimal solution at this time is output as
the optimal path.
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FIGURE 8. The simulation results of multi-objective optimization function analysis experiment. As can be seen from the path
planning simulation results in Figure 8, compared with the original algorithm, the MSPGPP algorithm’s solution to the
multi-objective optimization function in the four scenarios results in smoother optimal paths, overcoming the drawback of
excessive deflections in the original algorithm’s path. The algorithm also meets the UAV’s maneuverability constraints,
allowing the UAV to maintain a safe distance from obstacles, effectively avoid them, and reach the target point.

three-dimensional map model with a boundary of MAP
in three dimensions. Related experimental parameters are
shown in Table 1.

The comparison experiment process is shown in Figure 5,
where red obstacles represent the threat sphere model.

Comparison experiment results are shown in Figure 6.
Overall, the improved algorithm satisfies the UAV’s

maneuverability constraints better than the original algo-
rithm. The results of these model and strategy analysis
experiments validate the effectiveness and applicability of the
improved algorithm’s model and strategies.

2) MULTI-OBJECTIVE OPTIMIZATION FUNCTION ANALYSIS
This section describes the steps of the MSPGPP algorithm
in solving the multi-objective optimization function and
compares the MSPGPP algorithm with the PGPP algorithm.
Based on the design and analysis of the MSPGPP algorithm,
the steps of solving the MSPGPP algorithm under the

constraint of the multi-objective optimization function are
shown in Figure 7.

Parameters for the multi-objective optimization function
analysis experiment are shown in Table 2, with the algorithm
iteration limit set to MaxIt . Except for the obstacle settings,
other environmental parameters are consistent with those
in Table 1.
To validate the effectiveness and applicability of the

improved algorithm’s multi-objective optimization function,
four benchmark scenarios are set, with obstacle parameter
information in the scenarios shown in Table 3.

Path planning results are shown in Figure 8.
Path planning cost optimization results are shown in

Figure 9.

B. COMPARISON WITH OPTIMIZATION ALGORITHMS
To further validate the performance of the MSPGPP algo-
rithm proposed in this paper, this section compares MSPGPP
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FIGURE 9. Path cost optimization results of multi-objective optimization function analysis experiment. As can be seen from the path
cost optimization results in Figure 9, the MSPGPP algorithm converges more quickly in the four scenarios, while the original
algorithm, due to greater randomness, converges more slowly and unstably, verifying the effectiveness and efficiency of the
algorithm proposed in this paper.

TABLE 2. Experimental parameters of multi-objective optimization
function analysis.

with other advanced optimization algorithms, including
the RRT algorithm, Particle Swarm Optimization (PSO)
algorithm, and Grey Wolf Optimizer (GWO). The iteration
limit for all four algorithms is 50. The RRT algorithm has
a step size of 25 and a pathfinding limit of 5000; the PSO
algorithm has a particle swarm size of 500, an iteration limit
of inertia weight of 1, inertia mass damping ratio of 0.98,
and individual and social learning factors of 1.5; the GWO

TABLE 3. The obstacle parameters of the original algorithm comparison
experiment.

algorithm has a wolf pack size of 20 and a maximum search
step size of 30.

1) SCENARIO SETTING
Simulation experiment scenarios use the map model and
experimental parameters from section A. Obstacle parame-
ters in the environment are shown in Table 4.
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TABLE 4. The obstacle parameters of optimization algorithm contrast
experiment.

FIGURE 10. Path cost optimization results of multi-objective optimization
function analysis experiment. As shown in Figure 10, the total optimal
path cost planned by the MSPGPP algorithm is only 2183.28, while the
GWO algorithm, PSO algorithm, and RRT algorithm all have total optimal
path costs exceeding that of the MSPGPP algorithm. The MSPGPP
algorithm achieves the required optimal path with only 37 iterations,
while the GWO algorithm, PSO algorithm, and RRT algorithm require 110,
65, and 139 iterations, respectively, to converge. Therefore, the MSPGPP
algorithm has the best effect in solving the optimal path.

2) COMPARISON OF OPTIMIZATION ALGORITHM EFFECTS
Path cost comparison optimization results are shown in
Figure 10.

The algorithm optimization effect comparison is shown in
Table 5.

TABLE 5. The obstacle parameters of optimization algorithm contrast
experiment.

As further shown in Table 5, the total duration of the
improved algorithm’s solution process is 34.2 seconds, while
the GWO algorithm, PSO algorithm, and RRT algorithm
planning total durations are 747.96 seconds, 149.04 seconds,
and 26.56 seconds, respectively. The improved algorithm’s
timeliness is better than that of the PSO andGWOalgorithms.
Since the RRT algorithm has the lowest computational
complexity, its solution time is the shortest, but the MSPGPP

FIGURE 11. The simulation results of the optimization algorithm
comparison experiment.

has better convergence than the RRT algorithm and plans
the lowest total cost-optimal path. Combining the number of
iterations of the optimal path and the total path cost, it can be
seen that theMSPGPP algorithm has the best effect in solving
the multi-objective optimization function, planning the most
optimal path.

Optimization algorithm comparison experiment simulation
results are shown in Figure 11. From the path planning
simulation results, it can be seen that overall, MSPGPP, PSO,
and GWO algorithms can generate feasible paths that meet
constraints such as path length, flight altitude, threat level,
and maneuverability, but the RRT algorithm is insufficient in
considering UAV maneuverability constraints.
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From the top view of the simulation results, it can be
further seen that the MSPGPP algorithm can obtain the most
optimal solution that takes into account path length, flight
altitude, obstacle avoidance safety, and UAVmaneuverability
constraints. The path planned by the PSO algorithm avoids
obstacles with the largest span, leaving the mission path for
the longest time, resulting in high path length costs. The path
planned by the RRT algorithm has excessive deflections and
dispersed nodes, resulting in high maneuverability costs. The
path planned by the GWO algorithm is difficult to maintain a
safe distance to avoid obstacles, resulting in high threat level
costs.

Figures that are meant to appear in color, or shades of
black/gray. Such figures may include photographs, illus-
trations, multicolor graphs, and flowcharts. For multicolor
graphs, please avoid any gray backgrounds or shading, as well
as screenshots, instead export the graph from the program
used to collect the data.

V. CONCLUSION
In response to the problem of three-dimensional path
planning for Unmanned Aerial Vehicles (UAVs), this paper
proposes a new MSPGPP algorithm. The simulation results
of the algorithm demonstrate:

The MSPGPP algorithm defines and introduces a threat
sphere model to ensure the safety of UAV obstacle avoidance.
The obstacle avoidance cone model is also defined and
introduced, improving the excessive randomness of the
original algorithm’s random branching step and enhancing
computational efficiency, meeting the timeliness require-
ments of UAV path planning algorithms. The introduction
of B-spline curves enhances path smoothness, meeting the
maneuverability requirements of UAVs, overcoming the
drawback of excessive deflection in the original algorithm’s
paths, and ensuring UAV flight safety.

The MSPGPP algorithm defines and introduces a
multi-objective optimization function, taking into account
various target constraints such as flight altitude and threat
level, reducing path costs, and improving the deficiency of
the original algorithm which did not consider path optimality.

Through three-dimensional simulation experiments, com-
paring the MSPGPP algorithm with the original PGPP algo-
rithm and other optimization algorithms, the results show:
Compared with the original PGPP algorithm, the MSPGPP
algorithm can better balance obstacle avoidance safety and
UAV maneuverability, planning paths that more safely and
effectively avoid obstacles. The MSPGPP algorithm has
higher accuracy and faster convergence. Comparedwith other
optimization algorithms, including the GWO algorithm, PSO
algorithm, and RRT algorithm, the MSPGPP algorithm is the
most effective in solving the optimal path.

Future work of this paper will focus on applying the
MSPGPP algorithm to multi-UAV formation path planning
problems. The applicability of the MSPGPP algorithm will
continue to be explored, to evaluate its effectiveness in
different domains of optimization problems.
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